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«> Dissertation Summary =

Franca Karoline Olga HOFFMANN

Keller-Segel-Type Models and Kinetic Equations

for Interacting Particles: Long-Time Asymptotic Analysis

This thesis consists of three parts: The first and second parts focus on long-time asymptotics
of macroscopic and kinetic models respectively, while in the third part we connect these regimes

using different scaling approaches.

Keller-Segel-type aggregation-diffusion equations

We study a Keller-Segel-type model with non-linear power-law diffusion and non-local particle
interaction: Does the system admit equilibria? If yes, are they unique? Which solutions converge
to them? Can we determine an explicit rate of convergence? To answer these questions, we make
use of the special gradient flow structure of the equation and its associated free energy functional
for which the overall convexity properties are not known. Special cases of this family of models
have been investigated in previous works, and this part of the thesis represents a contribution to-

wards a complete characterisation of the asymptotic behaviour of solutions.

Hypocoercivity techniques for a fibre lay-down model

We show existence and uniqueness of a stationary state for a kinetic Fokker-Planck equation mod-
elling the fibre lay-down process in non-woven textile production. Further, we prove convergence
to equilibrium with an explicit rate. This part of the thesis is an extension of previous work which
considered the case of a stationary conveyor belt. Adding the movement of the belt, the global
equilibrium state is not known explicitly and a more general hypocoercivity estimate is needed.
Although we focus here on a particular application, this approach can be used for any equation
with a similar structure as long as it can be understood as a certain perturbation of a system for

which the global Gibbs state is known.

Scaling approaches for collective animal behaviour models

We study the multi-scale aspects of self-organised biological aggregations using various scaling
techniques. Not many previous studies investigate how the dynamics of the initial models are
preserved via these scalings. Firstly, we consider two scaling approaches (parabolic and grazing
collision limits) that can be used to reduce a class of non-local kinetic 1D and 2D models to simpler
models existing in the literature. Secondly, we investigate how some of the kinetic spatio-temporal

patterns are preserved via these scalings using asymptotic preserving numerical methods.
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Dzigbodi wotso koa anyidi
dide hafi kpona efe doka.

If you patiently dissect an ant,

you will see its entrails °.

Ghanaian proverb (Ewe)

9With patience, you can accomplish the most difficult task.
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«> Preamble =

This thesis is centered around the analysis of non-linear partial differential equations arising nat-
urally from models in physics, mathematical biology, fluid mechanics, chemistry, engineering and
social science. Often, these models have hidden connections across applications, and the struc-
tural similarities in their dynamics allow us to apply the same mathematical techniques in very
different physical contexts. Non-linearities and long-range interactions in addition to local effects
pose analytical challenges that cannot be tackled with conventional PDE methods. This thesis
focuses on developing new mathematical tools to understand the behaviour of these models, in

particular their asymptotics.

The first chapter is an introduction, presenting the mathematical context, motivations and nec-
essary tools for the chapters to follow. The introduction is structured by parts (Part I: Chapters 2-4,
Part II: Chapter 5, Part III: Chapter 6) and provides and overview of the results obtained in this

thesis. All following chapters each correspond to an article or book chapter.

List of works contained in this thesis:

* Chapter 2: article [63], in collaboration with Vincent Calvez* and José A. Carrillo!, published
in the special issue "Advances in Reaction-Cross-Diffusion Systems" of Nonlinear Analysis

TMA.

¢ Chapter 3: book chapter [64], in collaboration with Vincent Calvez! and José A. Carrillo!,
to appear in “Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Di-
rections” as part of the C.I.LM.E. Foundation Subseries “Lecture Notes in Mathematics” at

Springer.

¢ Chapter 4: article [90], in collaboration with José A. Carrillo!, Edoardo Mainini® and Bruno

Volzone®, submitted for publication.

¢ Chapter 5: article [49], in collaboration with Emeric Bouin” and Clément Mouhot?, accepted

for publication in SIAM Journal on Mathematical Analysis.

¢ Chapter 6: article [84], in collaboration with José A. Carrillo! and Raluca Eftimie®, published
in Kinetic and Related Models.



CONTENTS

How to read this thesis

Each chapter is written to be self-contained. The logical relations between the chapters are the
following: Chapter 3 builds on the results in Chapter 2. Chapter 4 is tackling similar questions to
Chapter 2, but in a different regime, and using different tools in some cases. For part I, an overview
of the different regimes and their definitions can be found in Chapter 1. Chapters 5 and 6 are each
fully self-contained. The logical order of reading this thesis would be the order it is presented, or
changing the order of any of the parts I-III. A short overview of conclusions and perspectives can
be found at the very end of the thesis.

In order to keep the notation simple, equations are numbered by section number in each chap-
ter. For example, when reading Section 3 of Chapter 4, the first equation in that section would be
numbered (3.1). Cross-references to equations in other chapters are explicitly mentioned. When
reading Chapter 2, the same equation would be referenced as “equation (3.1) in Chapter 4”. The
same holds true for (sub)sections, theorems, definitions, propositions, corollaries, lemmata and
remarks. Figures however are numbered per chapter, e.g. Figure 3.14 refers to the 14" figure in
Chapter 3. References are listed together for all chapters at the end of the thesis in a general bibli-
ography.

All historical footnotes about mathematicians are taken either from [174], or from wikipedia'®.
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Most applied mathematicians spend their time developing, improving, analysing and testing
mathematical models — equations that describe a physical phenomenon - trying to make sense
of the (physical and/or mathematical) world. Of course, mathematical models will never be able
to capture the full reality and complexity of nature. Most of the models we currently use are
based on simplifying assumptions that are rarely satisfied in practice. This is not to say that sim-
plification renders a model less useful as a tool to understand the world. On the contrary, it is
this simplifying aspect that gives us powerful information about the dominant dynamics at play.
Good mathematical models find a reasonable trade-off between simplicity, complexity and math-
ematical difficulty. If a model is too simple, important physical features may be lost. If it is too
complex on the other hand, incorporating many details of the observed phenomena, we may not
be able to handle the analysis and so no useful information can be extracted from the model. It
is when we are able to successfully analyse a model that provides a reasonable approximation
to a complicated real world process that we can claim to have understood the dominant driving
principles — a powerful source of information for applications. In order to build the mathematical
tools and theories that allow us to handle the analysis of a particular equation, it is often useful to
start with a master equation — the simplest model one can think of that is representative for a more
general class of models and still incorporates the common structural difficulties. One such master
equation for the class of models analysed in this thesis is the non-linear heat equation d;p = Ap™,
m > 0 which appears in a number of applications across physics, chemistry, biology and engi-
neering (see Section 2.1 for more details). It extends the structural difficulty of another master
equation, the heat equation (m = 1), by adding the non-linearity to the diffusion. Historically, it
has often been thanks to a representative master equation generating a rich mathematical theory
that more complex and therefore more realistic models could be tackled. What is so fascinating is
that models of similar mathematical form and difficulty can appear in the context of very differ-
ent applications. Understanding more about their general structure gives us new insights about

nature’s laws, allowing us to see the beautiful unifying patterns that surround us.



This thesis is centered around the analysis of non-linear partial differential equations arising
naturally from models in physics, mathematical biology, fluid mechanics, chemistry, engineer-
ing and social science. Often, these models have hidden connections across applications, and the
structural similarities in their dynamics allow us to apply the same mathematical techniques in
very different physical contexts. Non-linearities and long-range interactions in addition to local
effects pose analytical challenges that cannot be tackled with conventional PDE methods. This
thesis focuses on developing new mathematical tools to understand the behaviour of these mod-

els, in particular their asymptotics.

The choice of title for this thesis and the sense in which it is to be understood deserve a few
explanatory words. First of all, the term interacting particles should be taken in a very broad inter-
pretation. Here, the "particles’ can represent for example molecules of a gas, single-cell organisms
such as bacteria, stars in a galaxy, lay-down points of polymer fibres, insects, fish, birds, ungulates,
or even humans. Correspondingly, the interaction of particles with each other, or with their envi-
ronment, could be via molecular forces, chemical signalsl, gravitational forces, an external force
describing the coiling properties of the polymer fibres, or - in the case of animals and humans -
visual, auditory or tactile signals. The type of interaction could be linear or non-linear, local or
non-local. Both linear local interactions (Chapter 5) and non-linear non-local interactions (Chap-

ters 2, 3, 4 and 6) are considered in this thesis.

Secondly, let me comment on what I mean by asymptotic analysis. Two types of asymptotics

have to be distinguished:

(1) the behaviour of solutions predicted by the model after a very long time ¢t — o0 which we call

long-time asymptotic behaviour or ergodic properties (Chapters 2-5), and

(2) the limiting equations obtained by letting certain parameters of a model be either very big or

very small (Chapter 6).

As suggested by the title, the main focus lies in the long-time asymptotic analysis, but we also

consider limiting processes.

In case (1), we want to know whether solutions converge to an asymptotic profile and if yes,
in which sense and how fast. What do these asymptotic profiles look like? How many are there,
and what is their basin of attraction? The natural candidates amongst which to look for asymp-

totic profiles are the equilibrium states of the model under consideration. This means that the first

IThe ability of certain types of bacteria to respond to chemical gradients is known as bacterial chemotaxis, see Section 1.
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1. INTRODUCTION

logical step towards understanding the asymptotic behaviour of solutions is often to study the sta-
tionary problem instead, which is our focus in Chapters 2, 3 and 4. It is only in Chapters 3 and 5

that we actually study the evolution problem with the aim of finding explicit rates of convergence.

Case (2) makes the connection between different observation scales, using a set of methods
called multiscale analysis or scaling process or limiting process. Let us take the example of a mono-
atomic gas. Using Newton’s? laws, one can write down an equation for n interacting gas particles
located at positions X (t), ..., X, (t). This type of model is usually referred to as a particle-based
model, or Individual Based Model (IBM) in the case where the particles represent living organisms,
see Section 2.2.2. In practice however, it is often hopeless to attempt to describe the position and
velocity of every particle if the number of particles is large®. Using statistical ideas, we can instead
describe the evolution of the probability density f(t,z,v) of a certain particle to be at location x
and travelling with velocity v at time ¢. One example of such a model is the Boltzmann equation
modelling the particle distribution of a monoatomic rarefied gas, see Section 8. This level of de-
scription is called kinetic since the function f depends not only on space and time, but also on
velocities. There are several techniques that allow us to go from a particle description to a kinetic
description of the same evolution process, but this interesting and still developing mathematical
field is not the focus of this thesis?. We may also want to make a connection between different
kinetic descriptions, for example when the difference between velocities before and after a colli-
sion is small, known as grazing collisions, see Section 8.1. In Chapter 6, we use this idea applied
to animals turning only a small angle upon interactions with neighbours such as migratory birds

following favourable winds or magnetic fields.

In practise however, all that our typical observation can detect are changes in the macroscopic
state of the gas, described by quantities such as density, bulk velocity, temperature, stresses, and
heat flow, and these are related to some suitable averages of quantities depending on the kinetic
probability density. It is therefore desirable to be able to describe the dynamics at a macroscopic
scale, using for example a hydrodynamic scaling®. The idea is to rescale time and space by the
change of variables (t,z,v) — (t/e7,z/e,v) for a small scaling parameter ¢ « 1, together with

certain scaling assumptions specifying how the interaction term behaves in the limit ¢ — 0. The

2Isaac Newton (1642-1727) was an English mathematician, astronomer, and physicist who is widely recognised as one
of the most influential scientists of all time and a key figure in the scientific revolution. His three laws of motion were first
published in PhilosophieeNaturalis Principia Mathematica in 1687. Beyond his work on the mathematical sciences, Newton
dedicated much of his time to the study of alchemy and biblical chronology. In a manuscript from 1704 he estimated that
the world would end no earlier than 2060.

3The number of air molecules at atmospheric pressure and at 0° C temperature is around 2.7 x 10 per cm?, a lot
more than what would be feasible to keep track of.

“Some of the more common regimes are low density limits, weak coupling limits or mean-field limits, see for example [259,
263], or Section 2.2.4 for the latter.

5For more details on the techniques involved, see Sections 6.2.3 and 8.



two main scaling approaches are parabolic limits (v = 2) for which diffusive forces dominate, and

hyperbolic limits (v = 1), which are convective.

In terms of modelling perspective, Part I (Chapters 2-4) deals with a macroscopic model, Part
II (Chapter 5) is concerned with a kinetic model, and Part III (Chapter 6) focuses on the connection

between different kinetic and macroscopic regimes using parabolic and grazing collision limits.

Finally, the term Keller—Segel-type models in the title of this thesis refers to models that are close
variations of what is known as the classical Keller-Segel model, which we describe in more detail

in the next section.

This introductory chapter is structured into 9 sections: Section 1 describes the classical Keller—
Segel model, and subsequent sections correspond to Part I (Sections 2-4), Part II (Sections 5-7) and
Part III (Sections 8-9) of this thesis. For each part, we explain the relevant mathematical tools,
introduce the models we are analysing in this thesis together with the most important notation,
give some motivation and context of the problem, and last but not least, present a summary of the

results obtained and possible perspectives.



1. INTRODUCTION

1 The Keller-Segel model

Many bacteria, such as Escherichia coli, Rhodobacter sphaeroides and
Bacillus subtilus (see [149] for a complete list), are able to respond to
changes in the surrounding environment by a biased random walk.
This allows cells to interact with each other by secreting a chemi-
cal substance to attract cells around them. The directed movement
of cells and organisms in response to chemical gradients is called

chemotaxis. This occurs for instance during the starvation stage of

the slime mold Dyctiostelium discoideum. More generally, chemotaxis

is widely observed in various biological fields (morphogenesis, bac-

Figure 1.1: Fluorescently

terial self-organisation and inflammatory processes among others). labeled E. coli Source:

The bacterium Escherischia coli is traditionally chosen for studyin
Y Y8 Howard Berg’s website®.
bacterial chemotaxis as its biochemistry as well as the dynamics of

its movement are well understood.

Let us denote the density of bacteria and the chemoattractant concentration at position z € R?
and time ¢ > 0 by p(t, z) and S(¢, z) respectively. Assume that cells and chemoattractant diffuse
with diffusion coefficients D, and Dg, and that the chemoattractant degrades with rate o > 0 due
to chemical reactions whilst it is secreted by the bacteria at rate 8 > 0. Then the evolution of p and
S can be modelled by the following system known as the Keller®~Segel” model:

dip = D,Ap—xV-(pVS), a1

0:S = DgAS —aS+ fp.
Here, x > 0 denotes the effective bacterial chemotaxis speed and is assumed to be constant. His-
torically, the Keller-Segel model has been the principal approach to describe bacterial motion
[280, 256]. First introduced in 1970 in [196] to describe aggregation of slime mold amoebae, this
model has become one of the most widely studied models in mathematical biology. It is some-
times also referred to as the Patlak®~Keller-Segel model as the decoupled problem has already
been formulated in 1953 by Patlak [252]. A certain number of reaction-diffusion models have
been developed since, mostly inspired by the pioneering work of Keller and Segel. Even if these
models have helped to understand certain characteristics of bacterial chemotaxis, they also have

their limits from a modelling perspective, and we will comment on some of them in this thesis.

6Evelyn Fox Keller (born 1936) is an American physicist, author and feminist.

7Lee Aaron Segel (1932-2005) was an American mathematician known for his work in the spontaneous appearance of
order in convection, slime molds and chemotaxis.

8Clifford S. Patlak (1935-2014).

9www.rowland.harvard.edu/labs/bacteria/movies/index.php


www.rowland.harvard.edu/labs/bacteria/movies/index.php

1. The Keller-Segel model

The reason why the Keller-Segel model (1.1) has received
so much attention in the mathematical community over the
last decades, see [196, 197, 243, 194, 159, 136, 41, 256], is a pe-
culiar phenomenon: the fact that the mass of bacteria appears
as a critical parameter. More precisely, let us consider (1.1)
when the chemoattractant is in quasi-equilibrium (0.5 = 0),

and when the time scale of observation is a lot smaller then

the speed at which S degrades (o = 0). The first assumption

Figure 1.2: An E. coli swarm.

represents the hypothesis that 0, p is very big in comparison to
Source: Howard Berg’s website!". . o o .

0+S and is a realistic approximation for example for very big
cells which have a considerably lower displacement speed. For simplicity, let us further assume
that D, = Ds = xs = 8 = 1. Under these assumptions, the second equation in (1.1) reduces to
AS = —p. This Poisson equation can be solved explicitly for S in terms of p using the fundamen-
tal solution of the Laplacian, and substituting into the evolution equation for p, we obtain in two

space dimensions

1
Orp = Ap + o V- (pVliog|z| = p) . (1.2)

For sufficiently smooth weak solutions p(t) € L*(R?) with mass M = { pdz, we can calculate the

dissipation of the second moment explicitly using integration by parts:
d 1
G L leoteora = [ 1o (a4 59 (T loglal ) do
dt R2 R2 2w
4 pde— g [ 20 (p<:z:>f &= ylp<y>dy) dx
R2 21 Jge Rz [T — |

St g o o [

2p(y)dy) da
L (o], L)

_ 1 (z—-y) - (z—y)
=4M — by ff Wﬂ(@ﬂ(y) dxdy
R2 xRR2
M

This calculation shows how the critical mass M, = 87 emerges from the structure of the equa-
tion and as a result, solutions are subject to a remarkable dichotomy: they exist globally in time if
M < 8r (diffusion overcomes self-attraction), whereas blow-up occurs in finite time when M > 8=
(self-attraction overwhelms diffusion). This transition has been first formulated in [113]. Math-
ematical contributions are [194] for the existence part, [242] for the radial case, and [136, 41] in
the full space. The critical case M = 87 was analysed further in [40, 37, 75] in terms of stability

of stationary states. In the sub-critical case M < 8, it has been shown that solutions decay to

Wyyw.rowland.harvard.edu/labs/bacteria/projects/swarming. php
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1. INTRODUCTION

self-similarity solutions exponentially fast in suitable rescaled variables [70, 71, 148]. In the super-
critical case M > 8, solutions blow-up in finite time with by now well studied blow-up profiles
for close enough to critical mass, see [187, 260, 168]. In part I of this thesis, we are generalising the
techniques developed in [62] where the authors show convergence to self-similarity in Wasserstein

distance for (1.2) in the radial sub-critical case M < 8.

2 PartI: Keller-Segel-type aggregation-diffusion equations

In the first and main part of this thesis, we are studying the behaviour of a family of partial differen-
tial equations of Keller-Segel-type modelling self-attracting diffusive particles at the macroscopic
scale,

1
Oip = NApm—f—va-(pV(W*p)) , t>0, zeRY. (2.3)

Here, the diffusion is non-linear if m # 1, and the non-local interaction between particles is gov-
erned by the interaction potential W with W : RN — R, W e C* (RM\{0}) and W (—z) = W(z). The
parameter x > 0 is measuring the interaction strength of the interaction term in relation to the diffu-
sive term. Equation (2.3) exhibits three conservation laws: conservation of positivity, conservation

of mass, and invariance by translation. We can therefore assume for convenience

i)
=
[
=
8
S—
[
)
o
&
\%

0, JRN po(x)dx =1, JRN xpo(x)dr =0. (2.4)

The parameter x > 0 scales with the mass of solutions p, and therefore, in the case where the
behaviour of solutions depends on the choice of initial mass, this criticality is transferred to the
parameter x when fixing the mass. Let us point out that Part I does not address the questions of
regularity, existence, or uniqueness of solutions to equation (2.3), assuming solutions are 'nice’

enough in space and time for our analysis to hold.

We will now give some intuition to explain the type of behaviour that can be modelled using
equation (2.3). Conceptually, the PDE (2.3) corresponds to the assumption that two main forces
determine a particle’s motion at the microscopic level: local non-linear diffusion on the one hand,
and non-local attraction on the other hand. Diffusion can be understood as a repulsive force be-
tween particles, whereas the interaction between particles is assumed to be represented by an
attractive potential, W. Here, attractive and repulsive forces compete, generating complex be-
hviour of solutions, depending on the diffusion power m, the choice of interaction potential IV,
the interaction strength x > 0 and the dimensionality N.

The reason why models of the form (2.3) have attracted so much attention in recent years is not
only their rich mathematical structure, but also their applicability to a wide range of physical prob-

lems ranging from collective behaviour of self-interacting individuals such as bacterial chemo-

10



2. Part I: Keller-Segel-type aggregation-diffusion equations

taxis [39, 196, 252], astrophysics [108, 271, 105, 107, 106] and mean-field games [38] to phase tran-
sitions [285] and opinion dynamics [164, 165].

Before diving into the analysis of (2.3), let us investigate the dynamics of attractive and repul-

sive forces separately.

2.1 Non-linear diffusion

Assuming x = 0, one can interpret equation (2.3) as a non-linear heat equation, where the diffu-

sion coefficient varies with the density of particles,
Ja} 1 m m 1
orp = —=Ap" =V -(D(p)Vp), D(p) == —p ) m>0. (2.5)
N N
As above, we assume that the initial data satisfies (2.4). Diffusion can be understood as a repulsive
force since 'nice’ enough solutions p of (2.5) satisfy
d 2 m
— |z|*p(t, ) dx = 2 p"(t,x)dx .
dt RN RN
It follows that if p(t,-) € L1 (RY) n L™(RY) for any ¢ > 0, then the second moment of p increases
with time, that is, the solution is spreading out. The resulting effect is that particles get repulsed

away from each other.

Equation (2.5) is one of the simplest examples of a non-linear evolution equation of parabolic
type. It appears in a natural way in a number of applications across physics, chemistry, biology
and engineering. The common idea is that in many diffusion processes the diffusion coefficient
depends on the unknown quantities (concentration, density, temperature, etc.) of the diffusion
model.

For any diffusion exponent m > 0, a unique mild solution exists for any initial data py € L*(RY),
it depends continuously on the initial data, and further, the concepts of mild, weak and strong
solution are equivalent [287, 25, 286]. Thanks to the form of the diffusion coefficient D(p), the

overall behaviour of solutions can be split into three cases:

e m > 1: Diffusion is slow in areas with few particles. This case is known as the porous
medium equation (PME), or slow diffusion equation. The PME owes its name to the mod-
eling of the flow of an isentropic gas through a porous medium [216, 241]. It was introduced
for the study of groundwater infiltration [51], and is used in high-temperature physics, e.g.
in the context of heat radiation in plasmas [303]. Other applications have been proposed in
mathematical biology, spread of viscous fluids, boundary layer theory, see [289, 287, 7, 286,

161] and the references therein.

11



1. INTRODUCTION

e m = 1: Diffusion is linear, and we obtain the well-known heat equation (HE) [156].

* 0 < m < 1: Diffusion is fast in areas with few particles. This case is known as the fast
diffusion equation (FDE). The FDE appears in plasma physics (m = 1/2 is known as the
Okuda-Dawson law [246]), and when modelling the diffusion of impurities in silicon [200].
The FDE has also an important application in geometry known as the Yamabe flow (m =
(N —2)/(N +2),N > 3)[215, 288].

Note that problems may arise when diffusion is "too fast’, i.e. when the diffusion coefficient
m is very small. It is established in [186] that the range of mass conservation for the FDE is
my < m < 1 with

0, ifN=1,2,
me <m<1, My 1=

1-2/N, ifN=>3.
This is exactly the range for which integrable solutions to (2.5) exist. Within this range,
the flow associated to the fast diffusion equation is in many ways even better than the flow
associated to the heat equation; see [48] and the references therein. If m, < m < 1, the
solutions of (2.5) with positive integrable initial data are C* and strictly positive everywhere

instantaneously, just as for the heat flow.

Equation (2.5) gives rise to a rich mathematical theory with fundamental differences in behaviour
depending on these three different regimes for the diffusion exponent m > 0. We will see later
that some of these behaviour carry over to our aggregation-diffusion equation (2.3). This illus-
trates how the non-linear heat equation serves as an important representative for a more general
class of non-linear, formally parabolic equations that appear across the pure and applied sciences,
and it has been at the heart of the development of new analytical tools that can be adapted to a
range of more complicated models. We will therefore give a short overview of the main properties
of the non-linear heat equation (2.5) that are relevant in the context of this thesis. For a more de-
tailed study dealing with the problems of existence, uniqueness, stability, regularity, dynamical
properties and asymptotic behaviour, we refer the reader to [289] (m > 1), [300] (m = 1), [287]

(0 < m < 1), and the references therein.

2.1.1 Source solutions

A classical problem in the thermal propagation theory is to describe the evolution of a heat dis-
tribution after a point source release. In mathematical terms, we want to find a solution ®,,,(¢, z)
to (2.5) with initial data given by a Dirac Delta, po(z) = §(x). In case of the heat equation (m = 1),

this fundamental solution is well-known and is given by the heat kernel

&y (t,z) = (4mt)" % exp (_Zf':> .

12



2. Part I: Keller-Segel-type aggregation-diffusion equations

It is especially useful to have source solutions given in explicit form, as they often serve as a repre-
sentative example for the typical or peculiar behaviour of solutions. Further, for linear equations,
they allow us to obtain the general solution by applying a convolution, p = ®; * py. Such an ap-
proach is useless in the non-linear setting, and so one needs different methods. In case of the PME

(m > 1), source solutions are given by

(I)m(t7x) = t_aFm (l‘t_a/N> ; Fm(f) = (ﬁ (|§0|2 - ‘5'2));”%1 , m>1, (26)

for any & € RY, & # 0, where we define the positive part as (s) := max{s,0} and where

N s _am-]
= Nmon 12 P TaNm @7)

Solutions ®,, depend continuously on m and converge pointwise to the heat kernel as m — 1. This
class of special solutions was first obtained by Zel’dovich and Kompaneets [304] around 1950, and
then studied in more detail by Barenblatt [14] and Pattle [253]. They are widely known as Barenblatt
solutions (or, for a more complete reference, as ZKB solutions or Barenblatt-Pattle solutions). For
more details on (2.6) and their derivation, see [289] and the references therein.

In fact, the same source solution (2.6) also exists for the FDE in the regime m < 1 aslongas o > 0,

that is, m > m,. The solution ®,,, is then given by the same type of expression,
Dp(t,2) = G (217N) | Gunl©) = (C+BIED) ™7, mu<m<1, (28

where 3 := —f = a(1 —m)/(2Nm), and C = C(N,m) > 0 is a normalising constant fixed by the
mass. Therefore, we obtain for the source solution of the FDE for my, < m < 1:

t

F N O L S—
m(t,7) Ct20/N + B|z|2
In this sense, the Barenblatt self-similar solutions for m # 1, m > m, are natural generalisations

of the fundamental solutions of the heat equation.

2.1.2 Support and Tails

The main difference between the source-type solution profiles in the different ranges is probably
the shape at infinity, which reflects the propagation form. If m > 1, the profile F;, is compactly
supported, supp (F,) = B(0,|&]), and it follows that the Barenblatt solution ®,, has compact
support in space for every fixed time ¢ > 0. More precisely, the free boundary is the surface given

by the equation

and so the size of the support supp (®,,) grows with a precise finite speed (see Figure 1.3(a)). This

is to be compared with the properties of the heat kernel ®, in the case m = 1, which is supported

13



1. INTRODUCTION

on the whole space at all times with exponential tails at infinity (see Figure 1.3(b)).
In the case of the FDE, m,. < m < 1, however, source solutions are supported on the whole space

and have so-called fat tails, or overpopulated tails,
1 2
O (t,2) ~ (8/8) " |27, 2 > o,
(see Figure 1.3(c)). Moreover, for non-negative initial data pg of unit mass satisfying

sup po()|z[* ™) < oo (2.9)
|z|>R
for some R > 0, which means that p, is decaying at infinity at least as fast as the Barenblatt solution
®,,, the solution p(t, z) of (2.5) with initial data py satisfies the following remarkable bounds [74]:
For any T' > 0, there exists a constant C' = C(T") > 0 such that

<C, V=T, zeRN,

Ql =
Q
3
S

where G, is the Barenblatt profile defined in (2.8). This shows "how fast’ fast diffusion really is:
It spreads mass out to infinity to instantly produce fat tails.

We conclude that the Barenblatt solutions with profiles given in Figures 1.3(a) (free boundary) and
1.3(c) (polynomial decay) are natural non-linear generalisations of the Gaussian profile in Figure

1.3(b) (Gaussian decay).

@) (b) (©
Figure 1.3: Source solutions ®,,(t,z) for (a) PME (m > 1), (b) HE (m = 1) and (c) FDE (m, <
m < 1) at times t = 0.5,1,1.5,2 for PME and HE, and at times ¢ = 1.15,1.25,1.4, 1.6 for FDE. The
Barenblatt solution (a) is compactly supported at each fixed ¢t > 0, but has a free boundary with
the support growing over time. The heat kernel (b) is supported on the whole space and its tails
decay exponentially. The source solution (c) is also supported on the whole space, but has fat tails
(polynomial decay). Source: [289]
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2. Part I: Keller-Segel-type aggregation-diffusion equations

2.1.3 Self-Similarity and Asymptotic Behaviour

The Barenblatt solutions can be derived using the self-similar structure of (2.5). We say that p(¢, z)

satisfying (2.5) is a self-similar solution to the non-linear heat equation if the rescaled function
pa(t, z) = AV p(AV/t, A)

is also a solution of the same equation for all A > 0 with « as given in (2.7). It is easy to see that
®,, is indeed a self-similar solution to (2.5) for all m > ms. For a detailed study of self-similarity
(also known as Renormalization Group in theoretical physics), we refer to the classical books by G.

Barenblatt, [16, 15]. For a detailed derivation of (2.6) using self-similarity, see [289].

In the case of the non-linear heat equation, there is a change of variables after which self-similar
solutions to (2.5) become stationary solutions. More precisely, assume p(t, z) is any solution to
(2.5), and let

_ N7 g Nt/a T )
u(ry) =e p(Ne ey

with « given by (2.7). Then u satisfies the non-linear Fokker-Planck equation

1
Oru = NAyum +V, - (yu), m>0. (2.10)

In Chapters 2 and 3, we use a similar scaling to find a suitable change of variables for the full
aggregation-diffusion equation (2.3) that turns self-similar solutions into stationary states by adding

a confinement term V,, - (yu), see Section 3.3.1.

In the case of linear diffusion, m = 1, we can perform explicit estimates on the heat kernel ®;
to get an idea of the asymptotic behaviour of solutions. Indeed, taking p(¢, z) to be a solution of

HE with initial data po € L} (R"), then
(¢, ) = @1 (t, )| < CtY2

for a positive constant C' > 0 depending on the dimension only. This means that at large times, all
solutions behave like the heat kernel, at least for the shape of the tails. For convergence to ®; in
various norms using entropy production methods, see [283]. Analogously, the Barenblatt profiles
(2.6) for m > 1 and (2.8) for m4 < m < 1 are playing a key role in understanding the asymptotics

of PME and FDE. For example, it is well-known that

tlirroloHp(t)—GmHl:O, mye <m <1, (2.11)
thHOIOHP(t)_FmHl =0, m>1, (2.12)

with rate t~%/" in the case of the PME. For the best known rates of convergence for the FDE,

see [35]. If 0 < m < my and N > 3 such as for the Yamabe flow, then solutions to the FDE with
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initial data py € L1 (RY) n LP(RY), p > 12 exist for sufficiently small ¢ > 0, but go extinct at a
given finite time T' > 0, and in the radial case, their asymptotic behaviour as t — T' is described
by a uniquely determined self-similar solution [160, 255, 25]. For a detailed asymptotic analysis in

the cases m > 1 and m < 1 and limitations, see [289, 287].

2.2 Non-local interaction

If we neglect the diffusive term in (2.3), the behaviour of particles is solely governed by non-local

interaction,

Op=V-(pVW=p)), t>0, zeRV (2.13)

with initial condition p(t = 0) = po. The aggregation equation (2.13) is at the core of many
applications ranging from mathematical biology to granular media and economics, see [282, 237,
191, 284, 38, 154, 155] and the references therein. It can also be obtained as dissipative limits of
hydrodynamic equations for collective behaviour [211]. But most importantly, equation (2.13) can
be interpreted as the continuum description of an underlying particle model, a prototype example
of so-called Individual Based Models (IBMs), see [80] and the references therein. In other words, if
we consider n particles with equal masses 1/n located at positions Xi,...,X,, € RY evolving
in time according to the interaction potential W, then the distribution of particles p(t, ) solving

(2.13) approximates this evolution as the number of particles n tends to infinity.

2.2.1 Assumptions on the interaction potential

The interaction potential W models the social behaviour of agents, and so VW (z — y) is the force
that a unit-mass particle at = exerts on a unit-mass particle at y. We say that W is attractive at v € RY
it VIW(x) - « = 0, and it is repulsive if VW (z) - < 0. Often, it is assumed that particles attract
each other when they are far apart, and repulse each other when they are close; this reproduces
the “social’, or natural, behaviour of the agents that are usually considered in applications. Some

typical choices of potentials that have been studied in the literature are

1. Power-law potentials, see [10, 11, 29, 72, 81, 82, 83, 114, 139] and the references therein:

2| Jal®
= — b <
W)= 2By
with the convention —lgﬁo = log|z|. Because of the simpler topology, the one-dimensional

case is in general better understood, see [151, 152, 79] and the references therein.
2. Morse potentials, see [139, 91, 95] and the references therein:

W(l‘) = *CAeim/lA + ORei‘zl/lR ,
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2. Part I: Keller-Segel-type aggregation-diffusion equations

where C4, Cr and l4, [ are the strengths and the typical lengths of attraction and repulsion

respectively. Biologically reasonable conditions are Cr/C4 > 1 and (g/l4 < 1.

Most potentials that are relevant for applications have a singularity of some kind at the origin.
See [87, 95, 207] for other choices of interaction potentials and a deeper discussion on the issue of
biological/physical relevance.

Choosing the Dirac Delta measure as interaction potential, W(z) = d(z), we recover the porous

medium equation (2.5) with m = 2 as in [282].

