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EXPONENTIAL HOMOGENIZATION OF LINEAR SECOND ORDER
ELLIPTIC PDEs WITH PERIODIC COEFFICIENTS∗

VLADIMIR KAMOTSKI† , KARSTEN MATTHIES‡ , AND VALERY P. SMYSHLYAEV‡

Abstract. A problem of homogenization of a divergence-type second order uniformly elliptic
operator is considered with arbitrary bounded rapidly oscillating periodic coefficients, either with
periodic “outer” boundary conditions or in the whole space. It is proved that if the right-hand side is
Gevrey regular (in particular, analytic), then by optimally truncating the full two-scale asymptotic
expansion for the solution one obtains an approximation with an exponentially small error. The
optimality of the exponential error bound is established for a one-dimensional example by proving
the analogous lower bound.
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1. Introduction. Classical homogenization theory describes the relation of so-
lutions uε(x) of boundary value problems with rapidly oscillating coefficients to so-
lutions u0(x) of a homogenized problem, i.e., a problem without rapidly oscillating
coefficients. In appropriate function spaces convergence can be established as ε → 0
(with ε describing the period or wavelength of the coefficients’ oscillations); see, e.g.,
[1, 2, 3, 4] and the references therein. For particular homogenization problems, e.g.,
for those described by linear second order elliptic PDEs with periodic coefficients, the
rate of convergence with respect to ε can often also be determined, see, e.g., [4, 5, 6, 7].
The order of convergence can sometimes be improved further by constructing higher
order correctors. The presence of a boundary creates additional “boundary layers,”
which substantially complexifies the problem of constructing the higher order terms;
see, e.g., [5, 3, 4, 8, 9]. However, in the absence of the boundary, either for a problem
with outer periodicity conditions or in the whole space (away from the spectrum),
higher order terms can often be explicitly constructed. In particular, under the as-
sumptions of sufficient regularity of the coefficients and the right-hand side of the
equation, it is possible to construct and rigorously justify a full two-scale asymptotic
expansion for uε(x), i.e., to establish the error bounds both for linear problems (e.g.,
[3, 10]) and even for appropriate nonlinear ones [11].

The above can be referred to, in the context of homogenization, as “homogeniza-
tion in all orders,” by analogy with “asymptotics in all orders”: by appropriately

∗Received by the editors January 27, 2006; accepted for publication (in revised form) August 21,
2006; published electronically January 12, 2007. This work was partly supported by Bath Institute
for Complex Systems (EPSRC grant GR/S86525/01) and by the Institute for Mathematics and Its
Applications (IMA), University of Minnesota. Part of this work was done during the authors’ visits
to IMA during February–June 2005.

http://www.siam.org/journals/sima/38-5/65104.html
†Corresponding author. Department of Mathematical Sciences, University of Bath, Claverton

Down, Bath BA2 7AY, UK (vk209@maths.bath.ac.uk). This author’s research was partially sup-
ported by grant RFBR 04-01-00522a.

‡Department of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY,
UK (km230@maths.bath.ac.uk, vps@maths.bath.ac.uk). The second author’s work was partially
supported by the Deutsche Forschungsgemeinschaft (DFG) in the Schwerpunktprogramm “Model-
lierung, Analysis und effektive Simulation von Mehrskalenproblemen.”

1565



1566 V. KAMOTSKI, K. MATTHIES, AND V. P. SMYSHLYAEV

truncating the infinite asymptotic series one arrives at an asymptotic approximation
to the actual solution uε with accuracy of any desirable polynomial order in ε as
ε → 0. We address in this paper the question of homogenization “beyond all orders,”
i.e., with an exponentially small error, via an optimal truncation of the (generally
divergent) asymptotic expansion. The ideas of exponential asymptotics have been in-
tensively developed in the recent literature (see, e.g., [12] and the references therein);
however, not that much progress has been achieved in this direction specifically for
problems of averaging and more specifically of homogenization. An exponential aver-
aging technique was developed for ODEs by Neishtadt [13] and recently adjusted to
PDEs with a temporal [14] and then one-dimensional spatial oscillations [15].

To the best of our knowledge, the present work represents the first example of a
rigorous analytic exponential averaging for truly multidimensional spatial oscillations,
i.e., for multidimensional homogenization. On the other hand, exponentially accurate
approximations are potentially relevant to the problem of achieving exponentially
convergent numerical schemes for homogenization; see, e.g., [16].

We consider the abovementioned “classical” elliptic homogenization problems
with periodic coefficients, both for the case of periodic boundary conditions and in
the whole space. We will assume that the right-hand side is sufficiently regular (not
only infinitely smooth as required for constructing the full asymptotic expansion, but
additionally “Gevrey regular,” in particular, analytic). Then we show that one ob-
tains an approximation with an exponentially small error by optimally truncating the
full two-scale asymptotic series for the solution. Importantly, the above exponential
bounds are sharp in the sense that we establish analogous lower bounds for the error
in an explicit but rather generic one-dimensional example.

The Gevrey regularity techniques have proved useful in exploring exponentially
small effects in different problems, for example, in diffraction/scattering for describing
the wave field in the shadow [17] and the asymptotic distribution of resonances [18],
and in the one-dimensional exponential averaging [14, 15] for controlling the effect
of Galerkin approximation of PDEs via ODEs. In the present work, however, the
Gevrey regularity allows us to control the error of the truncation of a full asymptotic
expansion both with respect to the short period or wavelength of the oscillations ε
and the large number n of the terms in the truncated asymptotic series.

The next section gives a precise formulation of the problems and the statements
of the main results, which are Theorems 1 and 1′, and specifically the exponential
error bounds (17) and (19). The rest of the paper is devoted to the proof of the
theorems, as well as of the optimality of the estimates (17) and (19) for an explicit
one-dimensional example; see Theorem 5. In particular, for analytic right-hand sides
f(x), in Theorems 1 and 5, the exponential bounds (17) and (79) hold with β = 1,
with the “rate” of decay (the constants C2 and C̃2) related to the imaginary part of the
“nearest” singularity in the analytic continuation of f(x) for complex x; see Remark 7.

2. Statement of the problem and main results. We consider a family of
differential operators with rapidly oscillating periodic coefficients:

(1) (Lεu)(x) := −∇ ·
(
A
(x
ε

)
∇u

)
(x).

The matrix A(y) = (Aij(y))ij ∈ L∞(T), i, j = 1, . . . , d, where T = R
d/Zd, d ≥ 1,

is a d-dimensional torus, is assumed to be symmetric1 and uniformly elliptic; i.e.,

1The assumption of the symmetry of matrix A(y) holds in most physically relevant examples,
but could be waived for the purposes of this paper: the stated results would still hold at the expense
of a slightly more complicated algebra in the exposition.
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Aij(y) = Aji(y) for any i, j and y ∈ T and there exists ν0 > 0 such that for all ξ ∈ R
d

and y ∈ T

(2) Aij(y)ξiξj ≥ ν0|ξ|2.

Here and throughout the paper we use the Einstein summation convention with re-
spect to repeated indices.

The main problem considered in this paper is for the right-hand side f being
infinitely smooth and periodic with a “fixed” period chosen to be equal to unity and
having zero mean, with the solution also required to have zero mean and to satisfy
the periodic boundary conditions; cf. [3, 10]. Namely, assuming ε−1 ∈ N to be a
large integer, we address the following homogenization problem: for a given f with
zero-mean value

(3) 〈f〉 :=

∫
T

f(x) dx = 0,

we seek a solution to the problem

(Lεuε)(x) = f(x) in T,(4)

〈uε〉 :=

∫
T

uε(x) dx = 0.(5)

Equation (4) is a “classical” model of periodic homogenization, physically corre-
sponding to, e.g., stationary heat conduction, electric conductivity, linear elasticity in
anti-plane shear, etc.

