291 research outputs found

    Exponential rate of convergence to equilibrium for a model describing fiber lay-down processes

    Full text link
    This paper is devoted to the adaptation of the method developed in [4,3] to a Fokker-Planck equation for fiber lay-down which has been studied in [1,5]. Exponential convergence towards a unique stationary state is proved in a norm which is equivalent to a weighted L2L^2 norm. The method is based on a micro / macro decomposition which is well adapted to the diffusion limit regime.Comment: 8 page

    Exponential decay to equilibrium for a fibre lay-down process on a moving conveyor belt

    Get PDF
    We show existence and uniqueness of a stationary state for a kinetic Fokker-Planck equation modelling the fibre lay-down process in the production of non-woven textiles. Following a micro-macro decomposition, we use hypocoercivity techniques to show exponential convergence to equilibrium with an explicit rate assuming the conveyor belt moves slow enough. This work is an extension of (Dolbeault et al., 2013), where the authors consider the case of a stationary conveyor belt. Adding the movement of the belt, the global Gibbs state is not known explicitly. We thus derive a more general hypocoercivity estimate from which existence, uniqueness and exponential convergence can be derived. To treat the same class of potentials as in (Dolbeault et al., 2013), we make use of an additional weight function following the Lyapunov functional approach in (Kolb et al., 2013)

    Hypocoercivity for Kolmogorov backward evolution equations and applications

    Full text link
    In this article we extend the modern, powerful and simple abstract Hilbert space strategy for proving hypocoercivity that has been developed originally by Dolbeault, Mouhot and Schmeiser. As well-known, hypocoercivity methods imply an exponential decay to equilibrium with explicit computable rate of convergence. Our extension is now made for studying the long-time behavior of some strongly continuous semigroup generated by a (degenerate) Kolmogorov backward operator L. Additionally, we introduce several domain issues into the framework. Necessary conditions for proving hypocoercivity need then only to be verified on some fixed operator core of L. Furthermore, the setting is also suitable for covering existence and construction problems as required in many applications. The methods are applicable to various, different, Kolmogorov backward evolution problems. As a main part, we apply the extended framework to the (degenerate) spherical velocity Langevin equation. The latter can be seen as some kind of an analogue to the classical Langevin equation in case spherical velocities are required. This model is of important industrial relevance and describes the fiber lay-down in the production process of nonwovens. For the construction of the strongly continuous contraction semigroup we make use of modern hypoellipticity tools and pertubation theory

    Hypocoercivity without confinement

    Get PDF
    In this paper, hypocoercivity methods are applied to linear kinetic equations with mass conservation and without confinement, in order to prove that the solutions have an algebraic decay rate in the long-time range, which the same as the rate of the heat equation. Two alternative approaches are developed: an analysis based on decoupled Fourier modes and a direct approach where, instead of the Poincar\'e inequality for the Dirichlet form, Nash's inequality is employed. The first approach is also used to provide a simple proof of exponential decay to equilibrium on the flat torus. The results are obtained on a space with exponential weights and then extended to larger function spaces by a factorization method. The optimality of the rates is discussed. Algebraic rates of decay on the whole space are improved when the initial datum has moment cancellations

    Optimal quantum control of atomic wave packets in optical lattices

    Get PDF
    In this work, I investigate the motional control and the transport of single neutral atoms trapped in an optical conveyor belt. The main goal is to prepare the atoms in the vibrational ground state of the trapping potential with high efficiency and keep the atoms in this state after fast non-adiabatic transport. In this group, the conveyor belt is used in two systems: (i) In an atom-cavity system, the three-dimensional ground state is prepared by means of carrier-free Raman sideband cooling for the first time. (ii) I use one-dimensional microwave sideband cooling in a state-dependent optical lattice and analyze with a new temperature model the influence of the anharmonic shape of the trapping potential. In the next step, I present a numerical simulation of atom transport. Optimal quantum control theory is used to find transport sequences for different durations without heating atoms out of the ground state. The measurements with these new sequences demonstrate that atoms can be transported by a factor two faster, with higher fidelity and robustness against experimental imperfections. Additionally, I analyze the dynamics of atom transport for sequences of multiple transport steps, which are required for quantum walk experiments. A proof-of-principle measurement demonstrates open-loop live feedback optimization of transport sequences with the experiment. This technique can further compensate experimental imperfections that are not taken into account in the numerical calculation. In the last part, I examine the fundamental limit of fast atom transport, the so-called quantum speed limit. It is defined as the minimum time that a quantum state requires to evolve into an orthogonal one. I investigate the dependencies of this boundary on different trap depths and the finite radial temperature

    Steady states of an Elo-type rating model for players of varying strength

    Get PDF
    In this paper we study the long-time behaviour of a kinetic formulation of an Elo-type rating model for a large number of interacting players with variable strength. The model results in a non-linear mean-field Fokker-Planck equation and we show the existence of steady states via a Schauder fixed point argument. Our proof relies on the study of a related linear equation using hypocoercivity techniques.Comment: 2 figures, 20 page
    • …
    corecore