2.2.2 Discrete aggregation equations

IBMs arise in a wide range of contexts, from swarming behaviour of animals (insects, fish, birds,
...) and collective behaviour of bacteria to the movement of robots in control engineering. They
are often inspired from statistical physics and are usually formed by a set of Newton-type equa-
tions (2"¢ order models), or by kinematic equations where inertia terms are neglected (1°* order
models). We will here focus on a very simple 1% order discrete aggregation equation derived in a
phenomenological manner [238, 237, 250, 281, 282, 146]. Let us consider n particles with positions
X1,...,X, € RN and equal masses 1/n, interacting via the potential W, evolving according to the

following first-order discrete aggregation equation:

VW (Xi(t) — X;(t)),  ie{l,....n}, te(0,T). (2.14)

This model formally comes from applying Newton’s second law with friction and neglecting iner-
tia, which, in other words, means assuming that individuals can adjust to the velocity field instan-
taneously, an approximation valid when their speed is not too large, see [237, 139]. The scaling
constant 1/n in front of the interaction potential ensures that the effect of the potential per par-
ticle diminishes while the associated energy is of constant order as the number of particles goes
to infinity. Another reason to study the first order model (2.14) is that its stationary states have
the same shape in space as flocking solutions of the second order discrete aggregation equation

(see [95, 87] and the references therein)

20 = (a- o] ) o - 1 3 oW - x,0). 215)
J;éli,

where a, b > 0 are friction parameters. Further, the stability of stationary states for (2.14) and (2.15)

are related [91]. Here, we have an additional term producing a balance between self-propulsion

and friction imposing an asymptotic speed for the particles (if other effects are ignored), given by
a/b.

Understanding the shape of stationary states for equations (2.14) and (2.15) when the number n
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of particles is very large is of interest in statistical mechanics [267, 279], with direct implications

in material science [166, 228, 229].

2.2.3 Existence and uniqueness of solutions

For the local well-posedness of solutions to equation (2.13), we refer to [30, 28, 31, 213, 80]. In par-
ticular, unique solutions for the system (2.13) were obtained in [31, Theorem 1.1]: if the initial da-
tum py € LP(R™) is a probability measure with bounded second moment, and if VIV € Wh#' (RV),

then there exists T’ > 0 and a unique solution p > 0 to (2.13) satisfying
peC([0,T], (L' n LP) (RY)) nC* ([0,T], WP (RY)) .

Existence and uniqueness at the particle level is a bit more tricky. If the potential W has no singu-
larity at the origin, then existence of solutions to the particle system (2.14) is guaranteed thanks to
the Cauchy'!-Peano'?-Arzela'® theorem. However, if one collision occurs, then uniqueness may
be lost. Under suitable assumptions on the initial data X" (0), one can ensure that there exists a

time T' > 0 before which no collisions between particles occur [80].

2.2.4 Mean-field limit

Studying IBMs when the number of individuals becomes large is challenging, and it is then often
easier to pass to a continuous description of the system. This means going from particle descrip-
tions to kinetic or macroscopic descriptions where the unknown is the particle density distribu-
tion. Given a solution X" (¢) := (X;(t),..., X, (¢)) to the discrete 15 order aggregation equation

(2.14), we define the empirical measure associated with X" (t) as

pxn () () 1= Z dx, () () zeRY, te[0,T).

As long as two particles (or more) do not collide, and if we set VW (0) = 0, then the empirical
measure jixn () satisfies (2.13) in the sense of distributions. The empirical measure is the critical
tool that allows to make a connection between (2.13) and (2.14).

Under suitable regularity assumptions on the initial data pg and the interaction potential W, we
say that the IBM (2.14) converges to the equation (2.13) in the mean-field sense if the following
statement holds true [80, 31, 213]: if X" (t) := (X (), ..., X, (t)) is a solution to (2.14), and if

HUxn0) — Po

Baron Augustin-Louis Cauchy (1789 - 1857) was a French mathematician who made pioneering contributions to
analysis. More concepts and theorems have been named after Cauchy than after any other mathematician.

12Guiseppe Peano (1858-1932) was an Italian mathematician. Peano was an accessible man, and the way he mingled
with students was regarded as ‘scandalous’ in Turin, where he spent most of his career. He was a socialist in politics, and
a tolerant universalist in all matters of life and culture.

13Cesare Arzela (1847-1912) was an Italian mathematician, recognised for his contributions in the theory of functions.
Arzela came from a poor household and could therefore not start his study until the age of 24.
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2. Part I: Keller-Segel-type aggregation-diffusion equations

in the weak-* sense as n — o0, then

Hxn(ty — p(t), Vie [01 1),

where p(¢) is a solution to (2.13) with initial data p(t = 0) = pg. We will not go into the details of
the rigorous proof for this statement, but the fact that equation (2.13) is the good choice of model
to represent the many-particle limit of (2.14) can also be understood on a more intuitive level as
follows: Assume that, instead of a finite number of particles, we want to model the particle density

p(z,t). Then, according to (2.14), particles located at x at time ¢ move with velocity

o(t,x) = — JRN VW(x —y)p(t,y)dy = —VW xp.

This leads to the conservation law 0;p + V - (pv) = 0, which is (2.13).

The regularity of the interaction potential W is key for the type of convergence result that can
be obtained when going from (2.14) to (2.13). The classical Dobrushin strategy [131] for mean-
field limits applies to (2.13) only for C?(RY) smooth potentials W with at most quadratic growth

at infinity [170]. In [80], the authors extended this result to more singular potentials.

In practise, one is interested in finding particle approximations X" (0) to probability distribu-
tions pg such that the corresponding empirical measure converges to that distribution in a desired
topology and satisfies certain constraints. This is an interesting and challenging mathematical
problem that has received a lot of attention in recent years, see for example [235, 50, 204, 176] and

the references therein.

2.3 Attraction vs repulsion

If the repulsion strength is very large at the origin, one can model repulsive effects by (non-linear)
diffusion while attraction is considered via non-local long-range forces [240, 282]. The main goal
of Part I is to understand better the behaviour of solutions when both non-linear diffusion and
non-local interactions are at play. The natural question that arises when combining aggregation
and diffusion terms is: which of the two forces wins, attraction or repulsion, and in which math-
ematical sense?

We will investigate this interplay for equation (2.3) with a rather simple yet challenging choice of

potential giving rise to a rich set of behaviour patterns:

i ke (N 0}
Wi(x)={ & . (2.16)

log|z|, if k=0
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The conditions on k imply that the kernel Wy, is locally integrable in RY. We need to make sure
that the aggregation term in (2.3) makes sense with this choice of potential. Let us define the
mean-field potential by Si(z) := Wy () * p(z). For k > 1 — N, the gradient V.S, := V (W}, * p) is
well defined. For —N < k < 1 — N however, it becomes a singular integral, and we thus define it
via a Cauchy principal value,

VSi(x) = lim |l — y" 2z — y)p(y) dy
eV JBe(x,e)

= [ =l = ) o) = ple)) d

where B¢(z,¢) := RV\B(z,¢) is the complement of the ball of radius ¢ > 0 centered at z € R".

Hence, the mean-field potential gradient in equation (2.3) is given by

VWi = p, ifk>1—-N,

VSk(x) := (2.17)
j YWe(x — ) (p(y) — ple)) dy, if —N <k<1-N.
RN

For k € (—N,0), W}, is also known as the Riesz'* potential, and writing k = 2s — N with s € (0, %),

the convolution term S, is governed by a fractional diffusion process,

. L (5 -2s) kT (—k— &)
CN,S(_A) Sk = P CN,s = (25 - N)7TN/224SF(S) = aN/20k+NT (}3_‘.7) :

In terms of regularity, this means that Sy, € W25 (RV) if p e L' (RN) n LP(RN), 1 < p < 0.

loc

2.3.1 Energy functional and convexity properties

We make use of the special structure of equation (2.3), and its connection to the following free

energy functional:

Foaldl = | Unp(a)) dosx || Wata = w)otaloty) dody 218)
* RN xRN
with 1 y )
~o s i om#
N(m—-1
Unp) =4 | ( )
N,olog,o7 if m=1

To simplify notation, we sometimes write

Fum,k[p] := Um[p] + xWrlp],

denoting by U,,, and W) the repulsive and attractive contributions respectively. For F,, ;, to be

finite, we require p € L*(RY) n L™(RY), and additionally |z|*p € L'(R") in the case k > 0. Note

14Frigyes (Frédéric) Riesz (1880-1956) was a Hungarian mathematician who made fundamental contributions to func-
tional analysis. He had an uncommon method of giving lectures: a docent reading passages from Riesz’s handbook and an
assistant inscribing the appropriate equations on the blackboard, while Riesz himself stood aside, nodding occasionally.
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2. Part I: Keller-Segel-type aggregation-diffusion equations

that F,,, 1, is invariant by translation, and we assume as for the aggregation-diffusion equation (2.3)

thatp >0, { pdz = 1 and {zpdz = 0.

One of the main goals in Part I is making the connection between minimisers of the free energy
functional (2.18) and stationary states of equation (2.3). Thanks to this connection, it is possible to
show existence and uniqueness of stationary states to (2.3) by studying the existence and unique-
ness of minimisers to the free energy functional 7, ;. This is where the notion of convexity be-
comes important. In simple terms, if a real valued function f : RY - Ris strictly convex, then
existence of a minimiser for f implies that it must be unique. McCann [234] discovered that there
is a similar underlying convexity structure for functionals defined on absolutely continuous Borel
measures, £ : P,.(RY) - R, using an interpolation between Borel measures following the line of
optimal transportation [295]. Moreover, he used the powerful toolbox of Euclidean optimal trans-
portation to analyse functionals like (2.18) in the case m > 0 and for a convex interaction kernel
Wi Here, we deal with concave homogeneous interaction kernels W, given by (2.16) for which

McCann'’s results [234] do not apply.

We begin by introducing some tools from optimal transport. Let p and p be two probability
densities. According to [53, 233], there exists a convex function ¢» whose gradient pushes forward
the measure p(a)da onto p(z)dzx: Vy# (p(a)da) = p(z)dz. In other words, for any test function
¢ € Cp(RYN), the following identity holds true

|, eVu@sa e = | s dr.
The convex map ¢ is known as Brenier’s map , it is unique a.e. with respect to p and gives a way
of interpolating measures. The interpolating curve p,, s € [0,1], with py = pand p; = p can be
defined as p,(z) dz = (sVtp+ (1 —s)ldy) (z)#p(x) dx where Idy stands for the identity map in RV .
In fact, this interpolating curve is the minimal geodesic joining the measures p(x)dz and p(z)dz.
The notion of convexity associated to these interpolating curves is nothing else than convexity
along geodesics, introduced and called displacement convexity in [234]. Let us denote by P,.(RY)

the set of absolutely continuous probability measures on R .

Definition 2.1 (Displacement convexity). A functional £ : P,.(RY) — R is (strictly) displacement
convex if

s E[((1 = s)ldy + V) #p]

is (strictly) convex on [0, 1] for any p, v € Py, and where 1) is the corresponding Brenier map v = Vy#p.

The reason why we are interested in the displacement convexity properties of F,, 1 is the fol-

lowing key result from [234]:
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Theorem 2.2 (McCann, 1997). If € : Puc(RY) — R is strictly displacement convex, then it has at most

one minimiser up to translation.

In other words, one recovers the property that existence of a minimiser implies uniqueness. In
our case however, F,, i is not necessarily displacement convex. The convexity of the functionals

U,, and W,, can be summarised as follows [234, 85, 98]:

Theorem 2.3. The functional Uy,[p) is displacement-convex provided that m > 1 — 1/N. The functional
Wy [p] in one dimension is displacement-concave if k € (—1, 1) and displacement-convex for k > 1 in any

dimension.

Therefore, the overall displacement-concavity/convexity of the energy functional F,, j is not

known since:

e if N = 1, theni4,,[p] is displacement-convex for any m > 0 and Wj[p] displacement-concave

since k € (—1,1);

e if N > land k € (1,N), then Wj[p] is displacement-convex, but we have no information

about the displacement-convexity of U,,[p];

e if N > 1and k € (—N, 1), then we have no information about the displacement-convexity of

Wilp]-

We already observe that at least in one dimension we are dealing with the compensation between
the displacement-convexity of the internal energy U,,[p] and the displacement-concavity of the
interaction energy Wi[p]. In Chapter 3, we will show that in certain cases, existence of a critical
point for F,, , implies its uniqueness (up to translations and dilations) in the one dimensional
setting. Our main statement is that the functional (2.18) — the sum of a convex and a concave
functional — behaves almost like a convex functional when attractive and repulsive forces are in
balance. The bad functional contribution is somehow absorbed by the convex part for certain

homogeneity relations and parameters .

2.3.2 Gradient flow structure

The strong connection between the functional F,, ;, and the PDE (2.3) is due to the fact that the
functional F,, j is non-increasing along the trajectories of the system as it satisfies at least formally

2

d dr .

GFnalo®= = [ ot

\Y (J\/v(,r;n_l)p(t,x)ml + 2x Wi () * p(t,x))

Furthermore, the system (2.3) is the formal gradient flow of the free energy functional (2.18) when

the space of probability measures is endowed with the Euclidean Wasserstein metric W.
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2. Part I: Keller-Segel-type aggregation-diffusion equations

Definition 2.4. The Euclidean Wasserstein metric W between two probability measures py and ps is defined

as

1/2
W (p1,p2) := ( inf J |a:—y2dfy(m,y)) ,
el (p1,p2) JRN xRN

where the set of couplings T'(py, p2) denotes the collection of all measures on RN x RN with marginals p;

and py on the first and second variable respectively.

In other words, the family of PDEs (2.3) can be written as

2uplt) = V- (p(t) VTrma[p(1)]) (2.19)

where 7., 1.[p] denotes the first variation of the energy functional in the set of probability densities:

B 5]:m,k' m

5p [p](z) = mpm‘l(ﬂs) + 2 Wi () * p(z) (2.20)

7;n,k[p] (.13) :

The first variation can be found through explicit calculation using the identity

i (]—'m,k[,o + ep] — ]:m,k[p])

_ j Toalpl(@)e(@) dz, Vioe CPRY).

e—0 3

The illuminating statement that systems of the type (2.3) can be written as the formal gradient
flow of a corresponding energy functional has been clarified in the seminal paper by Otto [248]
for the porous medium equation (2.5), and generalised to a large family of equations subsequently
in [96, 3, 97], we refer to the books by Villani [295] and Ambrosio, Gigli and Savaré [3] for a com-
prehensive presentation of this theory of gradient flows in Wasserstein metric spaces, particularly
in the convex case. Let us mention that such a gradient flow can be constructed as the limit of

discrete in time steepest descent schemes,

p(t + At) = argmin {]-"mk(l/) + QLAtW(p(t), V)Z} .

Performing gradient flows of a convex functional is a natural task, and suitable estimates from
below on the right notion of Hessian of F,,, ;, translate into a rate of convergence towards equilib-
rium for the PDE [295, 96, 97, 3]. However, performing gradient flows of non-convex functionals
is much more delicate, and one has to seek compensations. Such compensations do exist in our
case, and we will observe them first of all at the level of existence of minimisers for the free energy
functional F,, ;, and stationary states of the family of PDEs (1.2) in particular regimes (see Chap-
ter 2), and secondly via convergence in Wasserstein distance towards equilibrium under suitable
assumptions (see Chapter 3). It is of course extremely important to understand how the convex

and the concave contributions are entangled.
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3 Part I: Results

3.1 The different regimes

Itis important to note that this thesis is not concerned with the evolution problem of equations (2.3)
and (3.29), and in all three chapters of part I, the questions of regularity/existence /uniqueness of
solutions are not addressed, assuming solutions are 'nice” enough in space and time for our anal-
ysis to hold (for more details on regularity assumptions, see Chapter 3 Section 4). Whilst the
required regularity may be a strong assumption to make, the necessary properties can often be

obtained by regularisation, see [248, 92].

It is worth noting that the functional 7., x[p] possesses remarkable homogeneity properties.

Indeed, the mass-preserving dilation py(z) := AV p(A\z) transforms the functionals as follows:

ANO=Dq (o], if m#1,
U, [PA] =
Unlp] +logh, if m=1,

and,

)\_kwk[p] s if k #* O,
Wi [pA] =
Welp] —log A, if k=0.

In other words, if m # 1 and k # 0, then

Fglpa] = ANV [p] + AW [p] -

Observe that py — ¢ in the limit A — co0. A natural question arises: which of the two contributions

dominates, repulsive or attractive forces?

This motivates the following classification:

24



3. Part I: Results

Definition 3.1 (Three different regimes).

N(m — 1) + k = 0 This is the fair-competition regime, where homogeneities of the two competing con-
tributions exactly balance. If k < 0, or equivalently m > 1, then we will have a dichotomy according
to x (see Definition 3.7). Some variants of the HLS inequalities are very related to this dichotomy (see
Section 3.2). This was already proven in [136, 41, 71, 148] for the Keller-Segel case with N = 2, and
in [39] for the Keller-Segel case with N > 3. If k > 0, that is m < 1, no critical x exists as we prove
in Chapter 2 Section 4.

N(m — 1) + k > 0 This is the diffusion-dominated regime. Diffusion is strong, and is expected to over-
come aggregation, whatever x > 0 is. This domination effect means that solutions exist globally in
time and are bounded uniformly in time [61, 277, 276]. Stationary states were found by minimisa-
tion of the free energy functional in two and three dimensions [273, 78, 99] in the case of attractive
Newtonian potentials. Stationary states are radially symmetric if 2 — N < k < 0 as proven in [89].
Moreover, in the particular case of N = 2, k = 0, and m > 1 it has been proved in [89] that the

asymptotic behaviour is given by compactly supported stationary solutions independently of x.

N(m — 1) + k < 0 This is the attraction-dominated regime. This regime is less understood. Self-
attraction is strong, and can overcome the regularising effect of diffusion whatever x > 0 is, but
there also exist global in time regular solutions under some smallness assumptions, see [118, 275,
278,109, 32,110, 224, 65]. However, there is no complete criteria in the literature up to date distin-
guishing between the two behaviours. Most of the results known today deal with attractive Newtonian
interactions, that is k = 2 — N, in dimension N > 3. For a study with linear diffusion m = 1 and
k < 0 in one dimension, see [65]. For the Newtonian case, global existence vs blow-up of weak solu-
tions has been investigated for the diffusion coefficients m = 1[118], 1 < m < 2 — 2 [275,278],
m = 5 [109], 355 < m < 2 — % [110, 224] and for the whole range 0 < m < 2 — % [32].
It was shown in [118] for linear diffusion m = 1 that global in time weak solutions exist for initial
data with small enough LN/?-norm, whereas there are no global smooth solutions with fast decay if
the second moment of the initial data is dominated by a power of the mass (with these two conditions

2N

being incompatible). For diffusion coefficient m = 5 making the free energy functional conformal

invariant, there exists a family of stationary solutions characterising the transition between blow-up
and global existence of radially symmetric weak solutions [109]. The case 325 < m < 2 — % has
been studied in [110], where the authors suggest that the initial mass may not be an important quan-
tity to classify existence vs blow-up of solutions with the behaviour depending on the free energy, the
L2N/(N+2)_norm and the second moment of the initial data. In [224], the authors proved a uniform
L*-bound for weak solutions in the range where these stationary solutions exist given the initial data
is uniformly bounded. As a consequence, uniqueness of weak solutions follows. We refer to [20] for a

discussion with more general interaction potentials in the aggregation-dominated regime.
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VWk ¢ Llloc(RN/ Am
H

Ws_n = Newtonian potential

% _ 2-k-N
mT =19 N

%% _ 2N
m " = SNtk
my =1—2/N

Figure 1.4: Overview of the parameter space (k,m) for N > 3: fair-competition regime (m = m.,
red line), diffusion-dominated regime (m > m,, yellow region) and attraction-dominated regime
(m < m,, blue region). For m = m,, attractive and repulsive forces are in balance (i.e., in fair
competition). In the fast diffusion fair-competition regime (m = m, < 1), self-similar profiles to
equation (3.29) can only exist if diffusion is not "too fast” with restriction m > m,, see Chapter
2 Remark 4.6. Note that my = 0for N = 1,2. For m = m™* in the aggregation-dominated
regime, the free energy functional F,, ; is conformal invariant, see Chapter 3 Section 6.2. For
m. < m < m* in the diffusion-dominated regime, global minimisers of F,, i are stationary states

of (2.3), see Chapter 4 Theorem 1.1, a result which we are not able to show for m > m* (striped

region).
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3. Part I: Results

A word of caution is in place as to how the names of these three regimes are to be understood. We
introduced this terminology referring to the behaviour of the system with respect to blow-up and
so they describe the dominant behaviour that is to be expected when measures concentrate onto

a Dirac Delta. In light of these three regimes, we define the critical diffusion exponent as

Chapters 2 and 3 concentrate on the fair-competition regime m = m., whereas Chapter 4 focuses

on the diffusion-dominated regime m > m..

The family of non-local problems (2.3) has been intensively studied in various contexts arising
in physics and biology. The two-dimensional logarithmic case (m = 1,k = 0) is the so-called
Keller-Segel system in its simplest formulation [196, 197, 243, 194, 136, 41, 256], see Section 1. The
two- and three-dimensional configurations with Newtonian interaction (m = 1,k = 2 — N) are
the so-called Smoluchowski-Poisson system arising in gravitational physics [105, 107, 106]. It de-
scribes macroscopically a density of particles subject to a self-sustained gravitational field.
Substituting linear diffusion by non-linear diffusion with m > 1 in two dimensions and higher
is a way of regularising the Keller-Segel model as proved in [61, 277] where it is shown that so-
lutions exist globally in time regardless of the value of the parameter x > 0. It corresponds to
the diffusion-dominated case in two dimensions for which the existence of compactly supported
stationary states and global minimisers of the free energy has only been obtained quite recently
in [89]. The fair-competition case for Newtonian interaction k¥ = 2 — N was first clarified in [39],
see also [276], where the authors find that there is a similar dichotomy to the two-dimensional
classical Keller-Segel case (N = 2,m = 1,k = 0), choosing the non-local term as the Newtonian
potential, (N > 3,m = 2—2/N, k = 2— N). The main difference is that the stationary states found
for the critical case are compactly supported. We will see that such dichotomy also happens for

k < 01in our case while for £ > 0 the system behaves totally differently.

3.2 Variations of HLS inequalities

A key ingredient for the analysis in the case k¥ < 0 are certain functional inequalities which are
variants of the Hardy'°-Littlewood!®-Sobolev!” (HLS) inequality, also known as the weak Young’s
inequality [218, Theorem 4.3]:

15Godfrey Harold Hardy (1877-1947) was the most influential mathematician in Britain in the 20t" century. He wrote
almost 100 papers together with Littlewood, considered to have been the most fruitful collaboration in the history of
mathematics. He was also a militant atheist and liked to talk of God as his personal enemy.

16John Edensor Littlewood (1885-1977) is a British mathematician, best known for his achievements in analysis, number
theory, and differential equations. He practised his belief that mathematicians should take a vacation of at least 21 days a
year during which they should do no mathematics.

17Sergei Lvovich Sobolev (1908-1989) was a Soviet mathematician working in mathematical analysis and partial differ-
ential equations.
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Theorem 3.2. Given k € (—N,0) and p, q > 1 satisfying

k
24

L1
q N’

SRR

there exists an optimal constant Cyrs = Crurs(p, q, k) such that for all f € LP(RY) and g € LI(RY),

|| 1= @) drdy| < Carvsl 1ol G2

NyRN
Inequality (3.21) (not in the sharp form) was proved in [180] and [181]. Thanks to Lieb [217],
the optimal constant Cy s is known explicitly if p = ¢ = 2N /(2N + k) since in that case, it is
possible to explicitly compute the optimisers of (3.21), i.e. functions which, when inserted into
(3.21), give equality with the smallest constant. Indeed, optimisers for the sharp HLS inequality

p = ¢ are non-zero multiples of translations and dilations of

1 (2N+k)/2
o= ()

In other words, the set of optimisers O to (3.21) is given by
x
0= {/\h<g—mo) IAeR\{0},s € Rog, xoeRN}

In fact, the HLS optimisers play an important role: they are stationary states of the non-linear
Fokker-Planck equation (2.10) obtained from rescaling the fast diffusion (2.5) with diffusion ex-
ponent m(k, N) := 1 —2/(2N + k). Note that indeed m,. < m < 1forall k € (—N,0), and so we
are in the range where the Barenblatt profile G, (2.8) is well defined.

In the case p # ¢ on the other hand, optimisers to (3.21) exist, but neither the optimal constant

Cr s nor the optimisers are known explicitly.

As suggested by the connection between optimisers of the HLS inequality (3.21) and self-
similar solutions to the fast diffusion equation (2.5), there is a rich and fruitful interplay between
functional inequalities and non-linear partial differential equations [92, 125, 74, 133, 70, 132, 137]
that is still in the process of being discovered. Let us illustrate the kind of connection we might
want to exploit in our context with the example k = 2— N in dimension N > 3. This is particularly

|27N

interesting since cy |z is the fundamental solution of the Laplacian,

enlaPNw f= (AT, eni=(2—N)owy) ",

where oy := 27V/2/T' (N /2) denotes the surface area of the N-dimensional unit ball. Therefore,
choosing p = ¢ = 2N/(2N + k) = 2N /(N + 2) in (3.21), we see that the sharp HLS inequality

encodes the smoothing properties of (—A)~! on RY.
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3. Part I: Results

Let us rewrite the sharp HLS inequality (3.21) as £[f] = 0 for f € L*N/(N+2)(RN), where the
so-called HLS functional £ is given by

U = Csl e = [ S@ (=8 1] (@) do

4

maﬁﬁv given explicitly. Since the HLS optimisers O are the at-

with Cg := ¢yCyrs =
tracting stationary states for a fast diffusion flow (2.11) with diffusion exponent 7 = N/(N + 2),
one might hope that the HLS functional £ would be monotone decreasing along this flow. This is
indeed the case, and was shown in [74]: Fix some f € L2N/(NF2(RN), f >0, fdz = (G dr = 1
satisfying (2.9) for some R > 0, and let p(¢, z) be a solution of the fast diffusion equation (2.5) with
diffusion exponent m and p(1,z) = f(z). Then, for all t > 1, it follows that %E[p(t)] < 0. Fora
proof of this monotonicity relation, see [74, Theorem 2.1].

Further, using only the fast diffusion flow, rearrangement inequalities and the conformal invari-
ance of the HLS functional &, the authors in [74] were able to reprove the HLS inequality (3.21) for
the Newtonian case k = 2 — N, N > 3. Their approach uses the fast diffusion flow to reduce the
HLS inequality to a Gagliardo-Nirenberg-Sobolev (GNS) inequality, which in turn reduces to the
Schwarz inequality. Note that the diffusion exponent . = N/(N + 2) corresponds to the critical

exponent of the FDE related to the boundedness of the second moment of the stationary states

G, and it plays a certain role in the long-time assymptotics of the FDE, see [101, 35].

A similar role is played by the logarithmic HLS inequality, established in its sharp version
in [77]:

Theorem 3.3. Let k = 0, m = 1. For all non-negative measurable functions f € L'(RY) such that
flog f, flog(1 + |z|?) € LY(RY), we have

| r@osle—isdzay < 5 [ f@os )i+ o, 622)
RN xRN

where the optimal constant Cy = Cy(N) is given by

Co(N) = %logw + %log GEJ%;) + % (w(zv) _ ¢ (g)) .

Here 1) denotes the logarithmic derivative of the I'-function.

Carlen and Loss, together with Beckner, have demonstrated that the logarithmic HLS inequal-
ity is also a consequence of (3.21) as k — 0, see [77].
Further, the sharp logarithmic HLS inequality on R? can be obtained by a similar fast diffusion
flow argument as we discussed above for the HLS inequality (3.21) [74], an approach which is

facilitated by the fact that the logarithmic HLS functional is invariant under scalings. It can also
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be derived by optimal transport techniques in one dimension and in the two-dimensional radial

setting [62], using techniques which we will adapt for our context in Chapter 2 and Chapter 3.

The above examples illustrate the intrinsic relationship between functional inequalities, their
minimisers, and certain non-linear diffusion equations. We will make use of these connections in
Part I when studying the stationary states to the aggregation-diffusion equations (2.3) and (3.29).

We will now state the new functional inequalities derived in this thesis.

Theorem 3.4. Let k € (—N,0), and m = m,. For f € L*(RY) n L™(RY), we have

j j & — yl* F(@) f(y)dady| < Coll 1V flpme (3.23)

N RN

where the optimal constant C\. is given by

N [T =yt dad
Cy(N,k,m) := sup ‘SSR «rn [T = yl" f (@) f(y)dedy

e L'RY) n L™(RY) } < 0.
k+N)/N me
70 AN £ e

)

Proof. The inequality is a direct consequence of Theorem 3.2 by choosing p = ¢ = 2N/(2N + k),

and of Holder’s inequality. More precisely, for any f € L}(RY) n L™(RY) with m > m,, we have

f j & — yl* £ (@) f(y)dady| < CrrislIFI2 < Crnsl FIEIAIL.

N RN

e ama(52) (52)-(3) ()

Choosing m = m., wehavea = 1+ k/N, 8 = m., and hence (3.23) follows with C,. = Cy(k, m, N)

with

finite and bounded from above by Crr.s. O

Further, we will obtain as a by-product of our investigations the following one-dimensional

HLS-type inequality involving a second moment term:

Theorem 3.5. Let k € (—N,0) and m = m,. Forany 0 < x < Cy ', there exists an optimal constant

C = C(k, N, x) such that

e S [ eli@as ey

] e @ sy < o i+

RN xRN
forall f € LY(RN) A L™ (RN) with | f|1 = 1, Sz f(z)dz = 0and |z|? f(x) € L' (RN). If N = 1, then

the set of optimisers is the unique self-similar solution to equation (2.3).

Moreover, we will prove the analogue version of the above functional inequality for positive
0 < k < 2/3 in one dimension, corresponding to a reversed HLS-type inequality with a second

moment term:

30



3. Part I: Results

Theorem 3.6. Let N =1, k € (0,2/3) and m. := 1 — k. For any x > 0, there exists an optimal constant
C = C(k, x) such that

k
—y|* dxdy + = 2f(z)dx = C me(z) d 3.25

foX f o=yl F@) 1) dady + 5 [ 1o fa)da = O+ [ () da 3.25)

forall f € L*(R)nL™<(R) with | f|1 = 1, §af(x) dv = 0and (|z]* + |z|*) f(z) € L*(R). The optimiser

is given by the unique self-similar solution to equation (2.3).

Up to our knowledge, the functional inequalities (3.24) and (3.25) are not known in the litera-

ture.

The analysis of the free energy functionals 7, ;, and their respective gradient flows is closely
related to HLS-type inequalities [218, 163, 74, 39]. To give a flavour, we highlight the case (m =
1,k = 0), called the logarithmic case. It is known from [136, 41] using [77, 19] that the functional
Fi1,0 is bounded from below if and only if 0 < x < 1. Moreover, F; o achieves its minimum if and
only if x = 1 and the extremal functions are mass-preserving dilations of Cauchy’s density:

po(z) — <1> . (3.26)

7\ 1+ [2]2

In [77], the authors have proved the uniqueness (up to dilations and translations) of this logarith-
mic HLS inequality based on a competing-symmetries argument. We develop in Chapter 3 an
alternative argument based on some accurate use of the Jensen’s inequality to extend these results
to the case N = 1, k € (—1,0) and m = m.. This goal will be achieved for the variant of the HLS
inequality (3.23) as in [39], indeed being a combination of the HLS inequality and interpolation

estimates.

In Chapter 3, we develop a strategy which enables to recover directly inequalities (3.22), (3.23),

(3.24) and (3.25). Our method involves two main ingredients:

e First it is required to know a priori that the inequality possesses some extremal function
denoted e.g. by p(z) (characterised as a critical point of the energy functional). This is not
an obvious task due to the intricacy of the equation satisfied by p(x). Without this a priori
knowledge, the proof of the inequality remains incomplete. The situation is in fact similar
to the case of convex functionals, where the existence of a critical point ensures that it is a

global minimiser of the functional.

¢ Second we invoke convexity inequalities related to Jensen’s inequality.
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3.3 The fair-competition regime

In the fair-competition regime, when m = m. = 1 — k/N, we denote the corresponding energy
functional by Fx[p] = Fi_/n,k[p]. Notice that the functional F}, is homogeneous in this regime,

i.e. for dilations py () := AV p(\z), we have
Filpal = X" Felp] .- (3.27)

In fact, using the Euler!® theorem for homogeneous functions, we can show that for k € (—N,0)
any stationary state of the aggregation-diffusion equation (2.3) with bounded second moment
has zero energy (see Chapter 2, Lemma 3.2). This argument does not apply in the logarithmic
case k = 0 and it allows us here to make the connection between global minimisers of F; and

stationary states of (2.3) for k < 0. Indeed, for any p € J, where
Y= {pe L RY) a L™ (RY) : |p|ls = 1, fxp(a:)dw = 0} ,

and for any x > 0, we can rewrite the functional inequality (3.23) as follows:

1—xCs

Z -

where C,. = Cy(k, N) is the optimal constant defined in (3.23). Since the energy of the global
minimisers is always smaller or equal to the energy of the stationary states, and stationary states
have zero energy as mentioned above, it follows that x > 1/C,. We define the critical interaction
strength by

1

Xc(k,N) = ColhN) (3.28)

Hence, for x = x., all stationary states of equation (2.3) are global minimisers of F;. We can also
directly see that for 0 < x < Xx., no stationary states exist. Showing that stationary states of an
equation are global minimisers of the associated energy functional is usually the more challenging
implication. The converse is trivial for systems that exhibit a gradient flow structure (2.19) since
global minimisers are critical points of the energy functional, i.e. the first variation of the energy
functional vanishes at these points, and therefore global minimisers are automatically stationary
states. It remains then to verify that global minimisers of 7}, are regular enough to be station-
ary states of equation (2.3). Showing the good regularity properties can be challenging, and it is
proven and explained in detail in Chapter 2.

The case k£ > 0 has been a lot less studied, and we will show in Chapter 2 that no critical inter-
action strength exists as there is no x > 0 for which F; admits global minimisers. On the other
hand, we observe certain similarities with the behaviour of the fast diffusion equation (0 < m < 1,

v = 0) [287].