For a special class of functions f , namely for Gevrey regular functions, we will
construct an exponentially accurate asymptotic approximation to uε. Thus, we adopt
the following definition (cf., e.g., [20], [21]).

Definition 1. We say that a C∞(T) function f is β-Gevrey regular, where
β ≥ 1, if there exists B > 0 such that for all l ∈ N

(6) ‖f ; H l(T)‖ ≤ Bl(l!)β ,

where B may depend on f but is independent of l. We use notation f ∈ Gβ(T).
Here and below we use the scale of Sobolev spaces H l(X), l ∈ N, on a Riemannian

manifold X, with the norm

(7) ‖f ; H l(X)‖ =
∑
|k|=l

‖Dkf ; L2(X)‖ + ‖f ; L2(X)‖,

where ‖ · ; L2(X)‖ is the standard L2 norm on X, and we adopt the following con-
ventional multi-index notation: k = (k1, . . . , kd) ∈ Z

d
+, where Z+ := N∪{0} is the set

of nonnegative integers; |k| := k1 + · · · + kd; and Dk := ∂|k|/∂xk1
1 . . . ∂xkd

d . We will
also deal with H−1(X) norms, defined as duals to the space H1

0 (X) of functions from
H1(X) with zero mean.

Definition 1 gives one of several equivalent definitions of the Gevrey “extreme
regularity” class Gβ (see also [19]). In particular, for β = 1 the functions are from
Gβ if and only if they are real analytic; for β > 1 the functions are infinitely smooth
but not necessarily analytic. A conventional way of clarifying these relations is by
reformulating them in the Fourier space. For the above T-periodic functions f , when
represented by their Fourier series

(8) f(x) =
∑
p∈Zd

fp exp(2iπp · x),
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a sufficient condition for f to belong to Gβ is for its Fourier coefficients fp to decay
exponentially with the “rate” |p|1/β ; i.e.,

(9) |fp| ≤ c1 exp

(
−c2|p|1/β

)

with some p-independent positive constants c1 and c2. The latter is well known and
can be seen, for example, by applying the Plancherel theorem to (7), using (9), then
replacing the resulting series by “asymptotically equivalent” integrals, and finally
employing the Stirling asymptotic formulae; see, e.g., [29, (6.1.37)]. Throughout the
paper we will use various minor modifications of the direct implication of the Stirling
formula for

(10) Γ(z) :=

∫ ∞

0

exp(−s)sz−1ds, z > 0; Γ(l + 1) = l!, l ∈ N,

which we display below for the reader’s convenience:

(11) A1

(z
e

)z−1/2

≤ Γ(z) ≤ A2

(z
e

)z−1/2

, z ≥ 1,

with some “universal” constants A1 and A2.
Notice that for real-analytic f (9) holds with β = 1, and the rate of exponential

decay c2 is determined by the absolute value of the imaginary part of the “nearest”
singularity in the analytic continuation.

For any fixed ε > 0 the problem (4)–(5) is a well-posed elliptic problem which
has a unique solution uε ∈ H1(T). Given n ∈ Z+ we seek an approximation to this
solution in the standard form of the appropriately truncated two-scale asymptotic
series (cf., e.g., [3]):

(12) uε,n(x) =

n+2∑
m=0

εmu(m)
(
x,

x

ε

)
,

where the functions u(m)(x, y) are required to be periodic in the “fast” variable y. It
is known that for the present problem one can construct in this way a full asymptotic
expansion with u(m) adopting the following form (see, e.g., [3, 10]):

(13) u(m)(x, y) =

m∑
l=0

∑
|k|=l

Nk(y)D
k
x vm−l(x),

where N0(y) ≡ 1 and Nk(y) are periodic solutions of the “main” (|k| = 1) and “higher
order” (|k| > 1) “canonical” unit cell problems in the “fast” variable y. The functions
vs(x), s ≥ 0, solve certain recurrent systems of equations in the “slow” variable x (see
[3]), which are briefly reviewed in the next section.

Before formulating the main result, for convenience of the future referencing, we
combine (12) and (13) to give

(14) uε,n(x) =

n+2∑
l=0

εl
∑
|k|=l

Nk

(x
ε

)
Dk

x V
(n−l+2)(x, ε).
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The slowly varying part in (14) is a partial sum of the formal asymptotic series
V (∞)(x, ε) (see (29)):

(15) V (M)(x, ε) :=

M∑
s=0

εsvs(x).

The main results of the present paper are the following.
Theorem 1. Suppose A ∈ L∞(T) and satisfies (2), and f ∈ Gβ(T), β ≥ 1, 〈f〉 =

0. Let uε be the unique solution of (4)–(5). Then there exist ε-independent constants
C1 > 0, C2 > 0, κ1 > 0, and κ2 > κ1, such that for any n satisfying

(16) κ1ε
−1/β ≤ n ≤ κ2ε

−1/β

the approximation (14) has the error bound

(17) ‖uε − uε,n ; H1(T)‖ ≤ C1 exp(−C2ε
− 1

β ).

The above result may be interpreted in the sense that if the (generally divergent)
asymptotic series (12) is, for sufficiently small ε, “optimally” truncated by choosing
n = n(ε) according to (16), for example, n(ε) =

[
κ2ε

−1/β
]

with the square brackets
denoting the entire part, then this produces an exponentially small error in the sense
of (17).

Note also that for less regular f the earlier results on the polynomial rather
than exponential error (see, e.g., [5, Thm. 11.1], [3, section 4.2, Thm. 2]) will be a
by-product of our analysis: if, e.g., f has a finite regularity in the scale of Sobolev
spaces, say f belongs to HM (T) but does not belong to HM+1(T) for some M , one
can construct only finitely many terms in the expansion (12). As a result one obtains
only an error bound of polynomial order εn with a finite n related to M . On the other
hand, if one assumes f ∈ C∞ but makes no assumption on the “rate” of growth of its
H l norms when l → ∞, one does reproduce the “homogenization in all orders” with
an error bound Cnε

n for any n. However, in the latter case one has no control on the
growth of Cn as n → ∞, which disallows any possible further “a priori” improvement
of the error bound.

Let us also note that Theorem 1 can be generalized further in a number of ways.
Assuming higher regularity of the coefficients Aij , one can get in (17) the same rate
of convergence but in stronger norms. One can also consider another case without
the boundary for a “shifted” operator Lε + 1 in entire R

d rather than for Lε in a
fixed domain with periodic boundary condition. Then the same exponential estimate
holds; i.e., the following theorem can be obtained adapting the proof of Theorem 1
with minor changes.

Theorem 1
′
. Suppose A ∈ L∞(T) and satisfies (2); f ∈ Gβ(Rd), β ≥ 1, i.e.,

f ∈ C∞(Rd) and there exists B > 0 such that for all l ∈ N, ‖f ; H l(Rd)‖ ≤ Bl(l!)β .
Let uε ∈ H1(Rd) be the unique solution of

(18) (Lε + 1)uε = f.

Then there exist ε-independent constants C1 > 0, C2 > 0, κ1 > 0, and κ2 > κ1,
such that for any n satisfying κ1ε

−1/β ≤ n ≤ κ2ε
−1/β the corresponding asymptotic

approximation of the form (12) has the error bound

(19) ‖uε − uε,n ; H1(Rd)‖ ≤ C1 exp(−C2ε
− 1

β ).
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Note that in the latter case the explicit structure of the two-scale asymptotics
(12) is slightly different from that of (14); see (57).

