652 research outputs found

    Similarity Measures for Enhancing Interactive Streamline Seeding

    Get PDF
    Streamline seeding rakes are widely used in vector field visualization. We present new approaches for calculating similarity between integral curves (streamlines and pathlines). While others have used similarity distance measures, the computational expense involved with existing techniques is relatively high due to the vast number of euclidean distance tests, restricting interactivity and their use for streamline seeding rakes. We introduce the novel idea of computing streamline signatures based on a set of curve-based attributes. A signature produces a compact representation for describing a streamline. Similarity comparisons are performed by using a popular statistical measure on the derived signatures. We demonstrate that this novel scheme, including a hierarchical variant, produces good clustering results and is computed over two orders of magnitude faster than previous methods. Similarity-based clustering enables filtering of the streamlines to provide a nonuniform seeding distribution along the seeding object. We show that this method preserves the overall flow behavior while using only a small subset of the original streamline set. We apply focus + context rendering using the clusters which allows for faster and easier analysis in cases of high visual complexity and occlusion. The method provides a high level of interactivity and allows the user to easily fine tune the clustering results at runtime while avoiding any time-consuming recomputation. Our method maintains interactive rates even when hundreds of streamlines are used

    Illustrative Flow Visualization of 4D PC-MRI Blood Flow and CFD Data

    Get PDF
    Das zentrale Thema dieser Dissertation ist die Anwendung illustrativer Methoden auf zwei bisher ungelöste Probleme der Strömungsvisualisierung. Das Ziel der Strömungsvisualisierung ist die Bereitstellung von Software, die Experten beim Auswerten ihrer Strömungsdaten und damit beim Erkenntnisgewinn unterstützt. Bei der illustrativen Visualisierung handelt es sich um einen Zweig der Visualisierung, der sich an der künstlerischen Arbeit von Illustratoren orientiert. Letztere sind darauf spezialisiert komplizierte Zusammenhänge verständlich und ansprechend zu vermitteln. Die angewendeten Techniken werden in der illustrativen Visualisierung auf reale Daten übertragen, um die Effektivität der Darstellung zu erhöhen. Das erste Problem, das im Rahmen dieser Dissertation bearbeitet wurde, ist die eingeschränkte Verständlichkeit von komplexen Stromflächen. Selbstverdeckungen oder Aufrollungen behindern die Form- und Strömungswahrnehmung und machen diese Flächen gerade in interessanten Strömungssituationen wenig nützlich. Auf Basis von handgezeichneten Strömungsdarstellungen haben wir ein Flächenrendering entwickelt, das Silhouetten, nicht-photorealistische Beleuchtung und illustrative Stromlinien verwendet. Interaktive Flächenschnitte erlauben die Exploration der Flächen und der Strömungen, die sie repräsentieren. Angewendet auf verschiedene Stromflächen ließ sich zeigen, dass die Methoden die Verständlichkeit erhöhen, v.a. in Bereichen komplexer Strömung mit Aufwicklungen oder Singularitäten. Das zweite Problem ist die Strömungsanalyse des Blutes aus 4D PC-MRI-Daten. An diese relativ neue Datenmodalität werden hohe Erwartungen für die Erforschung und Behandlung kardiovaskulärer Krankheiten geknüpft, da sie erstmals ein dreidimensionales, zeitlich aufgelöstes Abbild der Hämodynamik liefert. Bisher werden 4D PC-MRI-Daten meist mit Werkzeugen der klassischen Strömungsvisualisierung verarbeitet. Diese werden den besonderen Ansprüchen der medizinischen Anwender jedoch nicht gerecht, die in kurzer Zeit eine übersichtliche Darstellung der relevanten Strömungsaspekte erhalten möchten. Wir haben ein