409 research outputs found

    Passive MIMO Radar Detection

    Get PDF
    Passive multiple-input multiple-output (MIMO) radar is a sensor network comprised of multiple distributed receivers that detects and localizes targets using the emissions from multiple non-cooperative radio frequency transmitters. This dissertation advances the theory of centralized passive MIMO radar (PMR) detection by proposing two novel generalized likelihood ratio test (GLRT) detectors. The first addresses detection in PMR networks without direct-path signals. The second addresses detection in PMR networks with direct-path signals. The probability distributions of both test statistics are investigated using recent results from random matrix theory. Equivalence is established between PMR networks without direct-path signals and passive source localization (PSL) networks. Comparison of both detectors with a centralized GLRT for active MIMO radar (AMR) detection reveals that PMR may be interpreted as the link between AMR and PSL sensor networks. In particular, under high direct-path-to-noise ratio (DNR) conditions, PMR sensitivity and ambiguity approaches that of AMR. Under low-DNR conditions, PMR sensitivity and ambiguity approaches that of PSL. At intermediate DNRs, PMR sensitivity and ambiguity smoothly varies between that of AMR and PSL. In this way, PMR unifies PSL and AMR within a common theoretical framework. This result provides insight into the fundamental natures of active and passive distributed sensing

    Convergent communication, sensing and localization in 6g systems: An overview of technologies, opportunities and challenges

    Get PDF
    Herein, we focus on convergent 6G communication, localization and sensing systems by identifying key technology enablers, discussing their underlying challenges, implementation issues, and recommending potential solutions. Moreover, we discuss exciting new opportunities for integrated localization and sensing applications, which will disrupt traditional design principles and revolutionize the way we live, interact with our environment, and do business. Regarding potential enabling technologies, 6G will continue to develop towards even higher frequency ranges, wider bandwidths, and massive antenna arrays. In turn, this will enable sensing solutions with very fine range, Doppler, and angular resolutions, as well as localization to cm-level degree of accuracy. Besides, new materials, device types, and reconfigurable surfaces will allow network operators to reshape and control the electromagnetic response of the environment. At the same time, machine learning and artificial intelligence will leverage the unprecedented availability of data and computing resources to tackle the biggest and hardest problems in wireless communication systems. As a result, 6G will be truly intelligent wireless systems that will provide not only ubiquitous communication but also empower high accuracy localization and high-resolution sensing services. They will become the catalyst for this revolution by bringing about a unique new set of features and service capabilities, where localization and sensing will coexist with communication, continuously sharing the available resources in time, frequency, and space. This work concludes by highlighting foundational research challenges, as well as implications and opportunities related to privacy, security, and trust

    Energy-Efficient Hybrid Beamforming for Multi-Layer RIS-Assisted Secure Integrated Terrestrial-Aerial Networks

    Get PDF
    The integration of aerial platforms to provide ubiquitous coverage and connectivity for densely deployed terrestrial networks is expected to be a reality in the emerging sixth-generation networks. Energy-effificient and secure transmission designs are two important components for integrated terrestrial-aerial networks (ITAN). Inlight of the potential of reconfigurable intelligent surface (RIS) for significantly reducing the system power consumption and boosting information security, this paper proposes a multi-layer RIS-assisted secure ITAN architecture to defend against simultaneous jamming and eavesdropping attacks, and investigates energy-efficient hybrid beamforming for it. Specifically, with the availability of imperfect angular channel state information (CSI), we propose a block coordinate descent (BCD) framework for the joint optimization of the user’s received decoder, the terrestrial and aerial digital precoder, and the multi-layer RIS analog precoder to maximize the system energy efficiency (EE) performance. For the design of the received decoder, a heuristic beamforming scheme is proposed to convert the worst-case design problem into a min-max one and facilitate the developing a closed-form solution. For the design of the digital precoder, we propose an iterative sequential convex approximation approach via capitalizing the auxiliary variables and first-order Taylor series expansion. Finally, a monotonic vertex-update algorithm with a penalty convex-concave procedure (P-CCP) is proposed to obtain the analog precoder with satisfactory performance. Numerical results show the superiority and effectiveness of the proposed optimization framework and architecture over various benchmark schemes

    Compressed sensing for enhanced through-the-wall radar imaging

    Get PDF
    Through-the-wall radar imaging (TWRI) is an emerging technology that aims to capture scenes behind walls and other visually opaque materials. The abilities to sense through walls are highly desirable for both military and civil applications, such as search and rescue missions, surveillance, and reconnaissance. TWRI systems, however, face with several challenges including prolonged data acquisition, large objects, strong wall clutter, and shadowing effects, which limit the radar imaging performances and hinder target detection and localization

    Convergent Communication, Sensing and Localization in 6G Systems: An Overview of Technologies, Opportunities and Challenges

    Get PDF
    Herein, we focus on convergent 6G communication, localization and sensing systems by identifying key technology enablers, discussing their underlying challenges, implementation issues, and recommending potential solutions. Moreover, we discuss exciting new opportunities for integrated localization and sensing applications, which will disrupt traditional design principles and revolutionize the way we live, interact with our environment, and do business. Regarding potential enabling technologies, 6G will continue to develop towards even higher frequency ranges, wider bandwidths, and massive antenna arrays. In turn, this will enable sensing solutions with very fine range, Doppler, and angular resolutions, as well as localization to cm-level degree of accuracy. Besides, new materials, device types, and reconfigurable surfaces will allow network operators to reshape and control the electromagnetic response of the environment. At the same time, machine learning and artificial intelligence will leverage the unprecedented availability of data and computing resources to tackle the biggest and hardest problems in wireless communication systems. As a result, 6G will be truly intelligent wireless systems that will provide not only ubiquitous communication but also empower high accuracy localization and high-resolution sensing services. They will become the catalyst for this revolution by bringing about a unique new set of features and service capabilities, where localization and sensing will coexist with communication, continuously sharing the available resources in time, frequency, and space. This work concludes by highlighting foundational research challenges, as well as implications and opportunities related to privacy, security, and trust