We expect similar results to be valid also for nonlinear elliptic divergence opera-
tors (cf. [11]). Accounting for the presence of a boundary is in general a difficult open
problem; cf. [8, 9].

The proof of the theorems will be divided into three steps. First we derive a priori
estimates on appropriate norms of the coefficients Nk and vs in suitable functional
spaces for fixed k and s in section 3. Then, in section 4, we estimate the right-hand
side error term Lεuε,n − f for fixed n and ε (in the H−1 norm). In section 5 we
translate this into the error estimates for uε,n(ε) − uε via analysis of the “mean” and
standard ellipticity estimates, and finally “minimize” the error by an optimal choice
of n(ε) dependence on ε. This establishes the desired exponential error bound and
hence proves Theorem 1. Proof of Theorem 1′ follows the same strategy with minor
technical alterations listed in Remark 2 immediately following the proof of Theorem 1.

Optimality of the exponential error bound (17) is proved in section 6 for an explicit
one-dimensional example; see Theorem 5.

3. Recurrent relations and a priori estimates. We briefly describe the pro-
cedure for determining the coefficients in (14) and (15) (see, e.g., [3, 10] for the
detailed derivation in a slightly different notation). Below, we give one possible way
to summarize it.

First, the infinite series version of (14),

(20) uε(x) ∼
∞∑
l=0

εl
∑
|k|=l

Nk

(x
ε

)
Dk

x V
∞(x, ε),

is formally substituted into (4). After appropriate differentiations and re-grouping
the terms with equal powers of ε (treating at this stage V ∞(x, ε) as a “whole”) we
arrive at

(21)
∞∑
l=0

εl−2
∑
|k|=l

{
L1
yNk(y) − Tk(y)

}
y=x/ε

DkV ∞(x, ε) ∼ f(x),

where

(22) N0(y) ≡ 1, T0(y) ≡ 0,

and

|k| = 1 : Tk(y) = Aij,j(y), k = ei,(23)

|k| ≥ 2 : Tk(y) =
∑

i,j=1,...,d

k′=k−ei≥0

((AijNk′),j + AijNk′,j) (y) +
∑

i,j=1,...,d

k′′=k−ei−ej≥0

Aij(y)Nk′′(y).(24)

Here we denote by ei the unit ith axis vector in Z
d and adopt the standard convention

denoting derivatives by the indices following the comma in the subscript; k ≥ 0 for a
multi-index k means ki ≥ 0 for any 1 ≤ i ≤ d (k > 0 will mean k ≥ 0 and ki > 0 for
some i, with k′ < k meaning k − k′ > 0, etc.).

We then require the “coefficients”
{
L1
yNk(y) − Tk(y)

}
in (21) to be independent

of the fast variable y, i.e., to be equal to constants which are denoted by −hk. This
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implies that Nk are solutions to the following “cell problems” for |k| ≥ 1:

L1
yNk = Tk(y) − hk in T,(25)

〈Nk〉 = 0,(26)

with periodic conditions for Nk.
The solvability condition for (25)–(26) implies, necessarily, that hk are the mean

values of Tk over the periodicity cell:

(27) hk = 〈Tk〉.

Combining (21) with (25) yields an infinite order formal asymptotic equation for
the “slow” part V ∞(x, ε):

(28) −
∞∑
l=0

εl−2
∑
|k|=l

hkD
kV ∞(x, ε) ∼ f(x).

A formal asymptotic solution of (28) is in turn sought in the form of an “infinite
order” version of (15):

(29) V ∞(x, ε) ∼
∞∑
s=0

εsvs(x).

The substitution of (29) into (28) with subsequent rearrangements and equating terms
with the same powers of ε yields

−Ahom
i,j=1vs,ij(x) = fs(x),(30)

〈vs〉 = 0,(31)

with the right-hand sides

f0= f,(32)

fs=

s+2∑
l=3

∑
|k|=l

hkD
k
xvs−l+2, s ≥ 1.(33)

In (30) Ahom =
(
Ahom

ij

)d
i,j=1

is a “classical” homogenized matrix, which is known to

be positive definite (with the same ellipticity constant ν0 as in (2)) and symmetric:

Ahom
ij = 〈Aij〉 + 〈AisNej ,s〉 =

{
hei+ej , i = j,
1
2hei+ej , i �= j.

Notice that (30) is uniquely solvable for any s ≥ 0: a necessary and sufficient condition
for the solvability is 〈fs〉 = 0 which does hold for s = 0 by assumption (3) and for
s ≥ 1 by (33). The slowly varying terms vs are hence found recurrently as solutions
to homogenized equations (30) with constant coefficients on a torus T.

The relations (22)–(27) and (30)–(33) are hence sufficient for uniquely identifying
all Nk and vs, respectively. Then the so-defined asymptotic “double series” (20),
(29) provides a full asymptotic expansion of the solution uε(x) “in all orders”: in
particular, its truncation uε,n produces an error of polynomial order in ε (see, e.g.,
[3, section 4.2, Thm. 2] or section 4 below).
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We next aim at estimating the quantities

N (l) := max
|k|=l

‖Nk ; H1(T)‖,(34)

V(s,m) := ‖vs ; Hm(T)‖.(35)

We will prove the following lemma.
Lemma 2. Under the assumptions of Theorem 1 the following estimates hold for

all l, s,m ∈ N ∪ {0}: (i)

(36) N (l) ≤ (MN )
l
,

(ii)

(37) V(s,m) ≤
s∑

k=0

(MV)
k+1 ‖f ; Hm+k(T)‖

for appropriate constants MN and MV , depending only on ‖A ; L∞(T)‖ and the
ellipticity constant ν0 (see (2)).

Proof. Further on we will use the abbreviated notation | · |l := ‖· ; H l(T)‖, l ≥ −1
(| · |0 := ‖· ; L2(T)‖) and denote by C, M1, M2, etc. various positive constants whose
precise values are insignificant and can change during the proof.

(i) Due to the standard ellipticity estimates we have

(38) |v|1 ≤ C(ν0)|G|0

for a solution of L1v = ∇ · G, 〈v〉 = 0 with arbitrary G ∈
(
L2(T)

)d
. So we deduce

from (22)–(24), (25)–(26), and (27) for |k| ≥ 2 that

(39) |Nk|1 ≤ C(ν0)‖A ;L∞(T)‖

⎛
⎝ ∑

k′<k, |k−k′|=1

|Nk′ |1 +
∑

k′′<k,|k−k′′|=2

|Nk′′ |0

⎞
⎠ .

The latter reads in terms of (34) as

(40) N (l) ≤ M1N (l−1) + M2N (l−2), l ≥ 2,

and implies (36) by induction: from (22) we have N (0) = 1 and, due to (23) and (38),
N (1) ≤ C(ν0)‖A ;L∞(T)‖ ≤ M1. Therefore choosing MN > max{1,M1 + (M2)

1/2}
we arrive at (36).

(ii) Now turning to vs, due to (30)–(33) we estimate for s ≥ 1 and m ≥ 1

(41) |vs|m ≤ C(Ahom)

s+2∑
l=3

∑
|k|=l

|hk||Dk
xvs−l+2|m−2.

This can be established, e.g., using again the ellipticity estimates applied to (30),
which being an elliptic equation with constant coefficients can be differentiated m
times. Applying also a version of the Poincaré inequality, which in our choice of the
domain and the norms (see (7)) is the obvious estimate

(42) ‖g;Hk(T)‖ ≤ ‖g;H l(T)‖, k ≤ l,

we conclude that C(Ahom) can be chosen independently of m.
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Since (24) and (27) obviously imply that max|k|=l |hk| ≤ C
(
N (l−1) + N (l−2)

)
,

from (41) we arrive after a straightforward manipulation at

(43) V(s,m) ≤ C

s∑
r=1

N (r+1)rd−1V(s−r,m+r).

