32,403 research outputs found

    Extended Learning Graphs for Triangle Finding

    Get PDF
    We present new quantum algorithms for Triangle Finding improving its best previously known quantum query complexities for both dense and sparse instances. For dense graphs on n vertices, we get a query complexity of O(n^(5/4)) without any of the extra logarithmic factors present in the previous algorithm of Le Gall [FOCS\u2714]. For sparse graphs with m >= n^(5/4) edges, we get a query complexity of O(n^(11/12) m^(1/6) sqrt(log n)), which is better than the one obtained by Le Gall and Nakajima [ISAAC\u2715] when m >= n^(3/2). We also obtain an algorithm with query complexity O(n^(5/6) (m log n)^(1/6) + d_2 sqrt(n)) where d_2 is the variance of the degree distribution. Our algorithms are designed and analyzed in a new model of learning graphs that we call extended learning graphs. In addition, we present a framework in order to easily combine and analyze them. As a consequence we get much simpler algorithms and analyses than previous algorithms of Le Gall based on the MNRS quantum walk framework [SICOMP\u2711]

    Improved Quantum Algorithm for Triangle Finding via Combinatorial Arguments

    Full text link
    In this paper we present a quantum algorithm solving the triangle finding problem in unweighted graphs with query complexity O~(n5/4)\tilde O(n^{5/4}), where nn denotes the number of vertices in the graph. This improves the previous upper bound O(n9/7)=O(n1.285...)O(n^{9/7})=O(n^{1.285...}) recently obtained by Lee, Magniez and Santha. Our result shows, for the first time, that in the quantum query complexity setting unweighted triangle finding is easier than its edge-weighted version, since for finding an edge-weighted triangle Belovs and Rosmanis proved that any quantum algorithm requires Ω(n9/7/logn)\Omega(n^{9/7}/\sqrt{\log n}) queries. Our result also illustrates some limitations of the non-adaptive learning graph approach used to obtain the previous O(n9/7)O(n^{9/7}) upper bound since, even over unweighted graphs, any quantum algorithm for triangle finding obtained using this approach requires Ω(n9/7/logn)\Omega(n^{9/7}/\sqrt{\log n}) queries as well. To bypass the obstacles characterized by these lower bounds, our quantum algorithm uses combinatorial ideas exploiting the graph-theoretic properties of triangle finding, which cannot be used when considering edge-weighted graphs or the non-adaptive learning graph approach.Comment: 17 pages, to appear in FOCS'14; v2: minor correction

    On the maximal number of real embeddings of minimally rigid graphs in R2\mathbb{R}^2, R3\mathbb{R}^3 and S2S^2

    Get PDF
    Rigidity theory studies the properties of graphs that can have rigid embeddings in a euclidean space Rd\mathbb{R}^d or on a sphere and which in addition satisfy certain edge length constraints. One of the major open problems in this field is to determine lower and upper bounds on the number of realizations with respect to a given number of vertices. This problem is closely related to the classification of rigid graphs according to their maximal number of real embeddings. In this paper, we are interested in finding edge lengths that can maximize the number of real embeddings of minimally rigid graphs in the plane, space, and on the sphere. We use algebraic formulations to provide upper bounds. To find values of the parameters that lead to graphs with a large number of real realizations, possibly attaining the (algebraic) upper bounds, we use some standard heuristics and we also develop a new method inspired by coupler curves. We apply this new method to obtain embeddings in R3\mathbb{R}^3. One of its main novelties is that it allows us to sample efficiently from a larger number of parameters by selecting only a subset of them at each iteration. Our results include a full classification of the 7-vertex graphs according to their maximal numbers of real embeddings in the cases of the embeddings in R2\mathbb{R}^2 and R3\mathbb{R}^3, while in the case of S2S^2 we achieve this classification for all 6-vertex graphs. Additionally, by increasing the number of embeddings of selected graphs, we improve the previously known asymptotic lower bound on the maximum number of realizations. The methods and the results concerning the spatial embeddings are part of the proceedings of ISSAC 2018 (Bartzos et al, 2018)

    Renewing the framework for secondary mathematics : spring 2008 subject leader development meeting : sessions 2, 3 and 4

    Get PDF

    Quantum Algorithms for Finding Constant-sized Sub-hypergraphs

    Full text link
    We develop a general framework to construct quantum algorithms that detect if a 33-uniform hypergraph given as input contains a sub-hypergraph isomorphic to a prespecified constant-sized hypergraph. This framework is based on the concept of nested quantum walks recently proposed by Jeffery, Kothari and Magniez [SODA'13], and extends the methodology designed by Lee, Magniez and Santha [SODA'13] for similar problems over graphs. As applications, we obtain a quantum algorithm for finding a 44-clique in a 33-uniform hypergraph on nn vertices with query complexity O(n1.883)O(n^{1.883}), and a quantum algorithm for determining if a ternary operator over a set of size nn is associative with query complexity O(n2.113)O(n^{2.113}).Comment: 18 pages; v2: changed title, added more backgrounds to the introduction, added another applicatio
    corecore