Werkzeug zur visuellen Analyse der Blutströmung entwickelt, welches eine einfache Detektion von markanten Strömungsmustern erlaubt, wie z.B. Jets, Wirbel oder Bereiche mit hoher Blutverweildauer. Die Grundidee ist hierbei aus vorberechneten Integrallinien mit Hilfe speziell definierter Linienprädikate die relevanten, d.h. am gefragten Strömungsmuster, beteiligten Linien ausgewählt werden. Um eine intuitive Darstellung der Resultate zu erreichen, haben wir uns von Blutflußillustrationen inspirieren lassen und präsentieren eine abstrakte Linienbündel- und Wirbeldarstellung. Die Linienprädikatmethode sowie die abstrakte Darstellung der Strömungsmuster wurden an 4D PC-MRI-Daten von gesunden und pathologischen Aorten- und Herzdaten erfolgreich getestet. Auch die Evaluierung durch Experten zeigt die Nützlichkeit der Methode und ihr Potential für den Einsatz in der Forschung und der Klinik.This thesis’ central theme is the use of illustrative methods to solve flow visualization problems. The goal of flow visualization is to provide users with software tools supporting them analyzing and extracting knowledge from their fluid dynamics data. This fluid dynamics data is produced in large amounts by simulations or measurements to answer diverse questions in application fields like engineering or medicine. This thesis deals with two unsolved problems in flow visualization and tackles them with methods of illustrative visualization. The latter is a subbranch of visualization whose methods are inspired by the art work of professional illustrators. They are specialized in the comprehensible and esthetic representation of complex knowledge. With illustrative visualization, their techniques are applied to real data to enhance their representation. The first problem dealt with in this thesis is the limited shape and flow perception of complex stream surfaces. Self-occlusion and wrap-ups hinder their effective use in the most interesting flow situations. On the basis of hand-drawn flow illustrations, a surface rendering method was designed that uses silhouettes, non-photorealistic shading, and illustrative surface stream lines. Additionally, geometrical and flow-based surface cuts allow the user an interactive exploration of the surface and the flow it represents. By applying this illustrative technique to various stream surfaces and collecting expert feedback, we could show that the comprehensibility of the stream surfaces was enhanced – especially in complex areas with surface wrap-ups and singularities. The second problem tackled in this thesis is the analysis of blood flow from 4D PC-MRI data. From this rather young data modality, medical experts expect many advances in the research of cardiovascular diseases because it delivers a three-dimensional and time-resolved image of the hemodynamics. However, 4D PC-MRI data are mainly processed with standard flow visualizaton tools, which do not fulfill the requirements of medical users. They need a quick and easy-to-understand display of the relevant blood flow aspects. We developed a tool for the visual analysis of blood flow that allows a fast detection of distinctive flow patterns, such as high-velocity jets, vortices, or areas with high residence times. The basic idea is to precalculate integral lines and use specifically designed line predicates to select and display only lines involved in the pattern of interest. Traditional blood flow illustrations inspired us to an abstract and comprehensible depiction of the resulting line bundles and vortices. The line predicate method and the illustrative flow pattern representation were successfully tested with 4D PC-MRI data of healthy and pathological aortae and hearts. Also, the feedback of several medical experts confirmed the usefulness of our methods and their capabilities for a future application in the clinical research and routine