The latter in turn, combined with (36), implies that with large enough M0

(44) V(s,m) ≤
s∑

r=1

Mr
0V(s−r,m+r).

Let us finally show by induction in s that the latter is sufficient to deduce (37)
with some MV > 2M0. Indeed for s = 0, due to (30) for all m ≥ 0, we have
|v0|m ≤ |v0|m+2 ≤ M3|f |m with M3 independent of m, implying (37). Now we
proceed with the induction step: suppose (37) holds for s = 0, . . . , S with a constant
MV > max{2M0,M3}. Then due to (44) we have

V(S+1,m) ≤
S+1∑
r=1

Mr
0V(S+1−r,m+r) ≤

S+1∑
r=1

S+1−r∑
k=0

Mr
0M

k+1
V |f |m+r+k

≤
S+1∑
q=1

Mq+1
V |f |m+q

q∑
r=1

(
M0

MV

)r

,

which by our choice of MV implies (37) for s = S + 1.

4. Remainder estimates. Next we derive estimates for the error in the right-
hand side of the original equation (4) as a result of substitution into its left-hand
side of the truncated asymptotic ansatz uε,n; see (12)–(15). The following lemma is
in effect an implication of the above described formal asymptotic construction: it is
supplemented by a more accurate bookkeeping of the structure of the remainder term
Rε,n (as needed for purposes of this work), which is bound, by the construction, to
contain only the terms of orders εn+1 and εn+2 for fixed n and small ε; cf. [3, 10].

Lemma 3. Under the assumptions of Theorem 1 one has Lεuε,n = f +Rε,n with
Rε,n ∈ H−1(T), and

Rε,n = −εn+1

⎛
⎝n+2∑

l=0

∑
|k|=l

( (AijNk),j + AijNk,j)DxiD
k
xvn−l+2(45)

+
n+1∑
l=0

∑
|k|=l

AijNkDxixj
Dk

x(vn−l+1 + εvn−l+2)

+ ε
∑

|k|=n+2

AijNkDxixjD
k
xv0

⎞
⎠

(denoting Dxi := ∂/∂xi, Dxixj := ∂2/(∂xi∂xj)).
Proof. The proof is a straightforward calculation by substituting the expansion

(14), (15) into (4). We notice that since Aij ∈ L∞(T), Nk ∈ H1(T), and vs ∈ C∞(T),
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all the “product” terms in (45) are in H−1(T). For example,

( (AijNk),j)
(x
ε

)
DxiD

k
xV

(n−l+2)(x, ε) = ε
∂

∂xj

(
(AijNk)

(x
ε

)
DxiD

k
xV

(n−l+2)(x, ε)
)

−ε
(
(AijNk)

(x
ε

)
DxixjD

k
xV

(n−l+2)(x, ε)
)
,

(46)

with the first term in the latter expression being a derivative of an L2 function and
the last one an L2 function itself.

The terms up to order O(εn) equal f by (14), (15), (30), (32), and (33). Via
direct inspection,

(Lεuε,n)(x) = −∇ ·
(
A
(x
ε

)
∇uε,n

)
(x)

= −∇ ·

⎛
⎝A

(x
ε

)
∇

n+2∑
l=0

εl
∑
|k|=l

Nk

(x
ε

)
Dk

x V
(n−l+2)(x, ε)

⎞
⎠

=
n+2∑
l=0

εl−2
∑
|k|=l

(L1
yNk)

(x
ε

)
Dk

xV
(n−l+2)(x, ε)

−
n+2∑
l=0

εl−1
∑
|k|=l

( (AijNk),j + AijNk,j)
(x
ε

)
DxiD

k
xV

(n−l+2)(x, ε)

−
n+2∑
l=0

εl
∑
|k|=l

(AijNk)
(x
ε

)
Dxixj

Dk
xV

(n−l+2)(x, ε).

Now we replace V (n−l+2)(x, ε) by V (n−l+1)(x, ε) + εn−l+2vn−l+2 in the second term
and by V (n−l)(x, ε) + εn−l+1vn−l+1 + εn−l+2vn−l+2 in the last term; see (15). These
“remainders” containing vn−l+1 and vn−l+2 as well as the term corresponding to
l = n + 2 in the last sum, all being of order εn+1 and εn+2, produce exactly Rε,n.
Therefore we have

(Lεuε,n)(x) = Rε,n +

n+2∑
l=0

εl−2
∑
|k|=l

(L1
yNk)

(x
ε

)
Dk

xV
(n−l+2)(x, ε)

−
n+1∑
l=0

εl−1
∑
|k|=l

( (AijNk),j + AijNk,j)
(x
ε

)
DxiD

k
xV

(n−l+1)(x, ε)

−
n∑

l=0

εl
∑
|k|=l

(AijNk)
(x
ε

)
Dxixj

Dk
xV

(n−l)(x, ε).

Now we change the summation indices in the two latter terms to obtain the first n+2
terms of the series (21)

(Lεuε,n)(x) = Rε,n +

n+2∑
l=2

(L1
yNk − Tk)D

kV (n−l+2)

= Rε,n −
n+2∑
l=2

εl−2
∑
|k|=l

hkD
kV (n−l+2) = f + Rε,n,

having used in the last equality (30)–(33).
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Using the above formula (45) for the remainder term, we estimate Rε,n with an
explicit dependence on both ε and n as in the following lemma ([·] denotes the entire
part).

Lemma 4. Under the assumptions of Theorem 1, there exist C3, ε0 such that for
all n and all 0 < ε < ε0 the remainder term Rε,n can be estimated as follows:

(47) ‖Rε,n; H−1(T)‖ ≤ Cn
3 ε

n+1‖f ; Hn+5+[d/2](T)‖.

Proof. Here we combine the formula for the error term in Lemma 3 with the esti-
mates in Lemma 2. To estimate the H−1 norm of the aggregates like ((AijNk)D

|k|+1v),j
(see (46)) and AijNkD

|k|+2v we need to ensure that D|k|+2v is in L∞. By the Sobolev
embedding theorems this holds if v ∈ H |k|+3+[d/2]. Therefore

‖Rε,n; H−1(T)‖ =

∥∥∥∥∥∥εn+1

⎛
⎝n+2∑

l=0

∑
|k|=l

( (AijNk),j + AijNk,j)DxiD
k
xvn−l+2

+

n+1∑
l=0

∑
|k|=l

AijNkDxi,xjD
k
x(vn−l+1 + εvn−l+2)

+ ε
∑

|k|=n+2

AijNkDxi,xjD
k
xv0

⎞
⎠ ; H−1(T)

∥∥∥∥∥∥
≤ εn+1

(
C

n+2∑
l=0

ld−1‖A;L∞‖N (l)V(n−l+2,l+3+[d/2])

+C

n+1∑
l=0

ld−1‖A;L∞‖N (l)
(
V(n−l+1,l+3+[d/2])

+ εV(n−l+2,l+3+[d/2])
)

+Cεnd−1‖A;L∞‖N (n+2)V(0,n+5+[d/2])

)

≤ Cεn+1

(
max{MN ,MV}

)n+2

nd‖f ;Hn+5+[d/2]‖.