18Leonhard Euler (1707-1783), born in Switzerland and deceased in Russia, was one of the most influential and prolific
mathematicians in history with more than 800 papers bearing his name. He was blind for the last 15 years of his life,
during which time he nevertheless wrote over 300 papers.
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3. Part I: Results

From these observations, one can see that the analysis in the fair-competition regime depends
on the sign of k. We give a short overview of the differences between the cases k <0,k =0,k > 0

in the definition below, including new insights obtained in this thesis:
Definition 3.7 (Three different cases in the fair-competition regime).

k < 0 This is the porous medium case with m € (1,2), where diffusion is small in regions of small
densities. The classical porous medium equation, i.e. x = 0, is very well studied, see [289] and the
references therein. Here, we have a dichotomy for existence of stationary states and global minimisers of
the energy functional Fy, depending on the critical parameter x . defined in (3.28), and hence separate

the sub-critical, the critical and the super-critical case, according to x S Xe.

k = 0 This is the logarithmic case. There exists an explicit extremal density po given in (3.26) which
realises the minimum of the functional Fo when x = 1. Moreover, the functional F is bounded below
but does not achieve its infimum for 0 < x < 1 while it is not bounded below for x > 1. Hence,
Xc = 1 is the critical parameter in the logarithmic case whose asymptotic behaviour was analysed
in [62] in one dimension and radial initial data in two dimensions. We refer to the results in [71, 148]

for the two dimensional case.

k > 0 This is the fast diffusion case with m € (0, 1), where diffusion is strong in regions of small den-
sities. For any x > 0, no radially symmetric non-increasing stationary states with bounded kth
moment exist, and Fj, has no radially symmetric non-increasing minimisers. However, we have ex-
istence of self-similar profiles independently of x > 0 as long as diffusion is not too fast, i.e. k < 1.
Self-similar profiles can only exist if diffusion is not too strong with restriction 0 < k < 2, that is

(N—2)/N <m <1

3.3.1 Change of variables

As mentioned above, for certain choices of m, k and x, there are no stationary states to (2.3),
see Section 3.3.2. This is known in the case of the sub-critical classical Keller-Segel model in two
dimensions [41] for instance. If there are no stationary states, the scale invariance of (2.3) motivates
us to look for self-similar solutions instead. To this end, we rescale equation (2.3) to a non-linear
Fokker—Planck-type equation as in explained in Section 2.1.3 in the context of the non-linear heat
equation. Let us define
ult,7) i= o™ (D)o (B(2), alt)r)

where p(t, z) solves (2.3) and the functions «(t), 3(t) are to be determined. If we assume (0, z) =

p(0,x), then u(t, z) satisfies the rescaled aggregation-diffusion equation

Ou= % Au™ +2xV - (uVSp) + V- (zu), t>0, zeRVN,

0 o (3.29)
wt=0.0)=p(@)>0, [ p@de=1, [ emde=0,

—00
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for the choices
7 (e@Pt — 1) ifk 2,

t, ifk =2,

and with V.S;; given by (2.17) with v instead of p. By differentiating the centre of mass of u, we

see easily that
j zu(t, z) de = e_tf zpo(x)dr =0, Vi >0,
RN RN

and so the initial zero centre of mass is preserved for all times. Self-similar solutions to (2.3) now
correspond to stationary solutions of (3.29).
From now on, we switch notation from u to p for simplicity, it should be clear from the context if

we are in original or rescaled variables.

In rescaled variables, equation (3.29) is the formal gradient flow of the rescaled free energy

functional Fj, resc, Which is complemented with an additional quadratic confinement potential,

Fmslol = File) + 5V06) Vil = | [afp(e) de.
RN

Defining the sets

wimlpeyivil <ol Ve {pey: [ afowde <o}

we see that Fj, resc is well-defined and finite on ) for k < 0 and on Vs i, := Y2 n Yy, for k > 0. Just
like the original equation (2.3), the rescaled system (3.29) has a formal gradient flow structure in

the Euclidean Wasserstein metric W, and so we can write (3.29) as

(%p =V (P V’ﬁc,resc[,ﬂ]) = *VW}—k,resc[P] s

where 7, resc denotes the first variation of the rescaled energy functional,

jz/?

ﬁ,resc[p](x) = 77@[/’](55) + 9

with 7y as defined in (2.20).

3.3.2 Main results Chapter 2

In Chapter 2, we analyse the properties of the functional F}, its global minimisers, and its relation
to stationary states of (2.3) for the fair-competition regime in any dimension N > 1. For the
porous medium case k < 0, we show a similar dichotomy to [39] in the whole range k € (—N, 0)
including the most singular cases —N < k < 1 — N. We show that stationary states exist only
for a critical value of x = x. with x. given by (3.28) and that they are compactly supported,

bounded, radially symmetric decreasing and continuous functions. Moreover, we show that they
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3. Part I: Results

are global minimisers of 7. Next, we analyse the sub-critical case x < x. in rescaled variables
and we show the existence of global minimisers for the rescaled free energy functional Fj, yesc with
the properties above leading to the existence of self-similar solutions in original variables. Let us
mention that the regularity results for global minimisers of 7, and Fj, resc Need a careful treatment
of the problem in radial coordinates involving non-trivial properties of hypergeometric functions,
particularly in the singular regime —N < k < 1 — N when additional Holder regularity C%<(RY)
with a € (1 — k — N, 1) is needed for the gradient V.S;, to be well defined. The properties of the
kernel in radial coordinates are postponed to the Appendix A of Chapter 2.

In Section 4 of Chapter 2, we analyse the fast diffusion case k£ > 0. Let us mention that, to
the best of our knowledge, there are no results in the literature concerning the case k£ € (0, N) in
which 0 < m. = 1 — k/N < 1. There is one related result in [116] for the limiting case in one
dimension taking m = 0, corresponding to logarithmic diffusion, and £ = 1. In that case, there
is no criticality present as solutions to (2.3) with (m = 0,k = 1) are globally defined in time for
all values of the parameter x > 0. We show that no radially symmetric non-increasing stationary
states and no radially symmetric non-increasing global minimisers exist in original variables for
all values of the critical parameter x and for k& € (0, N) while we establish the existence of sta-
tionary states for all values of the critical parameter x in rescaled variables for k € (0,1]. In this
sense, there is no criticality for £ > 0. However, we have not analysed the minimisation problem
for Fi resc directly for arbitrary dimension N > 1 as we did for the case & < 0. A full proof of
non-criticality involves the analysis of the minimisation problem in rescaled variables showing
that global minimisers exist in the right functional spaces for all values of the critical parameter
and that they are indeed stationary states. This will be proved in one dimension in Chapter 3 by
optimal transport techniques and postponed for further future investigations in general dimen-
sion. We finally illustrate these results by numerical experiments in one dimension corroborating

the absence of critical behaviour for k£ > 0.

More precisely, we will prove the following main theorems in Chapter 2:

Theorem 3.8 (The Critical Porous Medium Regime). In the porous medium regime k € (—N,0) and
for critical interaction strengths x = x., there exist global minimisers of F, and they are radially sym-
metric non-increasing, compactly supported and uniformly bounded. Furthermore, all stationary states
with bounded second moment are global minimisers of the energy functional Fy,, and conversely, all global

minimisers of Fy, are stationary states of (2.3).

Theorem 3.9 (The Sub-Critical Porous Medium Regime). In the porous medium regime k € (—N,0)
and for sub-critical interaction strengths 0 < x < X, ho stationary states exist for equation (2.3) and

no minimisers exist for Fy,. In rescaled variables, all stationary states are continuous and compactly sup-
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ported. There exist global minimisers of Fy, resc and they are radially symmetric non-increasing and uni-

formly bounded stationary states of equation (3.29).

Due to the homogeneity (3.27) of the functional F}, each global minimiser gives rise to a family
of global minimisers for x = x. by dilation since they have zero energy. It is an open problem to
show that there is a unique global minimiser for x = x. modulo dilations. This uniqueness was
proven in the Newtonian case in [302], and for any k£ € (—1,0) for the one-dimensional case in
Chapter 3.

In contrast, in rescaled variables, we do not know if stationary states with bounded second
moment are among global minimisers of Fj, yesc for the sub-critical case 0 < x < x. except in one
dimension, see Chapter 3. It is also an open problem to show the uniqueness of radially symmetric

stationary states of the rescaled equation (3.29) for N > 2.

Theorem 3.10 (The Fast Diffusion Regime). In the fast diffusion regime k € (0, N) equation (2.3)
has no radially symmetric non-increasing stationary states with kth moment bounded, and there are no
radially symmetric non-increasing global minimisers for the energy functional Fy, for any x > 0. In rescaled
variables, radially symmetric non-increasing stationary states can only exist if 0 < k < 2, that is (N —
2)/N < m. < 1. Similarly, global minimisers with finite energy Fi, yesc can only exist in the range 0 < k <
2N/(2+ N), thatis N/(2 + N) < m. < 1. For k € (0, 1], there exists a continuous radially symmetric

non-increasing stationary state of the rescaled equation (3.29).

3.3.3 Main results Chapter 3

Chapter 3 focuses on the one-dimensional fair-competition regime. We will make a survey of
the main results known in one dimension about the stationary states of the aggregation-diffusion
equation and global minimisers of the associated energy functionals in the fair-competition regime
while at the same time providing new material in one dimension with alternative proofs and infor-
mation about long time asymptotics which are not known yet in higher dimensions. The novelties
will be showing the functional inequalities (3.23) for m = m,, (3.24) and (3.25) independently of
the flow and studying the long-time asymptotics of the equations (2.3) and (3.29) by exploiting
the one dimensional setting. More precisely, we will make accurate use of the expression for the
dissipation of the Wasserstein distance derived in Theorem 4.1, which is only valid in one dimen-
sion. A similar identity to (??) can also be derived for the radial setting in higher dimension, which
opens up opportunities to generalise our one-dimensional results. Let us stress that we did not
develop any theory of the evolution problem as mentioned before, and in this sense, the conver-
gence results in this chapter remain formal, assuming that solutions p(t, z) are regular enough for

our computations to hold.
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3. Part I: Results

In the sub-critical and critical porous medium regime, we will demonstrate convergence to
equilibrium in Wasserstein distance under a certain stability condition, a restriction which is not
necessary for the asymptotic behaviour in the fast diffusion regime. More precisely, the required
stability condition is a uniform W?®(RR)-stability estimate on the Brenier map (¢, z) whose gra-
dient pushes forward a solution p(¢, z) onto a stationary state, p(¢, x) dx = 0,9(t, z)#p(x) dx:

o 1
5m¢(f,ﬂf) eL” (R+, LOO(R)) such that ||axww‘|L°C(R+,L°C(]R)) <1+ E :

For the sub-critical porous medium regime, and for the fast diffusion regime, we obtain exponen-
tial convergence to self-similar profiles with an explicit rate which does not depend on the interac-
tion strength x. This is remarkable in the sub-critical case x < x. as it means that the asymptotic
behaviour does not change as x approaches x. from below, whilst the behaviour at xy = x. is very
different with the existence of infinitely many stationary states that act as attractors for a certain

class of solutions. This effect appeared in the logarithmic case (k = 0, m = 1) analysed in [62].

Finally, we provide numerical simulations of system (2.3) to illustrate the properties of equi-
libria and self-similar profiles in the different parameter regimes for the fair-competition regime.
We use a Jordan-Kinderlehrer-Otto (JKO) steepest descent scheme [195, 248] which was proposed
in [36] for the logarithmic case £ = 0, and generalised to the porous-medium case k € (—1,0)
in [67]. It can easily be extended to rescaled variables and works just in the same way in the fast
diffusion regime k € (0, 1).

For the logarithmic case kK = 0, m = 1, we know that the critical interaction strength is given by
Xc = 1 separating the blow-up regime from the regime where self-similar solutions exist [136, 41,
33]. As shown in Chapter 2, there is no critical interaction strength for the fast diffusion regime
k > 0, however the dichotomy appears in the porous medium regime k£ < 0. It is not known
how to compute the critical parameter x.(k) explicitly for £ < 0, however, we can make use of the
numerical scheme to compute X, numerically.

Figure 1.5 gives an overview of the behaviour of solutions. In the red region, we observe finite-
time blow-up of solutions, whereas for a choice of (k, x) in the green region, solutions converge
exponentially fast to a unique self-similar profile. The critical regime is characterised by the black
line x.(k) with —1 < k < 0, separating the grey from the white region. Note that numerically we
have x.(—0.99) = 0.11 and x.(0) = 1. Figure 1.5 has been created by solving the rescaled equa-
tion (3.29) repeatedly for each k from —0.99 to 0 in 0.01 steps. For a given k, the numerical critical
interaction strength x.(k) is defined to be the largest x for which the numerical solution can be
computed without blow-up until the L2-error between two consecutive solutions is less than a
specified tolerance. In Chapter 3, we describe in detail the numerical scheme and investigate the

behaviour of solutions at selected points in the parameter space (k, x).
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-1 0.5 0 (Lo L |
k

Figure 1.5: Regions of blow-up (red) and convergence to self-similarity (green) in the fair-
competition regime m, = 1 — k/N.

We close Chapter 3 with some investigations on the diffusion- and attraction-dominated regimes,
using the numerical scheme described above to develop an intuition for the asymptotic behaviour
of solutions we may expect.

For the attraction-dominated regime in any dimension N(m — 1) + k < 0, it is known that both
global existence of solutions and blow-up can occur in original variables depending on the choice
of initial data [118, 275, 278, 109, 32, 110, 224, 65]. In Chapter 3, we demonstrate this change
of behaviour numerically in one dimension. Further, we investigate in more detail the regime
m = m** := 2N/(2N + k) for which the free energy functional (2.18) is conformal invariant, a
choice which also falls within the attraction-dominated regime N(m — 1) + k < 0. For k < 0, we
prove the existence of a critical point for the energy functional (2.18), using the fact that this choice
of diffusion exponent corresponds to the case p = ¢ = m in the HLS inequality (3.21) for which
the optimisers and the optimal constant are known explicitly.

Finally, we state two conjectures for the regime m = m™**. Firstly, we suggest that a similar result
to [109, Theorem 2.1] holds true for general k € (—N, 0) and m = m™** stating that global existence
and blow-up in the radially symmetric setting can be characterised by a relation between the ini-
tial data and the HLS-optimisers. Numerically, we can indeed observe this behaviour for N = 1.
Secondly, we conjecture that the unique HLS-optimiser with unit mass that is also a critical point
for the energy functional (2.18) is in fact an unstable stationary state of equation (2.3). Again, we

show that this can be observed numerically in one dimension.
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3. Part I: Results

Tables 1.1 and 1.3 provide an overview of the new results that we prove in part I of this thesis

in the one dimensional fair-competition regime for the porous medium case (k < 0) and the fast

diffusion case (k > 0) respectively. Table 1.2 summarises the relevant results known for the loga-

rithmic case (k = 0). For an overview of the different regimes and choices of m and & discussed

in this thesis, see Figure 1.4.

X < xe(k)

X = xe(k)

X > xe(k)

Functional Inequalities:

e There are no stationary states
in original variables, there are
no minimisers for Fj (Chapter 2
Theorem 2.7).

e In rescaled variables, all sta-
tionary states are continuous and
compactly supported (Chapter 2
Theorem 2.7).

e There exists a minimiser of
Fk resc- Minimisers are symmet-
ric non-increasing and uniformly
bounded. Minimisers are station-
ary states in rescaled variables
(Chapter 2 Theorem 2.7).

® If presc is a stationary state in
rescaled variables, then all solu-
tions of the rescaled equation sat-
isfy Fr resc[p] = Fh,resc|Presc)
(Chapter 3 Theorem 3.6).

¢ Stationary states in rescaled
variables and minimisers of
Fi,resc are unique (Chapter 3

Functional Inequalities:

¢ There exists a minimiser of
Fk. Minimisers are symmetric
non-increasing, compactly sup-
ported and uniformly bounded.
Minimisers are stationary states
in original variables (Chapter 2
Theorem 2.6).

® There are no stationary states
in rescaled variables in )5, and
there are no minimisers of F resc
in Y2 (Chapter 3 Corollary 3.11
(if))-

e If p is a stationary state in orig-
inal variables, then all solutions
satisfy Fi[p] = Frlp] = O,
which corresponds to a variation
of the HLS inequality (Chapter 3
Theorem 3.2).

e Stationary states in original
variables and minimisers of
Fi, are unique up to dilations
(Chapter 3 Corollary 3.5), and

Functional Inequalities:

¢ There are no stationary states in
original variables in ), and there
are no minimisers of Fj in Y
(Chapter 3 Corollary 3.11 (i)).

e There are no stationary states
in rescaled variables in Y5, and
there are no minimisers of Fp, resc
in Vo (Chapter 3 Corollary 3.11
(it)).

e Under a stability condition
solutions converge exponentially
fast in Wasserstein distance to-
wards the unique stationary state
in rescaled variables with rate 1
(Chapter 3 Proposition 4.5).

Corollary 3.9). they coincide with the equality
cases of Fi[p] = 0.
Asymptotics: Asymptotics: Asymptotics:

e Under a stability condition
and for solutions with second
moment bounded in time, we
have convergence in Wasserstein
distance (without explicit rate) to
a unique (up to dilation) station-
ary state (Chapter 3 Proposition
4.3).

Asymptotics are not well under-
stood yet.

e If there exists a time to > 0
such that Fi[p(to)] < O, then p
blows up in finite time [275, 39].

e Numerics suggest that the
energy of any solution becomes
negative in finite time, but no
analytical proof is known.

Table 1.1: Overview of results in one dimension for —1 < k¥ < 0 and m = m. € (1,2).

3.4 The diffusion-dominated regime

3.4.1 Main results Chapter 4

In Chapter 4, we investigate the diffusion-dominated regime where m > m. = 1 — k/N and

k € (—N,0). In this regime diffusive forces dominate, avoiding blow-up for any choice of x > 0,

and so there is no criticality for x. Some of the techniques developed in Chapters 2 and 3 can

39



1. INTRODUCTION

x <1

x=1

x>1

Functional Inequalities:

e There are no stationary states in
original variables, but self-similar
profiles [136, 41, 70, 71, 148].

Functional Inequalities:

e If p is a stationary state in orig-
inal variables, then all solutions
satisfy Fi[p] = Fi[p], which
corresponds to the logarithmic
HLS inequality [136, 41, 62].

¢ Stationary states are given by
dilations of Cauchy’s density,
p(z) = 1/(w(1 + |z|?)), which
coincide with the equality cases
of the logarithmic HLS inequal-
ity. They all have infinite second
moment [136, 41, 62].

Functional Inequalities:

*  Smooth fast-decaying solu-
tions do not exist globally in
time [242, 34, 41, 68].

e There are no stationary states
in original variables and there
are no minimisers of Fp in Y
(Chapter 3 Remark 3.4).

Asymptotics:

* Solutions converge exponen-
tially fast in Wasserstein distance
towards the unique stationary
state in rescaled variables [62].

Asymptotics:

¢ Solutions converge in Wasser-
stein distance to a dilation of
Cauchy’s density (without ex-
plicit rate) if the initial second

Asymptotics:

¢ All solutions blow up in finite
time provided the second mo-
ment is initially finite [187, 260].

moment is infinite, and to a Dirac
mass otherwise [33, 40, 62, 37, 75].

Table 1.2: Overview of results in one dimension for ¥ = 0 and m = m. = 1.

No criticality for x

Functional Inequalities:

¢ There are no stationary states in original variables (Chapter 3 Remark 4.9). In rescaled variables, there exists a con-
tinuous symmetric non-increasing stationary state (Chapter 2 Theorem 2.9).

® There are no symmetric non-increasing global minimisers of .. Global minimisers of F resc can only exist in the range
0 < k < 2 (Chapter 2 Theorem 2.9).

o If presc is a stationary state in rescaled variables, then all solutions of the rescaled equation satisfy F resc[£] = Fi resc|Presc]
(Chapter 3 Theorem 3.13). Hence, for 0 < k < 2 there exists a global minimiser for Fy, resc-

5,
e For0 < k < %, stationary states in rescaled variables and global minimisers of Fj resc are unique (Chapter 3 Corollary
3.16).
Asymptotics:

® Solutions converge exponentially fast in Wasserstein distance to the unique stationary state in rescaled variables with
rate 1 (Chapter 3 Proposition 4.8).

Table 1.3: Overview of results in one dimension for 0 < k < 1 and m = m. € (0,1).

be extended to the porous medium diffusion-dominated regime, such as the characterisation of
stationary states for equation (2.3) and of global minimisers for the energy functional (2.18), which

we denote by F := F,, ;. for simplicity. Let us define the diffusion exponent m*,

k=N if N>1 and -N<k<1-N,

+ if N>2 and 1-N<k<O0.

as it will play an important role for the regularity properties of global minimisers of 7.
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First of all, we show in Chapter 4 that stationary states of (2.3) in ) are radially symmetric for
all x > 0,k e (—N,0) and m > m.. This is one of the main results of [89], and is achieved under
the assumption that the interaction kernel W}, is not more singular than the Newtonian potential
close to the origin. The proof in [89] can be adapted to our setting as the main arguments con-
tinue to hold even for more singular W},. Let us mention that the radiality of stationary states is
crucial when making the connection to global minimisers of F, which are also radially symmetric
as the energy decreases under taking symmetric decreasing rearrangements’. In other words, this
result reduces the question of uniqueness of stationary states to uniqueness of radially symmetric
stationary states, allowing us to work in the radial setting instead.

Investigating the properties of global minimisers for F, we show in Chapter 4 that they are com-
pactly supported and uniformly bounded for all x > 0, kK € (—N,0) and m > m,.. Note that
this result corresponds to what we find in the critical porous medium fair-competition regime,
see Theorem 3.8. However here, we choose to develop a new method for the proof: instead of an
iterative argument using hypergeometric functions to control global minimisers at the origin di-
rectly (see Chapter 2), we first proof an estimate for the mean-field potential S, = W), * p, and then
argue by contradiction. The idea is that for every unbounded global minimiser one can construct
a bounded competitor that decreases the energy. The difficulty in handling terms involving hy-
pergeometric functions remains the same. Existence of global minimisers can be obtained using
the concentration compactness argument by Lions [220], whereas proving Holder regularity in
the singular range —N < k < 1 — N turns out to be more challenging in the diffusion-dominated
case as one may have diffusion exponents m that are greater than 2, in which case one cannot
transfer Holder regularity of p™ ! to p directly. We obtain that global minimisers of F are regular
enough to be stationary states of equation (2.3) under the condition that diffusion is not too fast,
m. < m < m*. Moreover, bootstrapping on the obtained regularity using the Euler'®-Lagrange®
equation, we obtain that global minimisers of 7 in ) are C' inside their support.

Finally, we apply the same methods as in Chapter 3 to derive an HLS-type inequality in one di-
mension using optimal transport techniques, establishing equivalence between global minimisers
of Fin Y and stationary states of equation (2.3). Additionally, this functional inequality provides

uniqueness of stationary states in one dimension.

In summary, we will prove the following results in Chapter 4:

¥The function p* is said to be the symmetric decreasing rearrangement of p if p* is radially symmetric non-increasing
with the level sets of p# and p having the same measure, i.e. [{z : p#(z) > c}| = [{z : p(z) > c}|.

20Joseph Louis Lagrange (1736-1813) was an Italian-French mathematician and astronomer. Lagrange was only 19 years
old when he wrote to Euler announcing a new formalism to simplify Euler’s method for finding a curve that satisfies an
extremum condition. Using this formalism, he derived the fundamental equation of the calculus of variations, known
today as Euler-Lagrange equation.
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Theorem 3.11. Let N > 1, x > Oand k € (—N,0). All stationary states of equation (1.2) are radially
symmetric decreasing. If m > my, then there exists a global minimiser p of F on Y. Further, all global
minimisers p € Y are radially symmetric non-increasing, compactly supported, uniformly bounded and
C® inside their support. Moreover, all global minimisers of F are stationary states of (1.2) whenever

me <m < m*. Finally, if m. < m < 2, we have p € Wh* (R").

Theorem 3.12. Let N =1, x > 0and k € (—1,0). All stationary states of (1.2) are global minimisers of
the energy functional F on Y. Further, stationary states of (1.2) in Y are unique.

4 Part I: Perspectives

There are many interesting open problems of varying difficulty centered around model (2.3), and
I have started further investigations on some of them. In the light of Chapters 2-4, the central
question is of course how to complete the picture of asymptotic behaviour in the fair-competition
regime N(m — 1) + k = 0, and how to tackle the cases when attractive and repulsive forces are
not in balance, namely the diffusion-dominating regime N(m — 1) 4+ k£ > 0 and the aggregation-

dominating regime N(m — 1) + k < 0.

4.1 The fair-competition regime m = m,

The following are promising directions of work in progress or future research:

¢ Uniqueness of stationary states and self-similar profiles & € (—N, 0): Due to homogeneity,
each global minimiser of F,, j gives rise to a family of global minimisers for x = x. by
dilation in the porous medium case k € (—N,0), but it is an open problem to show that
there is a unique global minimiser modulo dilations. This uniqueness was proven in the
Newtonian case in [302], and in one dimension in Chapter 3. It would be interesting to
explore the uniqueness modulo dilations of global minimisers in radial variables in higher
dimensions, as one would then obtain the full set of stationary states with bounded second
moment for model (2.3) as a by-product.
In self-similar variables, we do not know if stationary states with second moment bounded
are among global minimisers of the rescaled free energy Fresc for the sub-critical regime
0 < x < x. except in one dimension. For N = 1, we fully answered the uniqueness question
in Chapter 3 using optimal transport techniques. It is also an open problem to show the

uniqueness of radially symmetric self-similar profiles to (2.3) for N > 1.

¢ Asymptotic behaviour k € (—N, N): Formulating identity (??) in radial coordinates, it seems

there is a natural generalisation of the methods employed in Chapter 3 to show convergence
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to equilibrium in Wasserstein distance in any dimension in the radial setting. The compu-
tations are in spirit similar, but technically challenging due to the hypergeometric function
terms involved. Ground states of F,,, j are the natural candidates amongst which to look for
asymptotic profiles, and in this sense, Chapters 2 and 3 provide the necessary ground work

for further investigations into the asymptotic behaviour of solutions.

* Cauchy problem k € (—N, N): The existence and uniqueness theory for the Cauchy problem
of (2.3) is still an open problem. In the porous medium range k € (—N,0), I would like to
explore the possibility that a good variation of the results in [32, 39, 41] allows to tackle this
question. In the fast diffusion range & € (0, N) nothing is known yet and it is not even clear

which is the good functional framework to work in.

* Very fastdiffusion £ € (0, N): We showed in Chapter 2 that radially symmetric non-increasing
stationary states in self-similar variables have so-called fat tails for large |z|. In particular,
there is a critical k. := 2 and respectively a critical diffusion exponent m, := (N — 2)/N
where a change of behaviour occurs. For k < k., mass is preserved, whereas if diffusion is
too fast k > k, it is well known that mass escapes to infinity in the case of the classical fast
diffusion equation (x = 0) and integrable L*-solutions go extinct in finite time. Extinction is
an important phenomenon in the theory of non-linear diffusion, and it would be interesting
to explore it for the fair-competition regime with k > k. for which — up to my knowledge
- nothing is known yet. Another interesting direction would be to study smoothing effects
using the techniques developed in [287] as regularisation would allow us to reduce the ques-

tion of extinction to the behaviour of the tails.

¢ Duality and stability estimates for related functional inequalities k € (— N, 0): For the one-
dimensional fair-competition regime we obtained the functional inequality Fy resc[p] = ¢
for the sub-critical porous medium case x < x., k¥ € (—1,0), which contains an additional
confinement potential, breaking homogeneity. We were not able to find this inequality in the
literature and it certainly deserves further investigation. Rewriting the inequality as G < &

for suitable functionals £ and G, one can formulate the dual functional inequality
E* < g* (4.30)

via Legendre?! transforms. This dual functional inequality is by itself interesting and we
are currently working on a local stability estimate for (4.30) by linearisation arguments. The
optimisers of the classical HLS inequality are known explicitly, however we do not know the

optimisers of G < £ due to the second moment term. To the best of our knowledge, [76] is

21 Adrien-Marie Legendre (1752-1833) was a French mathematician. For nearly 200 years, books, paintings and articles
have incorrectly shown a portrait of French politician Louis Legendre (1752-1797) representing him, until the mistake was
discovered in 2005.
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the only work in the literature where a stability estimate has been found without knowing
the optimisers, and [111] is the first time stability has been shown for fractional powers,
where the authors proved a stability estimate for the fractional HLS inequality by lifting the
problem up to the sphere.

Once local stability for £* < G* is established, we can hope to obtain global stability by
a concentration compactness argument. Finally, it is possible to transport such a stability
estimate back onto G < £ using the strategy introduced in [73]. The above argument also
works in any dimension, assuming G < £ holds true for N > 2. Using the optimal transport
approach applied in Chapter 3, it seems possible to prove the functional inequality in higher
dimensions at least in the radial setting. Additionlly, this method may allow us to find an

explicit expression for the critical interaction strength x. = x.(k, V) using duality.

4.2 The diffusion-dominated regime m > m,

In the diffusion-dominating regime, two main cases have been studied in the literature: the log-
arithmic case k£ = 0, m > 1 in two dimensions [78], and the Newtonian case k = 2 — N with
m > 1[39], and m > 2 — 2/N [199]. It would be interesting to see whether some techniques we
used for the fair-competition regime in Chapters 2 and 3 could be applied for general k € (—N, N)
and m > m,, extending the results in Chapter 4. In particular, as we have only investigated the
singular kernel case k € (—N, 0) so far, it would be interesting to explore the behaviour in the case
ke (0,N).Ifk € (0, N) islarge enough, one would expect that stationary states for the system (2.3)
can exist. The goal here would be to first show that F,, ;, is bounded below by proving a suitable
version of a reversed HLS-type inequality. This allows then to tackle the question of existence of
global minimisers using concentration-compactness arguments [223, 222, 221, 220].

In the case when m. < m < 1, we expect global minimisers of 7, j to be supported on the whole
space, and therefore, one can use the methods developed in [35] to linearise around a minimiser
— if it exists. More precisely, we expect the linearised flow to be self-adjoint in a weighted space
with an appropriate norm, and a spectral gap of the linearised operator would yield an estimate
for the local rate of convergence to equilibrium, which is optimal for large time. A more chal-
lenging problem is to investigate if the global rate of convergence is given by the asymptotic rate
of convergence, which we do not know how to do so far without a suitable Bakry-Emery-type

estimate [9].

4.3 The aggregation-dominated regime m < m,

In the aggregation-dominated regime m < m. and k € (=N, N), very little is known except the

work [109] by Chen, Liu and Wang where m = 2N /(N + 2), and [32] by Bian and Liu where
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0 < m < 2 —2/N, both focusing on the Newtonian kernel case k = 2 — N. There, the authors
classify blow-up vs global existence of radially symmetric solutions and study their long-time
behaviour in terms of the non-linearity of the diffusion m and the choice of initial data. Their
results rely on the special properties of the Newtonian potential and it is not at all clear how to

tackle the problem for more general k and m.
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5 Part II: Non-woven textiles

This part of the thesis is concerned with the development of a suitable method to show con-
vergence to equilibrium for certain types of kinetic equations where the equilibrium state is not
known a priori. We develop such a method in the context of a specific industrial application:

modelling part of the production process of non-woven textiles.

5.1 Production process of non-woven textiles

Non-woven textiles are neither woven nor knitted, and have nowa-
days replaced traditional materials in many areas. From medi-
cal equipment such as surgical gowns and surgical masks, differ-
ent types of filters for gasoline, oil and air, or coffee filters and
tea bags, to diapers, tampons, mailing envelopes, pillows, cush-

ions and mattress cores — non-woven textiles have become part of

our everyday lives. They are now also being used as geotextiles

Figure 1.6: Non-woven Fab-

for roadway underlayment, erosion control, canal construction,

ric Pr tion Line. Source:
drainage systems, frost protection and agricultural mulch. They ic Production Line. Source

duct catal Zheji
have the advantage that the production process does not require product catafoghie £hejiang

Sanlong Universal Machin-

ery Co., Ltd?2.

to convert fibres to yarn, and one can use recycled fabrics and oil-
based materials to produce non-woven textiles. Depending on the
application, these textiles are required to possess specific properties such as absorbency, liquid
repellence, resilience, stretch, softness, strength, flame retardancy, washability, cushioning, ther-
mal insulation, acoustic insulation, filtration, or act as a bacterial barrier. It is desirable to be able
to control these properties during the production process. In particular, one would like to create
a homogeneous material with the same set of properties at each point. Modelling the produc-
tion process as an evolution equation, this corresponds to finding a stationary state of the system.
Because of the equation’s particular structure, mathematically, it is an interesting question to un-
derstand in which way the system converges to this stationary state and how to find an explicit

rate of convergence in terms of the model parameters.

Let us now describe in more detail how non-woven textiles are produced using melt-spinning
operations. A melted polymer is extruded through nozzles placed densely and equidistantly in a
row at a spinning beam, creating hundreds of individual endless fibres. The visco-elastic, slender

and in-extensible fibres lay down on a moving conveyor belt to form a web, where they solidify

2sinotongyong.en.made-in-china.com/product/nXulrewvhxcM/China%2DSMMSY2DFourY2DBeams%2DNonwoven?,

2DFabric2DProduction’2DLine.html
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due to cooling air streams. Before touching the conveyor belt, the fibres become entangled and

form loops due to highly turbulent air flow.

5.2 The fibre lay-down model

The mathematical description of non-woven textile pro-
duction has received a lot of interest in recent years with
the development of several models [230, 231, 172, 203,
205, 134, 206]. We will now describe the context and the

derivation of the model analysed in Chapter 5.

5.2.1 Stochastic description

In [230] a general mathematical model for the fibre dy-

namics is presented which enables the full simulation of

Figure 1.7: Compound for non-woven

the process. Due to the huge amount of physical de-
fabric production line. Source: prod-

tails, these simulations of the production process usu-
uct catalogue Zhejiang Sanlong Uni-

ally require an extremely large computational effort and
versal Machinery Co., Ltd*®.

high memory storage, see [231]. Thus, a simplified two-
dimensional stochastic model is introduced in [172], where the production of the fibres at the
spinning beam and their entanglement due to air turbulence are not included, focusing instead
on the way in which the fibres distribute onto the conveyor belt, called fibre lay-down. Generalisa-
tions of the two-dimensional stochastic model [172] to three dimensions have been developed by

Klar et al. in [203] and to any dimension N > 2 by Grothaus et al. in [177].

We now describe the model we are interested in, developed in [172]. We track the position
z(t) € R? and the angle a(t) € S! of the fibre at the lay-down point where it touches the conveyor
belt, see Figure 1.8. Interactions of neighbouring fibres are neglected. If x((¢) is the lay-down
point in the coordinate system following the conveyor belt, then the tangent vector of the fibre is
denoted by 7(«a(t)) with 7(a)) = (cos «, sin «). Since the extrusion of fibres happens at a constant

speed, and the fibres are in-extensible, the lay-down process can be assumed to happen at constant

normalised speed ||z((t)| = 1. If the conveyor belt moves with constant normalised speed « in
direction e; = (1,0), then

dx () +

— =7(a) + ke;.

a !

