462 research outputs found

    Generalized companion matrix for approximate GCD

    Full text link
    We study a variant of the univariate approximate GCD problem, where the coefficients of one polynomial f(x)are known exactly, whereas the coefficients of the second polynomial g(x)may be perturbed. Our approach relies on the properties of the matrix which describes the operator of multiplication by gin the quotient ring C[x]=(f). In particular, the structure of the null space of the multiplication matrix contains all the essential information about GCD(f; g). Moreover, the multiplication matrix exhibits a displacement structure that allows us to design a fast algorithm for approximate GCD computation with quadratic complexity w.r.t. polynomial degrees.Comment: Submitted to MEGA 201

    Partitioning de Bruijn Graphs into Fixed-Length Cycles for Robot Identification and Tracking

    Full text link
    We propose a new camera-based method of robot identification, tracking and orientation estimation. The system utilises coloured lights mounted in a circle around each robot to create unique colour sequences that are observed by a camera. The number of robots that can be uniquely identified is limited by the number of colours available, qq, the number of lights on each robot, kk, and the number of consecutive lights the camera can see, ℓ\ell. For a given set of parameters, we would like to maximise the number of robots that we can use. We model this as a combinatorial problem and show that it is equivalent to finding the maximum number of disjoint kk-cycles in the de Bruijn graph dB(q,ℓ)\text{dB}(q,\ell). We provide several existence results that give the maximum number of cycles in dB(q,ℓ)\text{dB}(q,\ell) in various cases. For example, we give an optimal solution when k=qℓ−1k=q^{\ell-1}. Another construction yields many cycles in larger de Bruijn graphs using cycles from smaller de Bruijn graphs: if dB(q,ℓ)\text{dB}(q,\ell) can be partitioned into kk-cycles, then dB(q,ℓ)\text{dB}(q,\ell) can be partitioned into tktk-cycles for any divisor tt of kk. The methods used are based on finite field algebra and the combinatorics of words.Comment: 16 pages, 4 figures. Accepted for publication in Discrete Applied Mathematic

    Novel Approach to Real Polynomial Root-finding and Matrix Eigen-solving

    Full text link
    Univariate polynomial root-finding is both classical and important for modern computing. Frequently one seeks just the real roots of a polynomial with real coefficients. They can be approximated at a low computational cost if the polynomial has no nonreal roots, but typically nonreal roots are much more numerous than the real ones. We dramatically accelerate the known algorithms in this case by exploiting the correlation between the computations with matrices and polynomials, extending the techniques of the matrix sign iteration, and exploiting the structure of the companion matrix of the input polynomial. We extend some of the proposed techniques to the approximation of the real eigenvalues of a real nonsymmetric matrix.Comment: 17 pages, added algorithm

    Selecting Algorithms for Black Box Matrices: Checking for Matrix Properties That Can Simplify Computations

    Full text link
    Processes to automate the selection of appropriate algorithms for various matrix computations are described. In particular, processes to check for, and certify, various matrix properties of black box matrices are presented. These include sparsity patterns and structural properties that allow "superfast" algorithms to be used in place of black-box algorithms. Matrix properties that hold generically, and allow the use of matrix preconditioning to be reduced or eliminated, can also be checked for and certified - notably including in the small-field case, where this presently has the greatest impact on the efficiency of the computation.Comment: Department of Computer Science Technical Report 2016-1085-0

    TR-2012001: Algebraic Algorithms

    Full text link
    • …
    corecore