247 research outputs found

    Quantum Computing in the NISQ era and beyond

    Get PDF
    Noisy Intermediate-Scale Quantum (NISQ) technology will be available in the near future. Quantum computers with 50-100 qubits may be able to perform tasks which surpass the capabilities of today's classical digital computers, but noise in quantum gates will limit the size of quantum circuits that can be executed reliably. NISQ devices will be useful tools for exploring many-body quantum physics, and may have other useful applications, but the 100-qubit quantum computer will not change the world right away --- we should regard it as a significant step toward the more powerful quantum technologies of the future. Quantum technologists should continue to strive for more accurate quantum gates and, eventually, fully fault-tolerant quantum computing.Comment: 20 pages. Based on a Keynote Address at Quantum Computing for Business, 5 December 2017. (v3) Formatted for publication in Quantum, minor revision

    Quantum machine learning: a classical perspective

    Get PDF
    Recently, increased computational power and data availability, as well as algorithmic advances, have led machine learning techniques to impressive results in regression, classification, data-generation and reinforcement learning tasks. Despite these successes, the proximity to the physical limits of chip fabrication alongside the increasing size of datasets are motivating a growing number of researchers to explore the possibility of harnessing the power of quantum computation to speed-up classical machine learning algorithms. Here we review the literature in quantum machine learning and discuss perspectives for a mixed readership of classical machine learning and quantum computation experts. Particular emphasis will be placed on clarifying the limitations of quantum algorithms, how they compare with their best classical counterparts and why quantum resources are expected to provide advantages for learning problems. Learning in the presence of noise and certain computationally hard problems in machine learning are identified as promising directions for the field. Practical questions, like how to upload classical data into quantum form, will also be addressed.Comment: v3 33 pages; typos corrected and references adde

    Quantum-Inspired Sublinear Algorithm for Solving Low-Rank Semidefinite Programming

    Get PDF
    Semidefinite programming (SDP) is a central topic in mathematical optimization with extensive studies on its efficient solvers. In this paper, we present a proof-of-principle sublinear-time algorithm for solving SDPs with low-rank constraints; specifically, given an SDP with mm constraint matrices, each of dimension nn and rank rr, our algorithm can compute any entry and efficient descriptions of the spectral decomposition of the solution matrix. The algorithm runs in time O(mpoly(logn,r,1/ε))O(m\cdot\mathrm{poly}(\log n,r,1/\varepsilon)) given access to a sampling-based low-overhead data structure for the constraint matrices, where ε\varepsilon is the precision of the solution. In addition, we apply our algorithm to a quantum state learning task as an application. Technically, our approach aligns with 1) SDP solvers based on the matrix multiplicative weight (MMW) framework by Arora and Kale [TOC '12]; 2) sampling-based dequantizing framework pioneered by Tang [STOC '19]. In order to compute the matrix exponential required in the MMW framework, we introduce two new techniques that may be of independent interest: \bullet Weighted sampling: assuming sampling access to each individual constraint matrix A1,,AτA_{1},\ldots,A_{\tau}, we propose a procedure that gives a good approximation of A=A1++AτA=A_{1}+\cdots+A_{\tau}. \bullet Symmetric approximation: we propose a sampling procedure that gives the \emph{spectral decomposition} of a low-rank Hermitian matrix AA. To the best of our knowledge, this is the first sampling-based algorithm for spectral decomposition, as previous works only give singular values and vectors.Comment: 37 pages, 1 figure. To appear in the Proceedings of the 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020

    Improvements in Quantum SDP-Solving with Applications

    Get PDF
    Following the first paper on quantum algorithms for SDP-solving by Brandão and Svore [Brandão and Svore, 2017] in 2016, rapid developments have been made on quantum optimization algorithms. In this paper we improve and generalize all prior quantum algorithms for SDP-solving and give a simpler and unified framework. We take a new perspective on quantum SDP-solvers and introduce several new techniques. One of these is the quantum operator input model, which generalizes the different input models used in previous work, and essentially any other reasonable input model. This new model assumes that the input matrices are embedded in a block of a unitary operator. In this model we give a O~((sqrt{m}+sqrt{n}gamma)alpha gamma^4) algorithm, where n is the size of the matrices, m is the number of constraints, gamma is the reciprocal of the scale-invariant relative precision parameter, and alpha is a normalization factor of the input matrices. In particular for the standard sparse-matrix access, the above result gives a quantum algorithm where alpha=s. We also improve on recent results of Brandão et al. [Fernando G. S. L. Brandão et al., 2018], who consider the special case w

    Improvements in Quantum SDP-Solving with Applications

    Get PDF

    A Quantum Interior Point Method for LPs and SDPs

    Full text link
    We present a quantum interior point method with worst case running time O~(n2.5ξ2μκ3log(1/ϵ))\widetilde{O}(\frac{n^{2.5}}{\xi^{2}} \mu \kappa^3 \log (1/\epsilon)) for SDPs and O~(n1.5ξ2μκ3log(1/ϵ))\widetilde{O}(\frac{n^{1.5}}{\xi^{2}} \mu \kappa^3 \log (1/\epsilon)) for LPs, where the output of our algorithm is a pair of matrices (S,Y)(S,Y) that are ϵ\epsilon-optimal ξ\xi-approximate SDP solutions. The factor μ\mu is at most 2n\sqrt{2}n for SDPs and 2n\sqrt{2n} for LP's, and κ\kappa is an upper bound on the condition number of the intermediate solution matrices. For the case where the intermediate matrices for the interior point method are well conditioned, our method provides a polynomial speedup over the best known classical SDP solvers and interior point based LP solvers, which have a worst case running time of O(n6)O(n^{6}) and O(n3.5)O(n^{3.5}) respectively. Our results build upon recently developed techniques for quantum linear algebra and pave the way for the development of quantum algorithms for a variety of applications in optimization and machine learning.Comment: 32 page
    corecore