14 research outputs found

    Expression Robust 3D Face Landmarking Using Thresholded Surface Normals

    Get PDF
    3D face recognition is an increasing popular modality for biometric authentication, for example in the iPhoneX. Landmarking plays a significant role in region based face recognition algorithms. The accuracy and consistency of the landmarking will directly determine the effectiveness of feature extraction and hence the overall recognition performance. While surface normals have been shown to provide high performing features for face recognition, their use in landmarking has not been widely explored. To this end, a new 3D facial landmarking algorithm based on thresholded surface normal maps is proposed, which is applicable to widely used 3D face databases. The benefits of employing surface normals are demonstrated for both facial roll and yaw rotation calibration and nasal landmarks localization. Results on the Bosphorus, FRGC and BU-3DFE databases show that the detected landmarks possess high within-class consistency and accuracy under different expressions. For several key landmarks the performance achieved surpasses that of state-of-the-art techniques and is also training free and computationally efficient. The use of surface normals therefore provides a useful representation of the 3D surface and the proposed landmarking algorithm provides an effective approach to localising the key nasal landmarks.</p

    Expression Robust 3D Face Landmarking Using Thresholded Surface Normals

    Get PDF
    3D face recognition is an increasing popular modality for biometric authentication, for example in the iPhoneX. Landmarking plays a significant role in region based face recognition algorithms. The accuracy and consistency of the landmarking will directly determine the effectiveness of feature extraction and hence the overall recognition performance. While surface normals have been shown to provide high performing features for face recognition, their use in landmarking has not been widely explored. To this end, a new 3D facial landmarking algorithm based on thresholded surface normal maps is proposed, which is applicable to widely used 3D face databases. The benefits of employing surface normals are demonstrated for both facial roll and yaw rotation calibration and nasal landmarks localization. Results on the Bosphorus, FRGC and BU-3DFE databases show that the detected landmarks possess high within-class consistency and accuracy under different expressions. For several key landmarks the performance achieved surpasses that of state-of-the-art techniques and is also training free and computationally efficient. The use of surface normals therefore provides a useful representation of the 3D surface and the proposed landmarking algorithm provides an effective approach to localising the key nasal landmarks.</p

    Using 3D Representations of the Nasal Region for Improved Landmarking and Expression Robust Recognition

    Get PDF
    This paper investigates the performance of different representations of 3D human nasal region for expression robust recognition. By performing evaluations on the depth and surface normal components of the facial surface, the nasal region is shown to be relatively consistent over various expressions, providing motivation for using the nasal region as a biometric. A new efficient landmarking algorithm that thresholds the local surface normal components is proposed and demonstrated to produce an improved recognition performance for nasal curves from both the depth and surface normal components. The use of the Shape Index for feature extraction is also investigated and shown to produce a good recognition performance

    Using 3D Representations of the Nasal Region for Improved Landmarking and Expression Robust Recognition

    Get PDF
    This paper investigates the performance of different representations of 3D human nasal region for expression robust recognition. By performing evaluations on the depth and surface normal components of the facial surface, the nasal region is shown to be relatively consistent over various expressions, providing motivation for using the nasal region as a biometric. A new efficient landmarking algorithm that thresholds the local surface normal components is proposed and demonstrated to produce an improved recognition performance for nasal curves from both the depth and surface normal components. The use of the Shape Index for feature extraction is also investigated and shown to produce a good recognition performance

    Using the 3D shape of the nose for biometric authentication

    Get PDF

    Models of Visual Attention in Deep Residual CNNs

    Get PDF
    Feature reuse from earlier layers in neural network hierarchies has been shown to improve the quality of features at a later stage - a concept known as residual learning. In this thesis, we learn effective residual learning methodologies infused with attention mechanisms to observe their effect on different tasks. To this end, we propose 3 architectures across medical image segmentation and 3D point cloud analysis. In FocusNet, we propose an attention based dual branch encoder decoder structure that learns an extremely efficient attention mechanism which achieves state of the art results on the ISIC 2017 skin cancer segmentation dataset. We propose a novel loss enhancement that improves the convergence of FocusNet, performing better than state-of-the-art loss functions such as tversky and focal loss. Evaluations of the architecture proposes two drawbacks which we fix in FocusNetAlpha. Our novel residual group attention block based network forms the backbone of this architecture, learning distinct features with sparse correlations, which is the key reason for its effectiveness. At the time of writing this thesis, FocusNetAlpha outperforms all state-of-the-art convolutional autoencoders with the least parameters and FLOPs compared to them, based on our experiments on the ISIC 2018, DRIVE retinal vessel segmentation and the cell nuclei segmentation dataset. We then shift our attention to 3D point cloud processing where we propose SAWNet, which combines global and local point embeddings infused with attention, to create a spatially aware embedding that outperforms both. We propose a novel method to learn a global feature aggregation for point clouds via a fully differential block that does not need a lot of trainable parameters and gives obvious performance boosts. SAWNet beats state-of-the-art results on ModelNet40 and ShapeNet part segmentation datasets