    ACCESSIBLE ACCESS CONTROL: A VISUALIZATION SYSTEM FOR ACCESS CONTROL POLICY MANAGEMENT

    Get PDF
    Attacks on computers today present in many different forms, causing malfunction of operating systems, information leakage and loss of business and public trust. Access control is a technique that stands as the last line of protection restricting the access of users or processes to resources on computers. Throughout the years, many access control models have been implemented to accommodate security requirements under different circumstances. However, the learning of access control models and the management of access control policies are still challenging given its abstract nature, the lack of an environment for practice, and the intricacy of fulfilling complex security goals. These problems seriously reduce the usability of access control models. In this dissertation, we present a set of pedagogical systems that facilitates the teaching and studying of access control models and a visualization system that aids the authoring and analysis of access control policies. These systems are designed to tackle the usability problems in two steps. First, the pedagogical systems were designed for new learners to overcome the obstacles of learning access control and the lack of practicing environment at the very beginning. Contrary to the traditional lecture and in-paper homework method, the tool allows users to write/import a policy file, follow the visual steps to understand the concepts and access mechanisms of a model and conduct self-evaluation through Quiz and Query modules. Each of the four systems is specifically designed for a model of the Domain Type Enforcement, Multi-level Security, Role-based Access Control, or UNIX permissions. Through these systems, users are able to take an active role in exploring the effect of a policy with a safe and intact underlying operating systems. Second, writing and evaluating the effect of a policy could also be challenging and tedious even for security professionals when there are thousands of lines of rules. We believe that writing an access control policy should not include the complexity of learning a new language, and managing the policies should never be manual when automatic examination could take the place. In the aspect of policy writing, the visualization system kept the least number of key elements for specifying a rule: user, object, and action. They describe the active entity who takes the action, the file or directory which the action is applied to, and the type of accesses allowed, respectively. Because of its simple form without requiring the learning of a programming-like language, we hope that specifying policies using our language could be accomplished effortlessly not only by security professionals but also by anyone who is interested in access control. Moreover, policies can often be left unexamined when deployed. This is similar to releasing program which was untested and could lead to dangerous results. Therefore, the visualization system provides ways to explore and analyze access control policies to help confirm the effect of the policies. Through interactive textual and graphical illustrations, users could specify the accesses to check, and be notified when problems exist

    Towards Expressive and Versatile Visualization-as-a-Service (VaaS)

    Get PDF
    The rapid growth of data in scientific visualization has posed significant challenges to the scalability and availability of interactive visualization tools. These challenges can be largely attributed to the limitations of traditional monolithic applications in handling large datasets and accommodating multiple users or devices. To address these issues, the Visualization-as-a-Service (VaaS) architecture has emerged as a promising solution. VaaS leverages cloud-based visualization capabilities to provide on-demand and cost-effective interactive visualization. Existing VaaS has been simplistic by design with focuses on task-parallelism with single-user-per-device tasks for predetermined visualizations. This dissertation aims to extend the capabilities of VaaS by exploring data-parallel visualization services with multi-device support and hypothesis-driven explorations. By incorporating stateful information and enabling dynamic computation, VaaS\u27 performance and flexibility for various real-world applications is improved. This dissertation explores the history of monolithic and VaaS architectures, the design and implementations of 3 new VaaS applications, and a final exploration of the future of VaaS. This research contributes to the advancement of interactive scientific visualization, addressing the challenges posed by large datasets and remote collaboration scenarios

    ENABLING TECHNIQUES FOR EXPRESSIVE FLOW FIELD VISUALIZATION AND EXPLORATION

    Get PDF
    Flow visualization plays an important role in many scientific and engineering disciplines such as climate modeling, turbulent combustion, and automobile design. The most common method for flow visualization is to display integral flow lines such as streamlines computed from particle tracing. Effective streamline visualization should capture flow patterns and display them with appropriate density, so that critical flow information can be visually acquired. In this dissertation, we present several approaches that facilitate expressive flow field visualization and exploration. First, we design a unified information-theoretic framework to model streamline selection and viewpoint selection as symmetric problems. Two interrelated information channels are constructed between a pool of candidate streamlines and a set of sample viewpoints. Based on these information channels, we define streamline information and viewpoint information to select best streamlines and viewpoints, respectively. Second, we present a focus+context framework to magnify small features and reduce occlusion around them while compacting the context region in a full view. This framework parititions the volume into blocks and deforms them to guide streamline repositioning. The desired deformation is formulated into energy terms and achieved by minimizing the energy function. Third, measuring the similarity of integral curves is fundamental to many tasks such as feature detection, pattern querying, streamline clustering and hierarchical exploration. We introduce FlowString that extracts shape invariant features from streamlines to form an alphabet of characters, and encodes each streamline into a string. The similarity of two streamline segments then becomes a specially designed edit distance between two strings. Leveraging the suffix tree, FlowString provides a string-based method for exploratory streamline analysis and visualization. A universal alphabet is learned from multiple data sets to capture basic flow patterns that exist in a variety of flow fields. This allows easy comparison and efficient query across data sets. Fourth, for exploration of vascular data sets, which contain a series of vector fields together with multiple scalar fields, we design a web-based approach for users to investigate the relationship among different properties guided by histograms. The vessel structure is mapped from the 3D volume space to a 2D graph, which allow more efficient interaction and effective visualization on websites. A segmentation scheme is proposed to divide the vessel structure based on a user specified property to further explore the distribution of that property over space