2sinotongyong.en.made-in-china.com/productimage/HbjmKkDMGOWw-2f 100k jgTKfpCgYov/

China-SMMS-Spunbond-and-Melt-Blown-Compound-Non-Woven-Fabric-Production-Line-Ty-S-Series.html
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A=5 A=10

Figure 1.9: Representative path behaviours for solutions X; = (x, ) to model (5.31) with a
stationary conveyor belt (x = 0), potential V' (z) = |z|, for balanced (A = 1) as well as deterministic
(A < 1) and stochastic (A > 1) dominated scenarios. Source: [172].

Note that the speed of the conveyor belt cannot exceed the lay-down speed: 0 < x < 1. The
fibre is produced at a point above the origin, and so the coiling properties of the fibre push the
lay-down point back to z = 0. The fibre dynamics in the deposition region close to the conveyor
belt are dominated by the turbulent air flow. Applying this concept, the dynamics of the angle «(t)
can be described by a deterministic force moving the lay-down point towards the origin and by a

Brownian motion modelling the effect of the turbulent air flow. We obtain the following stochastic
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differential equation for the random variable X; = (¢, a;) on R? x S,

dzy = (7(on) + key) dt,
(5.31)

dOét = [—Tl(Oét) . VIV(ZL})] dt + Ath 5

where W; denotes a one-dimensional Wiener?* process, A > 0 measures its strength relative to the
deterministic forcing, 71 (a) = (—sina,cosa), and V : R? — R is an external potential carrying
information on the coiling properties of the fibre. More precisely, since a curved fibre tends back
to its starting point, the change of the angle « is assumed to be proportional to 7+ (a) - V. V().
See Figure 1.9 for representative path behaviour of the system (5.31) with stationary conveyor belt
(k = 0) and for the choice of potential V' (z) = |z| with different noise intensities A describing the

strength of the air turbulence.

It is shown in [206] that under suitable assumptions on the ex-

ternal potential V, the fibre lay down process (5.31) has a unique v\,/\{
O
r

invariant distribution and is geometrically ergodic. More pre- | AN

cisely, in [206] the authors assume that the potential satisfies

lim M =0, lim

=0, lim |V,V(x)| = o0.

lz|—o0 |V V()] \
(5.32)

Conceptually, these conditions ensure that the potential V' is driv-
ing the process back inside a compact set where the noise can be

. . PR 2
controlled. Under assumptions (5.32), there exists an invariant dis- Figure 1.8: Position (t) € R

1 .
tribution v to the fibre lay-down process (5.31), and some constants and angle a(t) € §° of the fi

Clz9) > 0, \ > 0 such that bre where it is touching the

conveyor belt.

[Pas.ao (Xt € ) = Vlipy < Clan)e™,

where P, o, is the law of X} starting at X = (2o, ), and ||-| -, denotes the total variation norm.
The stochastic Lyapunov technique applied in [206] however does not give any information on how
the constant C(x() depends on the initial position x(, or how the rate of convergence A depends
on the conveyor belt speed «, the potential V' and the noise strength A. We will show in Chapter
5 that a stronger result can be obtained with a functional analysis approach. Our framework is
more general than conditions (5.32) in some aspects (including bounded potential gradient) and
more restrictive in others (assuming a Poincaré inequality). Using hypocoercivity techniques and

adapting the Lyapunov function argument presented in [206] to control the effect of the perturba-

2 Norbert Wiener (1894-1964), an American mathematician and philosopher, was awarded his Ph.D. when just 18 years
old. Wiener was a non-conformist, scientifically and mathematically, but also socially, culturally, politically, and philosoph-
ically. A Wiener process is a one-dimensional Brownian motion, named after the Scottish botanist Robert Brown (1773-1858).
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ion k0,,, we prove convergence in a weighte -norm and derive an explicit rate of convergence
t Oy hted L2 dd licit rate of

in terms of k, D and V.

5.2.2 Kinetic description

As we are not interested in the behaviour of the lay-down point of an individual fibre, but rather
in the distribution of fibres on the belt as the number of fibres is large, we adopt a continuum
description of the stochastic model (5.31). Let us denote by f(¢,z,a) the density of the law of
X; = (24, ¢) in R? x S'. Then by Itd’s Lemma® [266], f(t, z, @) is governed by the linear Fokker—
Planck equation

Orf + (1 + K€1) - Vof — 0o (15 VoV f) = Doaaf (5.33)

with diffusivity D = A?/2. In other words, f(t,z,a) is the probability density distribution of
fibres touching the belt at point 2 € R? at angle o € S! at time ¢ > 0.
In Chapter 5, we study the asymptotic behaviour of the kinetic model (5.33) using hypocoercivity

techniques, a framework which we explain in more detail in the next section.

6 Part II: Hypocoercivity

Hypocoercivity is a method to show convergence to equilibrium for dissipative evolution equa-
tions involving a degenerate dissipative operator, and a first order operator generating a time-
reversible conservative equation. Typically, the dissipative part is not coercive, in the sense that
it does not admit a spectral gap. Additionally, its kernel is not stable under the action of the con-
servative part. A strategy to show convergence to equilibrium for this type of equation has been
developed by several groups in the 2000s, see for instance [185, 178, 225, 129? ], and a theoret-
ical framework was adopted by Villani in [298]. The term hypocoercivity®® has been introduced
by Villani by analogy with problems encountered in the theory of hypoellipticity, a concept intro-
duced by Hérmander in 1967 [193] and in which one is concerned with regularity issues instead of
convergence to equilibrium. For many important equations, hypoellipticity has been established
around the same time as hypocoercivity through the works of Hérau and Nier [185, 184], Eck-
mann and Hairer [141], Helffer and Nier [182]. However, hypocoercivity and hypoellipticity are
independent concepts, despite the fact that they occur together in a number of models. More pre-
cisely, hypoellipticity can be localised as a property, whereas hypocoercivity cannot as it is always

a global property of the operator.

251td’s lemma is occasionally referred to as the Ito—Doeblin Theorem in recognition of posthumously discovered work
of Wolfgang Doeblin.

26Hypo is an ancient Greek preposition, which translates as under, whereas hyper means over or beyond. The term hypoco-
ercivity makes allusion to the fact that the operator is ‘less than coercive’.
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As described by Villani himself, the motivation for developing the general hypocoercivity
theory as presented in [298] was 1) to simplify and unify the approach for the results obtained
in [129, 130] for the Fokker-Planck equation and the Boltzmann equation, and 2) to find gen-
eral methods that apply to various models sharing similar features. Villani derives in [298] re-
sults for exponential convergence to equilibrium for rather general operators in an abstract Hor-
mander form and under some commutator assumptions. With this new framework, Villani was
able to prove an abstract and more general version of the non-linear results previously obtained
in [129, 130].

Since the publication of [298], the hypocoercivity approach has been applied in a variety of con-
texts, from micro-magnetism and fluid mechanics (stability of Oseen vortices [162]) to statistical
mechanics (models for propagation of heat [296, 226]). The advantage of the method is that one
can find an explicit rate of convergence to equilibrium. However, this rate is most likely not opti-

mal, and it remains to see if it is quantitatively relevant in the context of the model.

6.1 Abstract hypocoercivity approach: an example

Let us begin with a concrete and simple yet important example to give an idea of the general and

rather abstract hypocoercivity approach. Consider the kinetic Fokker—-Planck equation

Of +v -Vaf =Ayf+V,-(vf) xeTV veRV,

|2
which has normalised stationary state M (v) := (27)~V/ 2e-1F

. Since we have omitted the pres-
ence of a confining potential, we work on the torus T? to keep the space variable confined. It is

convenient to formulate the equation for the normalised solution  := f/M:
Oth +v-Vyh=Ah—v-V,h (6.34)

with stationary state h,, = 1. Working in the Hilbert space L?(M (v) dzdv), we denote by (-, - )

and || - || the corresponding inner product and norm. Hoping that the operator
L:i=v-Vsh—Ah+v-V,h

may be coercive on H!, one would like to show decay to the equilibrium h., in the H!'-norm
|3, == ||R|[* + ||[Vzh|[* + ||[V,h|[>. This however is not possible. Taking for example a density
h = h(z) € L?*(M (v) dzdv) that is independent of velocities, we find

1d
TN xRN TN xRN
=— fj (Azh — h)Vy - VoM dzdv =0,
TN xRN
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and so decay cannot be guaranteed once the evolution reaches the set of velocity-independent
densities. Since the null space of the dissipative part —A, + v -V, is not stable under the transport
part vV, of the operator, the set of velocity-independent densities is strictly larger than Ker L and
the evolution may not have reached equilibrium yet. The core idea of the hypocoercivity strategy
is to add a mixed term <V$h , Vvh> that can recover the missing decay. Let us define the modified

entropy
G[R] == [[h||* + a||Vuh||* + 26(V h, V,h) + c||[Vh|[? (6.35)

with suitable constants ¢ « b « a « 1. Then G[-] is norm-equivalent to || - |1 as long as b* < ac.
However, these two norms are quite different since L is coercive with respect to G, whereas it is
not with respect to || - ||3;2. The reason is the fact that the mixed term (V,h, V,h) is able to pick
up the influence of the anti-symmetric part B := v - V, of L to recover the derivative in the space

variable:

(ViBh, Vyh) +{Vysh, V,Bhy =(BV.h, V,h)+{(Vsh, V,Bh)
= {(Vzh,B*V,h)+(V,h, V,Bh)
= —(Vzh, BV,hy +(V,h, V,Bh)
= (Vah. [y, Blh) = ||Vl
Here, we used that V, and B commute, anti-symmetry of B, and the fact that [V, , B] = V,.
This shows why it may be useful to work with a Hormander commutator notation similar to Hor-
mander’s hypoellipticity theorem [193]. Let us give the main ideas of a simplified (i.e. only one

commutator instead of several iterated commutators) hypocoercivity statement without going too

much into detail. Following the hypocoercivity formalism established in [298], we write
Of+Lf=0, L:=A*A+B.

In the example (6.34), we have A := (O, V,) and B := (v,0n) - V4. Then A* = (0n, -V, — ),
and so L can be written in Hormander form of second type”: L = — Y. ; A2+ B+ ; C¢iAj) with
¢ := (Oy,v). Let us define the commutator C := [A,B] = AB — (B® ldan)A = (0w, V). [298,

Theorem 18]%® states
Theorem 6.1. If B is anti-symmetric, and there exist constants o, B such that
(i) Aand A* commute with C; A commutes with A (i.e. A; commutes with A; forall i,j € {1,...,2N};

(ii) [A, A*]is a-bounded relatively to ldon + A;

27In short, this means the operator can be written as sum of squares of derivations, plus a derivation, see [185, 141, 182].
28For a detailed description of the commutator notation used here and relative boundedness of operators, see [298].
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6. Part II: Hypocoercivity

(iii) [B, C] is B-bounded relatively to A, A2, C and AC;

then there exists a scalar product (-, ) on H /K, where K := Ker L, that is norm-equivalent to || - ||
such that
(i Lhy) = Ko ([IARIP +[IChIP)

for some constant Ky > 0, only depending on o and B. If, in addition, A*A + C*C is Ky-coercive for some

K5 > 0, then there is a constant X = \(«, 8, K3) > 0, such that

Vvhe H'/K,  ((h,Lh)) = M{(h, h)).

It follows that L is hypocoercive on fluctuations H! /K. It is easy to see that our example (6.34)
satisfies all assumptions of the above theorem. Here, H! /K = {h e H' | §§on, gn AM (v) dzdv = O}
is the orthogonal of all constant functions (hy yin (-, ), and C = V,. Conditions (i)-(iii) are triv-
ially satisfied since (i) A only acts on velocities, whereas C only acts on space, (ii) [A,A*] = Idan

and (iii) B, C] = 0. Thanks to the Poincaré® inequality

VheH' st H hM (v) dadv = 0 : [[V2h|]? + || Voh||? = K| |R|?,
TN xRN
the operator A*A + C*C is coercive on H' /K. Further, ((h, h)) = G[h], and so Theorem 6.1 tells

us that there exists a constant A > 0 such that

d
3G < —2xG[n. (6.36)

A

Generally, it is not possible to show ||h(t)||z1 < [|R(0)||1e~* as explained above. However, it

follows from norm-equivalence between G[-] and || - ||3,, and from (6.36) that
[1A(#)]l32 < col (0[5

onH'/K for some A > 0 and ¢y > 1. This is exactly what we mean by saying that L is hypocoercive

on H'/K.

6.2 Framework for linear kinetic equations

In Chapter 5, we focus on a specific example of a linear kinetic equation conserving mass, a class
of equations for which the general hypocoercivity theory simplifies greatly [135]. For a detailed
account of the general method, see [298, 296] and the references therein. Consider the abstract
ODE

CreTi=ar 637)

2Jules Henri Poincaré (1854-1912) was a French mathematician, theoretical physicist, engineer, and philosopher of
science, and often described as a “polymath’. He was proponent of the view, known as conventionalism, that it is not an
objective question which model of geometry best fits physical space, but is rather a matter of which model we find most
convenient.
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governing the evolution of a density f(¢, z,v), where = and v denote the space and velocity vari-
ables respectively, and f(¢,-) € H for all t > 0 for some Hilbert space #. Here, T denotes a
skew-symmetric transport operator and Q is a collision operator that is assumed to be negative
semi-definite. Both operators are possibly unbounded. Further, let us assume that we have exis-
tence of a unique equilibrium distribution F' € H of unit mass satisfying TF' = QF. The goal is
to show convergence to F in the norm | - | corresponding to the Hilbert space H for initial data

fin € H of unit mass.

Hypocoercivity as a method has been developed for equations where the collision part of
the operator only acts on the velocity variable. In particular, denoting by I the projection onto
velocity-independent densities, MNf := p;F/pp with py := { fdv, we have NQ = QM = 0. Since
the mixing only occurs in the velocity variable, it is not directly obvious why one would expect
to observe convergence to equilibrium both in space and in velocity. However, with the good as-

sumptions on T, the mixing in v can be transferred to z via transport effects.

Under the assumptions that T is skew-symmetric and Q is negative semi-definite, one obtains

the H-theorem

S = <ar.p) <0, (639)

In other words, | - |? is a Lyapunov functional for equation (6.37). However, this does not give
us any information about the kernel of T. Further, since Q is only negative semi-definite and not
coercive, we cannot directly derive convergence to equilibrium from identity (6.38) as the decay in
| - |I* pauses as soon as the solution f(t) reaches the kernel of Q without necessarily being in the
kernel of T. As described in the previous section, this can be remedied by adding a suitable mixed
term as an equivalent norm, for which the operator is coercive. In this section, we describe how
to formulate the framework of Theorem 6.1 for linear kinetic equations conserving mass without
recourse to commutators, following the functional setting in [135]. The main difference of the
approach taken in [135] compared to [298] is to work in an L?-framework instead of H!, giving
important physical information on the behaviour of solutions. For example, one can obtain ex-
ponential decay even if the initial datum f;,, oscillates wildly, meaning that the hypocoercivity
method is not sensitive to the regularity of fi,,. Even though hypoellipticity may provide H!-
regularity, there are two advantages to showing convergence in L?: firstly, the approach in [135]
also applies to equations that are not hypoelliptic, and secondly, an L?-framework is preferable if
one is interested in physical applications and dependence on the initial data. We also point out
that H!-regularisation with global estimates in weighted norms has not been done yet for equa-
tion (6.37). In order to work in L?, definition (6.35) is replaced with a different generalised entropy

using a suitable auxiliary operator.
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6. Part II: Hypocoercivity

6.2.1 Generalised entropy

The main idea of the convergence proof for hypocoercive operators is to find a Lyapunov func-

tional, a generalised entropy, that is better than the ‘natural’ entropy | - |2, by adding carefully cho-
sen lower-order terms. This approach is motivated by [184] in the context of commutator theory
for hypoelliptic operators, see Section 6.1. In the case of a linear kinetic equation of type (6.37), a

suitable generalised entropy G : H — R, is given by

GLIT = IfI? +=(AL £y, e>0

with
A= (1+ (TA*TM) " (TN)*. (6.39)

The *-notation refers to the adjoint in the inner product {-,-) corresponding to . Note that
(TM*TMN is an elliptic operator. The operator A is bounded and regularises the solution to (6.37)
in the space variable (and it is not the same as the operator A in Section 6.1). The idea of choosing
this generalised entropy is due to [135] and allows to use the projection I1 instead of having to
deal with V,,. Here, (TI)* plays the role of the mixed term <Vzh , Vvh> in (6.35), and choosing
A = (TN)* would be enough to build a hypocoercivity theory along the lines of Theorem 6.1. The
main idea of choosing A as in (6.39) is borrowed from Hérau [184]: replacing the #'-norm plus
a mixed term with a mixed term only, but which is divided by a second order operator to obtain
an operator of order zero (i.e. no derivatives). Here, the operator A is of order —1, but allows to
show that solutions to (6.37) decay exponentially fast in L?, i.e. the aim is to find an explicit A > 0

such that (%G < —AG and show that G is norm-equivalent to || - ||2.

6.2.2 Microscopic and macroscopic coercivity

Let us differentiate G along trajectories of the system,

d
aG[f] ={Qf, f) — (AT, f) = e(AT(L = M)f, ) + e(TAS, f) + e(AQf, f), (6.40)
using the fact that T is skew-symmetric, and so <T Lf > = 0, as well as QA = 0 which follows since
g := Af satisfies g = —NTf + MT2MNg and so it is in the kernel of Q. The first term can be conrolled

by the following microscopic coercivity assumption: there exists A,, > 0 such that

—(Qf. )= A (X =T) £ (6.41)

In other words, this means that we require the collision operator Q to be coercive on the comple-
ment of its kernel. In order to control the second term in (6.40), we need that the elliptic operator
ATT1 satisfies a Poincaré inequality, which corresponds to a spectral gap on the macroscopic level.

This can be formulated as the following macroscopic coercivity assumption: there exists Ays > 0
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such that

Aum
TOF? = AN f? ATI > nf|?. 6.42
T Mm|NfI? = (ATOF, f) 1+AMH il (6.42)

In other words, the restriction of T to Ker Q is coercive.

6.2.3 Diffusive macroscopic limit

Take a change of variables (¢, z,v) — (t/e%, x/e,v) in equation (6.37) depending on 0 < € « 1 such

that the rescaled density f(t,z,v) = f (t/2,z/e,v) satisfies
2 d € € 5
6&]0 +eTf=Qf°. (6.43)

Consider fluctuations around the set of velocity-independent densities, that is f¢ = 1f° + ¢ R*® for
some R° € H. Substituting this ansatz into (6.43) and projecting onto the kernel of Q, we obtain
the conservation law

d
e (%) + NTAf* +eNTR = 0, (6.44)

since N? =M, MR = N(1 —N)f¢/e = 0and NQ = 0. Assuming that /¢ — f°and R° — R’ in the
limit € — 0, we obtain the identity

nTn =0. (6.45)

It follows from (6.43) that Q f = 0, and since f? is in Ker Q, we conclude that f° = Mf°. Further,
dividing (6.43) by € and using that Q1 = 0, we have

5%]”6 +Tf=Qf /e =Q—-M)f*/e = QR".
Therefore, we obtain in the limit that T = QRY. Recalling that f* = M9, we have
RO =Q7'Tf0 =QtTnyso, Q:= Ql1—myn -
Finally, dividing (6.44) by € and using (6.45), we obtain in the limit ¢ — 0 the macroscopic equation
O —(TM* QTN =0,

where we used that T is skew-symmetric T* = —T, and [M* = T. In other words, assuming

MTN = 0 corresponds to a diffusive macroscopic limit of equation (6.37).

6.2.4 Exponential convergence

The price to pay by using the generalised entropy G is that one needs to be able to control the last
three terms in (6.40) also. The assumption MTIM = 0 yields [135, Lemma 1]

LIRS %H(l Ml A < 1A =mf-
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It follows from the first estimate that G is norm-equivalent to the Hilbert space norm | - |? if e < 1.

Finally, it remains to show that the following auxiliary operators are bounded:

(AT =M, £) +{(AQf, f) < Cu| (L — M) f? (6.46)

for some constant C'; > 0. Putting all the bounds together, we obtain exponential decay of | f(t)|,
i.e. hypocoercivity, with an explicitly computable rate depending on A,,,, Ay, Cr, assuming that

(6.41), (6.42), (6.46) and MNTI = 0 hold. For the detailed proof of this statement, see [135].

Applications of the hypocoercivity approach in the linear kinetic setting include equations con-
taining confinement terms and different types of collision operators with mass conservation, such
as the Fokker-Planck equation, scattering models and the linearised BGK equations, see [135] and
the references therein. Further recent applications include the fibre-lay down process (5.33) for a
stationary conveyor belt [134], a velocity-jump model for bacterial chemotaxis [69], and particles

interacting with a vibrating medium [1].

7 Part II: Results

In Chapter 5, we apply the hypocoercivity method described above to the linear kinetic equation
modelling the fibre lay-down in the production process of non-woven textiles as formulated in
(5.33). The full hypocoercivity analysis of the long-time behaviour of solutions to this kinetic
model in the case of a stationary conveyor belt x = 0 is completed in [134]. In the case x = 0, there

exists a unique global normalised equilibrium distribution

e—V(.’K)

Fo(z) = SR? V@) dr

For technical applications in the production process of non-wovens, one is interested in a model
including the movement of the conveyor belt, and in Chapter 5, we extend the results in [134] to
the case x > 0. This is not a trivial task for several reasons. First of all, for a moving conveyor belt,
we are not able to find a stationary state for equation (5.33) explicitly. The hypocoercivity method
however is used to find estimates about rates of convergence after the existence and uniqueness of
a steady state have been established.

Secondly, adding the movement of the belt breaks the symmetry of the problem, and the operator
assumptions required for the hypocoercivity strategy to work do not hold in the natural” func-
tional framework. However, the hypocoercivity theory is based on a priori estimates [135], and is
therefore stable under perturbation. We will show in Chapter 5 how the hypocoercivity technique

can be adapted to this context under the assumption that the conveyor belt moves slow enough.
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7.1 Functional framework

To set up a suitable functional framework for the fibre lay-down process, we rewrite the Fokker-

Planck equation (5.33) as an abstract ODE
Of =Lef =(Q=T)f+Psf, (7.47)
where Q := Dd,,, represents collisions, P,; is the perturbation introduced by the moving belt,
Puf = —re1-Vaf,
and the transport operator T is given by
Tfi=7 Vof —0a (T7- V. VF).
The main idea here is to introduce a weight function g that allows the control of the perturbative

term in the case when the potential gradient V.V is unbounded:

V.V (x)

g(z, @) = exp (ﬁv(:c) + Ve V(@)D (T(a) ‘ IVV(x)>>

if [V,V| — was |z|] — o, and g = 0 otherwise. For a detailed definition of 5 > 1 and T €

C! ([-1,1]),T > 0, see Chapter 5 Section 3. We consider solutions to (7.47) in the space L?(dpu,) :=
L?(R? x S!, du,) with measure

dx da

dpy(x, a) = (ev(x) + Cmg(m,a)) 5

We denote by (-, -), the corresponding scalar product and by | - |, the associated norm. Here,
¢ > 01is a free parameter that needs to be chosen big enough depending on the relative speed of
the conveyor belt « in order to guarantee convergence to equilibrium.

In this functional setting, the operators T, Q and P, have several nice properties that allow us
to apply the general hypocoercivity theory for linear kinetic equations conserving mass as out-
lined in [135]. First of all, if k = 0, then Q and T are closed operators on L?(dy) such that Q — T
generates the Cy-semigroup (@~ on L2(duo) [134]. Adding the movement of the belt (x > 0),
we use the additional weight function g > 0 to control the perturbative term P, in the case of
unbounded potential gradients. This allows us to construct a Cy-semigroup for L, = Q — T + P,
also for k > 0 (Theorem 4.1 in Chapter 5). Note that L, is closable in L?(dyu, ) and its operator core
is given by C := C® (R? x S!'). Unless otherwise specified, all computations are performed on C,
and can be extended to L?(dy,) by density arguments.

The orthogonal projection I1 on the set of local equilibria Ker Qis INf := 5= {, f do, and we define
the mass of a given distribution f € L?(du,.) by My = §,, ILf dz. Integrating (7.47) over R? x S*,

we see that the mass of any solution of (7.47) is conserved over time. Moreover, any solution of
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(7.47) remains non-negative as soon as the initial datum is non-negative.

In the case of a stationary conveyor belt x = 0, it was shown in [134] that the fibre lay-down
model (7.47) fits into the hypocoercivity theory of linear kinetic equations conserving mass de-
scribed in Section 6.2. Indeed, the collision operator Q is symmetric and negative semi-definite on
C,

(Qf fo = =Doafl; <0,
i.e. Qis dissipative in L?(duo). Further, we have TNf = e~V 7 - V,uy for f € C with uy := eV Tf,
which implies Tl = 0 on C. Our approach for tackling the problem of exponential convergence
if K > 0 s to treat the system as a small perturbation of the case x = 0 for which microscopic and

macroscopic coercivity are satisfied for sufficiently nice’ potentials V.

In order to ensure that the operators Q and T satisfy microscopic and macroscopic coercivity
respectively, we need to impose certain assumptions on the external potential V. Further, in order
to recover convergence to equilibrium for the perturbed equation x > 0, we need to make sure
that the perturbation P, can be controlled in a suitable way. Therefore, we make the following

assumptions on the external potential V:

(H1) Regularity and symmetry: V € C*(R?) and V is spherically symmetric outside some ball
B(0, Ry).

(H2) Normalisation: §g, e V@) dg = 1.

(H3) Spectral gap condition: there exists a positive constant A such that forany u € H'(e=Vdx)

with {;, ue™Vdz = 0, we have the Poincaré inequality

[t i [t
R2 R2

(H4) Pointwise condition: there exists ¢; > 0 such that for any = € R?,
V2V (z)] < er(1+ [V V(@)
where V2V denotes the Hessian of V (z).

(H5) Behaviour at infinity:

2
fim Y=V @ i VeV @l _ o
lz|—0 V() jz|—o0 |V V()]

Assumptions (H2-3-4) are as stated in [134]. Assumption (H1) assumes regularity of the potential
that is stronger and included in that discussed in [134] since (H1) implies V € ;> (R?). Roughly
speaking, (H2) and (H3) require a sufficiently strong growth of V' (z) at infinity, whereas (H4) puts
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a limitation on the growth behaviour. This leaves room, however, for a large class of confining
potentials including V (z) = (1 + |z|?)*/2, s > 1. Assumption (H5) is only necessary if the poten-
tial gradient |V, V| is unbounded. Both bounded and unbounded potential gradients may appear
depending on the physical context.

Thanks to the spectral gap condition (H3), microscopic and macroscopic coercivity follow:

¢ Microscopic coercivity: The operator Q is symmetric and the Poincaré inequality on S',

1 ) 1 1 2
— |00 f|*da = — f—— fda | da,
2 st 2 s1 2 s1

yields that for all f in the operator domain D(Q),
~Qf.fo =D -Mf[5.

* Macroscopic coercivity: The operator T is skew-symmetric and for any i € L?(du) such that

up, = eVMh e H'(e7Vdz) and ({5, o hdp = 0, we have

xSt
1
HTI"IhHg = — JJ e V|V up)? dz da
4
R2 xSt

A _ A 2
> o jf e Vui drda = 5 INA|;
R2 xSt

by the spectral gap condition (H3).

Inspired by [135], we define the hypocoercivity functional

GLI1 = I F12 + <1 (AL, o

with the auxiliary operator A as given in (6.39), and for some suitably chosen €; € (0,1) to be

determined later. It follows from [135] that G[-] is equivalent to || - |2 on L?(du,),

1—¢g 14+¢e
(552) w2 < ot < (52 iz,

7.2 Hypocoercivity estimate and convergence

In Chapter 5, we prove a hypocoercivity estimate on the dissipation of the generalised entropy
G that allows us to deduce both existence and uniqueness of an equilibrium distribution F, to
equation (7.47) in the case of a moving conveyor belt x > 0. Let us emphasize that a specific
contribution of this work is to introduce two (and not one as in [135, 134]) modifications of the
entropy: 1) we first modify the space itself with the coercivity weight g, then 2) we change the
norm with an auxiliary operator following the hypocoercivity approach. As opposed to [134],
where the authors estimate dG/d¢ on fluctuations around the equilibrium Fj for x = 0, we derive

a more general estimate for any f € L? (du,), involving an additional mass term:
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Proposition 7.1. Assume that hypothesis (H1-2-3-4-5) hold and that 0 < x < 1 is small enough (with a
quantitative estimate). Let fi, € L?(du,) and f = f(t,, ) be a solution of (5.33) in L*(dpu.) subject to
the initial condition f(t = 0) = fin. Then f satisfies the following Gronwall type estimate:

CGU (1) < ~nGLF( )] + 1M, (7.48)

where vy, > 0,v2 > 0 are explicit constants only depending on x, D and V.

Estimate (7.48) allows us to establish existence of solutions to (7.47) using semigroup theory
(Theorem 4.1 in Chapter 5). More importantly, the above hypocoercivity estimate is the key in-
gredient that ensures existence and uniqueness of an equilibrium distribution Fj, € L2 (duy) for
equation (7.47). The main idea of the existence proof is to seek a stationary state in the bounded
set

B - {fe L2(Ap) < GIf] < 2%, 720, My = 1}
1

using a contraction argument. More precisely, we show in Chapter 5 Section 4.2 that the set B is
preserved under the action of the semi-group: S;(8) < B for all t > 0. Together with the hypoco-
ercivity estimate (7.48) and Banach’s fixed point theorem, this allows us to find u’ € B such that
Si(u') = u' for all ¢ > 0. Further, proving that B is sequentially compact and repeatedly apply-
ing the semi-group property of S;, we show that there exists u € B independent of ¢ such that
Si(u) = ufor allt > 0. This concludes the existence of a stationary state F}, of unit mass for
equation (7.47). Moreover, when applied to the difference of two solutions with the same mass,
the hypocoercivity estimate (7.48) gives an estimate on the exponential decay rate towards equi-

librium, and so uniqueness follows.
Our results in Chapter 5 can be summarised by the following theorem:

Theorem 7.2. Let fin € L*(du,) and let (H1-2-3-4-5) hold. For 0 < r < 1 small enough (with a
quantitative estimate) and ( > 0 large enough (with a quantitative estimate), there exists a unique non-
negative stationary state F,, € L*(dp,;) with unit mass My, = 1. In addition, for any solution f of (5.33)
in L*(dp,) with mass M and subject to the initial condition f(t = 0) = fin, we have

1f(t.) = MyFy],, < C |l fin — MyFul,, e,

where the rate of convergence A\, > 0 depends only on x, D and V', and the constant C' > 0 depends only

onDandV.
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In the case of a stationary conveyor belt x = 0 considered in [134], the stationary state is char-
acterised by the eigenpair (Ag, F) with Ag = 0, Fy = e~", and so Ker Ly = (Fp). This means that
there is an isolated eigenvalue Ay = 0 and a spectral gap of size at least [\, 0] with the rest of
the spectrum X (L) to the left of —)\ in the complex plane. Adding the movement of the conveyor
belt, Theorem 7.2 shows that KerL,, = (F}) and the exponential decay to equilibrium with rate
Ay corresponds to a spectral gap of size at least [\, 0]. Further, it allows to recover an explicit
expression for the rate of convergence )\ for x = 0. In general, we are not able to compute the

stationary state F}; for x > 0 explicitly, but F; converges to F = eV weakly as k — 0.

Remark 7.3. Let us compare our assumptions (H1-2-3-4-5) with the conditions the authors require in [206]
to show a stochastic convergence result in the case of a perturbed process (k. > 0). Our framework (H1-
2-3-4-5) is more general than conditions (1.4) in some aspects (including bounded potential gradient) and
more restrictive in others (assuming a Poincaré inequality). The proof in [206] relies on the strong Feller
property which can be translated in some cases into a spectral gap; it also uses hypoellipticity to deduce
the existence of a transition density, and concludes via an explicit Lyapunov function argument. With our
framework (H1-2-3-4-5), and adapting the Lyapunov function argument presented in [206] to control the

effect of k0, , we derive an explicit rate of convergence in terms of k, D and V.

7.3 Perspectives

Working in L?(du,;) < L?(duo) we are treating the operator L,; as a small perturbation of the case
x = 0 with stationary conveyor belt. The natural space to investigate the convergence to F}; in the
case k > 0 however is L? (F;* dz da). In this L?-space the transport operator T — P,, is not skew-
symmetric and the collision operator Q is not self-adjoint, so the hypocoercivity method [135]
cannot be applied. To get around this, one can split the operator L, differently into a transport

and a collision part following the approach in [69]. More precisely, we can write L,, = Q — T

where

Qf = 0a (Douf - %E=f) |

Tf=(r+re1) Vof —0a[(rh VoV + L) f] .
Then in L? (F ! dz da) the operator Q is symmetric and negative semi-definite, and the operator
T is skew-symmetric. Furthermore, the stationary state F lies in the intersection of the kernels
of the collision and transport operators, i.e. Fy, € KerQ n Ker T. The hypocoercivity approach
requires microscopic and macroscopic coercivity of Q and T. To this end, we need to be able to

control the behaviour of the stationary state at infinity as in [69], i.e. for large enough |z,
VaeS', eV < Fi(z,a) < e 2V (@)

for some constants 01,02 > 0. If true, this would be an important physical information on the

stationary state, but we still do not know how to prove it. Even with this information at hand,
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this approach requires that the existence of the stationary state be known a priori. The rate of
convergence one obtains in this case may be different from the rate obtained here, and it is not

clear which method yields the better rate as both are most likely not optimal.

There are several ways in which one could seek to improve the results in Chapter 5. For exam-
ple, one could try to push the convergence result to larger values of « using bifurcation techniques.
More precisely, for a path p : £ — Fj, mapping « to the stationary state F}, of equation (5.33), The-
orem (7.2) guarantees that p is defined on a small interval [0, x¢) for some 0 < ko « 1. It may be
possible to extend this interval by showing that the implicit equation P(k, F,;) = 0 defining the
stationary state F); is non-degenerate, i.e. that 02 P(k, F,;) # 0.