Here we have used again the Poincaré inequality (42). An appropriate choice of C3

yields the result.
Remark 1. The last lemma could also be used to rederive results for finite regular-

ity f , or smooth f , which are not necessarily in any Gevrey space Gβ . If, for example,
f has finite regularity, i.e., f ∈ HM (T) and f /∈ HM+1(T) for some M , then, as
the above procedure demonstrates, only a finite number of terms in the asymptotic
expansion can be constructed, and the H−1 norms can be bounded only for n <
M − 4 − d/2. If, however, f ∈ C∞(T), but no assumptions are made on the rate of
growth of its H l norms for large l, the estimate (47) still holds for any n, but there is
no control over the growth of the Sobolev norms of f with n in the right-hand side of
(47). The latter would prevent us from improving the polynomial “asymptotics in all
orders” any further. This highlights the importance of the Gevrey extreme regularity
of f for the exponential error bounds.

5. Proof of Theorem 1. The proof of the theorem is now essentially a corollary
of Lemma 4, the estimates (6) holding due to the assumption of Gevrey regularity
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of f and standard elliptic regularity theory. Let us first introduce a “normalized”
approximation

(48) ũε,n := uε,n − 〈uε,n〉.

By the elliptic regularity theory for all n we have

(49) ‖ũε − uε,n ; H1(T)‖ ≤ C‖Rε,n; H−1(T)‖.

Using Lemma 4, we obtain

(50) ‖ũε − uε,n ; H1(T)‖ ≤ CCn
3 ε

n+1‖f ;Hn+4+[d/2]‖.

Let us next show that the mean 〈uε,n〉 can also be estimated in a similar way. Due
to representations (12), (13) we have

(51) 〈uε,n〉 =

n+2∑
m=0

εm
m∑
l=0

∑
|k|=l

〈
Nk

(x
ε

)
Dk

x vm−l(x)

〉
.

Note that 〈Nk〉 = 0; therefore for any s > 0 the functions ((−Δy)
−sNk(·)) (y) and(

(−Δx)−sNk(
·
ε )
)
(x) are correctly defined functions with zero mean, using, for exam-

ple, the Fourier representation for (−Δy) on a torus T. Moreover, they are linked
via

(52)
(
(−Δx)−sNk

( ·
ε

))
(x) = ε2s

(
(−Δy)

−sNk(·)
) (x

ε

)
(recall ε−1 ∈ N). Thus, integrating (51) by parts sufficiently many times, we get

〈uε,n〉(53)

=

n+2∑
m=0

εm
m∑
l=0

∑
|k|=l

εn+2−m

〈(
(−Δy)

−n+2−m
2 Nk

)(x
ε

)
(−Δx)

n+2−m
2 Dk

x vm−l(x)

〉
.

Now, via the Cauchy–Schwartz inequality,

(54)

|〈uε,n〉| ≤ εn+2
n+2∑
m=0

m∑
l=0

∑
|k|=l

‖(−Δy)
−n+2−m

2 Nk; L
2(T)‖ ‖vm−l; H

n+2−m+l(T)‖.

Therefore, applying the Poincaré inequality (42) to the first norm and then using
estimates (36), (37) of Lemma 2, we have

|〈uε,n〉| ≤ εn+2
n+2∑
m=0

m∑
l=0

Cld−1

(
sup
|k|=l

‖Nk; H1‖
)

m−l∑
p=0

Mp+1
V ‖f ;Hn+2−m+l+p‖

≤ εn+2‖f ;Hn+2‖
n+2∑
m=0

m∑
l=0

CldM l
N

m−l∑
p=0

Mp+1
V

≤ εn+2‖f ;Hn+2‖
n+2∑
m=0

m∑
l=0

CldM l
NMm−l

V ,
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and therefore

(55) |〈uε,n〉| ≤ εn+2CCn
4 ‖f ;Hn+2‖.

Combining the latter with (50) we finally get

(56) ‖uε − uε,n ; H1(T)‖ ≤ CCn
5 ε

n+1‖f ;Hn+5+[d/2]‖

for small enough ε with an appropriate constant C5 > 0.
Further, by (6), ‖f ;Hn+5+[d/2]‖ ≤ Bn+5+[d/2]((n+5+[d/2])!)β . Using the Stirling

formula (11) for the factorial (implying M ! = Γ(M + 1) ≤ CMM+1/2e−M for any
M ∈ N with some C > 0), we obtain

‖uε − uε,n ; H1(T)‖
≤ CCn

5 ε
n+1Bn+5+[d/2](n + 5 + [d/2])(n+5+[d/2])βe−β(n+5+[d/2])n1/2

≤ Cεn+1(C6B)nnnβ = Cε exp(n ln(nβC6Bε)).

Thus, we get the desired decay of this norm if the logarithm in the latter exponent is
uniformly negative. The latter can be assured by choosing n(ε) ∈ (κ1ε

−1/β , κ2ε
−1/β)

with any choice of constants κ1 and κ2 such that 0 < κ1 < κ2 < (C6B)−1/β . Indeed,
we then estimate

‖uε,n(ε) − uε ; H1(T)‖ ≤ Cε exp[(κ1 ln(κβ
2C6B))ε−1/β ],

which implies (17) by choosing C1 = C and C2 = −κ1 ln(κβ
2C6B) > 0. The theorem

is proved.
Remark 2 (on the proof of Theorem 1′). The proof of Theorem 1′ conceptually

follows the above proof of Theorem 1. We briefly sketch the proof emphasizing only
the most significant alterations to the above argument. First note that, although we
still use the asymptotic series (12) for the approximation, its precise structure slightly
differs from (14); namely, (12) is now represented in the following form:

(57) uε,n(x) =

n+2∑
l=0

εl
[ l
2 ]∑

s=0

∑
|k|=l−2s

N
(s)
k

(x
ε

)
Dk

x V
(n−l+2)(x, ε).

For N
(s)
k , analogously to (25), (26), one deduces the recurrence relations

L1
yN

(s)
k = T

(s)
k (y) − h

(s)
k −N

(s−1)
k , 〈N (s)

k 〉 = 0, s ≥ 0,(58)

assuming henceforth that N
(−1)
k ≡ 0. If |k| ≥ 2, then one finds

T
(s)
k =

∑
i,j=1,...,d

k′=k−ei≥0

(
(AijN

(s)
k′ ),j + AijN

(s)
k′,j

)
+

∑
i,j=1,...,d

k′′=k−ei−ej≥0

AijN
(s)
k′′ ,(59)

and otherwise

|k| = 1, k = ei : T
(s)
k = (AijN

(s)
0 ),j + AijN

(s)
0,j ,(60)

k = 0 : T
(s)
k = 0, N

(0)
0 ≡ 1.(61)
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Further, in all the cases h
(s)
k = 〈T (s)

k 〉, except h
(1)
0 = −1. Obviously one has N

(0)
k = Nk

(see (22)–(26)), and thus by induction in s one finds all N
(s)
k . Now let us intro-

duce Nq = max|k|+2s=q |N (s)
k |1. Due to (59) we obviously have |T (s)

k − h
(s)
k |−1 ≤

C(N|k|+2s−1 + N|k|+2s−2). The basic elliptic estimate (38) for the problem (58) still
holds and therefore implies that Nq ≤ M1Nq−1+M2Nq−2, which gives an exponential
estimate of growth of Nq: with large enough MN for all q ≥ 0

(62) Nq ≤ (MN)q.

