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Abstract

This paper presents two new approaches for finding the homogenized coefficients of multiscale elliptic
PDEs. Standard approaches for computing the homogenized coefficients suffer from the so-called resonance
error, originating from a mismatch between the true and the computational boundary conditions. Our new
methods, based on solutions of parabolic and elliptic cell-problems, result in an exponential decay of the
resonance error.

Résumé

Décroissance exponentielle de l’erreur de résonance en homogénéisation numerique via des
problèmes de cellules paraboliques et elliptiques. Cette note présent deux nouvelles approches pour
trouver les coefficients homogénéisés des EDP elliptiques multi-échelles. Les approches standard pour cal-
culer les coefficients homogénéisés souffrent de ce que l’on appelle l’erreur de résonance, qui découle d’une
inadéquation entre les vraies conditions aux limites et celles computationelles. Nos nouvelles méthodes,
basées sur des solutions des problèmes de cellules paraboliques et elliptiques, entrâınent une décroissance
exponentielle de l’erreur de résonance.

1. Introduction

We consider the numerical homogenization of multiscale elliptic partial differential equations (PDEs) of
the form {

−∇ · (aε(x)∇uε) = f in Ω ⊂ Rd

uε = 0 on ∂Ω,
(1)

where aε ∈ [L∞(Ω)]
d×d

is symmetric, uniformly elliptic and bounded, and ε� |Ω|1/d = O(1) is the wave-
length of the small scale variations in the medium. A direct numerical approximation of uε by standard
finite element/difference methods is prohibitively expensive as the ε-scale variations need to be resolved on
the whole computational domain Ω. Homogenization theory aims at finding an effective coefficient a0 (or
solution u0) such that −∇ ·

(
a0(x)∇u0

)
= f describes the coarse-scale behaviour of (1). The coefficient

a0 (and hence the solution) is no more oscillatory, and a standard solver may be directly applied to the
homogenized system once a0 is determined. Explicit representations for a0 are available only in few cases,
such as periodic microstructures or stationary ergodic random materials. For example, when the medium is
such that aε(x) = a(x/ε), and a is a K := [−1/2, 1/2]d-periodic function, then a0 is given by

a0
ij =

1

|K|

∫
K

(
ei +∇χi(y)

)
· a(y)

(
ej +∇χj(y)

)
dy, (2)
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where χi is a K-periodic solution of the so-called corrector problem, see [6, 9, 13]:

−∇ ·
(
a(y)

(
∇χi + ei

) )
= 0 in K. (3)

In several situations of interest, e.g. when the period of a is not known or when a is quasi-periodic or stochas-
tic, equations (2) and (3) have to be posed over the whole Rd. In this case, we write a0 = limR→+∞ a0,R,
where

a0,R
ij =

1

|KR|

∫
KR

(
ei +∇ψiR(y)

)
· a(y)

(
ej +∇ψjR(y)

)
dy, (4)

the domain KR :=
[
−R2 ,

R
2

]d
, and ψiR solves the Dirichlet problem−∇ ·

(
a(y)

(
∇ψiR + ei

) )
= 0 in KR

ψiR = 0 on ∂KR.
(5)

In practice, the value of a0,R can be computed only for finite values of R, and an error occurs due to the
mismatch on the boundary ∂KR between the values of ψiR and χi. This error will then propagate into the
domain KR and deteriorate the accuracy of the approximation a0,R. It is well-known that if a is K-periodic
and R is not integer, then

∥∥a0,R − a0
∥∥
F
≤ CR−1, see [4, 10]. A similar result exists also for stationary

ergodic random coefficients, both in continuous [8] and discrete [12] settings. This first order resonance error
dominates all other discretization errors in modern multiscale methods and, therefore, better approximation
techniques with reduced resonance errors are needed.

In order to reduce the resonance error, previous approaches improved the prefactor (but not the conver-
gence rate) [15], or gave second order rates in 1/R [7], or fourth order in the asymptotic limit for large values
of R [11]. Another strategy results in arbitrary orders in 1/R, but at the cost of solving a computationally
expensive wave equation [5].