Another future avenue would be to apply the techniques developed here to other models where

the global equilibrium is not known a priori.
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8 Part IIl: From micro to macro

The 6" problem asked by Hilbert™ in 1900 is concerned with the axiomatisation of physics. More
than 100 years later it is still unresolved, and might never be considered completed as the problem

statement is rather broad. Precisely, the original German text Mathematische Probleme states:

Durch die Untersuchungen tiber die Grundlagen der Geometrie wird uns die Auf-
gabe nahegelegt, nach diesem Vorbilde diejenigen physikalischen Disciplinen axioma-
tisch zu behandeln, in denen schon heute die Mathematik eine hervorragende Rolle
spielt; dies sind in erster Linie die Wahrscheinlichkeitsrechnung und die Mechanik.
Was die Axiome der Wahrscheinlichkeitsrechnung® angeht, so scheint es mir wiin-
schenswert, dafs mit der logischen Untersuchung derselben zugleich eine strenge und
befriedigende Entwickelung der Methode der mittleren Werte in der mathematischen
Physik, speziell in der kinetischen Gastheorie Hand in Hand gehe.

Ueber die Grundlagen der Mechanik liegen von physikalischer Seite bedeutende Un-

tersuchungen vor; ich weise hin auf die Schriften von Mach*, Hertz**, Boltzmann*

35. es ist daher sehr wiinschenswert, wenn auch von den Mathematik-

und Volkmann
ern die Erérterung der Grundlagen der Mechanik aufgenommen wiirde. So regt uns
beispielsweise das Boltzmannsche Buch {tiber die Principe der Mechanik an, die dort
angedeuteten Grenzprocesse, die von der atomistischen Auffassung zu den Gesetzen
tiber die Bewegung der Continua fiihren, streng mathematisch zu begriinden und
durchzufiihren. Umgekehrt konnte man die Bewegung tiber die Gesetze starrer Kor-
per durch Grenzprocesse aus einem System von Axiomen abzuleiten suchen, die auf
der Vorstellung von stetig verdnderlichen, durch Parameter zu definirenden Zustian-
den eines den ganzen Raum stetig erfiillenden Stoffes beruhen - ist doch die Frage nach

der Gleichberechtigung verschiedener Axiomensysteme stets von hohem principiellen

Interesse.

The problem, suggested by Boltzmann’s work on the principles of mechanics [45], is therefore to
develop “mathematically the limiting processes [...] which lead from the atomistic view to the

laws of motion of continua”, namely to obtain a unified description of gases, including all levels

30David Hilbert (1862-1943) was a German mathematician and is recognised as one of the most influential and uni-
versal mathematicians of the 19*" and early 20*” centuries. He was invited to address the 2" International Congress of
Mathematicians in Paris in 1900, where he proposed 23 problems that are known today as Hilbert's problems.

31vgl. Bohlmann, Ueber Versicherungsmathematik 2te Vorlesung aus Klein und Riecke, Ueber angewandte Mathe-
matik und Physik, Leipzig und Berlin 1900

%2Die Mechanik in ihrer Entwickelung, Leipzig, zweite Auflage. Leipzig 1889

33Dje Principien der Mechanik, Leipzig 1894

34Vorlesungen iiber die Principien der Mechanik, Leipzig 1897

%5Einfithrung in das Studium der theoretischen Physik, Leipzig 1900

64



8. Part III: From micro to macro

of description. In other words, the challenging question is whether macroscopic concepts can be
understood microscopically.

The set of methods for making the connection between microscopic and macroscopic models are
called multiscale analysis or scaling process or limiting process. The idea of multiscale analysis is to
mathematically derive one particular model describing macroscopic phenomena in the observable
physical world, from a microscopic model that is based on interactions between atoms, particles,
or agents. Typically, the microscopic model (depending on space, time and velocity) contains
more information than the macroscopic one (depending only on space and time). One can make
the connection between these two regimes by averaging over the velocities and rescaling the time
and space variables. Mathematically, this corresponds to "zooming out’, and so we are exchanging
the loss of information on the kinetics with the ability to capture emerging dynamics of the bulk of
particles that were only implicit in the kinetic equation. The choice of rescaling influences which
phenomena we are able to observe on the macroscopic scale and has to be chosen in a sensible way
to match the physical context: if we speed up time too much with respect to the scaling in space,
the particles may escape to infinity and we see nothing; if we do not speed up time fast enough, no
change will occur on the macroscopic level and so no interesting phenomena arise. Since certain
information are lost in the scaling process, it is possible that different kinetic models lead to the
same macroscopic equation. Examples of limiting processes for kinetic equations can be found in
the classical references [263, 103, 294]. Let us mention that the terms ‘microscopic’, 'macroscopic’
and ‘'mesoscopic” are sometimes used ambiguously in the literature. In this thesis, we will use "mi-

croscopic’ in the sense of "kinetic” as opposed to a regime describing individual particle dynamics.

Building on the ideas of Maxwell in [232], in 1872, Boltzmann published his famous work [46]

on what can be considered the master equation of kinetic theory

af+v-Vaof =Q(f, f), (8.49)

where z € RY represents position and v € R velocity, for the probability density f(¢,z,v). The
bilinear collision operator Q may differ depending on the type of microscopic interactions at play.
Equation (8.49) is known as the Boltzmann equation and was derived for a monoatomic rarefied gas
by merging mechanical concepts and statistical considerations [232, 46]. It describes gas particles
undergoing free transport and collisions. In the modern literature, the term Boltzmann equation
is often used in a more general sense, referring to any kinetic equation that describes the change

of some quantity such as energy, charge or particle number in a thermodynamic system.

Chapter 6 is centred around the idea of understanding the relationship between different ki-

netic and macroscopic models using multiscale analysis. Diffusion approximations to kinetic
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equations have been studied in various works, see for example [293, 13, 26, 121, 210, 258] and
the references therein. In this section, we discuss two particular scaling approaches that play a
role in Chapter 6, grazing collision limits and parabolic diffusion limits, exemplified by the Boltz-
mann equation (8.49) for different choices of collision kernels Q. The latter shows how a limiting
process can be used to derive the classical Keller-Segel model (1.1) from a kinetic description for

bacterial motion.

8.1 The Boltzmann equation: grazing collisions

The Boltzmann equation (8.49) has generated over the past century (and is still generating) a vast
volume of literature, see [294] and the references therein. The Boltzmann collision kernel Q is

given in its general form by

QD) = [ [ Bl =0 fa = 1) dod

where v and v, are the pre-collisional velocities that determine the post-collisional velocities v’

and v}, respecting conservation of energy and momentum, parametrised by the unit vector o:

;U Uy

-T2 2 7
, Ut Ue U — vy
vy = —

2 2

For brevity, we write f;, = f(t,z,v}) etc. The deflection angle # € [0,7/2] is such that cos§ =
(v — vy) - 0/|v — vyg|. The kernel B is determined depending on the nature of interaction between
particles. We will here only concentrate on one particular type of particle interaction that is rel-
evant for the analysis in Chapter 6: If we assume that particles interact through a 1/r* force law,
where r is the distance between interacting particles, then the kernel B has a non-integrable sin-
gularity at ¢ = 0 which corresponds to grazing collisions. Grazing collisions are collisions that do
not deviate the particles too much. In many studies, the singularity issue is avoided by replacing
B with a locally integrable collision kernel, which is usually referred to as cut-off process [175].
But what happens if there are more and more collisions, but these collisions generate smaller and
smaller deviations? This limit process is known as grazing collision limit.

It is known that in the limit and under certain assumptions, solutions of the Boltzmann equation
(8.49) converge to solutions of the Fokker-Planck-Landau (FPL) equation [158, 157]. The FPL equa-
tion describes the binary collisions between charged particles occurring in a plasma [128, 219] and
was introduced as an approximation of the Boltzmann equation (8.49) in the case of Coulomb in-
teractions [208]. In fact, the Boltzmann operator Q( £, f) is meaningless in the case of a Coulomb in-
teraction as the effect of grazing collisions prevails over the effect of other collisions in that case. In

the early 90’s, Degond and Lucquin-Desreux [122] and Desvillettes [127] showed the convergence
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8. Part III: From micro to macro

of the Boltzmann operator Q to the FPL operator (not to be confused with convergence of the solu-
tions). For further results clarifying the connection between the Boltzmann equation and the FPL
equation, see [291, 158]. For more details on the grazing collision limit, see [8, 122, 127, 291, 292]
and the references therein. In Chapter 6, we will use a grazing collision limit to derive a Vlasov-
type flocking equation from a kinetic model for collective animal behaviour. The kinetic model
is of Boltzmann-type in the sense that the collision kernel describing the interaction between two
colliding gas particles is replaced with an interaction kernel describing the communication mecha-
nism between individuals. Albeit very different applications, the general structures of these equa-
tions are similar. Applying a grazing limit to this Boltzmann-type equation, we obtain a flocking
model that has been previously derived from individual-based models (Vicsek or Cucker-Smale

models), see Chapter 6 Section 3.2.

8.2 Bacterial chemotaxis: a kinetic description

Boltzmann's idea for modelling the dynamics of a rarefied monoatomic gas can be transferred to
a wide range of applications using kinetic equations of a similar structure. In the context of this
thesis, it is noteworthy that a non-linear generalisation of the classical Keller-Segel model (1.1)
can, in fact, be derived from a kinetic Boltzmann-type equation via multiscale analysis. Or, to be
more precise, by making the connection to the underlying microscopic dynamics that drive the
emerging patterns on the macroscopic level, we can understand better why certain limitations of
the classical Keller-Segel model arise. In fact, the classical Keller-Segel model does not take the
microscopic scale into account and it is an oversimplified description of the real dynamics as can
be seen by the dramatic blow-up in the two dimensional case [136]. Starting with a microscopic
description of the movement of a single cell in response to chemical gradients, one can use a diffu-
sive limiting process to derive a macroscopic model for bacterial chemotaxis. We will here explain
this scaling in more detail since it provides the mathematical tools for performing the multiscale

analysis of a two-dimensional kinetic models for social interactions studied in Chapter 6.

Let us consider a model for bacterial chemotaxis, where the first equation in (1.1) (macroscopic
evolution of the cell density) is replaced by a kinetic equation, whilst the chemoattractant concen-

tration S(¢, ) is still governed by the macroscopic diffusion equation
0¢S = DgAS —aS+ fp. (8.50)

where p(t,z) = § ., f(t,z,v)dv denotes the macroscopic cell density. Here, « > 0 and 8 > 0 are

the degradation and production rates of the chemoattractant respectively.
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The motion of a single bacterium combines
so-called run and tumbling phases. During a
run phase a bacterium swims at a constant
speed c in a given direction, while during a
tumble event it changes direction in a way that
is almost uniformly random, see Figure 1.10. i - High

. . . Congentration Concentration
Therefore, the evolution of the microscopic

density of cells f(t,z,v) can be described by
Figure 1.10: Run and tumble swimming pattern

of E. coli . Source: [142].

the following Boltzmann-type equation, pro-
posed in the pioneering works of Othmer,

Dunbar and Alt [247, 2,274, 150, 301]:

Of +v-Vof = f T[S](V',v) f(t,z,0") dv" — X[S]f(t,z,v) . (8.51)
N , v'eV

run tumble
Here, the set V' of all possible velocities is bounded and symmetric in general. The tumbling
kernel T'[S](v,v") describes the frequency of changing velocity from v to v’ as a function of the

chemoattractant S, and the tumbling rate is given by A[S] = § ,_., T[S](v,v") dv’. In absence of any

v'eV
external stimulus, E. coli perform a random walk, and so T'[0] is a positive constant. E. coli have
receptors on their outer membrane that allow them to sense changes in chemical concentration
in their environment, which in turn introduces a bias into their tumbling frequency, and so it is
reasonable to assume that E. coli react instantaneously to a variation of S along their trajectories,

DS

T[SI(w, ) = ¥ (Dt) G (0 v V.S)

where % = 0:S + v -V, S denotes the material derivative of S. The tumbling kernel T is defined
in analogy with the Boltzmann collision kernel B. However, T is not bilinear as it depends on the
macroscopic cell density p via the dynamics of S (8.50). Further, notice that the tumbling kernel
does not depend on the posterior speed v’ as cells can be considered to choose a new direction
uniformly random during a tumble. Finally, the function ¢ : R — R~ is decreasing, expressing
that a cell is less likely to tumble when the external chemical signal increases along the cell’s

trajectory.

8.3 Parabolic scaling

When the bias (that is, the amplitude of the variation of ¢) is small compared to a cell’s unbiased
movement, we expect the limiting macroscopic equations to be of diffusion or drift-diffusion type,
see for instance [104] for a rigorous proof. Therefore, a parabolic diffusion limit is well adapted to

capture the macroscopic dynamics of (8.51). We will here explain the limiting process performed
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8. Part III: From micro to macro

in [265] that allows to recover the classical Keller-Segel model for the fully coupled system.

The key assumption allowing to pass to a macroscopic description is that the turning proba-

bility T[S](v,v’) is a small perturbation of a random turning process,

T[S](U, v,) = '(/}O + 5¢0¢[S](v) ; exl,

where the signal response function ¢ is to be chosen according to the reaction of cells to the
stimulus S. Rescaling the kinetic equation to its non-dimensional form, and changing variables
(t,z,v) — (t/e%,x/e,v), we obtain the following equation for the rescaled density f¢(t,z,v) in the

new variables:
coft +v-Vof = E(pf(t0) - IVIFS(t,0) +

(8.52)
ML[ Mﬁmofmaumw—v¢wmwfwamy
v eV

where p°(t,z) = § ., f*(t, 2, v)dv denotes the macroscopic cell density, and j is a non-dimensional
coefficient of order 1. Taking the limit ¢ — 0, and assuming that f<, p°, S¢ converge to f°, p°, S°
respectively, the dominant term is a relaxation towards a uniform distribution in velocity at each
position: fO(t,z,v) = p°(¢,z)/|V|. Integrating (8.52) over V, we obtain

1

Op° + V.55 =0, j& = EJ vfe(t, z,v)dv. (8.53)
veV

In order to determine the bacterial flow j¢ € RY, we integrate (8.52) against v € V/,

€0y <J vfe(t,x,v) dv) +V,- <J v®vfE(t,x,v) dv)
veV veV

= —ulVIE— vl | dlSTI)f (@, v) d,

which becomes formally in the limit ¢ — 0:

1
= V. (0"t 2)— 2dv) — pO(t f o[S°)(v) dv.
P == (00 e | P ) = e I
Hence, by (8.53), the cell density p" solves the macroscopic drift-diffusion equation
Oup” = DpAp” =V - (p"al57), (8.54)

where the macroscopic bacterial diffusion coefficient D, and the chemotactic flux u[S"] are de-

rived from the microscopic parameters 1, the velocity set V and the signal response function ¢:

1
D,=—— v|? dv, u[s°] = J o(v-VS%) d
= T o Vi

The only unknown of the model remains the response function ¢ which indicates how a cell re-

acts to chemical variations in its environment. In the most general description, it is only assumed
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to be odd and decreasing in order to be consistent with the biological context. Linearising (8.54)
by assuming that the chemotactic flux is of the form u[S] = xV.S, we obtain exactly the classical
Keller-Segel model (1.1). In other words, the macroscopic model (1.1) describes sufficiently well
the observed behaviour as long as the non-linear terms of the chemotactic flux are not predomi-

nant, which holds true for small enough chemical gradients.

9 Part III: Collective animal behaviour

Migrating herds of ungulates, zigzagging flocks of birds, stationary aggregations formed by rest-
ing animals, moving bands of bacteria or milling schools of fish are just some of the many patters
that we observe in animal communities. In many instances, these (temporarily) stable macroscopic
patterns are of surprising complexity but appear with remarkable regularity. How do these pat-
terns arise? Can we reproduce them mathematically? And if yes, which are the driving factors
for the dynamics? In Chapter 6, we try to answer some of these questions focusing on collective
behaviour in absence of a leader, which is why we call it self-organised behaviour. If each individual
can only communicate with neighbours within a certain range, which is the case for starlings and
certain types of bats for example, how is it possible that we observe beautiful coordination on a

macroscopic level, as if the group is moving with one body and one mind?

A

=14
(@) (b) ©
Figure 1.11: MurMuURATIONS by photographer and artist Alain Delorme?S.
Source: Delorme’s website3”.

Over the past 10-20 years a multitude of kinetic and macroscopic models have been introduced
to investigate the formation and movement of various biological aggregations: from cells [22, 5]
and bacteria [257] to flocks of birds, schools of fish and even human aggregations (see, for exam-
ple, [290, 124, 147, 146, 153, 86] and the references therein). Generally, these models assume that
individuals, particles, or cells can organise themselves in the absence of a leader as a results of

various social forces: repulsion from nearby neighbours, attraction to far-away neighbours (or to

36Did you think you are looking at birds? This art project tricks the eye by making trash bags look like flocks of starlings.
For more details, see www.wired.com/2014/05/alain-delorme-murmurations/.
374ww.alaindelorme. com/works-murmurations
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9. Part III: Collective animal behaviour

roosting areas [93]) and alignment/orientation with neighbours positioned at intermediate dis-

tances.

9.1 Overview of models and scalings

)
In Chapter 6, we consider two families of non- }ll}ll)pz;]f&?gd 1D Fokker—Plank
(in space) model
local kinetic models proposed in [147, 146, 153], model
A
one being one-dimensional, and the other two- :
. P

dimensional, and make the connection to sev-
eral macroscopic models using multiscale anal-

model
ysis (parabolic limits/grazing collision limits),

see Figure 1.12. In this section, we give an

2D Fokker—Plank

> (in space) model
|

)
A 2D Fokker—Plank

(in orientation)

overview of the models and scaling approaches model
—

presented in Chapter 6, summarising the obtained
results. Figure 1.12: Scaling approaches taken in

Chapter 6.

The following one-dimensional model was introduced in [147, 146] to describe the densities
of left-moving (u~) and right-moving (u") individuals that interact with conspecifics via social

interactions:

oput + yo,ut = —ATut 4+ ATu, (9.55a)

O~ — y0,u” = ATut — AT (9.55b)

Here, individuals travel at constant speed v and AT = A*[u™, u™] denotes the rate at which right-
moving individuals turn left (vice versa for A= = A~ [u',u~]). In Chapter 6, we generalise the

turning rates in [147, 146, 144] and assume that

M[ut,u™] =M + Xaf(yn) + Aaf(W3) (9.56)

where yn = yn[u®,u"]and yF = y5[u*, v ] denote the non-directed and directed turning mech-
anisms respectively. The turning function f(-) is a non-negative, increasing, bounded functional
of the interactions with neighbours, and A1, A2, A3 denote constant turning rates. In Chapter 6,
we focus on two particular choices of A* corresponding to models M2 and M4 in [146]. We focus
on these two particular choices because: (i) model M2 with A\; = 0 has been generalised to 2D
in [153]; (ii) model M4 with A, = 0 has been investigated analytically and numerically, and it was
shown that it can exhibit Hopf bifurcations (even without alignment forces) giving rise to spatio-
temporal patterns such as rotating waves and modulated rotating waves [56]. In contrast, model

M2 with A = 0 does not seem to exhibit rotating waves in the absence of alignment, see [146].

71



1. INTRODUCTION

We perform a parabolic scaling of the kinetic model (9.55) via (t,z) — (t/e?,z/e), using two
different scaling assumptions. Firstly, let us assume that individuals have a reduced perception of
their surroundings for small values of ¢ [143], that is, in rescaled variables

£ (wblu,01) = ef (yh[w J/ eou]), f(uwlul) = ef (ynlul)

where v := ut +u~ and v := y(ut — v™). We obtain formally in the limit e — 0,
0t = Dodugtt — Oy (SO u V(u)) ,

with diffusion rate Dy = +2/(2)1) and drift rate So = A37/(2\1) explicitly given in terms of the
microscopic parameters. The expression for the velocity V (u) differs for M2 or M4.
Secondly, if instead we assume f to be a linear function with a very weak directed turning be-

haviour, we can write
M=+ X KN wu+ e Ayh[u] (9.57)

with yn[u] = K¥ xu for a social interaction kernel KV given in terms of attraction, repulsion and
alignment terms. By taking the limit £ — 0 in (9.55) with scaling assumption (9.57), we obtain in

Chapter 6 a parabolic equation with density-dependent coefficients,

dvu = 0, (D[ul,u) — 2, (S[ulu(yp[u) - yh[u]) ). (9.58a)

_ 8l _ Azy
D[u] N 2(/\1 +)\2KN *u) and S[U] N 2(/\1 +)\2KN *u)

(9.58b)

A specific case of the 1D kinetic model (9.55) has been generalised to a 2D kinetic Boltzmann-

type equation in [153]:

atu + Y€y vxu = J T(X7 ¢/a qj))u(xa (b/a t)d(b/ - )‘(Xa ¢)u(x7 ¢a t) . (959)
Here, u(x, ¢, t) is the total population density of individuals located at x = (z,y) € R?, moving at
a constant speed v > 0 in direction ¢ € [0,27). The term e, = (cos ¢, sin ¢) gives the movement
direction of individuals. The re-orientation terms, A(x, ¢) and T'(x, ¢', ¢) depend on the non-local
interactions with neighbours, which can be positioned in the repulsive, attractive, and alignment
ranges depicted in Fig. 1.13. Thus, these terms have three components each, corresponding to
the three social interactions, T'(x, ¢, ¢) = Tu(x, ¢, ) + Ta(x, ¢, &) + T\-(x, ¢, ¢), and we define
A= Z j )‘j with

us

>‘j(x7¢/) = J Tj(xa¢,7¢)d¢v j = Taaaal .

For a detailed description of the turning mechanism, see Chapter 6 Section 3. In Chapter 6, we

generalise the turning mechanisms T}, j = {al, a,}, from [153] by adding a constant turning rate,

72



9. Part III: Collective animal behaviour

T; := n;/(27) + AsT} for constants Ay := 7, + 1 + 1, and A3 > 0 chosen according to the biological

context.

Fetecau [153] showed that by imposing the turning angle Attraction

to have only two possible values ¢ = =, the 2D model

(9.59) can be reduced to the 1D model (9.55) for a specific

alignment

choice of turning rates A*. In Chapter 6, we perform a

similar reduction making the connection to the 1D model

(9.55) for A;,A3 = 0, A2 = 0 and a linear turning func-
tion f(z) = 2. The model we obtain is similar to M2
in [146].

Figure 1.13: Interaction ranges.

Further, in Chapter 6, we consider the parabolic limit for the change of variables ¢t = t*/&2,
x = x* /e of model (9.59) with density-dependent turning rates®®. The diffusion limit of a transport
model similar to (9.59), but with constant turning rates A was discussed in [189, 190]. Since the
velocity in the new variables is of order 1/¢, we make the scaling assumption that an individual’s

turning behaviour is only influenced slightly by the presence of neighbours:

A A
Tlul(x,¢',6) = 5 + 57 K x plx,1) + X3 Blul(x,¢', 0),

where p(x,t) = §*_u(x,¢,t)d¢ is the macroscopic density of individuals, K%(x) = ¥, K(x)
is a social distance kernel given in terms of attraction, repulsion and alignment terms and we call
Blu] the social response function. For explicit expressions, see Chapter 6. Note that the turning rate
A(x, ¢) then corresponds to the 1D turning rates (9.57) with the choice yp[u] = §*_ Blu](x, ¢/, ¢)d¢'.
Further, note that the set-up of this limiting process is very similar to the one discussed in Section
8.3, especially for Ay = 0. With the good scaling of K¢ and B[u], and matching orders of ¢ for
the Hilbert expansion v = ug + eu; + €2us + ..., we obtain at leading order a relaxation towards a

uniform angular distribution at each position:

w(x,6,1) = po(x (@), F(6) = 5-Tge(r )

Under the assumptions that (i) individuals can process information in a similar manner for all

three types of social interactions, and (ii) individuals can process information equally well from

38This parabolic scaling was already completed in my master thesis for the case ; = 0, j = {al, a,7}.
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left and right (symmetric perception), we obtain formally in the limit e — 0

atp = vx . (DO[p]vxp) - Vx . (pk[p]) ) (960&)
2
Dolp] = T 12 KTxp)’ (9.60b)
AT X X
k[p](x,t) = #fzd*p ((Jr K;-i(x) m ~Ya Kff(x) |x|> *P, (9.60c)

where ¢, and ¢, denote the strength of repulsive and attractive forces respectively. For notational
convenience, we dropped the zero in py. Note that this equation is similar to the 1D drift-diffusion
equation (9.58) obtained via the parabolic limit for linear social interactions. Indeed, the above
diffusive limit of the 2D model (9.59) reduces to a special case of the parabolic scaling of the 1D

model, which includes a A; term for non-directed turning.

Remark 9.1. For some particular choices of distance kernels K¢, the limiting parabolic model (9.60) can
be reduced to a particular case of the Keller-Segel type model (2.3) discussed in part I of this thesis. Let us

assume, for example, that the distance kernels are constant on the whole domain,

d .
Kj(x)=1, j=ala,r. 9.61)

This assumption corresponds to a setting in which individuals interact equally well with all other individuals
present in the entire domain. This is true locally for example if many individuals are packed in little space.
Under assumption (9.61) together with A\ = 0 and in the case when attractive and repulsive interactions
are not exactly equally strong q, # q, (as they would cancel out otherwise), model (9.60) simplifies to the

aggregation-diffusion equation
2up = DAp + XV . (p (VW %)) | 9.62)

with W(x) = |x| and D > 0, x > 0 only depending on the parameters of the model and the total mass
§ pdx. Even for more general distance kernels K, the social flux can be written in the form k[p] = VW % p
with the interaction potential W behaving like |x| close to zero and decaying exponentially fast as |x| — oo
(e.g. Morse potentials). Equation (9.62) models the behaviour of particles interacting through a pairwise
potential while diffusing with Brownian motion and is part of the family of aggregation-diffusion equations

analysed in Part 1 with linear diffusion (m = 1) and a non-singular interaction kernel (k = 1).

Finally, we consider the case where individuals turn only a small angle upon interactions with
neighbours, quantified by the parameter ¢ « 1. This is biologically realistic as, for example,
many migratory birds follow favourable winds or magnetic fields [244] and social interactions
with neighbours might not have a considerable impact on directional changes of individuals. Fol-

lowing the discussion in Section 8.1, a grazing collision limit is well adapted when collisions with
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small deviation dominate. In Chapter 6, we show that the Boltzmann-type equation (9.59) can
be reduced via a grazing collision limit to the following Fokker-Planck equation with non-local

advective and diffusive terms in the orientation space.

1
(?tu + Y€y - qu :)\1 (

(. 0) -~ ulx.0.1)) 0.69

+ 8¢[ —uC®u,x, @] + 0y (uD[u, x, qb])],

We omit here the details of C¢[u,x, ¢] and D*[u,x, ¢| for brevity. While non-local 2D Fokker-
Planck models have been introduced in the past years in connection with self-organised aggrega-
tions, the majority of these models consider local diffusion [123, 12]. If we neglect second order
terms in € (i.e. D® ~ 0) and assume A; = 0, equation (9.63) reduces to a Vlasov-type flocking

equation:

Oru + vey - Vau + 04 [uC’E [u, z, (b]] =0.

These type of models have been previously derived from individual-based models (Vicsek or

Cucker-Smale models) with or without noise [123, 179, 87].

9.2 Asymptotic preserving numerical methods

Finally, we investigate how two types of patterns (travelling and stationary aggregations) dis-
played by the 1D kinetic models, are preserved in the limit to macroscopic parabolic models. To
this end, we first analyse the local stability of spatially homogeneous patterns characterised by
individuals spread evenly over the domain, and show that local Hopf bifurcations are lost in the
parabolic limit. These Hopf bifurcations give rise to travelling aggregations (i.e. rotating waves).
We then test this observation numerically with the help of asymptotic preserving (AP) methods,
analysing changes in the patterns as the scaling coefficient € is varied from ¢ = 1 (for kinetic mod-
els) to e = 0 (for the limiting parabolic models). Understanding these transitions is important
when investigating biological phenomena that occur on multiple scales, since it allows to make
decisions regarding the models that are most suitable to reproduce the observed dynamics. While
AP schemes have been derived since the late 1990’s to investigate the asymptotic dynamics of var-
ious transport models [201, 202, 88], they have only recently been applied to investigate multiscale
aspects of biological aggregations [102]. In Chapter 6, we show that some patterns (describing
stationary aggregations) are preserved in the limit e — 0, while others (describing moving ag-
gregations) are lost. To understand the loss of these patterns, we construct bifurcation diagrams.

Numerical and analytical investigation is still difficult for 2D non-local models, see [153].
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9.3 Conclusions and perspectives

The scaling approaches taken in Chapter 6 allow to simplify the kinetic models that incorporate
microscopic-level interactions (such as individuals’ speed and turning rates) to obtain parabolic
models described in terms of average speed and average turning behaviour. While for the kinetic
models the non-local interactions influence the turning rates, for the limit parabolic models the
non-local interactions influence the dispersion and the drift of the aggregations. In particular, the
assumption that individuals can turn randomly following the non-directional perception of neigh-
bours around them leads, in the macroscopic scaling, to density-dependent diffusion. Moreover,
this diffusion decreases with increasing population density. Biologically, this means that larger
animal groups are less likely to spread out. This phenomenon has been observed for various
species. For example, studies have shown that aggregations of locusts [55] or ants [21] can persist
only if the number of individuals is above a certain threshold.

The introduction in (9.56) of the term yy describing random non-directional turning (which
generalises the turning rates in [147]) is required in order to compare the parabolic limit models
in 1D and 2D. This suggests that even if the 2D model (9.59) can be reduced to a special case of the
1D model (9.55) (as shown in [153]) there are more subtle differences between these non-local 1D
and 2D models. These differences can impact the types of patterns displayed by the 2D models —

an aspect that would be interesting to study in the future.

In Chapter 6, we use asymptotic preserving numerical methods to investigate the preservation
of patterns via the 1D parabolic limit, but similar investigations could be performed for the grazing
collision limit. Moreover, as shown previously [146], model (9.55) can display many more types of
complex spatio-temporal patterns than the two types of patterns investigated here. We choose to
focus on travelling and stationary aggregations since our aim is not to investigate how all possible
patterns are preserved by all these different scaling approaches. Rather, we want to show that by
taking these asymptotic limits, some patterns could be lost. Therefore, even if the macroscopic
models are simpler to investigate, they might not exhibit the same patterns as the kinetic models.
Our analysis aims at highlighting the usefulness of AP schemes to understand the bifurcation of
the solutions as one investigates the transition from microscopic-level to macroscopic-level aggre-

gation dynamics.
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What you leave behind
is not what is engraved
in stone monuments,
but what is woven

into the lives of others.

Pericles

%as quoted in Thucydides’ History of the Peloponnesian War, 11.43.3 (5th century BC) from Pericles’ funeral oration. Literal
translation by Steven Lattimore: "The whole earth is the tomb of famous men, and not only inscriptions set up in their own
country mark it but even in foreign lands an unwritten memorial, present not in monument but in mind, abides within
each man." [212, page 98]

“0modern paraphrasing of the above as quoted in [249, page 118].



CHAPTER 2

Ground States in the

Fair-Competition Regime

This chapter follows in most parts the article “Equilibria of homogeneous functionals in the fair-
competition regime” written in collaboration with Vincent Calvez! and José A. Carrillo?, and pub-
lished in the special issue "Advances in Reaction-Cross-Diffusion Systems" of Nonlinear Analysis

TMA.

Chapter Summary

We consider macroscopic descriptions of particles where repulsion is modelled by non-
linear power-law diffusion and attraction by a homogeneous singular /non-singular kernel lead-
ing to variants of the Keller-Segel model of chemotaxis. We analyse the regime in which both
homogeneities scale the same with respect to dilations, that we coin as fair-competition. In the
singular kernel case, we show that existence of global equilibria can only happen at a certain
critical value and they are characterised as optimisers of a variant of HLS inequalities. We also
study the existence of self-similar solutions for the sub-critical case, or equivalently of optimisers
of rescaled free energies. These optimisers are shown to be compactly supported radially sym-
metric and non-increasing stationary solutions of the non-linear Keller-Segel equation. On the
other hand, we show that no radially symmetric non-increasing stationary solutions exist in the
non-singular kernel case, implying that there is no criticality. However, we show the existence of
positive self-similar solutions for all values of the parameter under the condition that diffusion
is not too fast. We finally illustrate some of the open problems in the non-singular kernel case

by numerical experiments.

1Unité de Mathématiques Pures et Appliquées, CNRS UMR 5669 and équipe-projet INRIA NUMED, Ecole Normale
Supérieure de Lyon, Lyon, France.
2Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
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1. Introduction

1 Introduction

The goal of this chapter is to investigate properties of the following class of homogeneous func-
tionals, defined for centred probability densities p(x), belonging to suitable L”-spaces, and some

interaction strength coefficient x > 0 and diffusion power m > 0:

Fuslol = | Unola)) dosx || ple)Wile = w)oty) dedy

RN xRN

i= Unlp] + xWilpl, (1.1)

—p™m if m=#1
N(m—1
Un(p) =4 N0 ,
Nplogp, if m=1
and |

i) . i ke (NN)\{0)
k() =

log|z|, if k=0
The conditions on k imply that the kernel Wj,(x) is locally integrable in RY. The centre of mass is
assumed to be zero since the free energy functional is invariant by translation.

There exists a strong link between the aforementioned functional (1.1) and the following family
of partial differential equations modelling self-attracting diffusive particles at the macroscopic
scale,

1
Op=—Ap™+2xV - (pVSy), t>0, zeRY,
N
(1.2)
ot =05 = po(a) 20, [ m@de =1, [ smle)dr=0
RN RN
where we define the mean-field potential Sy(x) := Wy(x) # p(z). For k > 1 — N, the gradient
V Sk :=V (Wy * p) is well defined. For —N < k < 1 — N however, it becomes a singular integral,
and we thus define it via a Cauchy principal value. Hence, the mean-field potential gradient in

equation (1.2) is given by

VWi = p, ifk>1-N,
VSk(x) := (1.3)

RNVWk(x—y)(p(y)—p(x)) dy, if —-N<k<1-N.

The noticeable characteristic of the class of PDEs (1.2) and the functional F,,, ;, consists in the com-
petition between the diffusion (possibly non-linear), and the non-local, quadratic non-linearity
which is due to the self-attraction of the particles through the mean-field potential S,. The param-

eter x > 0 measures the strength of the interaction and scales with the mass of solution densities.
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2. Fair-CoMPETITION REGIME

The strong connection between the functional 7, ;, and the PDE (1.2) is due to the fact that
the functional F,, j is non-increasing along the trajectories of the system. Namely F,, i is the free

energy of the system and it satisfies at least formally

2

d
dr .