Turning now to evaluation of vs(x), substituting the expansion (57) into (18) we
observe that V (∞)(x, ε) formally satisfies

(63)

⎛
⎝−Ahom

ij Dij + 1 +

∞∑
l=3

εl−2

[ l
2 ]∑

s=0

∑
|k|=l−2s

h
(s)
k Dk

x

⎞
⎠V ∞(x, ε) = f(x) in R

d;

therefore we have

(64) −Ahom
ij vs,ij + vs = fs in R

d,

where

f0= f,(65)

fs=

s+2∑
l=3

[ l
2 ]∑

r=0

∑
|k|=l−2r

h
(r)
k Dk

xvs−l+2, s ≥ 1.(66)

The latter differs from (33) only by the presence of lower order derivatives, and without
any significant alteration one deduces an exponential estimate (37) in very much the
same way as in Lemma 2. As a result, introducing V(s,m) = ‖vs; Hm(Rd)‖ with large
enough MV, we get by induction in s an estimate

(67) V
(s,m) ≤

s∑
k=0

(MV)
k+1 ‖f ; Hm+k(Rd)‖.

The remainder estimate is bound to be of order εn+1, and with some minor
technical alteration of the argument in section 4 one also gets

(68) ‖Rε,n;H−1(Rd)‖ ≤ Cεn+1Mn‖f ;Hn+5+[d/2](Rd)‖.

Finally, repeating the argument at the beginning of this section (omitting the consid-
eration of the mean), employing appropriate modifications of the Poincaré inequality,
ellipticity estimates, Sobolev embedding, etc. from (68), and the fact that f ∈ Gβ(Rd),
one finally deduces Theorem 1′.

Remark 3. Note that as formulated the theorems admit some further sharpening:
for example, one can replace H1(T) norm in (17) with W 1,p(T) norm, where p ∈
(2, p0(d, ν0)) with some p0(d, ν0) > 2. Indeed, as can be seen from the structure of
our argument, we select a functional space according to the fundamental ellipticity
estimate (38), whereas the latter (38) can be refined in the case of bounded measurable
coefficients and the right-hand side being the divergence of an L∞ (vector-)function
(see, e.g., [22, Chapter 6]).
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Remark 4. The proof of the theorems has been via a straightforward “book-
keeping” of the terms in the full two-scale asymptotic expansion (20)–(29). On the
other hand, this is known to be related to the so-called spectral method in homog-
enization and closely related “Bloch approximation” approach; see, e.g., [24, 25, 26,
27, 28, 6]. There is no doubt that these spectral methods are capable of at least
reestablishing the background results on the “homogenization in all orders” (i.e., ap-
proximations with arbitrary high order polynomial error bounds). An interesting
further prospect would be to interpret the results presented here on exponential ho-
mogenization in terms of underlying analytic spectral properties of the Floquet–Bloch
operator with periodic coefficients.

6. On the optimality of the exponential error (17): An example. In this
section we demonstrate that the main exponential error bound (17) of Theorem 1 for
‖uε − uε,n ; H1(T)‖ is “optimal” for a particular class of one-dimensional examples.
Namely, we show that by whatever choice of the truncation n(ε) the error bound (17)
cannot be improved apart from “optimizing” the choice of constants C1 and C2. This
is done by proving an analogous exponential lower bound for the error; see (79). The
latter is obtained by an optimal truncation n(ε) of lower bounds derived for each n
and ε, which in turn is observed to be delivered by n(ε) within the range (16). In this
sense the exponential error bound (17) is sharp.

We consider the following one-dimensional example. Consider elliptic problem

(69) − d

dx

(
a(x/ε)

d

dx
u(x)

)
= f(x),

with one-periodic boundary conditions, 〈u〉 = 〈f〉 = 0, ε = 1/N , N ∈ N, which is the
one-dimensional version of the problem (4)–(5), with unique solution uε(x). To be
specific, let us consider2

(70) a(y) =
1

3/2 − cos(2πy − π/4)
.

We fix arbitrary β ≥ 1 and assume the right-hand side f to be an infinitely
differentiable real-valued 1-periodic function with real nonnegative Fourier coefficients
fk (hence f−k = fk), i.e.,

(71) f(x) =
∑

k∈Z,k �=0

fk exp(2iπkx) = 2

∞∑
k=1

fk cos(2πkx), fk ≥ 0.

We further assume that f satisfies the “converse” inequality to (6) determining β-
Gevrey regular functions; i.e., there exists b > 0 such that

(72) ‖f ; H l(T)‖ ≥ bl(l!)β for all l ∈ N.

In particular, for “sharp” β-Gevrey regular functions both (6) and (72) hold simulta-
neously:

(73) bl(l!)β ≤ ‖f ; H l(T)‖ ≤ Bl(l!)β , 0 < b ≤ B < +∞, for all l ∈ N.

2The analysis of this section can be generalized in a straightforward way to more general a(y),
for example, a(y) = (a0 − a1 cos(2πy) − a2 sin(2πy))−1, a0 > 0, a1 �= 0, a2 �= 0, a2

1 + a2
2 < a2

0. We
do not pursue maximal generality to avoid unnecessary further algebraic complications.
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A sufficient condition for f to satisfy (73) is for its Fourier coefficients fk to decay
exponentially with the “rate” |k|1/β , i.e.,

(74) A1 exp(−B1|k|1/β) ≤ fk ≤ A2 exp(−B2|k|1/β)

with positive A1, A2, B1, and B2.
To see that such f satisfies (73) one can first apply the Plancherel theorem to

definition (7), implying

(2π)2lA1

∑
k∈N

exp(−2B1k
1/β)k2l ≤ (2π)2l

∑
k∈N

k2lf2
k ≤ ‖f ; H l(T)‖2

(75) ≤ 4(2π)2l
∑
k∈N

k2lf2
k ≤ 4(2π)2lA2

∑
k∈N

exp(−2B2k
1/β)k2l.

Then one can notice that the sums in (75) can be further bounded both from above
and from below as follows: there exist l-independent positive constants D1 and D2

such that

D1β(2B1)
−β(2l+1)Γ((2l + 1)β) = D1

∫ ∞

0

exp(−2B1s
1/β)s2lds

≤
∑
k∈N

exp(−2B1k
1/β)k2l ≤

∑
k∈N

exp(−2B2k
1/β)k2l

≤ D2l

∫ ∞

0

exp(−2B2s
1/β)s2lds = D2lβ(2B2)

−β(2l+1)Γ((2l + 1)β).(76)

(A way to establish (76) is by noticing that the series, asymptotically for large l,
coincides to the main order with the integral.) Finally, by the application of the Stir-
ling formula (11) we obtain D2l

3 (l!)2β ≤ Γ((2l + 1)β) ≤ D2l
4 (l!)2β with l-independent

D3, D4, which implies (73).
An example of a function f satisfying (71) and (73) is

(77) f(x) =
∑

k∈Z,k �=0

exp(−|k|1/β) exp(2iπkx).

In particular, for β = 1

(78) f(x) = 2 Re

∞∑
k=1

exp(k(2iπx− 1)) =
2e cos(2πx) − 2

(e2 + 1) − 2e cos(2πx)

is clearly analytic, with poles at x = ±i/(2π) + n, n ∈ Z.
We formulate the following optimality theorem for the above one-dimensional

case.
Theorem 5. For any f satisfying (74) with B1 = B2 there exist positive constants

C̃1 and C̃2 such that the following lower error bound for the exact solution uε of the
problem (69)–(70) and its asymptotic approximation uε,n holds for any n ∈ N and
any ε = 1/N, N ∈ N:

(79) ‖uε − uε,n ; H1(T)‖ ≥ C̃1 exp(−C̃2ε
− 1

β ).