This paper, inspired by [14], presents two strategies based on parabolic and elliptic corrector problems
which have exponentially decaying boundary errors at a cost comparable to the one of solving the classical
elliptic model.

2. New algorithms for computing the homogenized tensor

It can be seen that the computation of homogenized coefficients is linked to the average of oscillatory
functions, as formula (4) shows. A naive averaging of a K-periodic function f over KR converges to the
mean value 1

|K|
∫
K
f(y) dy with a first order accuracy in 1/R. To improve this accuracy to arbitrarily high

rates, a set of smooth averaging filters can be used, see [11].

Definition 1. We say that a function µ : [−1/2, 1/2] 7→ R+ belongs to the space Fq, q ≥ 1, if:

i) µ ∈ Cq([−1/2, 1/2]) ∩W q+1,∞((−1/2, 1/2));

ii) µ(k)(−1/2) = µ(k)(1/2) = 0, ∀k ∈ {0, . . . , q − 1};

iii)

∫ 1
2

− 1
2

µ (y) dy = 1.

For q = 0, we define µ ∈ F0 as µ(y) = 1[−1/2,1/2], where 1I is the characteristic function on the interval I.

We say that a function µL : KL := [−L/2, L/2]d ⊂ Rd → R+, with L > 0, belongs to the space Fq(KL) if

µL(y) = 1
Ld

∏d
i=1 µ

(
yi
L

)
, where µ ∈ Fq and yi is the coordinate along the i-th direction.
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2.1. A parabolic approach

In this section we introduce a numerical homogenization scheme based on the solution of parabolic
differential equations, as proposed in the discrete setting [14], since the parabolic Green’s function decays
exponentially in space. This yields to a reduced influence of mismatching boundary values on the corrector
functions. The new cell problems are defined by

∂uiR
∂t
−∇ · (a(y)∇uiR) = 0 in KR × (0, T ]

uiR = 0 on ∂KR × (0, T ]

uiR(y, 0) = ∇ · (a(y)ei) in KR.

(6)

Then, the homogenized coefficient is approximated by

a0,R,L,T
ij :=

∫
KL

ei · a(y)ejµL(y) dy − 2

∫ T

0

∫
KL

uiR(y, t)ujR(y, t)µL(y)dy dt. (7)

As it will be shown in Section 3, the T parameter is crucial to obtain an exponential convergence of the
resonance error.

2.2. A modified elliptic approach

The second approach that we propose can be viewed as adding a correction term to the elliptic cell
problem (5) to reduce the boundary effect in the interior region KL. The new elliptic cell problems are given
by −∇ ·

(
a(y)

(
∇χiR,T,N + ei

) )
+ [e−ANT gi](y) = 0 in KR

χiR,T,N = 0 on ∂KR,
(8)

where

[e−ANT gi](y) :=

N∑
k=1

e−λkT gjkϕk(y),

and {λk, ϕk}Nk=1 are the first N dominant eigenvalues and eigenfunctions of the operator A := −∇ · (a(·)∇),
equipped with Dirichlet boundary conditions. Moreover, gi(y) := ∇ · a(y)ei, and gik := 〈gi, ϕk〉L2(KR). The
homogenized coefficient can then be approximated by

b0,R,L,T,Nij =

∫
KL

(
aij(y) +

d∑
k=1

aik(y)∂kχ
j
R,T,N (y)

)
µL(y) dy. (9)

It is worth mentioning that the correction term [e−ANT gi](y) is an approximation to [e−AT gi](y), which
corresponds to the solution of the parabolic PDE (6) at time T . However, due to the exponential decay of
the semigroup e−AT with respect to the eigenvalues of the operator A, one can approximate this correction
term with exponential accuracy by computing few dominant eigenmodes of A, instead of solving the full
parabolic PDE (6).

