2,438 research outputs found

    Extended State Observer-Based Sliding-Mode Control for Three-Phase Power Converters

    Get PDF
    This paper proposes an extended state observer (ESO) based second-order sliding-mode (SOSM) control for three-phase two-level grid-connected power converters. The proposed control technique forces the input currents to track the desired values, which can indirectly regulate the output voltage while achieving a user-defined power factor. The presented approach has two control loops. A current control loop based on an SOSM and a dc-link voltage regulation loop which consists of an ESO plus SOSM. In this work, the load connected to the dc-link capacitor is considered as an external disturbance. An ESO is used to asymptotically reject this external disturbance. Therefore, its design is considered in the control law derivation to achieve a high performance. Theoretical analysis is given to show the closed-loop behavior of the proposed controller and experimental results are presented to validate the control algorithm under a real power converter prototyp

    Fast Adaptive Robust Differentiator Based Robust-Adaptive Control of Grid-Tied Inverters with a New L Filter Design Method

    Get PDF
    In this research, a new nonlinear and adaptive state feedback controller with a fast-adaptive robust differentiator is presented for grid-tied inverters. All parameters and external disturbances are taken as uncertain in the design of the proposed controller without the disadvantages of singularity and over-parameterization. A robust differentiator based on the second order sliding mode is also developed with a fast-adaptive structure to be able to consider the time derivative of the virtual control input. Unlike the conventional backstepping, the proposed differentiator overcomes the problem of explosion of complexity. In the closed-loop control system, the three phase source currents and direct current (DC) bus voltage are assumed to be available for feedback. Using the Lyapunov stability theory, it is proven that the overall control system has the global asymptotic stability. In addition, a new simple L filter design method based on the total harmonic distortion approach is also proposed. Simulations and experimental results show that the proposed controller assurances drive the tracking errors to zero with better performance, and it is robust against all uncertainties. Moreover, the proposed L filter design method matches the total harmonic distortion (THD) aim in the design with the experimental result

    A Novel PMSM Hybrid Sensorless Control Strategy for EV Applications Based on PLL and HFI

    Get PDF
    In this paper, a novel hybrid sensorless control strategy for Permanent Magnet Synchronous Machine (PMSM) drives applied to Electric Vehicles (EV) is presented. This sensorless strategy covers the EV full speed range and also has speed reversal capability. It combines a High Frequency Injection (HFI) technique for low and zero speeds, and a Phase-Locked Loop (PLL) for the medium and high speed regions. A solution to achieve smooth transitions between the PLL and the HFI strategies is also proposed, allowing to correctly detect the rotor position polarity when HFI takes part. Wide speed and torque four-quadrant simulation results are provided, which validate the proposed sensorless strategy for being further implemented in EV.Peer ReviewedPostprint (author's final draft

    A High-Gain Observer-Based Adaptive Super-Twisting Algorithm for DC-Link Voltage Control of NPC Converters

    Get PDF
    Acting as an interface between the grid and many energy systems, the active front-end (AFE) has been widely used in a large variety of industrial applications. In this paper, in order to ensure the fast dynamic performance and good disturbance rejection ability of the AFE, a high-gain observer (HGO) plus adaptive super-twisting algorithm (STA) for the three-level neutral-point-clamped (NPC) converter is proposed. Comparing with the conventional PI control strategy, the proposed controller implements the adaptive STA in the voltage regulator to provide a faster transient response. The gains of the adaptive STA keep varying according to the rules being reduced in steady state but increasing in transient conditions. Therefore, the chattering phenomenon is mitigated and the dynamic response is guaranteed. Additionally, to undermine the impact of external disturbances on the dc-link voltage, a high-efficiency HGO is designed in the voltage regulation loop to reject it. Experimental results based on a three-level NPC prototype are given and compared with the conventional PI method to validate the fast dynamic performance and high disturbance rejection ability of the proposed approach.National Key R&D Program of China SQ2019YFB130028National Natural Science Foundation of China 61525303National Natural Science Foundation of China 41772377National Natural Science Foundation of China 61673130Self-Planned Task of State Key Laboratory of Robotics and System (HIT) SKLRS201806BMinisterio de Economía y Competitividad TEC2016-78430-RJunta de Andalucía P18-RT-1340Fondo de Investigación Nacional de Qatar NPRP 9-310-2-13

    Integral Sliding-Mode Control-Based Direct Power Control for Three-Level NPC Converters

