614 research outputs found

    Exponential homogenization of linear second order elliptic PDEs with periodic coefficients

    Get PDF
    A problem of homogenization of a divergence-type second order uniformly elliptic operator is considered with arbitrary bounded rapidly oscillating periodic coefficients, either with periodic "outer" boundary conditions or in the whole space. It is proved that if the right-hand side is Gevrey regular (in particular, analytic), then by optimally truncating the full two-scale asymptotic expansion for the solution one obtains an approximation with an exponentially small error. The optimality of the exponential error bound is established for a one-dimensional example by proving the analogous lower bound

    Localized bases for finite dimensional homogenization approximations with non-separated scales and high-contrast

    Get PDF
    We construct finite-dimensional approximations of solution spaces of divergence form operators with LL^\infty-coefficients. Our method does not rely on concepts of ergodicity or scale-separation, but on the property that the solution space of these operators is compactly embedded in H1H^1 if source terms are in the unit ball of L2L^2 instead of the unit ball of H1H^{-1}. Approximation spaces are generated by solving elliptic PDEs on localized sub-domains with source terms corresponding to approximation bases for H2H^2. The H1H^1-error estimates show that O(hd)\mathcal{O}(h^{-d})-dimensional spaces with basis elements localized to sub-domains of diameter O(hαln1h)\mathcal{O}(h^\alpha \ln \frac{1}{h}) (with α[1/2,1)\alpha \in [1/2,1)) result in an O(h22α)\mathcal{O}(h^{2-2\alpha}) accuracy for elliptic, parabolic and hyperbolic problems. For high-contrast media, the accuracy of the method is preserved provided that localized sub-domains contain buffer zones of width O(hαln1h)\mathcal{O}(h^\alpha \ln \frac{1}{h}) where the contrast of the medium remains bounded. The proposed method can naturally be generalized to vectorial equations (such as elasto-dynamics).Comment: Accepted for publication in SIAM MM

    Exponential decay of the resonance error in numerical homogenization via parabolic and elliptic cell problems

    Get PDF
    This paper presents two new approaches for finding the homogenized coefficients of multiscale elliptic PDEs. Standard approaches for computing the homogenized coefficients suffer from the so-called resonance error, originating from a mismatch between the true and the computational boundary conditions. Our new methods, based on solutions of parabolic and elliptic cell-problems, result in an exponential decay of the resonance error

    Variational Multiscale Stabilization and the Exponential Decay of Fine-scale Correctors

    Full text link
    This paper addresses the variational multiscale stabilization of standard finite element methods for linear partial differential equations that exhibit multiscale features. The stabilization is of Petrov-Galerkin type with a standard finite element trial space and a problem-dependent test space based on pre-computed fine-scale correctors. The exponential decay of these correctors and their localisation to local cell problems is rigorously justified. The stabilization eliminates scale-dependent pre-asymptotic effects as they appear for standard finite element discretizations of highly oscillatory problems, e.g., the poor L2L^2 approximation in homogenization problems or the pollution effect in high-frequency acoustic scattering

    Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization

    Get PDF
    We introduce a new variational method for the numerical homogenization of divergence form elliptic, parabolic and hyperbolic equations with arbitrary rough (LL^\infty) coefficients. Our method does not rely on concepts of ergodicity or scale-separation but on compactness properties of the solution space and a new variational approach to homogenization. The approximation space is generated by an interpolation basis (over scattered points forming a mesh of resolution HH) minimizing the L2L^2 norm of the source terms; its (pre-)computation involves minimizing O(Hd)\mathcal{O}(H^{-d}) quadratic (cell) problems on (super-)localized sub-domains of size O(Hln(1/H))\mathcal{O}(H \ln (1/ H)). The resulting localized linear systems remain sparse and banded. The resulting interpolation basis functions are biharmonic for d3d\leq 3, and polyharmonic for d4d\geq 4, for the operator -\diiv(a\nabla \cdot) and can be seen as a generalization of polyharmonic splines to differential operators with arbitrary rough coefficients. The accuracy of the method (O(H)\mathcal{O}(H) in energy norm and independent from aspect ratios of the mesh formed by the scattered points) is established via the introduction of a new class of higher-order Poincar\'{e} inequalities. The method bypasses (pre-)computations on the full domain and naturally generalizes to time dependent problems, it also provides a natural solution to the inverse problem of recovering the solution of a divergence form elliptic equation from a finite number of point measurements.Comment: ESAIM: Mathematical Modelling and Numerical Analysis. Special issue (2013

    Computational multiscale methods for nondivergence-form elliptic partial differential equations

    Get PDF
    This paper proposes novel computational multiscale methods for linear second-order elliptic partial differential equations in nondivergence-form with heterogeneous coefficients satisfying a Cordes condition. The construction follows the methodology of localized orthogonal decomposition (LOD) and provides operator-adapted coarse spaces by solving localized cell problems on a fine scale in the spirit of numerical homogenization. The degrees of freedom of the coarse spaces are related to nonconforming and mixed finite element methods for homogeneous problems. The rigorous error analysis of one exemplary approach shows that the favorable properties of the LOD methodology known from divergence-form PDEs, i.e., its applicability and accuracy beyond scale separation and periodicity, remain valid for problems in nondivergence-form.Comment: 21 page

    Sparse operator compression of higher-order elliptic operators with rough coefficients

    Get PDF
    We introduce the sparse operator compression to compress a self-adjoint higher-order elliptic operator with rough coefficients and various boundary conditions. The operator compression is achieved by using localized basis functions, which are energy-minimizing functions on local patches. On a regular mesh with mesh size hh, the localized basis functions have supports of diameter O(hlog(1/h))O(h\log(1/h)) and give optimal compression rate of the solution operator. We show that by using localized basis functions with supports of diameter O(hlog(1/h))O(h\log(1/h)), our method achieves the optimal compression rate of the solution operator. From the perspective of the generalized finite element method to solve elliptic equations, the localized basis functions have the optimal convergence rate O(hk)O(h^k) for a (2k)(2k)th-order elliptic problem in the energy norm. From the perspective of the sparse PCA, our results show that a large set of Mat\'{e}rn covariance functions can be approximated by a rank-nn operator with a localized basis and with the optimal accuracy
    corecore