1,538 research outputs found

    Mandate-driven networking eco-system : a paradigm shift in end-to-end communications

    Get PDF
    The wireless industry is driven by key stakeholders that follow a holistic approach of "one-system-fits-all" that leads to moving network functionality of meeting stringent End-to-End (E2E) communication requirements towards the core and cloud infrastructures. This trend is limiting smaller and new players for bringing in new and novel solutions. For meeting these E2E requirements, tenants and end-users need to be active players for bringing their needs and innovations. Driving E2E communication not only in terms of quality of service (QoS) but also overall carbon footprint and spectrum efficiency from one specific community may lead to undesirable simplifications and a higher level of abstraction of other network segments may lead to sub-optimal operations. Based on this, the paper presents a paradigm shift that will enlarge the role of wireless innovation at academia, Small and Medium-sized Enterprises (SME)'s, industries and start-ups while taking into account decentralized mandate-driven intelligence in E2E communications

    Ensuring Cyber-Security in Smart Railway Surveillance with SHIELD

    Get PDF
    Modern railways feature increasingly complex embedded computing systems for surveillance, that are moving towards fully wireless smart-sensors. Those systems are aimed at monitoring system status from a physical-security viewpoint, in order to detect intrusions and other environmental anomalies. However, the same systems used for physical-security surveillance are vulnerable to cyber-security threats, since they feature distributed hardware and software architectures often interconnected by ‘open networks’, like wireless channels and the Internet. In this paper, we show how the integrated approach to Security, Privacy and Dependability (SPD) in embedded systems provided by the SHIELD framework (developed within the EU funded pSHIELD and nSHIELD research projects) can be applied to railway surveillance systems in order to measure and improve their SPD level. SHIELD implements a layered architecture (node, network, middleware and overlay) and orchestrates SPD mechanisms based on ontology models, appropriate metrics and composability. The results of prototypical application to a real-world demonstrator show the effectiveness of SHIELD and justify its practical applicability in industrial settings

    Application framework for wireless sensor networks [thesis]

    Get PDF
    Wireless Sensor Networks (WSNs) are based on innovative technologies that had revolutionized the methods in which we interact with the environment; i.e., through sensing the physical (e.g., fire motion, contact) and chemical (e.g., molecular concentration) properties of the natural surroundings. The hardware in which utilized by WSNs is rapidly evolving into sophisticated platforms that seamlessly integrate with different vendors and protocols (plug-n-play). In this thesis, we propose a WSN framework which provides assistance with monitoring environmental conditions; we focus on three main applications which include: a. Air-quality monitoring, b. Gas-leak detection, and c. Fire sensing. The framework involves four specifications: 1. Over the air programming (OTAP), 2. Network interconnections, 3. Sensors manageability, and 4. Alarm signaling. Their aim is to enhance the internetwork relations between the WSNs and the outside-world (i.e., main users, clients, or audience); by creating a medium in which devices efficiently communicate, independent of location or infrastructure (e.g., Internet), in order to exchange data among networked-objects and their users. Therefore, we propose a WSN-over-IP architecture which provides several renowned services of the Internet; the major functionalities include: live-data streaming (real-time), e-mailing, cloud storage (external servers), and network technologies (e.g., LAN or WLAN). WSNs themselves operate independently of the Internet; i.e., their operation involve unique protocols and specific hardware requirements which are incompatible with common network platforms (e.g., within home network infrastructure). Hybrid technologies are those which support multiple data-communication protocols within a single device; their main capabilities involve seamless integration and interoperability of different hardware vendors. We propose an overall architecture based on hybrid communication technology in which data is transmitted using three types of protocols: 802.11 (Wi-Fi), 802.15.4 and Digimesh (WSN)

    Next Generation Cloud Computing: New Trends and Research Directions

    Get PDF
    The landscape of cloud computing has significantly changed over the last decade. Not only have more providers and service offerings crowded the space, but also cloud infrastructure that was traditionally limited to single provider data centers is now evolving. In this paper, we firstly discuss the changing cloud infrastructure and consider the use of infrastructure from multiple providers and the benefit of decentralising computing away from data centers. These trends have resulted in the need for a variety of new computing architectures that will be offered by future cloud infrastructure. These architectures are anticipated to impact areas, such as connecting people and devices, data-intensive computing, the service space and self-learning systems. Finally, we lay out a roadmap of challenges that will need to be addressed for realising the potential of next generation cloud systems.Comment: Accepted to Future Generation Computer Systems, 07 September 201

    Coordinated control of mixed robot and sensor networks in distributed area exploration

    Get PDF
    Recent advancements in wireless communication and electronics has enabled the development of multifunctional sensor nodes that are small in size and communicate untethered in short distances. In the last decade, significant advantages have been made in the field of robotics, and robots have become more feasible in systems design. Therefore, we trust that a number of open problems with wireless sensor networks can be solved or diminished by including mobility capabilities in agents

    Internet of Things Strategic Research Roadmap

    Get PDF
    Internet of Things (IoT) is an integrated part of Future Internet including existing and evolving Internet and network developments and could be conceptually defined as a dynamic global network infrastructure with self configuring capabilities based on standard and interoperable communication protocols where physical and virtual “things” have identities, physical attributes, and virtual personalities, use intelligent interfaces, and are seamlessly integrated into the information network

    Internet of Things: Current Technological Review and New Low Power Wireless Sensor Network Protocol Proposal

    Get PDF
    This paper addresses Internet of Things (IoT) with state-of-art approach. The purpose is to give insight into concept of “smart living”, a concept that meets requirements of today’s modern society. Implementation of this new technology requires new hardware and software installed and run on devices (“things”) connected to the Internet anytime and anywhere. In order to make possible this new technology for wide use, few technological, standards and legal issues need to be solved. In a view of this a new low power wireless sensor network protocol is proposed in the IoT spirit

    A Game Theory based Contention Window Adjustment for IEEE 802.11 under Heavy Load

    Get PDF
    The 802.11 families are considered as the most applicable set of standards for Wireless Local Area Networks (WLANs) where nodes make access to the wireless media using random access techniques. In such networks, each node adjusts its contention window to the minimum size irrespective of the number of competing nodes, so in saturated mode and excessive number of nodes available, the network performance is reduced due to severe collision probability. A cooperative game is being proposed to adjust the users’ contention windows in improving the network throughput, delay and packet drop ratio under heavy traffic load circumstances. The system’s performance evaluated by simulations indicate some superiorities of the proposed method over 802.11-DCF (Distribute Coordinate Function)

    Dynamic Reconfiguration in Camera Networks: A Short Survey

    Get PDF
    There is a clear trend in camera networks towards enhanced functionality and flexibility, and a fixed static deployment is typically not sufficient to fulfill these increased requirements. Dynamic network reconfiguration helps to optimize the network performance to the currently required specific tasks while considering the available resources. Although several reconfiguration methods have been recently proposed, e.g., for maximizing the global scene coverage or maximizing the image quality of specific targets, there is a lack of a general framework highlighting the key components shared by all these systems. In this paper we propose a reference framework for network reconfiguration and present a short survey of some of the most relevant state-of-the-art works in this field, showing how they can be reformulated in our framework. Finally we discuss the main open research challenges in camera network reconfiguration
    • 

    corecore