56,741 research outputs found

    Change of Scaling and Appearance of Scale-Free Size Distribution in Aggregation Kinetics by Additive Rules

    Full text link
    The idealized general model of aggregate growth is considered on the basis of the simple additive rules that correspond to one-step aggregation process. The two idealized cases were analytically investigated and simulated by Monte Carlo method in the Desktop Grid distributed computing environment to analyze "pile-up" and "wall" cluster distributions in different aggregation scenarios. Several aspects of aggregation kinetics (change of scaling, change of size distribution type, and appearance of scale-free size distribution) driven by "zero cluster size" boundary condition were determined by analysis of evolving cumulative distribution functions. The "pile-up" case with a \textit{minimum} active surface (singularity) could imitate piling up aggregations of dislocations, and the case with a \textit{maximum} active surface could imitate arrangements of dislocations in walls. The change of scaling law (for pile-ups and walls) and availability of scale-free distributions (for walls) were analytically shown and confirmed by scaling, fitting, moment, and bootstrapping analyses of simulated probability density and cumulative distribution functions. The initial "singular" \textit{symmetric} distribution of pile-ups evolves by the "infinite" diffusive scaling law and later it is replaced by the other "semi-infinite" diffusive scaling law with \textit{asymmetric} distribution of pile-ups. In contrast, the initial "singular" \textit{symmetric} distributions of walls initially evolve by the diffusive scaling law and later it is replaced by the other ballistic (linear) scaling law with \textit{scale-free} exponential distributions without distinctive peaks. The conclusion was made as to possible applications of such approach for scaling, fitting, moment, and bootstrapping analyses of distributions in simulated and experimental data.Comment: 37 pages, 16 figures, 1 table; accepted preprint version after comments of reviewers, Physica A: Statistical Mechanics and its Applications (2014

    Defining Urban Boundaries by Characteristic Scales

    Full text link
    Defining an objective boundary for a city is a difficult problem, which remains to be solved by an effective method. Recent years, new methods for identifying urban boundary have been developed by means of spatial search techniques (e.g. CCA). However, the new algorithms are involved with another problem, that is, how to determine the characteristic radius of spatial search. This paper proposes new approaches to looking for the most advisable spatial searching radius for determining urban boundary. We found that the relationships between the spatial searching radius and the corresponding number of clusters take on an exponential function. In the exponential model, the scale parameter just represents the characteristic length that we can use to define the most objective urban boundary objectively. Two sets of China's cities are employed to test this method, and the results lend support to the judgment that the characteristic parameter can well serve for the spatial searching radius. The research may be revealing for making urban spatial analysis in methodology and implementing identification of urban boundaries in practice.Comment: 26 pages, 5 figures, 7 table

    Numerical simulations of possible finite time singularities in the incompressible Euler equations: comparison of numerical methods

    Full text link
    The numerical simulation of the 3D incompressible Euler equation is analyzed with respect to different integration methods. The numerical schemes we considered include spectral methods with different strategies for dealiasing and two variants of finite difference methods. Based on this comparison, a Kida-Pelz like initial condition is integrated using adaptive mesh refinement and estimates on the necessary numerical resolution are given. This estimate is based on analyzing the scaling behavior similar to the procedure in critical phenomena and present simulations are put into perspective.Comment: Euler equations: 250 years o
    corecore