3,437 research outputs found

    An extended mixed-integer programming formulation and dynamic cut generation approach for the stochastic lot sizing problem

    Get PDF
    We present an extended mixed-integer programming formulation of the stochastic lot-sizing problem for the static-dynamic uncertainty strategy. The proposed formulation is significantly more time efficient as compared to existing formulations in the literature and it can handle variants of the stochastic lot-sizing problem characterized by penalty costs and service level constraints, as well as backorders and lost sales. Also, besides being capable of working with a predefined piecewise linear approximation of the cost function-as is the case in earlier formulations-it has the functionality of finding an optimal cost solution with an arbitrary level of precision by means of a novel dynamic cut generation approach

    Reformulation and decomposition of integer programs

    Get PDF
    In this survey we examine ways to reformulate integer and mixed integer programs. Typically, but not exclusively, one reformulates so as to obtain stronger linear programming relaxations, and hence better bounds for use in a branch-and-bound based algorithm. First we cover in detail reformulations based on decomposition, such as Lagrangean relaxation, Dantzig-Wolfe column generation and the resulting branch-and-price algorithms. This is followed by an examination of Benders’ type algorithms based on projection. Finally we discuss in detail extended formulations involving additional variables that are based on problem structure. These can often be used to provide strengthened a priori formulations. Reformulations obtained by adding cutting planes in the original variables are not treated here.Integer program, Lagrangean relaxation, column generation, branch-and-price, extended formulation, Benders' algorithm

    Single item lot-sizing with non-decreasing capacities

    Get PDF
    We consider the single item lot-sizing problem with capacities that are non-decreasing over time. When the cost function is i) non-speculative or Wagner-Whitin (for instance, constant unit production costs and non-negative unit holding costs), and ii) the production set-up costs are non-increasing over time, it is known that the minimum cost lot-sizing problem is polynomially solvable using dynamic programming. When the capacities are non-decreasing, we derive a compact mixed integer programming reformulation whose linear programming relaxation solves the lot-sizing problem to optimality when the objective function satisfies i) and ii). The formulation is based on mixing set relaxations and reduces to the (known) convex hull of solutions when the capacities are constant over time. We illustrate the use and effectiveness of this improved LP formulation on a new test instances, including instances with and without Wagner-Whitin costs, and with both non-decreasing and arbitrary capacities over time.lot-sizing, mixing set relaxation, compact reformulation, production planning, mixed integer programming

    Comparison of different approaches to multistage lot sizing with uncertain demand

    Get PDF
    We study a new variant of the classical lot sizing problem with uncertain demand where neither the planning horizon nor demands are known exactly. This situation arises in practice when customer demands arriving over time are confirmed rather lately during the transportation process. In terms of planning, this setting necessitates a rolling horizon procedure where the overall multistage problem is dissolved into a series of coupled snapshot problems under uncertainty. Depending on the available data and risk disposition, different approaches from online optimization, stochastic programming, and robust optimization are viable to model and solve the snapshot problems. We evaluate the impact of the selected methodology on the overall solution quality using a methodology-agnostic framework for multistage decision-making under uncertainty. We provide computational results on lot sizing within a rolling horizon regarding different types of uncertainty, solution approaches, and the value of available information about upcoming demands

    Multistage stochastic capacitated discrete lot-sizing with lead times: problem definition, complexity analysis and tighter formulations

    Get PDF
    A stochastic capacitated discrete procurement problem with lead times, cancellation and postponement is addressed. The problem determines the expected cost minimization of satisfying the uncertain demand of a product during a discrete time planning horizon. The supply of the product is made through the purchase of optional distinguishable orders of fixed size with lead time. Due to the uncertainty of demand, corrective actions, such as order cancellation and postponement, may be taken with associated costs and time limits. The problem is modeled as an extension of a capacitated discrete lot-sizing problem with uncertain demand and lead times through a multistage stochastic mixed-integer programming approach. To improve the resolution of the model by tightening its formulation, valid inequalities are generated based on conventional inequalities. Subsets of approximately non dominated valid inequalities are determined heuristically. A procedure to tighten an upgraded formulation based on a known scheme of pairing of inequalities is proposed. Computational experiments are performed for several instances with different uncertainty information structure. The experimental results allow to conclude that the inclusion of subsets of the generated valid inequalities enable a more efficient resolution of the model

    Mixing sets linked by bidirected paths

    Get PDF
    Recently there has been considerable research on simple mixed-integer sets, called mixing sets, and closely related sets arising in uncapacitated and constant capacity lot- sizing. This in turn has led to study of more general sets, called network-dual sets, for which it is possible to derive extended formulations whose projection gives the convex hull of the network-dual set. Unfortunately this formulation cannot be used (in general) to optimize in polynomial time. Furthermore the inequalities definining the convex hull of a network-dual set in the original space of variables are known only for some special cases. Here we study two new cases, in which the continuous variables of the network-dual set are linked by a bi- directed path. In the first case, which is motivated by lot-sizing problems with (lost) sales, we provide a description of the convex hull as the intersection of the convex hulls of 2^n mixing sets, where n is the number of continuous variables of the set. However optimization is polynomial as only n + 1 of the sets are required for any given objective function. In the second case, generalizing single arc flow sets, we describe again the convex hull as an intersection of an exponential number of mixing sets and also give a combinatorial polynomial-time separation algorithm.mixing sets, extended formulations, mixed integer programming, lot-sizing with sales

    Modeling Industrial Lot Sizing Problems: A Review

    Get PDF
    In this paper we give an overview of recent developments in the field of modeling single-level dynamic lot sizing problems. The focus of this paper is on the modeling various industrial extensions and not on the solution approaches. The timeliness of such a review stems from the growing industry need to solve more realistic and comprehensive production planning problems. First, several different basic lot sizing problems are defined. Many extensions of these problems have been proposed and the research basically expands in two opposite directions. The first line of research focuses on modeling the operational aspects in more detail. The discussion is organized around five aspects: the set ups, the characteristics of the production process, the inventory, demand side and rolling horizon. The second direction is towards more tactical and strategic models in which the lot sizing problem is a core substructure, such as integrated production-distribution planning or supplier selection. Recent advances in both directions are discussed. Finally, we give some concluding remarks and point out interesting areas for future research
    corecore