    Adaptive Illumination Patterns for Radar Applications

    Get PDF
    The fundamental goal of Fully Adaptive Radar (FAR) involves full exploitation of the joint, synergistic adaptivity of the radar\u27s transmitter and receiver. Little work has been done to exploit the joint space time Degrees-of-Freedom (DOF) available via an Active Electronically Steered Array (AESA) during the radar\u27s transmit illumination cycle. This research introduces Adaptive Illumination Patterns (AIP) as a means for exploiting this previously untapped transmit DOF. This research investigates ways to mitigate clutter interference effects by adapting the illumination pattern on transmit. Two types of illumination pattern adaptivity were explored, termed Space Time Illumination Patterns (STIP) and Scene Adaptive Illumination Patterns (SAIP). Using clairvoyant knowledge, STIP demonstrates the ability to remove sidelobe clutter at user specified Doppler frequencies, resulting in optimum receiver performance using a non-adaptive receive processor. Using available database knowledge, SAIP demonstrated the ability to reduce training data heterogeneity in dense target environments, thereby greatly improving the minimum discernable velocity achieved through STAP processing

    SPATIAL FILTERING OF CLUTTER USING PHASED ARRAY RADARS FOR OBSERVATIONS OF THE WEATHER

    Get PDF
    Phased array radars are attractive for weather surveillance primarily because of their capacity for extremely rapid scanning through electronic steering. When combined with the recently developed beam multiplexing technique, these radars can provide significantly improved update rates, which are necessary for monitoring rapidly evolving severe weather. A consequence of beam multiplexing, however, is that a small number of contiguous time series samples are typically used, creating a significant challenge for temporal/spectral filters typically used for clutter mitigation. As a result, the accurate extraction of weather products can become the limiting performance barrier for phased array radars that employ beam multiplexing in clutter-contaminated scattered fields. By exploiting the spatial correlation among the signals from the elements of the phased array antenna, the effect of clutter contamination can be reduced through a processed called spatial filtering . In contrast to conventional temporal filtering, spatial filtering is used to adaptively adjust the antenna beam pattern to produce lower gain in the directions of the undesired clutter signals. In this dissertation, the effect of clutter mitigation using spatial filtering was studied using numerical simulations of a tornadic environment and an array antenna configuration similar to the NSSL NWRT Phased Array Radar for changes in signal-to-noise ratio, clutter-to-signal ratio, number of time series samples, and diagonal loading for three types of clutter sources that include nearly stationary ground clutter, moving targets such as aircraft, and wind turbine clutter, which has recently been documented to be increasingly problematic for radars. Since such data are not currently available from a horizontally pointed phased array weather radar, experimental validation was applied to an existing data set from the Turbulent Eddy Profiler (TEP) developed at University of Massachusetts, which is a vertically pointed phased array radar. Results will show that spatial filtering holds promise for the future of phased array radars for the observation of the weather in a clutter environment

    Temporal and Spatial Interference Mitigation Strategies to Improve Radar Data Quality

    Get PDF
    The microwave band is well suited to wireless applications, including radar, communications, and electronic warfare. While radar operations currently have priority in a portion of the microwave band, wireless companies are lobbying to change that; such a change would force current operators into a smaller total bandwidth. Interference would occur, and has already occurred at the former National Weather Radar Testbed Phased Array Radar. The research in this dissertation was motivated by this interference --- it occurred even without a change to radar's primacy in the microwave band. If microwave operations had to squeeze into a smaller overall bandwidth, such interference, whether originating from other radars or some other source, would only become more common. The radio frequency interference (RFI) present at the National Weather Radar Testbed Phased Array Radar altered the statistical properties at certain locations, causing targets to be erroneously detected. While harmless enough in clear air, it could affect National Weather Service decisions if it occurred during a weather event. The initial experiments, covered in Chapter 2, used data comprised of a single channel of in-phase and quadrature (IQ) data, reflecting the resources available to the National Weather Service's weather radar surveillance network. A new algorithm, the Interference Spike Detection Algorithm, was developed with these restrictions in mind. This new algorithm outperforms several interference detection algorithms developed by industry. Tests on this data examined algorithm performance quantitatively, using real and simulated weather data and radio frequency interference. Additionally, machine learning classification algorithms were employed for the first time to the RFI classification problem and it was found that, given enough resources, machine learning had the potential to perform even better than the other temporal algorithms. Subsequent experiments, covered in Chapter 3, used spatial data from phased arrays and looked at methods of interference mitigation that leveraged this spatial data. Specifically, adaptive beamforming techniques could be used to mitigate interference and improve data quality. A variety of adaptive digital beamforming techniques were evaluated in terms of their performance at interference mitigation for a communications task. Additionally, weather radar data contaminated with ground clutter was collected from the sidelobe canceller channels of the former National Weather Radar Testbed Phased Array Radar and, using the reasoning that ground clutter is simply interference from the ground, adaptive digital beamforming was successfully employed to mitigate the impact of ground clutter and restore the data to reflect the statistics of the underlying weather data. Tests on digital equalization, covered in Chapter 4, used data from a prototype receiver for Horus, a digital phased array radar under development at the University of Oklahoma. The data suffered from significant channel mismatch, which can severely negatively impact the performance of phased arrays. Equalization, implemented both via older digital filter design methods and, for the first time, via newer machine learning regression methods, was able to improve channel matching. When used before adaptive digital beamforming, it was found that digital equalization always improved system performance
    • …
    corecore