Proof. In the one-dimensional case, the general recurrence relations (22)–(27),
(30)–(33) for the correctors Nk, the “homogenized coefficients” hk, and “slowly vary-
ing” parts vs specialize to simple ODEs (see, e.g., [23, section 1F]), which can be
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solved explicitly.3 In particular, the equations (25)–(26) for the “main corrector” N1

specialize to

(80)
d

dy
N1(y) =

a−1(y)

〈a−1〉 − 1 =
2

3

(
3

2
− cos

(
2πy − π

4

))
− 1 = − 2

3
cos

(
2πy − π

4

)
,

implying N1(y) = − (3π)−1 sin(2πy−π/4). All the higher order correctors Nk, k ≥ 2,
have a similar form, due to the recurrence relations

(81)
d

dy
Nk = −Nk−1

(the latter also immediately follows by direct substitution of (20) into (69)). As a
result,

N2m = (−1)m
cos(2πy − π/4)

3π(2π)2m−1
= (−1)m21/2 cos(2πy) + sin(2πy)

3(2π)2m
, m ≥ 1,

N2m+1 = (−1)m+1 sin(2πy − π/4)

3π(2π)2m
= (−1)m21/2 cos(2πy) − sin(2πy)

3(2π)2m+1
, m ≥ 0.

(82)

Further, v0 is given by homogenized equation (30) (s = 0) specializing in the one-
dimensional case to

(83) −h2
d2

dx2
v0 = f,

where h2 = Ahom = 〈a−1〉−1 = 2/3. Furthermore, in the one-dimensional case hk = 0
for all k ≥ 3 via a straightforward analysis of the recurrent relations (23)–(27) (see,
e.g., [23, section 1F]). The latter immediately implies via (30) and (33) that vk = 0
for all k ≥ 1. Taking the above into account specializes the remainder term (45) in
Lemma 3 to

Rε,n(x) = −εn+1
((

aN ′
n+2 + a′Nn+2

) (x
ε

)
Dn+3v0(x)

+εa
(x
ε

)
Nn+2

(x
ε

)
Dn+4v0(x)

)
= − d

dx

(
εn+2a

(x
ε

)
Nn+2

(x
ε

)
Dn+3v0(x)

)
= − d

dx
Φε,n(x),(84)

where

(85) Φε,n(x) := εn+2a
(x
ε

)
Nn+2

(x
ε

)
Dn+3v0(x).

Employing in the above the explicit solutions (82) for Nk and (83) for v0, we arrive
at

(86)

Φε,n(x) =
(−1)n/2εn+2(cos(2πx/ε) + sin(2πx/ε))

21/2(2π)n+2 [3/2 − cos(2πx/ε− π/4)]
Dn+1f(x), n = 2m, m ≥ 1,

Φε,n(x) =
(−1)(n+1)/2εn+2(cos(2πx/ε) − sin(2πx/ε))

21/2(2π)n+2 [3/2 − cos(2πx/ε− π/4)]
Dn+1f(x), n = 2m + 1, m ≥ 0.

(87)

3We remark that the present one-dimensional case is integrable, and an alternative but related
approach for analyzing the error term in the asymptotics is from the exact solution; see Remark 5.
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From (84), by the definition of the H−1 norm, we have

(88) ‖Rε,n; H−1‖2 ≥ C‖Φε,n−〈Φε,n〉 ; L2‖2 = C

(
‖Φε,n; L2‖2 −

∣∣∣∣
∫ 1

0

Φε,n(x)dx

∣∣∣∣
2)

(recalling that C denotes constants whose precise value is insignificant).
With the aim of further bounding (88) from below, we introduce for any given

ε = 1/N and n functions hN (x) as follows:

hN (x) = h(Nx) =
cos(2πNx) + sin(2πNx)

[3/2 − cos(2πNx− π/4)]
, N = 2m,

(89)

hN (x) = h(Nx) =
cos(2πNx) − sin(2πNx)

[3/2 − cos(2πNx− π/4)]
, N = 2m + 1.

We prove the following lemma.
Lemma 6. There exists a constant C such that for any f satisfying (71) and for

all n and N

(90) ‖hNDn+1f ; L2‖2 ≥ C‖Dn+1f ; L2‖2.

Proof. Choosing first n to be even, n = 2m, notice that

‖hN (x)Dn+1f(x); L2‖2 :=

∫ 1

0

(cos(2πNx) + sin(2πNx))
2

[3/2 − cos(2πNx− π/4)]
2

(
Dn+1f

)2
dx

≥ 4

25

∫ 1

0

(cos(2πNx) + sin(2πNx))
2 (

Dn+1f
)2

dx

=
4

25
‖ (cos(2πNx) + sin(2πNx))Dn+1f(x); L2‖2.

We next notice that for n even and for f given by (71) Dn+1f is represented by a
sine Fourier series, implying that cos(2πNx)Dn+1f(x) and sin(2πNx)Dn+1f(x) are
orthogonal in L2(0, 1) and hence

‖ (cos(2πNx) + sin(2πNx))Dn+1f(x); L2‖2 ≥ ‖ cos(2πNx)Dn+1f(x); L2‖2.

Further,

gNn(x) := cos(2πNx)Dn+1f(x) =
1

2

∑
k∈Z

(
e2iπNx + e−2iπNx

)
(2iπk)n+1fke

2iπkx

=
1

2

∑
m∈Z

e2iπmx
[
(i2π(m−N))n+1fm−N + (i2π(m + N))n+1fm+N

]
.
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Hence, applying the Plancherel theorem,

‖gNn(x); L2‖2 =
(2π)2n+2

4

∑
m∈Z

[
(m−N)n+1fm−N + (m + N)n+1fm+N

]2

≥ (2π)2n+2

4

∞∑
m=N+1

[
(m−N)n+1fm−N + (m + N)n+1fm+N

]2

≥ (2π)2n+2

4

∞∑
m=N+1

(
(m−N)n+1fm−N

)2
=

(2π)2n+2

4

∞∑
m=1

(
mn+1fm

)2

=
(2π)2n+2

8

∑
m∈Z

(
mn+1fm

)2
=

1

8
‖Dn+1f(x); L2‖2.

In the latter we have used the nonnegativity of Fourier coefficients fk, their symmetry
(f−k = fk), and the fact that 〈f〉 = 0 (hence f0 = 0).

The above proves the lemma for even n. The proof for odd n is fully analogous,
with the sign alteration between the “sine” and “cosine” terms, then noticing that
Dn+1f is represented by a cosine Fourier series, and then using the orthogonality and
neglecting the sine term as before.

We next aim at showing that, at least for sufficiently large n, the last term in the
right-hand side of (88) can be bounded from the above as in (90) but with a smaller
constant.

Lemma 7. For any f satisfying (74) with B1 = B2 there exists n0 > 0 such that
for all n > n0 and all N

(91)
〈
hN (x)Dn+1f(x)

〉2
:=

∣∣∣∣
∫ 1

0

hN (x)Dn+1f(x)dx

∣∣∣∣
2

≤ 1

2
C‖Dn+1f(x); L2‖2,

where C is same as in Lemma 6.
Proof. The Fourier series of hN (x) has the form

(92) hN (x) =
∑
�∈Z

h� exp(i2πN	x),

with {h�} being two possible sets of (rapidly decaying) Fourier coefficients (for N even
and odd, according to (89)), independent of N for all 	 ∈ Z. Then,

〈
hN (x)Dn+1f(x)

〉2
=

∣∣∣∣∣
∑
�∈Z

h�(2πN	)n+1f−N�

∣∣∣∣∣
2

≤ (2π)2n+2 max
k∈N

(
k2n+2f2

k

)(∑
�∈Z

|h�|
)2

≤ H(2π)2n+2 max
t≥0

φn(t)

≤ H(2π)2n+2

(
β

eB1
(n + 1)

)2β(n+1)

,(93)

where

(94) φn(t) := t2n+2 exp
(
−2B1t

1/β
)

and H is independent of N and n.
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On the other hand, we have

‖Dn+1f ; L2‖2 = (2π)2n+2
∑
k∈Z

k2n+2f2
k ≥ A1(2π)2n+2

∑
k∈Z

φn(|k|)

≥ 2A1(2π)2n+2

(∫ ∞

0

φn(t)dt− max
t≥0

φn(t)

)

= 2A1(2π)2n+2

(∫ ∞

0

φn(t)dt−
(

β

eB1
(n + 1)

)2β(n+1))
(95)

using the fact that φn(t), t ≥ 0, has a single maximum for any n. Further, we estimate

(96)

∫ ∞

0

φn(t)dt = β(2B1)
−β(2n+3)Γ((2n + 3)β) ≥ C

(
β

eB1
(n + 1)

)2β(n+1)

nβ−1/2

with some C > 0, having used

(97) Γ((2n + 3)β) ≥ c

(
(2n + 3)β

e

)(2n+3)β−1/2

with some c > 0 which is a direct implication of the Stirling formula (11), and then
performing further straightforward manipulations.