    Get PDF
    Three-level neutral-point-clamped (NPC) converter is widely used in energy conversion systems due to its good properties for high-power systems presenting output waveforms with reduced harmonic distortion. To obtain better system performance, an integral sliding-mode control (ISMC)-based direct power control (DPC) strategy is proposed for NPC converters. The controller achieves three objectives. First, an extended state observer (ESO)-based ISMC strategy, to enforce the active and reactive power to their reference values, is applied in the power tracking loop. ESO is used to reduce the influence of parameter uncertainties. Next, in the voltage regulation loop, a radial basis function neural network (RBFNN)-based adaptive ISMC strategy is applied to regulate the DC-link voltage. RBFNN is used to estimate the load variation, which is considered as a disturbance, to improve the system disturbance rejection ability. An adaptive law is used in the controller to reduce the chattering of reference active power which can reduce the current harmonic distortion. Finally, a proportional-integral (PI) control strategy is applied in the voltage balancing loop to achieve voltage balance between two DC-link capacitors. Experimental results show the effectiveness and superiority of the proposed control strategy for the NPC power converter compared with PI-based DPC strategy.National Natural Science Foundation of China 61525303National Natural Science Foundation of China 41772377National Natural Science Foundation of China 61673130Laboratorio Estatal Clave de Robótica y Sistema (HIT) SKLRS201806

    A Review on Direct Power Control of Pulsewidth Modulation Converters

    Get PDF

    An enhanced DC-link voltage response for wind-driven doubly fed induction generator using adaptive fuzzy extended state observer and sliding mode control

    Get PDF
    This paper presents an enhancement method to improve the performance of the DC-link voltage loop regulation in a Doubly-Fed Induction Generator (DFIG)- based wind energy converter. An intelligent, combined control approach based on a metaheuristics-tuned Second-Order Sliding Mode (SOSM) controller and an adaptive fuzzy-scheduled Extended State Observer (ESO) is proposed and successfully applied. The proposed fuzzy gains-scheduling mechanism is performed to adaptively tune and update the bandwidth of the ESO while disturbances occur. Besides common time-domain performance indexes, bounded limitations on the effective parameters of the designed Super Twisting (STA)-based SOSM controllers are set thanks to the Lyapunov theory and used as nonlinear constraints for the formulated hard optimization control problem. A set of advanced metaheuristics, such as Thermal Exchange Optimization (TEO), Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Harmony Search Algorithm (HSA), Water Cycle Algorithm (WCA), and Grasshopper Optimization Algorithm (GOA), is considered to solve the constrained optimization problem. Demonstrative simulation results are carried out to show the superiority and effectiveness of the proposed control scheme in terms of grid disturbances rejection, closed-loop tracking performance, and robustness against the chattering phenomenon. Several comparisons to our related works, i.e., approaches based on TEO-tuned PI controller, TEO-tuned STA-SOSM controller, and STA-SOSM controller-based linear observer, are presented and discussed

    A short predictive Model Predictive Control (MPC) approach for hybrid characteristics analysis in DC-DC converter

    Get PDF
    Historically, the MPC has been successfully applied in drives system for over a decade. Furthermore, the DC-DC converter naturally deals with high switching phenomenon that contributes to the challenging in control approach. Its operation conventionally associated with PI/PID controller in order to meet the desired output. However, the PI/PID controller lacking in getting a good transient response since this controller highly depends on the controller gains. Recently, an advanced controller has been proposed in the literature for the purpose to enhance the DC-DC converter performance. Hence, in this thesis, the short prediction horizon of MPC using search tree optimization that generates low switching states phenomenon is proposed. The MPC algorithm is developed based on the hybrid characteristic signals from the DC-DC converter. The load changes due to the increasing or decreasing the loads (could be happened of heating effect) will affect the tracking of the output voltage. The Kalman Filter (KF) is used for load estimation for smoothing and tracking the output voltage. The performance of short prediction horizons is being compared to PI controller in terms of transient response during the start-up scenario. The results show that the proposed controller has a better response than PI controller, which is the overshoot has been reduced to more than 50% and the settling time more faster about 25% than PI controller during start-up scenario. Therefore, this control approach for DC-DC buck converter has produced the promising output transient performance when compared with the conventional PI controller while also minimizing the switching sequence phenomenon

    Improved DC-Link Voltage Regulation Strategy for Grid-Connected Converters

    Get PDF
    In this article, an improved dc-link voltage regulation strategy is proposed for grid-connected converters applied in dc microgrids. For the inner loop of the grid-connected converter, a voltage modulated direct power control is employed to obtain two second-order linear time-invariant systems, which guarantees that the closed-loop system is globally exponentially stable. For the outer loop, a sliding mode control strategy with a load current sensor is employed to maintain a constant dc-link voltage even in the presence of constant power loads at the dc-side, which adversely affect the system stability. Furthermore, an observer for the dc-link current is designed to remove the dc current sensor at the same time improving the reliability and decreasing the cost. From both simulation and experimental results obtained from a 15-kVA prototype setup, the proposed method is demonstrated to improve the transient performance of the system and has robustness properties to handle parameter mismatches compared with the input-output linearization method
    corecore