GFnslot] == | ott)|V (e

v (N(m_l)/’(t,f)ml + 2x Wi () = p(t, x))

Furthermore, the system (1.2) is the formal gradient flow of the free energy functional (1.1) when
the space of probability measures is endowed with the Euclidean Wasserstein metric W. This

means that the family of PDEs (1.2) can be written as
ap(t) = V- (p(t) VTmilp(®)]) = =VwFmi[p(t)],
where 7, 1[p] denotes the first variation of the energy functional in the set of probability densities:

5Im7k o m

T[] (2) : P (@) + 2 Wi () # pla) . (1.4)

This illuminating statement has been clarified in the seminal paper by Otto [248] for the porous
medium equation, and generalised to a large family of equations subsequently in [96, 3, 97], we
refer to [295, 3] for a comprehensive presentation of this theory of gradient flows in Wasserstein
metric spaces, particularly in the convex case. Let us mention that such a gradient flow can be
constructed as the limit of discrete in time steepest descent schemes. Performing gradient flows
of a convex functional is a natural task, and suitable estimates from below on the right notion of
Hessian of F,, j translate into a rate of convergence towards equilibrium for the PDE [295, 96, 3].
However, performing gradient flows of non-convex functionals is much more delicate, and one
has to seek compensations. Such compensations do exist in our case, and we will observe them
at the level of existence of minimisers for the free energy functional ., ; and stationary states of
the family of PDEs (1.2) in particular regimes.

The family of non-local problems (1.2) has been intensively studied in various contexts arising
in physics and biology. The two-dimensional logarithmic case (m = 1,k = 0) is the so-called
Keller-Segel system in its simplest formulation [196, 197, 243, 194, 136, 41, 256]. It has been pro-
posed as a model for chemotaxis in cell populations. Cells may interact with each other by secret-
ing a chemical substance to attract cells around them. This occurs for instance during the star-
vation stage of the slime mould Dictyostelium discoideum. More generally, chemotaxis is widely
observed in various biological fields (morphogenesis, bacterial self-organisation, inflammatory
processes among others). The two- and three-dimensional configurations with Newtonian inter-
action (m = 1,k = 2 — N) are the so-called Smoluchowski-Poisson system arising in gravitational
physics. It describes macroscopically a density of particles subject to a self-sustained gravitational

field [106, 107].
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1. Introduction

Let us describe in more detail the two-dimensional Keller-Segel system as the analysis of its
peculiar structure will serve as a guideline to understand the other cases. In fact, the functional
(1.1) (m = 1,k = 0) is bounded from below if and only if x = 1. The gradient flow is also
subject to a remarkable dichotomy, well described mathematically. The density exists globally in
time if x < 1 (diffusion overcomes self-attraction), whereas blow-up occurs in finite time when
x > 1 (self-attraction overwhelms diffusion). This transition has been first formulated in [113].
Mathematical contributions are [194] for the existence part, [242] for the radial case, and [136, 41]
in the full space. The critical case x = 1 was analysed further in [40, 37, 75] in terms of stability of

stationary states.

The effect of substituting linear diffusion by non-linear diffusion with m > 1 in two dimensions
and higher was described in [61, 277] where it is shown that solutions exist globally in time for all
values of the parameter y > 0. The role of both non-linear diffusion and non-local aggregation
terms was clarified in [39], see also [276], where the authors find that there is a similar dichotomy to
the two-dimensional classical Keller-Segel case (N = 2,m = 1,k = 0), for a whole range of param-
eters, choosing the non-local term as the Newtonian potential, (N > 3,m =2 —2/N,k =2 — N).
The main difference is that the stationary states found for the critical case are compactly supported.
Choosing the non-local term as the Newtonian potential, this range of parameters can be under-
stood as fixing the non-linear diffusion such that both terms in the functional 7, j scale equally
for mass-preserving dilations. This mass-preserving dilation homogeneity of the functional F,, i
is shared by the range of parameters (m, k) with N(m — 1) + k = 0 for all dimensions, m > 0 and
k € (=N, N). We call this range of parameters the fair-competition regime, since both terms are

competing each other at equal foot.

In this chapter, we will analyse the properties of the functional F,, j in relation to global min-
imisers and its relation to stationary states of (1.2). We will first define properly the notion of sta-
tionary states to (1.2) and analyse their basic properties in Section 2. We will also state and explain
the main results of this chapter once the different regimes have been introduced. We postpone fur-
ther discussion of the related literature to Section 2. Section 3 is devoted to the fair-competition
regime with k& < 0 for which we show a similar dichotomy to [39] in the whole range k € (—N, 0)
including the most singular cases. We show that stationary states exist only for a critical value of x
and that they are compactly supported, bounded, radially symmetric decreasing and continuous
functions. Moreover, we show that they are global minimisers of 7, . The sub-critical case is also
analysed in scaled variables and we show the existence of global minimisers with the properties
above leading to the existence of self-similar solutions in original variables. The critical parameter
is characterised by a variant of HLS inequalities as in [39]. Let us mention that the regularity re-

sults need a careful treatment of the problem in radial coordinates involving non-trivial properties
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2. Fair-CoMPETITION REGIME

of hypergeometric functions. The properties of the kernel in radial coordinates are postponed to
the Appendix A.

In Section 4, we analyse the case k > 0. Let us mention that there are no results in the literature
to our knowledge concerning the case k¥ € (0,N) in which0 < m = 1 — k/N < 1. There is
one related result in [116] for the limiting case in one dimension taking m = 0, corresponding to
logarithmic diffusion, and k = 1. They showed that no criticality is present in that case as solutions
to (1.2) with (m = 0,k = 1) are globally defined in time for all values of the parameter y > 0. We
show that no radially symmetric non-increasing stationary states and no radially symmetric non-
increasing global minimisers exist in original variables for all values of the critical parameter x
and for k € (0, N) while we show the existence of stationary states for all values of the critical
parameter x in scaled variables for £ € (0,1]. In this sense, we show that there is no criticality
for £ > 0. A full proof of non-criticality involves the analysis of the minimisation problem in
scaled variables as for £ < 0 showing that global minimisers exist in the right functional spaces
for all values of the critical parameter and that they are indeed stationary states. This is proven
in one dimension in Chapter 3 by optimal transport techniques and postponed for further future
investigations in general dimension. We finally illustrate these results by numerical experiments

in one dimension corroborating the absence of critical behaviour for & > 0.

2 Stationary states & main results

2.1 Stationary states: definition & basic properties

Let us define precisely the notion of stationary states to the aggregation equation (1.2).

Definition 2.1. Given p € LY (RN)nL* (RN) with||p||y = 1, it is a stationary state for the evolution
equation (1.2) if p™ € W2 (RN), VSy € LL, (RN), and it satisfies

loc

1 _
VM = —9v ] 2.
N VP X PV Sk (2.5)

in the sense of distributions in RN. If -N < k < 1 — N, we further require p € C% (RN) with
ae(l—k—N,1).

We start by showing that the function Sj;, and its gradient defined in (1.3) satisfy even more

1
loc

than the regularity V.S;, € L}, (R") required in Definition 2.1.

Lemma 2.2. Let p € L1 (RY) n L™ (RY) with ||p||y = 1. If0 < k < N, we additionally assume
|z|*p e L' (RN). Then the following regularity properties hold:

i) SpeLE, (RY) for 0 <k < Nand S, € L® (RY) for —-N < k < 0.

loc
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2. Stationary states & main results

i) VS, e LY, (RY) for 1 <k < Nand VS, € L* (RY) for —N <k < 0and 0 < k < 1, assuming

loc

additionally p € C%* (RN) witha € (1 — k — N, 1) in the range —N <k <1 — N.

Proof. A direct decomposition in near- and far-field sets A := {y : [zt —y| <1} and B:=RY — A
yields for —N < k < 0and z € RY,

Sl < [ W=ty < g [ e =ulot) du+ i | o)y

1 ON
< (-IN 1 ’
B (k+N”””OO+ ) <@

where oy = 27(V/2) /T (N/2) denotes the surface area of the N-dimensional unit ball. Locally,

boundedness extends to the fast diffusion regime 0 < k < N by using the inequality
o=yl < (2" +[y1*) . n = max{1, 2571 (26)

This inequality follows directly from splitting into cases k < 1 and k > 1. The inequality |z —y|* <
|z|* + |y|* is true for any k € (0, 1] with x, y € RY by direct inspection. For N > 1 and k € (1, N),
we have by convexity |z — y|* < 27! (|z|* + |y|*) , for any z,y € RV, and so (2.6) holds true.

Similarly, in order to proveii) forl - N <k <landz e RY, we estimate VS, as
VSl < [ IV = oty < [ Lo v o)y + [ o) dy
RN

ON
< | —— +1 Q0.
(k+N1||p”°° ><

In the Cauchy integral range — N < k < 1— N, we additionally require a certain Holder regularity,

yielding
IV Si()| = UA YWi(z - v) (p(y) — pl)) dy + L Wiz — 9) (oy) — plx)) dy
< | I9Wete =)l lotw) = p@)] dy + | [9Wale = w)lo(w) dy
T — k—1 T — yl®
< [plco.e LI yl" o =y dy + L p(y) dy < oo,

where [p]co.« denotes the a-Holder semi-norm of p, and where the term §,, VIV (z—y) dy vanishes

by anti-symmetry. For 1 < k£ < N and z in some compact set, we have

|VSk(z)| < L |z — " p(y) dy + L |z —y|*'p(y) dy
ON k
< — —
k+N71HpHoc+le yl"p(y) dy

which concludes VSj, € L%, (R") using (2.6) and the fact that the kth moment of pisbounded. [

loc

We will prove that for certain cases there are no stationary states to (1.2) in the sense of Def-

inition 2.1, for instance for the sub-critical classical Keller-Segel model in two dimensions [41].
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2. Fair-CoMPETITION REGIME

However, the scale invariance of (1.2) motivates us to look for self-similar solutions instead. To
this end, we rescale equation (1.2) to a non-linear Fokker-Planck type equation as in [100]. Let us

define
u(t, ) := o™ (t)p (B(t), a(t)z),

where p(t, x) solves (1.2) and the functions a(t), 5(t) are to be determined. If we assume (0, z) =

p(0,x), then u(t, z) satisfies the rescaled drift-diffusion equation

Opu = L Au™ +2xV - (uVSp) + V- (zu), t>0, zeRV,

- 2.7)
wt=0.2) =) 20, | miwds=1, [ amle)ds o,

—0o0

Q0

for the choices
o (e@7RE—1) | ifk 2,

t, ifk = 2,

and with V.S, given by (1.3) with u instead of p. By differentiating the centre of mass of u, we see

easily that
J zu(t, ) de = e_tf xpo(x)de =0, Vi>0,
RN RN

and so the initial zero centre of mass is preserved for all times. Self-similar solutions to (1.2) now
correspond to stationary solutions of (2.7). Similar to Definition 2.1, we state what we exactly

mean by stationary states to the aggregation equation (2.7).

Definition 2.3. Given i € L (RY)~L*® (RYN) with ||u||; = 1, it is a stationary state for the evolution

equation (2.7) if w™ e W2 (RN), VS, € L}, (RN), and it satisfies
1 _
VA" = 2 VS, — @ 2.8)

in the sense of distributions in RN. If -N < k < 1 — N, we further require u € C%* (R with
ae(l—k—N,1).

From now on, we switch notation from « to p for simplicity, it should be clear from the context
if we are in original or rescaled variables. In fact, stationary states as defined above have even

more regularity:
Lemma 2.4. Let k€ (—N, N)\{0} and x > 0.

(i) If p is a stationary state of equation (1.2) with |x|*p € L' (RN) in the case 0 < k < N, then p is

continuous on RN,

(ii) If presc is a stationary state of equation (2.7) with |z|* pyesc € L' (RY) in the case 0 < k < N, then

Prese is continuous on RN,
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2. Stationary states & main results

Proof. (i) First, note that V.S;, € L, (R") by Lemma 2.2, and therefore, pVS;, € L}, (RY) n

loc
0
Lloc

(RV). Hence, we get by interpolation that V - (pV.S).) € W, 1" (RV) forall 1 < p < 0.

loc

Recall from Definition 2.1 that 5™ is a weak W, (R") solution of
1. o
NA'O =-2xV- (pVSk)

in RV, and so ;™ is in fact a weak solution in W.? (RV) forall 1 < p < o by classic el-
liptic regularity. Using Morrey’s inequality, we deduce that p™ belongs to the Holder space
C’loo’g (RY) with v = (p — N)/N forany N < p < o, and thus p™ € C (RY). Hence, p itself

is continuous as claimed.

(ii) Since zpresc € L}y, (RY) ALY

loc

(RY), we obtain again by interpolation V- (2 presc) € wbp (RM)

loc

forall 1 < p < oo. By Definition 2.3, plZ. is a weak W, (R") solution of

1. ., N - _
NApresc =-2xV- (PrechSk) — V- (@Presc)

1,p

in RV, and so pg. is again a weak solution in W, ;¥ (R") forall 1 < p < o by classic elliptic

regularity. We conclude as in original variables.

O

In the case k < 0, we furthermore have a non-linear algebraic equation for stationary states:
Corollary 2.5 (Necessary Condition for Stationary States). Let k € (—N,0) and x > 0.

(i) If p is a stationary state of equation (1.2), then p € WH* (RN) and it satisfies

plx)™ ! = N(mT—l) (C’k[ﬁ](x) — 2y S'k(:v))+ , VaeRY, (2.9)

where Cy[p](x) is constant on each connected component of supp (p).

(ii) If Presc is a stationary state of equation (2.7), then presc € W) (RY) and it satisfies

loc

1 N(m-1)

ﬁresc(x)m — (Ckﬂ‘esc[p](x) —2x gk (x) - @

2

m

) , VzeRY, (2.10)
+
where Cy, resc[p](x) is constant on each connected component of supp (presc)-
Proof. (i) For a stationary state p of equation (1.2), let us define the set
Q={zeR":p(x)>0}.

Since p is continuous by Lemma 2.4, 2 is an open set with countably many open, possibly
unbounded connected components. Let us take any bounded smooth connected open subset

U such that U < Q. By continuity, p is bounded away from zero in i, and thus Vp™~! =
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2. Fair-CoMPETITION REGIME

mm—;}v;sm holds in the distributional sense in ¢/. From (2.5) in the definition of stationary

states, we conclude that

m

v <N(m_1)pml + 2y §k> =0, (2.11)

m

in the sense of distributions in Q2. Hence, the function C[p](x) := N1 P () +2x Sk ()
is constant in each connected component of 2, and so (2.9) follows. Additionally, it follows

from (2.11) that for any z € RY

_ 2xN(m —

V™ ()| Y |v5,()] <

m
for some constant ¢ > 0 since S, € WH* (R") by Lemma 2.2. Since m € (1,2), we conclude

peWhe (RV).

(ii) We follow the same argument for a stationary state presc Of the rescaled equation (2.7) and

using (2.8) in Definition 2.3, we obtain

m T
V(| ———pr it +2xSp+ =] =0
(e’ + 28+ ) =0
in the sense of distributions in €. Here, the function Cy resc[fresc] () = F7n =1y Prese Yz) +

2x S'k(x) + % is again constant in each connected component of supp (presc). Similarly, it

follows from Lemma 2.2 that for any w > 0 and z € B(0, w),

Vot )] = T (o (98, 4 Jal) < o

for some constant ¢ > 0, and SO presc € Wllofo (RM).

2.2 Fair-competition regime: main results

It is worth noting that the functional ., ;[p] possesses remarkable homogeneity properties, see
Chapter 1 Section 3.1. We will here only concentrate on the fair-competition regime N(m—1)+k =
0, and denote the corresponding energy functional by Fy[p] = Fi_j/n,k[p]. For a definition of
the different regimes and detailed explanations and references, see Chapter 1 Definition 3.1. An
overview of the parameter space (k, m) and the different regimes is given in Chapter 1 Figure 1.4.

Notice that the functional F}, is homogeneous in this regime, i.e.,
Frlpa]l = X" Filp]. 2.12)

The analysis in the fair-competition regime depends on the sign of k, see Chapter 1 Definition 3.7,
and we therefore split our investigations into the porous medium case (k¥ < 0), and the fast diffu-

sion case (k > 0). More information on the logarithmic case (k = 0) can be found in [62]. When
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2. Stationary states & main results

dealing with the energy functional F}, we work in the set of non-negative normalised densities,
V= {peLi_ RY) A L™ (RY) : |plli =1, pr(x)dz :O}.

In rescaled variables, equation (2.7) is the formal gradient flow of the rescaled free energy func-

tional 7, resc, Which is complemented with an additional quadratic confinement potential,

Fromelo) = Filo) 4 V00, Vlol = [ laPole) da.
RN

Defining the sets

i lpeyivi <t Y= {pey: [ lalotw s <o}

we see that Fj, resc is well-defined and finite on ) for K < 0 and on Vs i, := Vo n Yy, for k > 0.
Thanks to the formal gradient flow structure in the Euclidean Wasserstein metric W, we can write

the rescaled equation (2.7) as

(%p =V (P v,ﬁc,resc[P]) = *vwfk,resc[p] s

where 7, resc denotes the first variation of the rescaled energy functional,

=P

n,resc[p](x) = 77€[p]($) + 2

(2.13)
with 7y, as defined in (1.4). In this chapter, we prove the following results:

Theorem 2.6 (The Critical Porous Medium Regime). In the porous medium regime k € (—N,0) and
for critical interaction strengths x = X., there exist global minimisers of Fy, and they are radially sym-
metric non-increasing, compactly supported and uniformly bounded. Furthermore, all stationary states
with bounded second moment are global minimisers of the energy functional Fy,, and conversely, all global

minimisers of Fy, are stationary states of (1.2).

Theorem 2.7 (The Sub-Critical Porous Medium Regime). In the porous medium regime k € (—N,0)
and for sub-critical interaction strengths 0 < x < X, ho stationary states exist for equation (1.2) and
no minimisers exist for Fy,. In rescaled variables, all stationary states are continuous and compactly sup-
ported. There exist global minimisers of Fi, resc and they are radially symmetric non-increasing and uni-

formly bounded stationary states of equation (2.7).

Remark 2.8. Due to the homogeneity (2.12) of the functional Fy,, each global minimiser gives rise to a family
of global minimisers for x = x. by dilation since they have zero energy, see (3.19). It is an open problem to
show that there is a unique global minimiser for x = x. modulo dilations. This uniqueness was proven in
the Newtonian case in [302], but is still an open problem in the general. Notice that from uniqueness one

obtains the full set of stationary states with bounded second moment for (1.2) as a by-product.
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2. Fair-CoMPETITION REGIME

In contrast, in rescaled variables, we do not know if stationary states with second moment bounded are
among global minimisers of Fi, resc for the sub-critical case 0 < x < x. except in one dimension, see Chapter
3. It is also an open problem to show the uniqueness of radially symmetric stationary states of the rescaled

equation (2.7) for N > 2.

Theorem 2.9 (The Fast Diffusion Regime). In the fast diffusion regime k € (0,N) equation (1.2)
has no radially symmetric non-increasing stationary states with kth moment bounded, and there are no
radially symmetric non-increasing global minimisers for the enerqy functional Fy, for any x > 0. In
rescaled variables, radially symmetric non-increasing stationary states can only exist if 0 < k < 2, that is
(N —2)/N < m < 1. Similarly, global minimisers with finite energy Fi resc can only exist in the range
0 <k <2N/(2+ N), thatis N/(2+ N) < m < 1. For k € (0, 1], there exists a continuous radially

symmetric non-increasing stationary state of the rescaled equation (2.7).

3 Porous medium case £ < 0

In the porous medium case, we have —N < k < 0 and hence 1 < m < 2. Our aim in this
section is to make a connection between global minimisers of the functionals F;, and F yesc and
stationary states of equations (1.2) and (2.7) respectively. We will show that in the critical case
X = X, global minimisers and stationary states are equivalent for original variables. In the sub-
critical case 0 < x < X¢, all minimisers of F, resc Will turn out to be stationary states of the rescaled

equation (2.7).

3.1 Global minimisers

A key ingredient for the analysis in the porous medium case are certain functional inequalities
which are variants of the Hardy-Littlewood-Sobolev (HLS) inequality, also known as the weak
Young’s inequality [218, Theorem 4.3]:

j j @)z -y f(y) dady < Crzs, g KISl (3.14)
RN xRN
1 1 k
S =24 ,q>1, ke (—=N,0).
2t g N P ( )

Theorem 3.1 (Variation of HLS). Let k € (—N,0). For f € L* (RY) n L™ (RY), we have

j j F@) |z — yl* Fy)dedy| < ol FILY 1A, (3.15)

N RN

where Cy(k, N) is defined as the best constant.

Proof. The inequality is a direct consequence of the standard HLS inequality (3.14) by choosing
P = q = 5x, and of Holder’s inequality. For k € (—N,0) and for any f € L' (RV) n L™ (RY),

90



3. Porous medium case k < 0

we have
k 2 e
|| #@lo = vl r)dndy| < Curslf1 < Counsl AR 171
xR
Consequently, C\ is finite and bounded from above by C1.s. O

Now, let us compute explicitly the energy of stationary states:

Lemma 3.2. Forany —N < k < Oand x > 0, all stationary states p of (1.2) with |x|?p € L' (R™) satisfy
Fi[p] = 0.

Proof. Integrating (2.5) against «, we obtain for 1 — N < k < 0:

1 . Y
N RNpr = —2x H z-(z—y)lz —y|*p(x)ply) dedy

RN xRN
-m _ T — A — T — k72_aj_ 7
[ = ] @@l () dody
RN xRN
1 -m _ |x — y|k —f N=
Nim—1) JRN P = —XRNJLV 5 P)ply) dedy, (3.16)

and the result immediately follows. For —N < k < 1— N, the term V S} is a singular integral, and

thus writes

VSi(x) = lim |l — y" (@ — y)pr(y) dy
eV IBe(x,e)

= [ =l =) () = (o) .

The singularity disappears when integrating against x,

| vsi@n@ar =5 || o= ulpient) deay. (3.17)

RN xRN

In order to prove (3.17), let us define

@)= [ e - )

Then by definition of the Cauchy Principle Value, f.(z) — z - V.S (z) pointwise for almost every

xz € RY as e — 0. Further, we have for 0 <e¢ < 1,

|[fe(2)] <z

Vo Wiz — )ou(y) dy + f Vo Wile — )puly) dy
Be¢(z,e)nB¢(z,1)

+ f |z —y" " or(y) dy)
l[z—y|>1

)

JBC(Z,E)HB(I,l)

Ve Wi(z —y)pr(y) dy

JBC(I,E)NB(I,I)

VWi (z —y)pr(y) dy

ch(m,s)ﬁB(z,l)
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2. Fair-CoMPETITION REGIME

Since VW, is anti-symmetric, the term S Be V. Wi (xz — y) dy vanishes and we are thus

(z,e)nB(z,1)
free to subtract it. Using the fact that p, € C%*(RY) for some a € (1 — k — N, 1), we have

VeWi(x —y)pr(y) dy| = VeWi(z —y) [pe(y) — pr(2)] dy

fBC(m,a)mB(x,l)

< o=y~ o) = el dy
Be(z,e)nB(z,1)

<J | —y|* T dy
Be(z,e)nB(z,1)

ON E+N—-1+a

= N (1=
k+N—1+a( c )

<— N
Ek+N—-1+«

JBC(x,s)mB(at,l)

We conclude that |f.(z)| < (%) |z| for all 0 < e < 1, and therefore by Lebesgue’s

dominated convergence theorem,

J x - VS () pp () do = j hm fe(@)pr(x) de = lin%) fe(x)pr(x) dx
RN R e—0 Jp

e—0

i ([ o -l -y 2y dady
\I yl=e
- Ly ﬂ & — ol" (@) ) deedy
|lz—y|=e
1 .
=3 |z —y|"pr () pr(y) dady .

RN xRN
This concludes the proof of (3.17). Therefore, it follows that (3.16) holds true for any —N < k£ < 0.
We remark that a bounded second moment is necessary to allow for the use of |z|?/2 as a test

function by a standard approximation argument using suitable truncations. O

Let us point out that the the previous computation is possible due to the homogeneity of the
functional F}. In fact, a formal use of the Euler theorem for homogeneous functions leads to this
statement. This argument does not apply in the logarithmic case k£ = 0. Here, it allows to connect

stationary states and minimisers of F.

It follows directly from Theorem 3.1, that for all p € ) and for any x > 0,

- XxCy
Frlpl =

) s el

where Cy, = Cx(k, N) is the optimal constant defined in (3.15). Since global minimisers have
always smaller or equal energy than stationary states, and stationary states have zero energy by

Lemma 3.2, it follows that x > 1/C.. We define the critical interaction strength by

1

RN R

(3.18)
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3. Porous medium case k < 0

and so for x = x., all stationary states of equation (1.2) are global minimisers of ;.. We can also
directly see that for 0 < x < x., no stationary states exist. These observations can be summarised

in the following theorem:

Theorem 3.3 (Stationary States in Original Variables). Let —N < k < 0. For critical interaction
strength x = X, all stationary states p of equation (1.2) with |z|*p € L* (RY) are global minimisers of
Fy.. For sub-critical interaction strengths 0 < x < X, no stationary states with |x|*p € L' (RN ) exist for

equation (1.2).

We now turn to the study of global minimisers of Fj, and Fj, yesc with the aim of proving the

converse implication to Theorem 3.3. Firstly, we have the following existence result:
Proposition 3.4 (Existence of Global Minimisers). Let k € (—N,0).

(i) If x = X., then there exists a radially symmetric and non-increasing function p € Y satisfying

Frlp] = 0.

(ii) If x < Xe, then Fy, does not admit global minimisers, but there exists a global minimiser p of Fi, resc

in yg.

(iii) If X > X, then both Fy, and Fy, resc are not bounded below.

Proof. Generalising the argument in [39, Proposition 3.4], we obtain the following result for
the behaviour of the free energy functional F;: Let x > 0. For k € (=N, 0), we have

0 if 0, Xel;
Ii(x) := inf Fi[p] = i xe (0xl (3.19)

pey —oo if x> xe¢,
and the infimum I} (x) is only achieved if x = x.. This implies statements (ii) and (iii) for F.
Case (iii) directly follows also in rescaled variables as in [39, Proposition 5.1]. The argument
in the sub-critical case (ii) for Fj resc is a bit more subtle than in the critical case (i) since we
need to make sure that the second moment of our global minimiser is bounded. We will here
only prove (ii) for rescaled variables, as (i) and (ii) in original variables are straightforward

generalisations from [39, Lemma 3.3] and [39, Proposition 3.4] respectively.

Inequality (3.15) implies that the rescaled free energy is bounded on ) by

C

1 1
(xe + ) llpllm + QV[/J] > Fresclp] = —f (Xe = X) lpllm + gV[pL (3.20)

O

k
and it follows that the infimum of Fj, resc OVer )s in the sub-critical case is non negative.

Hence, there exists a minimising sequence (p;) € Vs,

fk,resc[pj] - M= inf fk,resc[p]'
PEY2
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2. Fair-CoMPETITION REGIME

Note that ||p;||,, and V[p;] are uniformly bounded, ||p;||m + V[p;] < Co say, since from (3.20)

C -
0< _f (xXe =) lIpjllm + §V[pj] < Fhresc[Pj] < Fresc[Po]-

Further, the radially symmetric decreasing rearrangement (p) of (p;) satisfies

D5l = lIPjllms VIR < VIpil,  Welpi] < Welp)]

by the reversed Hardy-Littlewood-Sobolev inequality [198] and Riesz rearrangement inequal-

ity [218]. In other words, Fy resc[P} ] < Fk,resc[p;] and so (p}) is also a minimising sequence.

To show that the infimum is achieved, we start by showing that (p}) is uniformly bounded

at a point. For any choice of R > 0, we have
o0
L=l = o | B0 ar
0

R RN
> O’Nf pir)yrN T dr > UNWp;F(R) .
0

Similarly, since || p;‘ ||m is uniformly bounded,
Q0
Co= Il = ow | o)™ ar

R RN
> UNJ erlp;‘_‘ (r)m dr > JNij(R)m )
0
We conclude that
0<p;(R) <b(R) = Crinf {R™N,R°%}, VR>0 (3.21)

for a positive constant C; only depending on N, m and C,. Then by Helly’s® Selection

Theorem there exists a subsequence (p*

* ) and a non-negative function 5 : RN — R such

that pf — p pointwise almost everywhere. In addition, a direct calculation shows that

z > b(|z|) € L7 (RY), and hence, using (3.14) for p = ¢ = 2N /(2N + k), we obtain
(2,y) = o — yl*b(|2)b(y]) € L' (RY < RY).
Together with (3.21) and the pointwise convergence of (p} ), we conclude

Wi(p5,) = Wi(p) < o0

by Lebesgue’s* dominated convergence theorem. In fact, since |[p¥ ||, and V[p¥ ] are uni-

formly bounded and |[p} |[1 = 1, we have the existence of a subsequence (p} ) and a limit

SEduard Helly (1884-1943) was an Austrian mathematician. After being enlisted in the Austrian army during World
War I, he was shot in 1915, and spent the rest of the war as a prisoner of the Russians. He continued organising mathe-
matical seminars and writing important contributions to functional analysis while in Siberian prison camps.

“Henri Léon Lebesgue (1875-1941) was a French mathematician. Even though a very good lecturer, he never taught
his own theory of integration, saying "Réduites a des théries générales, les mathématiques seraient une belle forme sans
contenu".
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3. Porous medium case k < 0

P e L' (RY) such that p* — P weakly in L' (R") by the Dunford—Pettis® Theorem. Using
a variant of Vitali’s® Lemma [262], we see that the sequence (p ) actually converges strongly
to pin L' (RV) on all finite balls in RY. In other words, P = j almost everywhere. Further-

more, p has finite second moment by Fatou’s Lemma,
V[p] < liminf V[p} ] < Cy,
-0
and by convexity of |.|™ for m € (1, 2), we have lower semi-continuity,
Jﬁm < liminf | (p* )m < Cp.
-0 T
We conclude that p € ), and

fk,resc[ﬁ] < lth;) ‘Fk,resc[p;] = U.

Hence, / is a global minimiser of Fy, resc.

O

Remark 3.5. The existence result in original variables also provides optimisers for the variation of the HLS

inequality (3.15), and so the supremum in the definition of C (N, k) is in fact attained.

The following necessary condition is a generalisation of results in [39], but using a different

argument inspired by [78].
Proposition 3.6 (Necessary Condition for Global Minimisers). Let k € (—N.,0).

(i) If x = xcand p € Y is a global minimiser of Fy, then p is radially symmetric non-increasing,
satisfying

PN z) = W (=2x(Wy = p)(x) + Di[p]), a.e in RV, (3.22)

Here, we denote

Dile) = 27elp) + i oIl

(i) If0 < x < xcand p € Y is a global minimiser of Fi, resc, then p is radially symmetric non-increasing,
satisfying

g0 = T (o)) - B 4 D)) we w62
+

Here, we denote

1 m— 2
Dy, resc[p] := 2Fk resc[p] — §V[P] + m”l’ﬂrmn-

5Nelson James Dunford (1906-1986) and Billy James Pettis (1913-1979) were American mathematicians, known for
their contributions to functional analysis.
6Giuseppe Vitali (1875-1932) was an Italian mathematician. From 1926, Vitali developed a serious illness, suffered a

paralysed arm and could no longer write. Despite this about half his research papers were written in the last four years of
his life.
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Proof. (i) Letus write as in (1.1)

Filp) = thowlol -+ Ol o] = sl and

|z — y|

Welp] = . P(@)ply) dudy.

RN xRN
We will first show that all global minimisers of Fj, are radially symmetric non-increasing.
Indeed, let p be a global minimiser of F}, in ), then for the symmetric decreasing rearrange-
ment p? of p, we have U,,[p#] = U, [p] and by the Riesz rearrangement inequality [77,
Lemma 2], W[p#] < W[p]. So Fi[p#] < Fi[p] and since p is a global minimiser this implies
Wilp*] = Wi[p]. By Riesz rearrangement properties [77, Lemma 2], there exists 7o € RV
such that p(z) = p# (z — z0) for all € RY. Moreover, we have
JRN zp(x)de = xg + J}RN xp™ () dr = w0,
and thus the zero centre-of-mass condition holds if and only if zy = 0, giving p = p*. For

any test function ¢ € C° (RY) such that ¢/(—z) = (), we define

We fix 0 < € < &g := (2|[¢)]|so) . Then

p+€¢=p(1+€<wﬁw W)) = p(1-2[[Y|[we) = 0,

and so p + ep € LL (RY) n L™ (RY). Further, {p(z)dz = §z¢(z)dz = 0, and hence p +
ep € Y. Note also that supp (¢) < Q := supp (p). To calculate the first variation 7 of the
functional F, we need to be careful about regularity issues. Denoting by 2 the interior of Q,

we write

Frlp +ep] — Frlp] 1 J(pﬂ@)’” i
€ N(m—1) Jq

" N1 Jy SO
e[ Wiep) (@)plo)do+ i),
where G.(t) := {, |p + tep|™ % (p + tep)p dz. Then by Holder’s inequality,
1G-()] < (1pllm + ollellm)™ " Il lm
forallt e [0,1] and ¢ € (0,¢¢). Lebesgue’s dominated convergence theorem yields

| Gyt — | i@t s
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3. Porous medium case k < 0

as ¢ — 0. In addition, one can verify that Wi.[¢] < 4/|¢||2 Wi[p] < o0. Hence,

. ( Frle +ev] = Filo] m m—
hm< b 6 i >_N(m—1) fﬂp Yx)p(x) dx

e—0

w2 | (W) @pla) da

f Tl (@)p(w) da,
RN

proving (1.4). Since p is a global minimiser, 7 [p+¢c¢] > Fi[p] and hence § Ti.[p](z)¢(z) dz =
0. Taking —1 instead of ¢, we obtain by the same argument { 7;[p](z)¢(x) dz < 0, and so
_ TlP)@)e(z) do = 0.
Owing to the choice of ¢,
0= | Tll@)p(e) do
RN

- [ mwprvw s — ([ ve) (27001 + =2l

RN

- |, pa)ta) (Tlpl@) = Dilp)) da

for any symmetric test function ¢ € C* (RY). Hence T;[p](z) = Dy[p] a.e. in Q, i.e.

P Hx) = w (=2x (W * p) (x) + Di[p]) ae. inQ. (3.24)

Now, we turn to conditions over p on the whole space. Let i) € CZ (RY), (—z) = 1(z),
¥ = 0, and define
o(x) :=(z) — p(x) " Y(x)de eL' (RY)nL™(RY).