3. Main results

3.1. Equivalence between the standard elliptic and the parabolic formulations

In this section, we give a proof of the equivalence between elliptic and parabolic equations, thus le-
gitimating the use of (7) and (9), in place of (4), as upscaling model. In the statement of the results,
we will refer to the space M(α, β,Ω), which consists of symmetric matrices a ∈ [L∞(Ω)]d×d such that
α|ζ|2 ≤ ζ · a(y)ζ ≤ β|ζ|2, ∀ζ ∈ Rd, a.e. y ∈ Ω ⊂ Rd. We will also use the notation

X0(R+,Ω) :=
{
v ∈ L2

(
R+;H1

0 (Ω)
)
, ∂tv ∈ L2

(
R+;H−1(Ω)

)}
.
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Theorem 1. Let a ∈ M(α, β,KR) and let ∇ · (aek) ∈ L2(KR), for k = 1, . . . , d. Let ukR ∈ X0(R+,KR) be
the unique weak solution of (6) and ψkR ∈ H1

0 (KR) be the unique weak solution of (5). Then, for 1 ≤ j, k ≤ d
the following identities hold

ψkR(y) =

∫ +∞

0

ukR(y, t) dt, (10)

1

2

∫
KR

∇ψkR(y) · a(y)∇ψjR(y) dy =

∫ +∞

0

∫
KR

ukR(y, t)ujR(y, t) dy dt. (11)

Proof. We reformulate problem (6) as the abstract Cauchy problem in L2(KR)
dukR
dt

+AukR = 0

ukR(0) = gk, gk(y) = ∇ · (a(y)ek) in L2(KR).

Here, the operator A : H1
0 (KR)→ H−1(KR) is defined as Au := −∇· (a∇u). Then, ukR(t) = e−tAgk. We

know that σ(A), the spectrum of A, is contained in an open sectorial domain α + Sω, where α ∈ R, α > 0
and

Sω =
{
z ∈ C : |arg z| < ω, 0 < ω <

π

2

}
.

Then, the Dunford integral representation

e−tA =
1

2πi

∫
Γ

e−tz(zI −A)−1 dz

holds, where Γ is an infinite curve lying in ρ(A) := C \ σ(A) and surrounding σ(A) counterclockwise. Then,
integrating in time we obtain∫ +∞

0

ukR(t) dt =

∫ +∞

0

1

2πi

∫
Γ

e−tz (zI −A)
−1
gk dz dt

=
1

2πi

∫
Γ

∫ +∞

0

e−tz dt (zI −A)
−1
gk dz

=
1

2πi

∫
Γ

1

z
(zI −A)

−1
gk dz = A−1gk.

The first equality is given by the Dunford integral formula. The second equality is obtained by Fubini’s
theorem. The third equality is true because the double integral is bounded, limt→+∞ e−tz = 0 since Re(z) > 0
on Γ. The last equality follows from the fact that the function f(z) = 1/z is holomorphic in the interior of
α + Sω. Since A is an isomorphism and ψkR is the weak solution of AψkR = gk, we have that A−1gk = ψkR
and (10) is proved.

To prove (11), we write the weak formulation of (5) and choose ψjR =
∫ +∞

0
ujR dt as test function:∫

KR

∇ψjR · a(y)∇ψkR dy =
(
∇ · (aek) , ψjR

)
L2(KR)

=

∫ +∞

0

(
∇ · (aek) , ujR

)
L2(KR)

dt.

Using the semigroup property of e−tA and the self-adjointness of A we obtain∫
KR

∇ψkR(y) · a(y)∇ψjR(y) dy =

∫ +∞

0

(
ukR(·, t/2), ujR(·, t/2)

)
L2(KR)

dt,

and conclude the proof by the change of variable t/2 7→ t.
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By the symmetry of a and the weak form of (5), we can rewrite (4) as:

a0,R
ij =

1

|KR|

∫
KR

ei · a(y)ej dy −
1

|KR|

∫
KR

∇ψiR(y) · a(y)∇ψjR(y) dy.