Comparing finally (93) with (95) and (96), we conclude that

〈
hN (x)Dn+1f(x)

〉2 ≤ cn1/2−β‖Dn+1f(x); L2‖2

with some c > 0, and hence (91) holds with appropriate choice of n0.
Now we complete the proof of Theorem 5. Let C be a constant from Lemma 6

and let n0 be as in Lemma 7. Denote

GnN := ‖hN (x)Dn+1f(x); L2‖2 −
〈
hN (x)Dn+1f(x)

〉2

=

∫ 1

0

(
hN (x)Dn+1f(x) −

〈
hN (x)Dn+1f(x)

〉)2

dx > 0.(98)

(GnN is strictly positive for any n and N since hN (x)Dn+1f(x) is not a constant: hN

vanishes at some points, but Dn+1f(x) is clearly not identically zero.)
By Lemmas 6 and 7, for any N and for any n > n0

(99) GnN ≥ 1

2
C‖Dn+1f(x); L2‖2.

Further, for any 0 < n ≤ n0

(100) lim
N→∞

GnN = C1‖Dn+1f(x); L2‖2,

where

C1 :=

〈(
hN − 〈hN 〉

)2〉
> 0

is N -independent positive constant by (89). (A standard way to establish (100) is
to subtract from h2

N and hN in (98) their means, represent the resulting zero-mean
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periodic functions as derivatives of other periodic functions, and then integrate by
parts.) It follows from (100) that there exists C2 > 0 such that

GnN ≥ C2‖Dn+1f(x); L2‖2

for any N and for any n ≤ n0. Combining the latter with (99) implies that

(101) GnN ≥ C3‖Dn+1f(x); L2‖2

for all n and N with C3 = min(C/2, C2).
Next, from (86)–(87)

(102)

‖Φε,n(x) − 〈Φε,n〉 ; L2‖2 =
1

4

( ε

2π

)2n+4

GnN ≥ C4

( ε

2π

)2n+4

‖Dn+1f(x); L2‖2.

Using again the lower bounds in (95)–(97) implies

‖Dn+1f(x); L2‖2 ≥ Cn
5 n

2βn

with some C5 > 0, which combined with (102) yields

(103) ‖Φε,n(x) − 〈Φε,n〉 ; L2‖ ≥ Cn
6 ε

n+2nβn.

Now, by uniform continuity of Lε as an operator from H1 to H−1, we have

(104) ‖uε,n − uε ; H1(T)‖ ≥ ‖uε,n − 〈uε,n〉 − uε ; H1(T)‖ ≥ C‖Rε,n(x); H−1‖.

Combining this with (88) and (103) implies

(105) ‖uε,n − uε ; H1(T)‖ ≥ Cn
7 ε

n+2nβn.

We can now “optimize” the lower bound (105) for any fixed small ε by choosing
n = n(ε) so that the right-hand side of (105) is minimized:

(106) ‖uε,n − uε ; H1(T)‖ ≥ ε2 min
t≥1

[
(C7ε)

ttβt
]
.

The latter minimum is attained at

(107) t = e−1(C7ε)
−1/β ;

substituting this back into (106), we finally obtain a lower bound of the form

(108) ‖uε,n − uε ; H1(T)‖ ≥ ε2 exp

[
−βe−1(C7ε)

−1/β

]
.

Finally, since obviously there exists such a positive constant C̃1 such that ε2 >
C̃1 exp(−ε1/β) for any 0 < ε ≤ 1 , (108) implies (79) for any 0 < ε ≤ 1, for example,

with the above C̃1 and C̃2 = βe−1C
−1/β
7 + 1. The theorem is proved.

We conclude from Theorem 5 that up to the choice of the constants C1, C2 > 0, the
main error estimate (17) in Theorem 1 is sharp, at least for the above one-dimensional
case. Note also that the above lower bound (79) was obtained by “optimizing” the
lower bound (105) for a given small ε by choosing n = n(ε) in the range given by
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(107), which is consistent with (16) for the upper bound. In this sense, the range of
truncation given by (16) is also “optimal.”

Remark 5. Notice that the present one-dimensional case is “integrable” and that
Theorem 5 could have been alternatively derived from the exact solution of (69):

(109) uε(x) =

∫ x

0

(F (s) −Aε) a−1
(s
ε

)
ds − Bε,

where F (x) := −
∫ x

0
f(t)dt is periodic, Aε := 〈F (·)a−1(·/ε)〉〈a−1〉−1, and Bε :=∫ 1

0
(F (s)−Aε)a−1(s/ε)(1−s)ds. One then employs a−1(x/ε) = 〈a−1〉+ε〈a−1〉 d

dxN1(x/ε)
(cf. (80)), in (109) and integrates by parts. Then employing iteratively (81) and inte-
grating by parts n times is expected to explicitly reproduce uε,n, with the rest being
the “error term.” The latter would then still have to be analyzed in a fashion similar
if not identical to that in the above proofs (the details are omitted).

Remark 6. The same arguments (Lemmas 6 and 7) can be used to obtain lower
bounds of finite order in ε if f ∈ HM but f /∈ HM+1 for some M ∈ N. Namely, on one
hand, only a finite number of terms in the asymptotic expansion can be constructed.
On the other hand, for each such n (from a finite set) a lower bound of the form (105)
holds with appropriate choice of C7. Optimizing finally with respect to the final set of
lower bounds (105), one arrives at an unimprovable polynomial lower bound. On the
other hand, if f ∈ C∞(T) and is not from any Gevrey-type class with no other control
on the growth of its H l norms for large l (equivalently, on ‖Dn+1f ;L2‖ for large n),
there is no control on the “coefficients” multiplying εn+2 in the error bounds for large
n (cf. (104), (86)–(88)), which does not allow us to improve the homogenization in all
orders any further. This indicates the importance of the Gevrey extreme regularity
of f for the exponential lower bounds.

Remark 7. For analytic f(x) Theorems 1 and 5, i.e., the exponential upper bound
(17) and lower bound (79), respectively, both hold with β = 1. The “rate” of the
exponential decay is then determined by the values of the constants C2 and C̃2 in
(17) and (79). By tracing back the proofs of both theorems, one observes that these
constants are dependent on the rate of the exponential decay of the Fourier coefficients
of f , i.e., by the constants c2 in (9) and B1 in (74). On the other hand, for analytic
f , the latter constants are directly related to the “width” of analytic continuation of
f(x) into the complex plane off the real axis, i.e., the absolute value of the imaginary
part of the “first singularity”; for example, f in (78) has a pole in x = ±i/(2π),
corresponding to B1 = 1. In this sense one could argue that the rate of exponential
error bound for analytic f is determined by the nearest singularity in the analytic
continuation.
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