    The application of range imaging for improved local feature representations

    Get PDF
    This thesis presents an investigation into the integration of information extracted from co-aligned range and intensity images to achieve pose invariant object recognition. Local feature matching is a fundamental technique in image analysis that underpins many computer vision-based applications; the approach comprises identifying a collection of interest points in an image, characterising the local image region surrounding the interest point by means of a descriptor, and matching these descriptors between example images. Such local feature descriptors are formed from a measure of the local image statistics in the region surrounding the interest point. The interest point locations and the means of measuring local image statistics should be chosen such that resultant descriptor remains stable across a range of common image transformations. Recently the availability of low cost, high quality range imaging devices has motivated an interest in local feature extraction from range images. It has been widely assumed in the vision community that the range imaging domain has properties which remain quasi-invariant through a wide range of changes in illumination and pose. Accordingly, it has been suggested that local feature extraction in the range domain should allow the calculation of local feature descriptors that are potentially more robust than those calculated from the intensity imaging domain alone. However, range images represent differing characteristics from those represented within intensity images which are frequently used, independently from range images, to create robust local features. Therefore, this work attempts to establish the best means of combining information from these two imaging modalities to further increase the reliability of matching local features. Local feature extraction comprises a series of processes applied to an image location such that a collection of repeatable descriptors can be established. By using co-aligned range and intensity images this work investigates the choice of modality and method for each step in the extraction process as an approach to optimising the resulting descriptor. Additionally, multimodal features are formed by combining information from both domains in a single stage in the extraction process. To further improve the quality of feature descriptors, a calculation of the surface normals and a use of the 3D structure from the range image are applied to correct the 3D appearance of a local sample patch, thereby increasing the similarity between observations. The matching performance of local features is evaluated using an experimental setup comprising a turntable and stereo pair of cameras. This experimental setup is used to create a database of intensity and range images for 5 objects imaged at 72 calibrated viewpoints, creating a database of 360 object observations. The use of a calibrated turntable in combination with the 3D object surface coordiantes, supplied by the range image allow location correspondences between object observations to be established; and therefore descriptor matches to be labelled as either true positive or false positive. Applying this methodology to the formulated local features show that two approaches demonstrate state-of-the-art performance, with a ~40% increase in area under ROC curve at a False Positive Rate of 10% when compared with standard SIFT. These approaches are range affine corrected intensity SIFT and element corrected surface gradients SIFT. Furthermore,this work uses the 3D structure encoded in the range image to organise collections of interest points from a series of observations into a collection of canonical views in a new model local feature. The canonical views for a interest point are stored in a view compartmentalised structure which allows the appearance of a local interest point to be characterised across the view sphere. Each canonical view is assigned a confidence measure based on the 3D pose of the interest point at observation, this confidence measure is then used to match similar canonical views of model and query interest points thereby achieving a pose invariant interest point description. This approach does not produce a statistically significant performance increase. However, does contribute a validated methodology for combining multiple descriptors with differing confidence weightings into a single keypoint

    Automated retinal layer segmentation and pre-apoptotic monitoring for three-dimensional optical coherence tomography

    Get PDF
    The aim of this PhD thesis was to develop segmentation algorithm adapted and optimized to retinal OCT data that will provide objective 3D layer thickness which might be used to improve diagnosis and monitoring of retinal pathologies. Additionally, a 3D stack registration method was produced by modifying an existing algorithm. A related project was to develop a pre-apoptotic retinal monitoring based on the changes in texture parameters of the OCT scans in order to enable treatment before the changes become irreversible; apoptosis refers to the programmed cell death that can occur in retinal tissue and lead to blindness. These issues can be critical for the examination of tissues within the central nervous system. A novel statistical model for segmentation has been created and successfully applied to a large data set. A broad range of future research possibilities into advanced pathologies has been created by the results obtained. A separate model has been created for choroid segmentation located deep in retina, as the appearance of choroid is very different from the top retinal layers. Choroid thickness and structure is an important index of various pathologies (diabetes etc.). As part of the pre-apoptotic monitoring project it was shown that an increase in proportion of apoptotic cells in vitro can be accurately quantified. Moreover, the data obtained indicates a similar increase in neuronal scatter in retinal explants following axotomy (removal of retinas from the eye), suggesting that UHR-OCT can be a novel non-invasive technique for the in vivo assessment of neuronal health. Additionally, an independent project within the computer science department in collaboration with the school of psychology has been successfully carried out, improving analysis of facial dynamics and behaviour transfer between individuals. Also, important improvements to a general signal processing algorithm, dynamic time warping (DTW), have been made, allowing potential application in a broad signal processing field.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Automated retinal layer segmentation and pre-apoptotic monitoring for three-dimensional optical coherence tomography

    Get PDF
    The aim of this PhD thesis was to develop segmentation algorithm adapted and optimized to retinal OCT data that will provide objective 3D layer thickness which might be used to improve diagnosis and monitoring of retinal pathologies. Additionally, a 3D stack registration method was produced by modifying an existing algorithm. A related project was to develop a pre-apoptotic retinal monitoring based on the changes in texture parameters of the OCT scans in order to enable treatment before the changes become irreversible; apoptosis refers to the programmed cell death that can occur in retinal tissue and lead to blindness. These issues can be critical for the examination of tissues within the central nervous system. A novel statistical model for segmentation has been created and successfully applied to a large data set. A broad range of future research possibilities into advanced pathologies has been created by the results obtained. A separate model has been created for choroid segmentation located deep in retina, as the appearance of choroid is very different from the top retinal layers. Choroid thickness and structure is an important index of various pathologies (diabetes etc.). As part of the pre-apoptotic monitoring project it was shown that an increase in proportion of apoptotic cells in vitro can be accurately quantified. Moreover, the data obtained indicates a similar increase in neuronal scatter in retinal explants following axotomy (removal of retinas from the eye), suggesting that UHR-OCT can be a novel non-invasive technique for the in vivo assessment of neuronal health. Additionally, an independent project within the computer science department in collaboration with the school of psychology has been successfully carried out, improving analysis of facial dynamics and behaviour transfer between individuals. Also, important improvements to a general signal processing algorithm, dynamic time warping (DTW), have been made, allowing potential application in a broad signal processing field
    corecore