    ANALYSIS AND VISUALIZATION OF FLOW FIELDS USING INFORMATION-THEORETIC TECHNIQUES AND GRAPH-BASED REPRESENTATIONS

    Get PDF
    Three-dimensional flow visualization plays an essential role in many areas of science and engineering, such as aero- and hydro-dynamical systems which dominate various physical and natural phenomena. For popular methods such as the streamline visualization to be effective, they should capture the underlying flow features while facilitating user observation and understanding of the flow field in a clear manner. My research mainly focuses on the analysis and visualization of flow fields using various techniques, e.g. information-theoretic techniques and graph-based representations. Since the streamline visualization is a popular technique in flow field visualization, how to select good streamlines to capture flow patterns and how to pick good viewpoints to observe flow fields become critical. We treat streamline selection and viewpoint selection as symmetric problems and solve them simultaneously using the dual information channel [81]. To the best of my knowledge, this is the first attempt in flow visualization to combine these two selection problems in a unified approach. This work selects streamline in a view-independent manner and the selected streamlines will not change for all viewpoints. My another work [56] uses an information-theoretic approach to evaluate the importance of each streamline under various sample viewpoints and presents a solution for view-dependent streamline selection that guarantees coherent streamline update when the view changes gradually. When projecting 3D streamlines to 2D images for viewing, occlusion and clutter become inevitable. To address this challenge, we design FlowGraph [57, 58], a novel compound graph representation that organizes field line clusters and spatiotemporal regions hierarchically for occlusion-free and controllable visual exploration. We enable observation and exploration of the relationships among field line clusters, spatiotemporal regions and their interconnection in the transformed space. Most viewpoint selection methods only consider the external viewpoints outside of the flow field. This will not convey a clear observation when the flow field is clutter on the boundary side. Therefore, we propose a new way to explore flow fields by selecting several internal viewpoints around the flow features inside of the flow field and then generating a B-Spline curve path traversing these viewpoints to provide users with closeup views of the flow field for detailed observation of hidden or occluded internal flow features [54]. This work is also extended to deal with unsteady flow fields. Besides flow field visualization, some other topics relevant to visualization also attract my attention. In iGraph [31], we leverage a distributed system along with a tiled display wall to provide users with high-resolution visual analytics of big image and text collections in real time. Developing pedagogical visualization tools forms my other research focus. Since most cryptography algorithms use sophisticated mathematics, it is difficult for beginners to understand both what the algorithm does and how the algorithm does that. Therefore, we develop a set of visualization tools to provide users with an intuitive way to learn and understand these algorithms