Theorem 1 provides an equivalent expression, based on the solutions uiR of the parabolic cell problems (6)
over infinite time domain, for the second integral in the above expression. This result is summarized as a
corollary below.

Corollary 1. Let a satisfy the assumptions of Theorem 1, a0,R be defined by (4) and a0,R,R,+∞ be defined
by (7) with µR ∈ F0(KR) (note that L = R). Then

a0,R,R,+∞ = a0,R.

Hence, using the classical result stated in Section 1, there exist a constant C > 0 independent of R such that

‖a0,R,R,+∞ − a0‖F ≤
C

R
.

From this analysis, we can immediately see that, when T = +∞, the parabolic approach does not result
in any gain in comparison to the standard cell-problem (5), as the two strategies are equivalent and have
first order convergence rates in 1/R.

3.2. Exponential convergence of the parabolic approach (7)

The following Theorem 2 shows that an exponential convergence rate for the boundary error can be
attained when the parameter T is sufficiently small and an appropriate filter is used, as fully proved in [2].
If the coefficients aij(y) are K-periodic and (6) is solved with periodic boundary conditions and integer R,
then Theorem 1 still holds true by substituing functions ψiR in (10) and (11) with χj defined in (3). Thus, it
is possible to find an equivalent formula for the exact homogenized coefficients, which is based on a parabolic
model with periodic boundary conditions. The proof of Theorem 2 is based on such an equivalence result
and on a decomposition of the resonance error in several terms, respectively accounting for the averaging
error of periodic functions, the boundary mismatch between the two problems and the truncation in time.

Theorem 2. Let a ∈ M(α, β,KR) be K-periodic, ∇ · (aei) ∈ L2(KR) for any i = 1, . . . , d, µL ∈ Fq(KL),
for 0 < L < bRc, R > 1 and T > 0. Then

‖a0,R,L,T − a0‖F ≤ C

(
L−(q+1) + e−απ

2T +

(
R√
T

+ 1

)d−1
e−c

|R−L|2
T

|R− L|
+

T d+1

|R− L|2d
e−2c

|R−L|2
T

)
,

where C > 0 is a constant independent of R,L, T and c = 1/4β. Moreover, the choices L = (1 − ko)R and
T = kTR, with 0 < ko < 1 and kT = ko

π
√

4βα
result in the following convergence rate in terms of R:

‖a0,R,L,T − a0‖F ≤ C
[
R−(q+1) + γ(R)e−ζR

]
, (12)

with

ζ =
πko

2
√
β/α

and γ(R) = 1 +

(√
R+ 1

)d−1

R
+
e
− πko

2
√
β/α

R

Rd−1
.

The term L−(q+1) is the averaging error induced by using a filter function µL ∈ Fq(KL), and it can be

made arbitrarily small by taking higher values for q. The term e−απ
2T originates from using a finite T for

the parabolic cell problem (6). The remaining terms are the errors due to the boundary conditions, which
decay exponentially provided T < |R − L|2. Moreover, the quasi-optimal scaling of L and T in terms of R
are found by equating the exponents of the truncation and boundary errors. Note that bound (12) is similar
to the one obtained in [11], except for the term T−2 that accounts for the effect of using a biased model
equation.
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3.3. Exponential convergence of the modified elliptic approach (9)

The boundary error associated with formula (9) relies on how the parameter T is tuned, similarly to the
parabolic case. If T = +∞, then the term e−ANT gj vanishes, and the standard Dirichlet cell problem (5) is
recovered. Hence, no improvement over the first order convergence rate will be observed. In the following
theorem, we specify the precise exponential upper bound for the modified elliptic approach. The proof is

based on the equality lim
N→∞

χiR,T,N =
∫ T

0
uiR dt and it is developed in [3].