Then for 0 < & < gg := (||¢|]e0|supp (¥)]) 7!, we have
prepzp(1-c[ 0)=p0-clvllebupp w).

So p+ep = 0in , and also outside Q2 since 1/ > 0, hence p + cp € ). Repeating the previous
argument, we obtain

= Trlpl(z)p(x) dz = 0.

Using the expression of ¢, we have
0< | Tilpl(@)p(x) dz
RN

=| Tulpl(x)(z)dx — (JRN w) <2~7:k[p] + mllpllﬁ)

RN

= | (@) (Telpl(x) = Drlp]) dx.

RN
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(ii)

Hence Ti.[p](z) = Dyi[p] a.e. in RY, and so

Note that (3.25) means that the support Q coincides with the set

(—2x (W % p) (z) + Di[p]) a.e.in RY. (3.25)

{z e RN | —2x (W) * p) () + Dy[p] > 0} .
Combining (3.24) and (3.25) completes the proof of (3.22).

First, note that if p € ), and p# denotes the symmetric decreasing rearrangement of p, then
it follows from the reversed Hardy-Littlewood-Sobolev inequality [198] that V[p#] < V[p].
Since Uy, [p*] = Umn[p] and W[p#] < W][p], we conclude Fy resc[p?] < Frresc[p]. For a
global minimiser p € V>, we have Fy, resc[p?] = Fr.resc[p] and hence W[p#] = W[p] and
V[p#] = V[p]. The former implies that there exists z¢ € RY such that p(z) = p# (z — x) for
all z € RY by Riesz rearrangement properties [77, Lemma 2], and so the equality in second
moment gives p = p*.

Next, we will derive equation (3.23). We define for any test function ¢ € C° (R") the func-

tion ¢(z) = p(z) (¥(x) — Sz~ ¥(x)p(x) dz), and by the same argument as in (i), we obtain

0= JRN Therese[p](2)p(x) do = fR p(2)0(2) (Thresc[p] (%) — D resclp]) dz |

with T resc as given in (2.13). Hence 7y resc[0](%) = Dy resc[p] a.€. in Q:= supp (p). Following
the same argument as in (i), we further conclude 7, resc[p](%) = D resc[p] a.€. inRY. Together
with the equality on ©, this completes the proof of (3.23).

O

Remark 3.7. For critical interaction strength x = x., if p is a stationary state of equation (1.2) with

bounded second moment, then it is a global minimiser of F, by Theorem 3.3. In that case, we can identify

the constant Cy[p] in (2.9) with Dy[p] in (3.22), which is the same on all connected components of supp (p).

3.2

Regularity properties of global minimisers

Proposition 3.6 allows us to conclude the following useful corollary, adapting some arguments

developed in [39].

Corollary 3.8 (Compactly Supported Global Minimisers). If x = x., then all global minimisers of F;,

in Y are compactly supported. If 0 < x < x., then global minimisers of Fy, sesc are compactly supported.

Proof. Let p € Y be a global minimiser of F. Then p is radially symmetric and non-increasing by

Proposition 3.6 (i) and has zero energy by (3.19). Using the expression of the constant Dy, [p] given

by Proposition 3.6 (i), we obtain
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3. Porous medium case k < 0

Let us assume that p is supported on R™. We will arrive at a contradiction by showing that p™~!
and W, = p are in L™/(m=1) (R¥). Since

m

mﬂ(@mfl + 2x (Wi = p) (2)

Dylp] =

a.e. in RY by (3.22), this would mean that the constant D[p] < 0 is in L™/(m=1) and decays at
infinity, which is obviously false.
It remains to show that W}, = p is in L™/(m~1 (RV) since p € L™ (RV) by assumption. From
p € L' (RY) n L™ (RY) we have p € L™ (R") for all r € (1,m] by interpolation, and hence
Wi, = p e L* (RY) for all s € (—N/k, Nm/(k(1 — m))] by [218, Theorem 4.2]. Finally, we conclude
that W}, = pis in L™/ (™= (RV) since —N/k < m/(m — 1) < Nm/(k(1 — m)).

In the sub-critical case for the rescaled functional Fj resc, We argue as above to conclude that
for any global minimiser p in }, we have p™~* and W, # p in L™ (=1 (RN If p were supported
on the whole space, it followed from the Euler-Lagrange condition for the rescaled equation (3.23)

that [z|2 + C € L™/(m=1 (RY) for some constant C. This is obviously false. O

The same argument works for stationary states by using the necessary conditions (2.9) and

(2.10).

Corollary 3.9 (Compactly Supported Stationary States). If x = x., then all stationary states of equa-
tion (1.2) are compactly supported. If 0 < x < X, then all stationary states of the rescaled equation (2.7)

are compactly supported.

Lemma 3.10. Let p be either a global minimiser of Fy, over Y or a global minimiser of Fj; yesc 0ver Vo. If

there exists p € (— N, 0] such that

p(r) <1+7P forall r € (0,1), (3.26)
then for r € (0,1),
1+ 79 ifp#—-N—k,
p(r) < ) f (3.27)
1+ log(r)|™ T ifp=—-N—k,
where
p+N+Ek
9(p) = ———. (3.28)
m—1

Proof. Since global minimisers are radially symmetric non-increasing, we can bound p(r) by p(1)
for all » > 1, and hence the bound (3.26) holds true for all » > 0. Further, we know from Corol-
lary 3.8 that all global minimisers are compactly supported. Let us denote supp (p) = B(0, R),
0 < R < o0. We split our analysis in four cases: (1) the regime 1 — N < k < Owithk # 2 - N

and N > 2, where we can use hypergeometric functions in our estimates, (2) the Newtonian case
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2. Fair-CoMPETITION REGIME

k=2—N,N > 3, (3) the one dimensional regime —1 < k < 0 where we need a Cauchy principle
value to deal with the singular integral in the mean-field potential gradient, but everything can be
computed explicitly, and finally (4) the regime —N < k < 1— N and N > 2, where again singular

integrals are needed to deal with the singularities of the hypergeometric functions.

Casel: 1 -N<k<0,k#2—-—N,N=>2

We would like to make use of the Euler-Lagrange condition (3.22), and hence we need to un-
derstand the behaviour of W, # p. It turns out that it is advantageous to estimate the derivative
instead, writing

~Waxp) () = = (Wexp) (1) + |8 (Wi p) s)ds. (3.29)

The first term on the right-hand side can be estimated explicitly, and we claim that for any z € R",

we have
— (W xp)(x) < 0. (3.30)

To see this, let us denote 7 := |z|, and let us fix R > R such that 0 < v < R. If y/2 < R, then

1 1
e = (-1) o-stoays (<1) [ - upm
B(0,R)\B(0,7/2) B(0,7/2)

1 v j k
<|l—= el x—y|"dy
< k) (2) B(0,R)\B(0,v/2) | |

p /2 B
(—l) J |7—r|kp(r)rN Ldr
0

_|_

k

<

~

v/2
o o yldy+ [ bl
B(0,R)\B(0,7/2) 0

_ T\
SN[ ety (2) el
B(z,R+7)

R+~ Y\ F
=77N0NJ PPNl gr 4 (5) < w0,
0

where we used in the third line the fact that p is radially symmetric non-increasing, and so

2 #0920 G) L = G (R) G

If v/2 > R on the other hand, we simply have similar to above

~Wien o)< () [y lr=lsdns (3) <=

which concludes the proof of (3.30).

In order to control the second term in (3.29), we use the formulation (A.56) from Appendix A,
_ e 7 n N-1
Or (Wi p) (r) =170 | i (50) )™=l (331)
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3. Porous medium case k < 0

where 1), is given by (A.57) and can be written in terms of Gauss hypergeometric functions, see
(A.60).

Sub-Newtonian Regime 1 - N <k <2 - N
Note that ¢;(s) < 0 for s > 1 in the sub-Newtonian regime 1 — N < k < 2 — N (see Appendix A
Lemma A.3 and Figure 2.3(a)). Together with the induction assumption (3.26) and using the fact
that p is compactly supported, we have for any r € (0, R)

r

Ui (2) p(m)n™ = dn + rF LR Ui (2) p(mn™~"dn

0 (Wexp)(r) =11 |

0

1 R/r
= kN1 J Uy, (s) p(rs)sN =t ds + P N1 Ui (s) p(rs)sN 1 ds
0 1

1
< kN1 J Ui () p(rs)sN*1 ds
0

1 1
ST’H—N_l <f wk (S) SN—l dS) + rp+k+N—1 <f wk (S) 8p+N—1 d8>
0 0
— Oy N RN L (3.32)
where we defined

1 1
4 :=f Yy (s)sN1ds, Cy :=J Yy (s) sPTV L ds .
0 0

In the case when r € [R, ®0), we use the fact that ¢, (s) > 0 for s € (0,1) by Lemma A.3 and so we

obtain by the same argument
R R
Or (Wi p) (r) =r"~ f o () oy~ dn < v+ f (1) (1 )0
0 r 0 r

R/r R/r
= phtN-1 i (8) sN=lds | 4 ppHh+N-1 J i (8) sPTN=1 g
0

0

<Ok N=1 L oypprk+N=1 (3.33)

with constants C, C; as given above. It is easy to see that C; and C are indeed finite. From
(A.61) it follows that 1, (s) sV~ and 1, (s) sPT~! are integrable at zero since —N < p and 1)) is
continuous on [0, 1). Similarly, both expressions are integrable at one using (A.63) in Lemma A.4.

Hence, we conclude from (3.32) and (3.33) that for any r € (0, 1),
Or (Wi p) (1) S rPHN=1 4 ppthaN=1

Substituting into the right-hand side of (3.29) and using (3.30) yields

1
~(Wesp)(r) s 1+ J (sFHN=1 p gprktN=1) gg

for any r € (0,1). It follows that for p # —k — N,

k+N p+k+N
1—r +1—r1’ < 14 RN
k+N p+k+N

—(Wi=p)(r)S1+
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2. Fair-CoMPETITION REGIME

If p = —k — N, we have instead
1— ,rk+N

— <1 -

—log(r) < 1+ |log(r)].

If p is a global minimiser of Fj, then it satisfies the Euler-Lagrange condition (3.22). Hence, we
obtain (3.27) with the function g(p) as defined in (3.28). If p is a global minimiser of the rescaled

functional Fy resc, then it satisfied condition (3.23) instead, and we arrive at the same result.

Super-Newtonian Regime k > 2 — N
In this regime, v, (s) is continuous, positive and strictly decreasing for s > 0 (see Appendix A
Lemma A.3 and Figure 2.3(b)) and hence integrable on (0, s) for any s > 0. Under the induction
assumption (3.26) and using the fact that p is compactly supported and radially symmetric non-

increasing, we have for any r € (0, R)

R n R/r
00 (Wi p) () == [ “a (2) ™y = o5 [ (9 plr)s
R/r

0 0

R/r
grkwLNfl < 'l/Jk (8) SNfl d8> + Tp+k+N71 ( 'll)k (8) sp+N71 dS)

= Cy(r)r* TN 4 Oy ()P PRAN =L

where we defined
R/r R/r
Cy(r) := . Ui (s) sV tds, Cy(r) := . Y (s) PN ds .
Next, let us verify that C;(-) and Cs(-) are indeed bounded above. From (A.61) it follows again
that ¢ (s) sV =1 and ¢, (s) s»TV~1 are integrable at zero since —N < p. In order to deal with the
upper limit, we make use of property (A.62), which implies that there exist constants L > 1 and

Cr, > 0 such that for all s > L, we have
Yr(s) < CLSk_2 .

It then follows that for < R/L,

R/r N+k—2
wk (S) SN—I ds < % <<R> _LN+k—2> ,
I —

and hence we obtain

L R/r
Ci(r) = | i (s)sV ds+ W (s) sV ds < 14 rNR+2
0 L
Similarly,
L R/r
Co(r) = | n(s)sPTV"1ds + Vi (5) PN L ds < 1 4 p P NkH2
0 L
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3. Porous medium case k < 0

We conclude

Or Wi #p)(r) < (1 + r_N_k’LQ) phEN=1 4 (1 + r_”_N_k+2) ppHhtN—1

<1 PPN pp R N=L (3.34)

For R/L < r < R on the other hand we can do an even simpler bound:

L L
)+ Cor) < [t st [ gt as <1,
0 0

and so we can conclude for (3.34) directly. In the case when r € [R, ), we obtain by the same

argument

R/r R/r

or (W % p) (r) S rk+N-1 < i (5) sV ds) L ppthN-1 ( i () sPHN1 ds)

0 0

< Cl(R)TkJerl + 02(R)7,p+k+N71 ,

with constants C(-), Ca(-) as given above, and so we conclude that the estimate (3.34) holds true

for any r > 0. Substituting (3.34) into (3.29), we obtain for r € (0,1)
1

SWaxp) () 14 [ (VN gy

r

and so we conclude as in the sub-Newtonian regime.

Case2: k =2— N, N > 3|Newtonian Regime

In the Newtonian case, we can make use of known explicit expressions. We write as above

T2_N

e =g ) 0+ [ o (g o) @ 6

where — ( % s p) (1) is bounded using (3.30). To control Sj Or (% * p) (s) ds, we use New-
ton’s Shell Theorem implying

ﬂ* S:M: S)sl—N
a’”(@—zv) ”)” @B,5) M

where we denote by M(s) = oy §; p(t)tN ! dt the mass of p in B(0, s). Note that this is precisely
expression (3.31) we obtained in the previous case, choosing ¢x(s) = 1 for s < 1l and ¢, = 0
for s > 1 with a jump singularity at s = 1 (see also (A.54) in Appendix A). By our induction
assumption (3.26), we have

S N N+p

1 p)\+N—1 — s S
(1+ )t dt UN<N+N+p

M(S)ﬁUNJ

0

), s€(0,1),
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2. Fair-CoMPETITION REGIME

and hence if p # —2, then

1 T2_N 1 ) 1 -
J;ar((QN)*p)(S)dSSZN(l_T)+(]\7+p)(p+2)(1_r+>

If p = —2, we obtain instead

! r2=N 1 9 1
L Or ((Q—N)*'O) (s)dssﬁ(l—r )—mlog(r).

Substituting into the right-hand side of (3.35) yields for all r € (0, 1)

1+ pP+2 if p# -2,
— (Wi xp)(r) <
1+ |log(r)] ifp=-2.

Thanks again to the Euler-Lagrange condition (3.22) if p is a global minimiser of F}, or thanks to

condition (3.23) if p is a global minimiser of F}, resc instead, we arrive in both cases at (3.27).

’CaseB: -1<k<0, N=1

In one dimension, we can calculate everything explicitly. Since the mean-field potential gradi-

ent is a singular integral, we have

0, S(z) j Y (o) — pla)) dy

|z —y|2=F
T —y x

~ lim Yoy dy = o,Su(r)
0-0 Jjz—y|=s |7 — y[>+ r

with the radial component for r € (0, R) given by

S _r=n T4
0rS = + _ d
k(rr) JO (|r_n|2_k |r+n|2_k> (P(W) p(T)) n

“ r4n r—n

= —_ dn + lim _— d
Jy Fee i |t
0

k1 n k=1 q; n
=r L (G} (T) p(n) dn+ 7"~ lim s () (7,) p(n) dn

_ k1 LR " (g) p(n)dn +rF1 lim <L6 + f;) o (2) p(n) dn

where

1—g (1—-s)k1 ifo<s<l1,
¢1(S) = =
—(s—1F 1 ifs>1
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3. Porous medium case k < 0

are well defined on [0,1) U (1,00). Define v := min{l, R/2}. Since 12(s) < 0 for s > 1 and p

radially symmetric decreasing, we can estimate the last term for any r € (0, y) and small 6 > 0 by

rkt (Lé + f;) W2 (g) p(n) dn

< rk-l LM Wy (g) p(n) dn + " p(2r) J

r+

27
1
5 1/)2 (T) dn
1-6/r 2
=k J Y (8) p(rs)ds + 'rkp(2r)f o (s) ds.

0 1+6/r

Under assumption (3.26), we can bound the above expression by
R/r R/r

0pSk(r) < r* ¥1(s) ds + rFFP 11 (s)sP ds
0 0

1-6/r 1-6/r
+ ¥ lim lj Pa(s)ds + rpf Pa(s)sP ds + (1 +1P) J

6=01Jo 0 1+6/r

2

Ya (8) ds]
_ 2k k+p 1;
r }13(1)01(7“, d) +r ;13%02(@ 0),

where we defined

R/r 1-6/r 2
Cy(r,9) = Y1(s)ds + J Ya(s)ds + J Yo (s) ds,
0 0 146/r
R/r 1-6/r 2
Cy(r,0) := P1(s)sP ds + J Pa(s)sP ds + J o (s) ds.
0 0 1+6/r

Next, let us show that the functions lims_,o C;(r, d) and lims_,g Ca(r, §) can be controlled in terms
of r. The function 13 has a non-integrable singularity at s = 1, however, we can seek compensa-

tions from below and above the singularity. One can compute directly that

e = (Fer) i [+ ()
S1(GORIES
cuen=| () Q) RG] 5|6

1

k
(B ONT(BYT L _(BYTU(RYTT L e ey, L
= +1 < =R"Pr ;
r r k r r k k

so that we obtain the estimate
0pSk(r) S 1+ 7k 4 pFtp,

Finally, we have for all r € (0,):

Wik p) (1) = — (W p) (1) + f 0,5k(s)ds < 1+ f (s + 575) ds,

T
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2. Fair-CoMPETITION REGIME

where we made again use of estimate (3.30). If p # —k — 1, we have

k+1 k+1 p+k+1 _ .p+k+1
v —-r v r +k+1
— (W <1+ + < 1+0P .
(Wi p) (7) k+1 p+k+1
If p = —k — 1 however, we obtain
AL ket

—(Wexp)(r) s1+ +log(7) —log(r) < 1+ [log(r)|.

k+1

Using again the Euler-Lagrange condition (3.22) for a global minimiser of F}, or (3.23) for a global

minimiser of Fj resc respectively, we obtain (3.27) in the one dimensional case.

Case 4: —N<k<1—N,N>2\

In this case, we can again use hypogeometric functions, but here the mean-field potential gra-

dient is a singular integral due to the singularity properties of hypogeometric functions. It writes

as
. r—y x
VSk(x) = lim ———p(y) dy = =0, Sk(r
k?( ) 550 oy|>s |.’,E — y|2_kp( ) r k( )
with the radial component given by
k=17 n N-1
OrSy(r) =r"~" lim Yk (T) p(n)n™ " dn

|[r—n|>é&

=r*=1 lim Jr—5 + JR g, (Q) p(mn™N~tds
6—0 0 r+6 T ’

where 1), is given by (A.60) on [0,1) U (1, 00), and we used the fact that p is compactly supported.
In this regime, the singularity at s = 1 is non-integrable and has to be handled with care. Define
v := min{1, R/2}. Since ¥»(s) < 0 for s > 1 (see Appendix A Lemma A.3) and since p is radially
symmetric non-increasing, we can estimate the second integral above for any r € (0,7) and small
0 > 0by

2r

kel JI; b (ﬂ) p(m)n™ " dn <r® ! p(2r) f

r r+

S i, (2) n™N"tdn
2

=rNtE=15(2r) J Y (s) sV tds.
148/r

Under assumption (3.26), we can then bound the above expression by

1-6/r 1=6/r
J Y(s)sV 1 derr”J Pr(s)sPTN " ds

Or (Wi % p) (r) N1 lim l
0 0

6—0

2

+ (1+r1’)f

1+6/r

P (s) sV 1 ds]

_ Nk lim C1(r,0) + PN im Cy(r, 6)

—0
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3. Porous medium case k < 0

where

1-6/r 2

wk(s)sN_l ds—i—f i (8) sN=1ds,

1+6/r

Ci(r0) = |

0

1-6/r 2

Yp(s)sP V1 ds—i—f Yy (8) sV 1 ds.
14+6/r

Calr8) = |

0
The crucial step is again to show that lims_,o C1(r, ) and lims_,o C2(r,0) are well-defined and
can be controlled in terms of r, seeking compensations from above and below the singularity at
s = 1. Recalling that ¢ (s)sV =1 and 1;(s)s? TV ~! are integrable at zero by Lemma A.1 and at
any finite value above s = 1 by continuity, we see that the lower bound 0 and upper bound 2 in
the integrals only contribute constants, independent of  and §. The essential step is therefore to
check integrability close to the singularity s = 1. From (A.63) and (A.64) in Appendix A Lemma

A.4(2), we have for any o € R and s close to 1:

Sl wle) s = K (-8R0 (1Y)

e B )0 (Y.

where the constant K is given by (A.65)—(A.66). Hence, for —-N < k < 1 — N we obtain

Kl 5 N+k—1 Kl 5 N+k—1 5 N+k
< e B — - - — —
Grd) 51 N—i—k—l(r) +N+k—1(r) o (r>

el

with exactly the same estimate for Cs(r, §). Taking the limit § — 0, we see that both terms are

bounded by a constant. For & = 1 — N, we obtain similarly that both C(r,0) and Cs(r,d) are

ounded by = os (2) s () w0 ((2)) = 1e0((2))

multiplied by some constant. In other words, for any r € (0,7) and —N < k < 1 — N we have
a’r‘ (Wk * p) (’F) g 7‘N+k—1 + rp-’rN-‘rk—l .

Now, we are ready to estimate the behaviour of p around the origin using again the Euler-Lagrange

condition. To estimate the mean-field potential, we use again (3.30) and write

— (Wi #p) (r) = = (Wi p) (7) + j Lo (Wew ) (s)ds < 1+ f T (N 4 rHEN=T) g

r

for any r € (0,). It follows that for p # —k — N,

k+N k+N ,yp+k+N _ ppHREN

—r

2 +
k+N p+k+N

— (Wi xp)(r) S1+ < 1Pt
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2. Fair-CoMPETITION REGIME

If p = —k — N, we have instead
ARAN N

_ ) <1

+ log(y) — log(r) < 1+ [log(r)] .

This concludes the proof of Lemma 3.10 using again Euler-Lagrange condition (3.22) if p is a min-

imiser of F}, or condition (3.23) if p is a minimiser of Fy, yesc, to obtain (3.27). O]

Corollary 3.11 (Boundedness). If x = x. and p is a global minimiser of Fy, over Y, then p € L* (RN).
If0 < x < xc and p is a global minimiser of Fy, resc 0ver Yo, then p € L (RV).

Proof. Let p be a global minimiser of either F; over ), or of Fj resc OVer V». Since p is radially
symmetric non-increasing by Proposition 3.6, it is enough to show that p(0) < co. Following the
argument in [89], we use induction to show that there exists some « > 0 such that for all € (0, 1)
we have

pr) <14+r>. (3.36)

Note that g(p) as defined in (3.28) is a linear function of p with positive slope, and let us denote
g™ (p) = (gog---og)(p). Computing explicitly, we have for all n € N

_N+k pm—-2)—-N—-k N p+ N

() _ N4 PN
9 = S T e m T

so that

lim g™ (p) = 4+ forany p > —N.

n—0o0

Since p(r)™|B(0,7)| < ||p||™ < oo we obtain the estimate
p(T’) < C(Na m, ||P||m)7"7N/m fOI' all r>0.

It follows that p satisfies the induction requirement (3.26) with choice py := —N/m. Since py > —N
there exists ng € N such that ¢™)(py) > 0 and so we can apply Lemma 3.10 n, times. This
concludes the proof with o = ¢(™0) (p,). We point out that py < —N — k and so there is a possibility
that g™ (po) = —N — k might occur for some 0 < n < ny: if this happens, the logarithmic case

occurs and by the second bound in (3.27), we obtain

p(r) < 1+ |log(r)[ ™7 <1477,

hence applying the first bound in (3.27) for p = —1 yields (3.36) with o = 1/(m — 1). O

Corollary 3.12 (Regularity). If x = x., then all global minimisers p € Y of Fy, satisfy S, € WH* (RY)
and pm=t e WE* (RN). If 0 < x < X, then all minimisers p € Yy 0f F gesc satisfy Sy € WH* (RY)
and p™~t € W (RY). In the singular range —N < k < 1 — N, we further obtain p € C%* (RN with

a € (1 —k — N,1) in both original and rescaled variables.
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3. Porous medium case k < 0

Proof. Let p be a global minimiser either of F, over ), or of Fj resc over Yo. Then p € L* (RY)
by Corollary 3.11. Let us start by considering the singular regime - N <k <1—- N, N > 2 or
—1 <k <O0for N =1.Since pe L' (RV) n L* (RY), we have p € L? (RY) forany 1 < p < 0.
Using the fact that p = (—A)® S with fractional exponent s = (N + k)/2 € (0,1/2), we gain
2s derivatives implying S, € W?*? (RV) forp > 2if N > 2 or for p > —1/k if N = 1 by using
the HLS inequality for Riesz kernels, see [272, Chapter V]. More precisely, by definition of the
Bessel potential space £2P(RY), if u, (—A)*u € LP(RY), then u € £25P(RY). Since £L2?(RY)
W2sP(RN) forany p > 2and s € (0,1/2) [272, p.155, Theorem 5(A)], we have u € W?25P(RY). Next,
we use classical Sobolev embedding, W? (RY) < C%? (RY) with 8 = 2s— N/pforp > &L > 2if
N = 2orforp > max{;t7, —1}if N = 1, whichyields p € C%# (RV). If N > 2and s = 1/2, we use
instead that Sj, € L1P(RY) for all p > 2 implies Sy, € £2"P(RY) forall p > 2 and r € (0,1/2) [272,
p-135], and then reason as above using any = € (0, 1/2) instead of s = 1/2.
Inthecase1/2— N <k <1— N, wecanensure § > 1— k — N for large enough p, obtaining the
required Holder regularity. For k < 1/2 — N on the other hand, we need to bootstrap a bit further.

Let us fix n € N, n > 2 such that

1 1
—-N<k<—-—-—N
n+1 n

and let us define 3, := B8 + (n — 1)2s = n2s — N/p. Note that S, € L* (R") by Lemma 2.2,
and f,-1 + 2s < 1. This allows us to repeatedly apply [270, Proposition 2.8] stating that p €
C%7 (RYN) implies Sj, € C%7+2 (RYN) for any v € (0,1] such that v + 2s < 1. It then follows
that p™~! € C%772% (RY) using the Euler-Lagrange conditions (3.22) and (3.23) respectively and
Corollary 3.8. Since m € (1,2), we conclude p € C%72% (RY). Iterating this argument (n — 1)

times starting with v = 8, we obtain p € C%#» (R") and choosing p large enough, we have indeed
Bn>1—k—N.

For any —N < k < 0, we then have S, € W'® (R") by Lemma 2.2. It also immediately fol-
lows that p™~! € W' (R") using the Euler-Lagrange conditions (3.22) and (3.23) respectively,
Corollary 3.8 and Lemma 2.2. Since m € (1,2), we also conclude p € Wh* (RY). O

Remark 3.13. For proving sufficient Holder regularity in the singular regime —N < k < 1— N, one may
choose to bootstrap on the fractional Sobolev space W?*P (RN ) directly, making use of the Euler-Lagrange
conditions (3.22) and (3.23) respectively to show that p € WP (RN) = S € W22 (RYN) with r > 0
for p large enough depending only on N. Here, we need that W™ (RN) is preserved under taking positive
parts of a function for 0 < r < 1 and compositions with Lipschitz functions since we take the 1/(m — 1)

power of p, see [268, Section 3.1].
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2. Fair-CoMPETITION REGIME

Theorem 3.14 (Global Minimisers as Stationary States). If x = x., then all global minimisers of Fj,
are stationary states of equation (1.2). If 0 < x < X, then all global minimisers of Fi, resc are stationary

states of the rescaled equation (2.7).

Proof. For x = x., let p € ) be a global minimiser of F;. The regularity properties provided by
Corollary 3.12 imply that Vp™ = 2 pVp"~ I and that pis indeed a distributional solution of (2.5)
using (3.22). As a consequence, p is a stationary state of equation (1.2) according to Definition 2.1.

A similar argument holds true in the rescaled case for sub-critical x. O

Remark 3.15. As a matter of fact, the recent result of radial symmetry of stationary states [89] applies to
the critical case x = x. in the range k € [2 — N, 0). Together, Theorem 3.3 and Proposition 3.6 show that
all stationary states are radially symmetric for the full range k € (—N,0). In other words, the homogeneity
of the energy functional Fy, allows us to extend the result in [89] to k € (—N,2 — N) and to find a simple

alternative proof in the less singular than Newtonian range.

4 Fast diffusion case & > 0

We investigate in this section the case k € (0, N) and hence m € (0, 1) where the diffusion is fast
in regions where the density of particles is low. The main difficulty is that it seems there is no
HLS-type inequality in this range which would provide a lower bound on the free energy, and so
a different approach is needed than in the porous medium regime. We concentrate here on the

radial setting. Let us define X’ to be the set

X = {pe LY (RN) :|lp|l1 =1, fxp(x)dx = 0} :

The following Lemma will be a key ingredient for studying the behaviour in the fast diffusion

case.

Lemma 4.1. For k € (0, N), any radially symmetric non-increasing p € X with |z|*p € L' (RN ) satisfies

k
Bl < W) <0 (BE+ 0]} veer? 437)

with

k
Rl = [ Poptdn - maxi 2,
ox K

Proof. The bound from above was proven in (2.6). To prove the lower bound in one dimension,

we use the symmetry and monotonicity assumption to obtain

1
(?I(Wk*p):%f O(|x—y|k—|x+y|k)(7ypdy >0, V=0
y>

since |z — y|* — |z + y|¥ < 0 for z,y > 0. By symmetry of W, * p it follows that 0, (W}, * p) (z) < 0

for all z < 0 and hence (4.37) holds true in one dimension for the bound from below.
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4. Fast diffusion case k > 0

For N > 2, note that since both W), and p are radial functions, so is the convolution W}, = p. By
slight abuse of notation, we write (W}, % p)(r). For r > 0, we have
B(0,r) oB(0,r)

=[0B(0,7)| 0, (Wy, * p) = rN Loy 0, (Wi % p).

From A, Wy(z) = (N + k — 2) |2|¥=2 > 0, it then follows that 0,. (W}, = p) (r) > 0 for all > 0. This

implies the lower bound in higher dimensions. O

4.1 Results in original variables

Theorem 4.2 (Non-Existence of Stationary States). Let k € (0, V). For any x > 0, there are no radially

symmetric non-increasing stationary states in X for equation (1.2) with kth moment bounded.

Proof. Assume p € X is a radially symmetric non-increasing stationary state for equation (1.2)
such that |z|*p € L' (R"). Then p is continuous by Lemma 2.4. We claim that p is supported on
RY and satisfies

p(x) = (AW, # p(z) + C[p]) N, ae. zeRY, (4.38)

with A := 2xNk/(N — k) > 0 and some suitably chosen constant C[p]. Indeed, by radiality and
monotonicity, supp (p) = B(0, R) for some R € (0, 0] and by the same arguments as in Corollary

2.5 leading to (2.11), we obtain
p(x)™¥N = AW, = p(x) + C[p), a.e. z € B(0,R).

Assume p has compact support, R < . It then follows from Lemma 4.1 that the left-hand side is
bounded above,

o _ ARF
pla) N < pAL[p) + 7

+ C|p], a.e.ze€ B(0,R).

By continuity, p(z) — 0 as |z| — R, but then p(x)™*/" diverges, contradicting the bound from
above. We must therefore have R = oo, which concludes the proof of (4.38).

Next, taking the limit  — 0 in (4.38) yields
Al[p] + C[p] > 0.

We then have from Lemma 4.1 for a.e. z € RY,

|z

0<{An | ——+Ilp] ) + Cl[p] 7N/k<ﬁ(€6)~
(40 (5 sm) + i)

However, the lower bound in the estimate above is not integrable on RY, and hence ¢ L' (RY).

This contradicts p € X. O
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2. Fair-CoMPETITION REGIME

In the fast diffusion regime, we do not have a suitable HLS-type inequality to show bounded-
ness of the energy functional F,. Although we do not know whether 7, is bounded below or not,

we can show that the infimum is not achieved in the radial setting.

Theorem 4.3 (Non-Existence of Global Minimisers). Let k € (0, N). For any x > 0, there are no

radially symmetric non-increasing global minimisers of Fj, over Yy,.

Proof. Let p be a global minimiser of F, over ). Following the same argument as in Proposition

3.6, we obtain

p(z)~F/N = AWy, * p)(z) + Di[p] a.e. insupp (p), (4.39)
p(z)™FN = AWy, % p)(z) + Dp[p] ae inRY. (4.40)

where
2Nk

Dl =~ e s Al () [ e
Since Wy, is continuous and p € L' (RY), it follows from (4.39) that p is continuous inside its
support, being a continuous function of W}, convolved with p. If p is radially symmetric non-
increasing, then supp (p) = B(0, R) for some R € (0,00]. By continuity of p at the origin, we
can take the limit |z] — 0 in (4.39) to obtain AI[p] + Di[p] > 0. It then follows from (4.40) and
(4.37) that in fact p(z)~*/¥ > 0 for a.e. 2 € RY. Hence, we conclude that supp (p) = RY. The
Euler-Lagrange condition (4.39) and estimate (4.37) yield

ol —N/k
plo) = (A0 o)) + D)™ > (an (BE 4 11} + Dt

a.e. on RY. Again, the right-hand side is not integrable for any k € (0, N) and hence p ¢ Vy,. O

4.2 Results in rescaled variables

Corollary 4.4 (Necessary Condition for Stationary States). Let k€ (0, N), x > 0and pe X. Ifpisa
radially symmetric non-increasing stationary state of the rescaled equation (2.7) with bounded kth moment,

then p is continuous, supported on RY and satisfies
p(x) = (A(Wy % p)(x) + Bla2 + C[p]) ", ae. xRV, (4.41)

Here, the constant C|p] is chosen such that p integrates to one and

(NN_kk) >0, B:= _ Nk > 0. (4.42)

A =2y SN —F)

Proof. Continuity follows from Lemma 2.4, and we can show supp (p) = R and (4.41) by a similar

argument as for (4.38). O

112



4. Fast diffusion case k > 0

From the above analysis, if diffusion is too fast, then there are no stationary states to the rescaled

equation (2.7):

Theorem 4.5 (Non-Existence of Stationary States). Let x > 0, N > 3and k € [2, N), then there are no
radially symmetric non-increasing stationary states in X with kth moment bounded to the rescaled equation

2.7).