    Shape deformations based on vector fields

    Get PDF
    This thesis explores applications of vector field processing to shape deformations. We present a novel method to construct divergence-free vector fields which are used to deform shapes by vector field integration (Chapter 2). The resulting deformation is volume-preserving and no self-intersections occur. We add more controllability to this approach by introducing implicit boundaries (Chapter 3), a shape editing method which resembles the well-known boundary constraint modeling metaphor. While the vector fields are originally defined in space, we also present a surface-based version of this approach which allows for more exact boundary selection and deformation control (Chapter 4). We show that vectorfield- based shape deformations can be used to animate elastic motions without complex physical simulations (Chapter 5). We also introduce an alternative approach to exactly preserve the volume of skinned triangle meshes (Chapter 6). This is accomplished by constructing a displacement field on the mesh surface which restores the original volume after deformation. Finally, we demonstrate that shape deformation by vector field integration can also be used to visualize smoke-like streak surfaces in dynamic flow fields (Chapter 7).In dieser Dissertation werden verschiedene Anwendungen der Vektorfeldverarbeitung im Bereich Objektdeformation untersucht. Wir präsentieren eine neuartige Methode zur Konstruktion von divergenzfreien Vektorfeldern, welche mittels Integration zum Deformieren von Objekten verwendet werden (Kapitel 2). Die so entstehende Deformation ist volumenerhaltend und keine Selbstüberschneidungen treten auf. Inspiriert von etablierten, auf Randbedingungen beruhenden Methoden, erweitern wir diese Idee hinsichtlich Kontrollierbarkeit mittels impliziten Abgrenzungen (Kapitel 3). Während die ursprüngliche Konstruktion im Raum definiert ist, präsentieren wir auch eine oberflächenbasierte Version, welche ein genaueres Festlegen der Abgrenzungen und bessere Kontrolle ermöglicht (Kapitel 4). Wir zeigen, dass vektorfeldbasierte Deformationen auch zur Animation von elastischen Bewegungen benutzt werden können, ohne dass komplexe Simulationen nötig sind (Kapitel 5). Des weiteren zeigen wir eine alternative Möglichkeit, mit der man das Volumen von Dreiecksnetzen erhalten kann, welche mittels Skelett-Animation deformiert werden (Kapitel 6). Dies erreichen wir durch ein Deformationsfeld auf der Oberfläche, das das ursprüngliche Volumen wieder hergestellt. Wir zeigen außerdem, dass Deformierungen mittels Vektorfeld-Integration auch zur Visualisierung von Rauch in dynamischen Flüssen genutzt werden können(Kapitel 7)

    Electrifying Opera, Amplifying Agency: Designing a performer-controlled interactive audio system for opera singers

    Get PDF
    This artistic research project examines the artistic, technical, and pedagogical challenges of developing a performer-controlled interactive technology for real-time vocal processing of the operatic voice. As a classically trained singer-composer, I have explored ways to merge the compositional aspects of transforming electronic sound with the performative aspects of embodied singing. I set out to design, develop, and test a prototype for an interactive vocal processing system using sampling and audio processing methods. The aim was to foreground and accommodate an unamplified operatic voice interacting with the room's acoustics and the extended disembodied voices of the same performer. The iterative prototyping explored the performer's relationship to the acoustic space, the relationship between the embodied acoustic voice and disembodied processed voice(s), and the relationship to memory and time. One of the core challenges was to design a system that would accommodate mobility and allow interaction based on auditory and haptic cues rather than visual. In other words, a system allowing the singer to control their sonic output without standing behind a laptop. I wished to highlight and amplify the performer's agency with a system that would enable nuanced and variable vocal processing, be robust, teachable, and suitable for use in various settings: solo performances, various types and sizes of ensembles, and opera. This entailed mediating different needs, training, and working methods of both electronic music and opera practitioners. One key finding was that even simple audio processing could achieve complex musical results. The audio processes used were primarily combinations of feedback and delay lines. However, performers could get complex musical results quickly through continuous gestural control and the ability to route signals to four channels. This complexity sometimes led to surprising results, eliciting improvisatory responses also from singers without musical improvisation experience. The project has resulted in numerous vocal solo, chamber, and operatic performances in Norway, the Netherlands, Belgium, and the United States. The research contributes to developing emerging technologies for live electronic vocal processing in opera, developing the improvisational performance skills needed to engage with those technologies, and exploring alternatives for sound diffusion conducive to working with unamplified operatic voices. Links: Exposition and documentation of PhD research in Research Catalogue: Electrifying Opera, Amplifying Agency. Artistic results. Reflection and Public Presentations (PhD) (2023): https://www.researchcatalogue.net/profile/show-exposition?exposition=2222429 Home/Reflections: https://www.researchcatalogue.net/view/2222429/2222460 Mapping & Prototyping: https://www.researchcatalogue.net/view/2222429/2247120 Space & Speakers: https://www.researchcatalogue.net/view/2222429/2222430 Presentations: https://www.researchcatalogue.net/view/2222429/2247155 Artistic Results: https://www.researchcatalogue.net/view/2222429/222248
    corecore