Theorem 3. Let a ∈ M(α, β,KR) be K-periodic, ∇ · (aei) ∈ L2(KR) for any i = 1, . . . , d, µL ∈ Fq(KL),
for 0 < L < bRc, R > 1 and T > 0. Then

|ei
(
b0,R,L,T,N − a0

)
ej | ≤ C

(
√
TL−(q+1) + e−

απ2

2 T +
Rd−1T

5−d
2

|R− L|3
e−c

|R−L|2
T +

R2

Ld/2
e−

CdN
2/dT

R2

)
,

where C > 0 is a constant independent of R,L and T but may depend on a and µ, c = 1/4β and cd > 0 is
a constant (independent of R, T, L) that may depend on the dimension d, α and β. Moreover, the choices

L = (1− ko)R, T = kTR and N =

⌊(
απ2

2cd

)d/2
Rd
⌋

, with 0 < ko < 1 and kT = ko
π
√

2βα
result in the following

convergence rate in terms of R:

‖b0,R,L,T,N − a0‖F ≤ C
[
R−q−

1
2 + γ(R)e−ζR

]
,

with

ζ =
πko√
8β/α

and γ(R) = R2−d/2 + R
d−3
2 + 1.

The upper bounds in Theorem 3 have a similar character to those in Theorem 2, except the error e−
cdN

2/dT

R2

which comes from the spectral truncation. In particular, Theorem 3 shows that an exponential convergence
(for the spectral error) will be achieved if the number of modes scales as N = O(Rd) and T = O(R). In
practice, small values of R, e.g. R = 10, are preferred for simulations. This makes the elliptic approach very
favourable both from a computation and accuracy point of view.

4. Numerical validation

Here, we show the results of numerical tests performed using a two-dimensional periodic tensor for
validating the convergence rates of Theorems 2 and 3 (note that both theorems assume periodicity of the
coefficient). In particular, we consider the following 2× 2 tensor

a(y) =


(

3 + 2
√

17
8 sin(2πy1)+9

)−1

0

0
(

1
20 + 2

√
17

8 cos(2πy2)+9

)−1

 . (13)

We compute a numerical approximation of a0,R,L,T and b0,R,L,T,N for many values of R and with the optimal
values for L and T (as expressed in Theorems 2 and 3). The error between the numerical approximations
and the exact value a0 is then plotted against R, see Figure 1. The reference value for a0 is computed
by solving the standard elliptic corrector problems (3) with R = 1, periodic boundary conditions and by
using formula (2). Numerical approximations for the parabolic formulation (6) are computed by a P1-Finite
Elements discretization with meshsize h = 1/100 in space, while a Rosenbrock formula of order 2 with
tolerance tol = 10−5 and adaptive stepping scheme is used in time. For the modified elliptic approach we
used a meshsize h = 1/160 and N = 60 eigenmodes for approximating the right-hand side e−ANT gj , in
disregard of the size R.
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Figure 1: Modelling error for the homogenization of the multiscale coefficients (13). Modelling parameters are ko = 1/2 and

kT = ko
π
√
4βα

.

The decay of the overall upscaling error is pictured in Figure 1. In particular, for relatively low to
moderate values of R, e.g., 1 < R ≤ 10, the exponentially decaying boundary error is negligible in comparison
to the averaging error when q = 1 and q = 3.

Besides the improved convergence rate, it is desirable that the computational cost of the proposed methods
is comparable to the one of the classical model, that equals the cost of solving d linear systems. Those can be
solved by different numerical schemes, from LU decomposition, more suitable for smaller and two dimensional
problems, to iterative methods like GMRES or CG, that are more indicated for large systems coming from
three dimensional models. The first of the two proposed approaches, the parabolic model, can be efficiently
solved by stabilized explicit ODE solver (such as RKC2 [16] or ROCK4 [1]), whose algorithms perform cheap
matrix-vector multiplications iteratively. The number of iterations depends on the number of time steps and
stages, but not on the dimension of the system. Lastly, the modified elliptic method has the same cost as
the classical model, with the additional expense of accurately reconstructing the modified right-hand side by
eigenfunction decomposition of the operator A. The eigenmodes computation can be done, for instance, by
Krylov-Schur decomposition. A full analysis of the computational cost for the two methods will be addressed
in future studies.
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