Proof. Assume p € X is a radially symmetric non-increasing stationary state such that |z|*p €
L' (RY). It follows from (4.41) and (4.37) that

jzl*

—N/k
)= (an (55 + nial) + BleP + 1)
However, the lower bound is not integrable on R for k > 2, contradicting p € L' (RY). O

Remark 4.6. Condition (4.41) tells us that radially symmetric non-increasing stationary states have so-
called fat tails for large r = |z|. More precisely, Lemma 4.1 shows they behave at least like r—> for large r
if k = 2, whereas p(r) ~ r=2N/* for large r > 0 and for k < 2. This means there is a critical k. := 2 and
respectively a critical diffusion exponent my, := 1 — 2/N where a change of behaviour occurs.

For k < ky, radially symmetric non-increasing stationary states, if they exist, are integrable and mass
is preserved. This restriction on k corresponds exactly to the well-known classical fast diffusion regime
m > my in the case x = 0 [287], where mass escapes to the far field but is still preserved. In our case,
the behaviour of the tails is dominated by the non-linear diffusion effects even for x > 0 as for the classical
fast-diffusion equation when m > M.

If diffusion is 'too fast’, i.e. k > ky and m < my, then no radially symmetric non-increasing stationary
states of the rescaled equation (2.7) exist as stated in Theorem 4.5. It is well known that mass escapes to
infinity in the case of the classical fast diffusion equation (x = 0) and integrable L*-solutions go extinct in
finite time (for a detailed explanation of this phenomenon, see [287, Chapter 5.5]). It would be interesting

to explore this in our case.

Remark 4.7. If N > 2 and k € [K, 2) with

N [N?
K(N):=—5 +4/— +2N  €[1,2), (4.43)

then radially symmetric non-increasing solutions p € X to equation (4.41) have unbounded kth moment.

Indeed, assuming for a contradiction that |x|*p e L* (R™). It then follows from (4.41) and (4.37) that

tata) = b (a0 (5 4 i)+ s i)

a.e. on RY, and the right-hand side is integrable only in the region k* + Nk — 2N < 0. This condition
yields (4.43).
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2. Fair-CoMPETITION REGIME

Proposition 4.8 (Necessary Condition for Global Minimisers). For k € (0, N), let p be a global min-

imiser of Fi resc i Va . Then for any x > 0, p is continuous inside its support and satisfies

p(x) KN = AWy, # p)(x) + Blx)? + Diyesclp] ace. in supp (p), (4.44)

p(I)ik/N = A(Wk * p) (l‘) + B|£E|2 + Dk,resc[p] a.e. in RN' (445)

Here, constants A, B are given by (4.42) and

N+ k m
Dk,resc[p] = _4B~Fk,resc[p] + BV[P] - J p (37) dz.
N—-Fk) Jgn
Moreover, radially symmetric non-increasing global minimisers in ) i, are supported on the whole space,

and so in that case (4.44) holds true in RY.

Proof. The proof of (4.44) and (4.45) follows analogously to Proposition 3.6. Further, since W is
continuous and p € L! (RN ), it follows from (4.44) that p is continuous inside its support being a
continuous function of the convolution between W}, and p. Now, if p is radially symmetric non-

increasing, we argue as for Theorem 4.3 to conclude that supp (p) = RY. O

Remark 4.9. Just like (4.41), condition (4.44) provides the behaviour of the tails for radially symmetric non-
increasing global minimisers of Fi, resc Using the bounds in Lemma 4.1. In particular, they have unbounded
kth moment for any x > 0 if k > K with K given by (4.43), and they are not integrable for k > k. := 2.
Further, their second moment is bounded and p™ € L' (RY) if and only if k < 2N /(2 + N). Note that

2N
2+ N

< K(N) < ky .

Hence, radially symmetric non-increasing global minimisers with finite energy Fi, resc[p] < o0 can only
exist in the range 0 < k < 2N /(2 4+ N). For k > 22+7NN one may have to work with relative entropies

instead.

Apart from the Euler-Lagrange condition above, we have very little information about global
minimisers of Fj, resc in general, and it is not known in general if solutions to (4.44)-(4.45) exist.
Thus, we use a different approach here than in the porous medium regime, showing existence of

stationary states to (2.7) directly by a compactness argument. Let us define the set
X = {peC(RN) NX: f|x\kp(m)dx <o, p¥ =p, lim p(r) =O} )
r—00
where p# denotes the symmetric decreasing rearrangement of p.

Theorem 4.10 (Existence of Stationary States). Let x > 0and k € (0,1] n (0, N). Then there exists a
stationary state p € X for the rescaled system (2.7).

Here, decay at infinity of the equilibrium distribution is a property we gain automatically

thanks to the properties of the equation, but we choose to include it here a priori.
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4. Fast diffusion case k > 0

Proof. Corollary 4.4 suggests that we are looking for a fixed point of the operator 7" : X — X,

Tp(x) == (AW * p)(@) + Blef> +C) "

For this operator to be well-defined, we need to be able to choose a constant C' = C[p] such that
Sz Tp(x) dz = 1. To show that this is indeed the case, let us define for any a > 0,
] N Nk
w(a) = JRN (a + AT + B|x|2) dz, W(a) := JRN (a+ Blz|*)” * dx.

Note that w and W are finite and well-defined since k¥ < 2. Furthermore, both w and W are
continuous, strictly decreasing to zero as « increases, and blow-up at o = 0. Hence, we can take
inverses § := w™!(1) > 0 and 0 := W~1(1) > 0. Here is where we use the condition k < 1 as this
means 7 = 1 in Lemma 4.1 (see also Remark 4.11). Fixing some p € X and denoting by M (p, C)

the mass of T'p, we obtain from Lemma 4.1,
M(p,6—Al[p]) =1, M (p,6 — A[p]) < 1.

Since M (p,-) is continuous and strictly decreasing on the interval [§ — Al,[p], 0 — Al[p]], we
conclude that there exists C[p] with § — Al[p] < C[p] < § — Alx[p] and M (p,C[p]) = 1. From

Lemma 4.1, we obtain for all z € RY,

(ALJM-FCUJ+,Uir4—3@2)_NM55TMx)<(Abiﬂ-%CUﬂ+l3ﬂﬂNMa
and integrating over RY,
w(AL[p] + Clp]) < 1 < W (AL[p] + C[p]) , (4.46)
implying
0<d<AILp] +Clp] <6 < . (4.47)
As a consequence, we have a pointwise estimate for T'p,
m(z) < Tp(z) < M(z), (4.48)

where we define

—N/k

54 alzl o
m@y—G+A;c+Bmﬁ , M(z) := (6 + Bl|z|?) (4.49)

We are now ready to look for a fixed point of T. Applying T to X', we are able to make use of a
variant of the Arzéla-Ascoli Theorem to obtain compactness. The key ingredients are the bounds
in Lemma 4.1 and the uniform estimate (4.47) since they allow us to derive the pointwise estimate

(4.48), which gives decay at infinity and uniform boundedness of T'p:

Tp(z) < (8 + B\x|2)_N/k < min {BiN/k || 72N/ Q_N/k} . (4.50)
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2. Fair-CoMPETITION REGIME

Further, we claim T'p is k-Holder continuous on compact balls K := B(0,R) < RY, R > 0,
|Tp(z1) — Tp(w2)| < Cronv g |21 — 22, (4.51)
with k-Holder semi-norm

CRMkr{TmﬂCMf—§54“WW)<2+3BR%*)>0. (4.52)

To see this, let G(z) := AWy, # p)(z) + Blz|> + C[p] and u(G) := G~N/* so that we can write

[ Tp(x1) = Tp(x2)] = |Ga1) ™" = Gla2) ™| < Lip (u) |G(21) — G(z2)]

< Lip (u) (A [Wk * p]CO:k + B [| : ‘2]00,1@) |$1 - ‘r2|k7

where Lip(-) denotes the Lipschitz constant on a suitable domain specified below. Indeed, G(x)
satisfies the inequality 0 < § < G(z) < A% + Blz|* 4 0 for all z € RY by (4.37) and (4.47).

Moreover, G is k-Holder continuous:

k

|z — 2o|" gk—1 ¢ |21 — @o|"
k k

(Wi p)a) = W s )| = | llow = ol = o2 = o o)

<

and hence [W}, * p] o < 1/k uniformly. Further, the k-Holder semi-norm of |z|? is bounded by
3R> *on Kg: forz,ye Kg,x # yand z := v — y, we have for |z| < R,

o = [5P| _ |2l + 2|z  min{la. Jo]}

1-k 2—k
T S T < 3R|z['"* < 3R*F,

and similarly for |z| > R,
lel® = l?| _2R* _ o
e -yt ~ RF ’

and so [| - 2] .o < 3R?>7*. We are left to estimate the Lipschitz coefficient Lip (u) for G € [§, «0).

C0.k
Indeed, we can calculate it explicitly using the mean value theorem,

u(G) ~ u(Ga)| < ( aumx 109)]) 161~ Gl
and so we have

N
Li < 1y = g (L+N/R)
ip (u) é@ghﬁ@l )

This concludes the proof of Holder continuity of Tp on Kpg, (4.51)-(4.52). Since
San [#]"M (z) dz < o0 if k € (0,1], it follows from (4.48) that Tp has bounded kth moment. To-
gether with the estimate of the tails (4.50), we have indeed TX = X, and so T is well-defined. We
conclude that the operator T' : X — X is compact by a variant of the Arzéla-Ascoli Theorem using
uniform decay at infinity and uniform boundedness (4.50) together with equi-Holder-continuity

(4.51). Continuity of the map 7' : X — X' can be analogously checked since the convolution with
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4. Fast diffusion case k > 0

W), is a continuous map from X to C(R”) together with a similar argument as before for the
Holder continuity of Tp. Additionally, we use that C[p] is continuous in terms of p as M (p, C),
the mass of T'p, is a continuous function in terms of both p and C and strictly decreasing in terms
of C, and hence C[p] = M ~1(p, 1) is continuous in terms of p. Here, M ~1(p, -) denotes the inverse
of M(p,-).

Finally, by Schauder’s fixed point theorem there exists 5 € X such that Tp = p. In other
words, p satisfies relation (4.41) on RY. By continuity and radial monotonicity, we further have
p € L* (RY) from which we deduce the required regularity properties using supp (p) = RY
and Lemma 2.2. We conclude that p is a stationary state of the rescaled equation according to

Definition 2.3. O

Remark 4.11. Note that the restriction k < 1 in the statement of Theorem 4.10 arises from Lemma 4.1 as
we need the upper and lower bounds in (4.37) to scale with the same factor (n = 1). By Corollary 4.4, this
restriction on k also means that we are in the range where stationary states have bounded kth moment since
((0,1] n (0, N)) < (0, K). To see why this is the case, let us take any k € (0, K') and son = 1. Applying

Lemma 4.1 to Tp(x) and integrating over RY then gives
wy (NAIk[p] + Clp]) < 1< W (AL[p] + C[p])

instead of (4.46), with

2t —N/k
wy (@) = JRN <a + nAT + B|x|2) dx .

Taking inverses, we conclude
8, <nAly[p] + Clp],  Ali[p] +Clp] <6 (4.53)

for 8, := w; ' (1) and for n > 1. This is where ) = 1 becomes necessary in order to conclude for the
pointwise estimate (4.48).

If the constant C|[p] is non-negative however, we can go a bit further and remove the condition k < 1 whilst
still recovering a pointwise estimate on T p. More precisely, if C[p] = 0, then we obtain from (4.53) for any
ke (0,K)

)
0< % < Al [p] + Clp] < 0.

Instead of (4.48), we get
my(2) < Tp(z) < My (a)

with

& —N/k 5 —N/k
N S 2 (% 2
my(x) = (nd+ A A + Blz| , M, (x) = p + Blz| .

However, firstly, the sign of C|p] depends on the kth moment I};[p], and secondly, knowing a priori that
C[p] = 0 implies C[Tp] = 0 for all p € X is complicated, see Remark 4.12.
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2. Fair-CoMPETITION REGIME

Remark 4.12. Both C[p] < 0 and C|p] = 0 are possible for p € X and k € (0, K), depending on the kth
moment of p. More precisely, C|p] is defined as the value in the interval [, — nAl,[p],6 — AlL[p]| such
that M (p, C|p]) = 1. Hence, we have

Ix[p] <9,/(nA) = Clp] =0,
Iip] >3/A = C[p] <O.

Remark 4.13. Having established existence of radially symmetric stationary states to the rescaled equation
(2.7), it is a natural question to ask whether these stationary states correspond to minimisers of the rescaled
free energy functional Fi, resc. For a stationary state p to have finite energy, we require in addition V[p] < o,

p™ e LY (RN) and |x|*p e L' (RY), in which case p € Vs . As noted in Remark 4.9, this is true if and

2N
2+N"°

This restriction corresponds to s~ < m < 1 and coincides with the regime of the

onlyif0 < k < TEN

fast diffusion equation (x = 0) where the Barenblatt profile has second moment bounded and its mth power
is integrable [47].

Remark 4.14. In particular, the non-existence result in original variables Theorem 4.3 means that there
is no interaction strengths x for which the energy functional F, admits radially symmetric non-increasing
global minimisers. In this sense, there is no critical x . for k > 0as it is the case in the porous medium regime.
Existence of global minimisers for the rescaled free energy functional Fi, resc for all x > 0 would provide a full
proof of non-criticality in the fast diffusion range and is still an open problem for arbitrary dimensions N. We
suspect that Fi, resc is bounded below. In one dimension, one can establish equivalence between stationary
states of the rescaled equation (2.7) and global minimisers of Fi, esc by completely different methods, proving
a type of reversed HLS inequality, see Chapter 3. The non-existence of a critical parameter x is a very
interesting phenomenon, which has already been observed in [116] for the one-dimensional limit case k = 1,

m = 0.

4.3 Numerical simulations in one dimension

To illustrate our analysis of the fast diffusion regime, we present numerical simulations in one
dimension. We use a Jordan-Kinderlehrer-Otto (JKO) steepest descent scheme [195, 248] which
was proposed in [36] for the logarithmic case k = 0, and generalised to the porous-medium case
k € (—1,0) in [67]. It corresponds to a standard implicit Euler method for the pseudoinverse of
the cumulative distribution function, where the solution at each time step of the non-linear system
of equations is obtained by an iterative Newton-Raphson procedure. It can easily be extended to
rescaled variables and works just in the same way in the fast diffusion regime & € (0, 1).

Our simulations show that solutions in scaled variables for k € (0, 1) converge always to a sta-

tionary state suggesting the existence of stationary states as discussed in the previous subsection.
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Figure 2.1: Parameter choices: x = 1.2, k = 0.2. (a) Density distribution in rescaled variables: As
initial data (black) we chose a characteristic supported on the centred ball of radius 1/2, which

can be seen to converge to the stationary state p (red); (b) Logplot of the density including bounds
m(z) (dotted blue) and M (x) (dashed blue) as given in (4.48).
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Figure 2.2: Parameter choices: x = 0.8, K = 0.95. (a) Density distribution in rescaled variables:
As initial data (black) we chose a centred Gaussian distribution, which can be seen to converge
to the stationary state p (red) - here, p is more peaked as k is closer to 1 and so we only display
the lower part of the density plot (max,er p(x) = 75.7474); (b) Logplot of the density including
bounds m(z) (dotted blue) and M (x) (dashed blue) as given in (4.48).

Using the numerical scheme, we can do a quality check of the upper and lower bounds derived

in (4.48) for stationary states in X:

with m(z) and M (x) given by (4.49). Figures 2.1 and 2.2 show numerical results at two different
points in the (k, x)-parameter space. For a more detailed description of the numerical scheme and

a comprehensive list of numerical results, see Chapter 3.
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A Appendix: Properties of ¢,

We are here investigating in more detail the properties of the mean-field potential gradient for
global minimisers in the porous medium regime. In more than one dimension, it can be expressed
in terms of hypergeometric functions. Their properties are well understood and allow us to anal-
yse the regularity properties of global minimisers. Since global minimisers of Fj, and Fy, resc are
radially symmetric by Proposition 3.6, the aim is here to find the radial formulation of VSj, de-
fined in (1.3). In one dimension, explicit expressions are available, and so we are assuming from
now on that N > 2. There are three different cases: (1) The Newtonian case k = 2— N with N > 3,
(2)therange 1 — N < k <0, k # 2— N where V(W}, * p) is well defined, and (3) the singular range

—N < k <1— N where the force field is given by a Cauchy principle value.

(1) Inthe Newtonian case k = 2 — N, we have an explicit formula for the radial derivative of the

force field using Newton’s Shell Theorem,
Or (Waen # p) (r) = M(r)r' =,

where M(r) = o {; p(s)s™ ! ds is the mass of p in a ball of radius r. Hence, we can write

r

Or(Waen = p)(r) =117 JOOO Yo N (77) p(mn™ " dn

where 1, y is defined to have a jump singularity at s = 1,

1 if 0<s<1,
Ya_nN(s) = (A.54)
0 if s>1.

(2) Intherange1 — N < k <0and k # 2 — N, the mean-field potential gradient is given by
VSi(a) i= VWi p)(e) = | VWi =)o) dy
RN
1

o0
ZAfjJ' YW (z — y)do(y)p(ly]) dly].
ON Jo JoB(o,ly|)

Denoting |y| = n, we can write for z = rey,

1 1 B
— VW (z —y)do(y) = — (x —y)le —y[* > do(y)
oN Jon(o,ul) oN Jon(o,y))

1 _
= (J ep-(re; —y)|rer — y|k 2d(7(1/)>
ON JoB(0,n)

1 x
= nNﬁl J (r—mney.z)|lre; — 77z|]’“2 do(2) | =
ON JoB(0,1) r

— — x
= 77N 1Tk 11/% (ﬂ> —

r/r

S8

120



A. Appendix: Properties of 1,

where
Yy (s) = s (1 —sey.2)|er — sz[F"2do(z), se[0,1)u(1,0). (A.55)
onN JaB(o,1)
By radial symmetry,
_ * _ x x
V(Wi % p)(z) = r* 1<J ¢w(ﬂ>p0ﬂnN 1di)==&(”%*pﬂr)
0 r r r
with

W o)) = [ o (2) ol . (A56)

(3) Intheregime —N < k < 1— N however, the derivative of the convolution with the interaction
kernel is a singular integral, and in this case the force field is defined as
r—y
V Sk ;:J T (p(y) — pl(x)) dy
R |7 — Yl
x—y x

= lim o5 P(y) dy = — 0, Sk(r
6—0 |lz—y|>6 "xiy|2_k ( r ( )

with the radial component given by

o0
Op Sk (1) :rkflj

0

=r*=1 lim Vi (
0—0 lr—n|>5

and vy, is given by (A.55) on [0,1) U (1,0).

Forany —N < k < 0 with k # 2 — N, we can rewrite (A.55) as

di(s) = TN J Tr(l—3008(9))sinN_Q(G)A(s,G)k_z do,  sef0,1)u(1,0) (A.57)
ON 0

with
2 1/2
A(s,0) = (14 s° —2scos(6)) '~ .

It is useful to express v, in terms of Gauss Hypergeometric Functions. The hypergeometric func-

tion F'(a, b; ¢; z) is defined as the power series

(a)n(b)n ﬁ
©n n!

for |z| < 1and a,b e C, c € C\{Z~ v {0}}, see [4], where (q),, is the Pochhammer symbol defined

F(a,b;c; 2) = i (A.58)
n=0

for any ¢ > 0, n € Nby
(n+q—1)!
=1, p=-— 7

We will here make use of its well known integral representation [4]

. 1
F(a,b;c;2) = F(b)?((c)—b)fo (1 =) (1 —t2) T dt

121



2. Fair-CoMPETITION REGIME

forc > b > 0,a > 0and |z| < 1. Moreover, if c —a — b > 0, then F' is well defined at z = 1 and

satisfies

T(c)T(c—a—0)
I(c—a)l(c—1b)"
Otherwise, we have the limiting case discussed in [4]:

F(a,b;c;2)  T(c)l'(a+b—c)

F(a,b;e;1) =

li = if c—a-— . A.
oot (1= 2)eab Mare 0 bemenbs0 (A.39)
Let us define
. FOL(c—b) .
H(a,b;c;2) = (o) F(a,b;c; 2).

To express 9 as a combination of hypergeometric functions, we write

Ui (s) _IN-L ‘r (1 —scos(0)) (1+ s*>—2scos()) = sinV=2(0) db
on Jo

_INZL (g gk Lﬂ (1 — scos(f)) <1 A o (g)) sinV =2 () do

o 1+ )

k=2
_ON-1 2 (T4 o (0)) T s
o (1+s) Jo (1 e cos <2>> sin (0) do

_IN-1 2 " s o (0T L ne
(I+s) SL cos(0) (1 TESE cos <2>> sin (9) db

ON

::fl(s) — fQ(S) .

Now, we use the change of variable ¢ = cos? (6/2) to get

k—2

ON-1 k-2 [ 4s 2 (0 N2

=1 1— ———=cos” [ = 3 0) db
f1(s) p (1+s) L ( TESE cos (2 sin (0)

_IN-1 (1 _,_S)k*Z oN-2 Jl 1— Lt %th_s (1 —t)¥ dt
 on 0 (1+ )2
=T (14 ) 22N 2 (0, b3 015 2)

ON

with
k N-1 4s
=1——=, b= ——— =N-1 = .
a 5 1 5 €1 T 1+ 5)2

Let us define h4(s) := fi(s), and

ha(s) := IN-1 (1+9)"228"2H (a, by; a3 2)

ON
with
k N -1 4s
=1 I S S NS R
! y BT @ LT e
Then
fa(s) =221 (1 4 5)F 25 ’ cos() | 1— 45 cos? AN sin® =2 (0) df
2 ON 0 (1 + 8)2 2
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by the same change of variable. We conclude
Yr(s) = (14 s)hi(s) — 2sha(s), s€[0,1) N (1,00). (A.60)

Let us now study the behaviour of v, in more detail for & # 2— N. For any fixed s € [0,1) n (1, 0),

e (s)] < —— le1 — sz[*1 do(z) < o
ON JoB(0,1)
and by the dominated convergence theorem, it is easy to see that v, is continuous on s € [0,1) N
(1,0) forany —N <k <2—Nand 2 - N < k < 0. A singularity occursat s = 1if k <2 — N,
however this singularity is integrable in therange 1 — N <k <2 — N.
In order to handle the expression of the mean-field potential gradient, it is important to un-

derstand the behaviour of 1), at the limits of the integral 0 and co as well as at the singularity

s=1.
Lemma A.1 (Behaviour at 0). Fora > —1, —N < k < 0and small s > 0,
Yi(s)s® = s+ 0 (s . (A.61)

Proof. Following the same argument as in [138, Lemma 4.4], we obtain ¢, (0) = 1 for any —N <

k < 0, and so (A.61) follows. O
Similarly, extending the argument in [138, Lemma 4.4] to —N < k < 0, we have

Lemma A.2 (Behaviour at c0). For —N < k <0,

N+k-2
lim 52~ Fey(s) = yrRzs

lim ¥ (A.62)

(@) (b)

Figure 2.3: ¢, for different values of k with N = 6, increasing k by 0.2 for each plot: (a) —N < k <
2—N,b)2—-N<k<O.
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Further, it is obvious from (A.57) that ¥;(s) > 0 for s € (0,1). From [138],

Yr(s) = (0-;\[1;1> (k — 2()15[]\[_?)k _ 2)5 Lﬂ sin™ (0) A(s, 0)F=* db s€[0,1) n (1,00)

and hence v, is strictly decreasing for k > 2— N and strictly increasing for k& < 2—N. It then follows
from (A.62) that in the super-Newtonian regime k¥ > 2 — N, 15, converges to zero as s — o0, is
finite and continuous at s = 1, and strictly positive on [0, o) (Figure 2.3(b)). In the sub-Newtonian
regime —N < k < 2— N on the other hand, the monotonicity of 1;, and the fact that 1, converges
to 0 as s — oo imply that

lim g (s) = 40, lim vg(s) = —o0,

s—1— s—1t

and so we conclude that ¢, < 0on (1,) if —N < k < 2 — N (Figure 2.3(a)). We summarise these

observations in the following lemma:
Lemma A.3 (Overall Behaviour). Let vy, be as defined in (A.55).
(i) If2— N < k < 0, then v, is continuous, positive and strictly decreasing on [0, c0).

(ii) If —-N < k < 2 — N, then 1)y, is continuous, positive and strictly increasing on [0, 1), and it is
continuous, negative and strictly increasing on (1, o0). Further, it has a singularity at s = 1 which is

integrable for 1 — N <k <2 — N.

Using the hypergeometric function representation of 1, we can characterise its behaviour near

the singularity.
Lemma A.4 (Behaviour at 1). For o € R and ¢ > 0 small, we have
(1) in the super-Newtonian regime 2 — N <k <Oandfors=1+e:
Vi(s)s® = ¥(1) + O (e) ,
(2) in the sub-Newtonian regime —N < k <2 — N and
(i) fors =1—e¢:
Vi (8) s = K1eN 2 4 KpeN =14 O (eNTF) | (A.63)
(ii) fors =1+e:
P (s) 8% = —K1eNtF2 4 KV 4 O (eNHF) (A.64)
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where

K, = ("N—1> 120, Ksa]=— ("N—1> (Bl ”(IN”O‘)) : (A.65)

ON 2 ON 4

Kafo] = — <0’;VA_]1) <31 + v(2k +4N— 5+ 2a))

and
L [(cy — bg)lf((Z)Jr br—c)) _ (A.66)

Proof. (1) follows directly from the fact that ¢, is continuous at s = 1 [138, Lemma 4.4]. In order
to prove (2), we make use of expression (A.60) for 1), in terms of hypergeometric functions and
known expansions around the point of singularity. Denoting ¢ := /|2 — €| > 0, we have for any
p >0,

5 = (g)ﬁ 48 (g)ﬁ+1 +0(c742) . (A.67)

From (A.60) we can write

Yi(s) = (14 s)h1(s) — 2sha(s) = (1 + s) (h1(s) — ha(s)) + (1 — s)ha(s),
and hence, denoting z = 1 — §, we obtain for s = 1 —&:

o _
22_NKN1’(/J]€(1 —e)=(2- E)k ! (H (a,by;c152) — H (a,be; 25 2))
e(2-— 5)k_2 H (a,by; co; 2)

_ (2= g)kl gN+k=3 (H(Ch bisei;z) H(%bz;cz;z))

(1 _ Z)leafbl (1 _ Z)CQ*(l*bQ

. H (a,b; 53
fe(2_ o)t NS (M) , (A.68)

Similarly, above the singularity point at s = 1 + €, we obtain:

_ _ s H(a,by;c152) H(a,by;co;2)
22 N ON (1 — (2 k 15N+k 3 ) ) ) _ ) 3 )
O'Nflwk( + E) ( + 6) (1 _ Z)cl—a—bl (1 _ Z)Cz—a—bz

_ H . .
—e (24 )TN R ((1 (_a;[;i;ci’fl) . (A.69)

Using the power series expression (A.58) for hypergeometric functions, we can write

H(aab1§cl§z) (a ba; co; 2) & 2" x mB )
(( Z=: ; Z 52m

1— Z)clfafbl (1 _ Z cz a—bo

o0 A -
Bm = n;m (TL — )' ’
L (Cl — CL)n(Cl — bl)n _ (CQ — a)n(CQ — bg)n F(bl)F(cl — bl)
e (B ) TR

In the singularity regime —N < k < 2 — N, we have

N+k—-3
01_a/_b1:62_a_b2:+7<07
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and so we can make use of (A.59) to show that the leading order term vanishes:

Bo = lim i %527”: lim (H(a’bl;q;z) — H (a,by; co; 2)
§—0 =0 m! z—1— (1 — 2)017047171 (]_ _ 2)027a7b2
Tl =b)l(a+bi—c1) T(e2—b)l(a+bs—co) .
B I(a) T(a) =0.

Hence

H (a,by;c1;2) H (a,by; co; 2) 9 4
_ - _B

(1 _ Z)leafbl (1 _ Z)szasz 15 + 0(6 )’

H (a,ba;co;2)  T(ea —ba)l(a+ by — c2)

(1 _ Z)Cg—a—bz - F(a)

+0(8%) =7v+0(%) .
Substituting these estimates and making use of (A.67), (A.68) becomes

22—1\1%%(1 ) =e(2— E)k72 (75N+k—3 +0 (§N+k—1)) 7

+(2- E)k—l (_315N+k—1 +0 (6N+k+1))

=e[2F? —e(k—2)2"° + 0 (¢%)]

x [v (%)NHH +7(N+k-3) (g)N+k_2 +0 (eN“”)]

+[25 +0(9)] [—Bl (%)NM_I L0 (€N+k)]

=2 NFLNFR=2 L 0" N[(N + k —3) + (2 — k)] eV FTr1
_ Bl2—N€N+k—1 +0 (€N+k)

:727N+15N+k72 + 27N [,y (N _ 1) _ Bl] €N+k771 + O (€N+k}) .
Similarly, (A.69) has expansion

92-N_IN (1 +¢)

—e(2+ k—2 5N+k—3 +0 5N+k—1 7
ON—-1 E( E) (’y ( ))

+(2+ E)k—l (_315N+k—1 10 (5N+k+1))
= —c[2" 2 +e(k—2)2% + 0 ()]

X [v (%)NHH +v(N+k-3) (%)NHH +0 (sN+k—1)]

£ 40 () [Bl )" o @-M)]

L NHINER2 o N [ (N = 8) 4 (2 — k)] N TR
_ B12_N8N+k_1 +0 (5N+k)

= — 2 NHNHE=2 4 97N [y (5 — N = 2k) — By] VN1 + O (eNFF) |
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We conclude

) - (222) (g eor e (20) (2D v o vy

ON ON

Uil +e) = — <0N—1> (l) N+h—2 <0N—1> <’Y(5N 2k) Bl) ENHEL | O (N R |

ON 2 ON 4

and so (2)(i)-(ii) directly follow. O
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CHAPTER 3

Asymptotics in the One-Dimensional

Fair-Competition Regime

This chapter follows in most parts the article “The geometry of diffusing and self-attracting parti-
cles in a one-dimensional fair-competition regime” written in collaboration with Vincent Calvez!
and José A. Carrillo?, and to appear in “Nonlocal and Nonlinear Diffusions and Interactions: New

Methods and Directions”, volume 2186 of Lecture Notes in Math., Springer.
Chapter Summary

We consider an aggregation-diffusion equation modelling particle interaction with non-
linear diffusion and non-local attractive interaction using a homogeneous kernel (singular and
non-singular) leading to variants of the Keller-Segel model of chemotaxis. We analyse the fair-
competition regime in which both homogeneities scale the same with respect to dilations. Our
analysis here deals with the one-dimensional case, building on the work in Chapter 2, and pro-
vides an almost complete classification. In the singular kernel case and for critical interaction
strength, we prove uniqueness of stationary states via a variant of the Hardy-Littlewood-Sobolev
inequality. Using the same methods, we show uniqueness of self-similar profiles in the sub-
critical case by proving a new type of functional inequality. Surprisingly, the same results hold
true for any interaction strength in the non-singular kernel case. Further, we investigate the
asymptotic behaviour of solutions, proving convergence to equilibrium in Wasserstein distance
in the critical singular kernel case, and convergence to self-similarity for sub-critical interaction
strength, both under a uniform stability condition. Moreover, solutions converge to a unique
self-similar profile in the non-singular kernel case. Finally, we provide a numerical overview
for the asymptotic behaviour of solutions in the full parameter space demonstrating the above
results. We also discuss a number of phenomena appearing in the numerical explorations for

the diffusion-dominated and attraction-dominated regimes.

1Unité de Mathématiques Pures et Appliquées, CNRS UMR 5669 and équipe-projet INRIA NUMED, Ecole Normale
Supérieure de Lyon, Lyon, France.
2Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
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Ati deka metua xo o.

One stick cannot build a house®.

Ghanaian proverb (Ewe)

3In unity is strength, therefore, one should learn to work together with others.
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1. Introduction

1 Introduction

Mean field macroscopic models for interacting particle systems have been derived in the liter-
ature [245, 240] with the objective of explaining the large time behaviour, the qualitative prop-
erties and the stabilisation of systems composed by a large number of particles with compet-
ing effects such as repulsion and attraction between particles. They find natural applications in
mathematical biology, gravitational collapse, granular media and self-assembly of nanoparticles,
see [105, 196, 96, 282, 191, 207] and the references therein. These basic models start from particle
dynamics in which their interaction is modelled via pairwise potentials. By assuming the right
scaling between the typical interaction length and the number of particles per unit area one can
obtain different mean field equations, see for instance [43]. In the mean-field scaling they lead
to non-local equations with velocity fields obtained as an average force from a macroscopic den-
sity encoding both repulsion and attraction, see [39, 10] and the references therein. However, if
the repulsion strength is very large at the origin, one can model repulsive effects by (non-linear)
diffusion while attraction is considered via non-local long-range forces [240, 282].

In this chapter, we concentrate on this last approximation: repulsion is modelled by diffusion
and attraction by non-local forces. We will make a survey of the main results in this topic exem-
plifying them in the one dimensional setting while at the same time we will provide new material
in one dimension with alternative proofs and information about long time asymptotics which are
not known yet in higher dimensions. In order to understand the interplay between repulsion via
non-linear diffusion and attraction via non-local forces, we concentrate on the simplest possible
situation in which both the diffusion and the non-local attractive potential are homogeneous func-
tions. We will focus on models with a variational structure that dissipate the free energy of the

system.

The plan for this chapter is twofold. In a first part we shall investigate some properties of
the following class of homogeneous functionals, defined for centered probability densities p(z),
belonging to suitable weighted LP-spaces, and some interaction strength coefficient x > 0 and

diffusion power m > 0:

Foilp] = j Un (p(2)) da + X j J p(£)Wilz — 9)ply) dudy = Unlp] + Wilpl,  (L1)

RxR

plz) >0, pr(x)d;c: 1, fRzp(I)dajzo,

with
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and

B ke (cn o)
Wi(z)={ & . (12)

loglz|, if k=0

The center of mass of the density p is assumed to be zero since the free energy functional is invari-
ant by translation. Taking mass preserving dilations, one can see that U,,[-] scales with a power
m — 1, whilst Wy[-] scales with power —k, indicating that the relation between the parameters k
and m plays a crucial role here. And indeed, one observes different types of behaviour depending
on which of the two forces dominates, non-linear diffusion or non-local attraction. This motivates
the definition of three different regimes: the diffusion-dominated regime (m — 1 > —k), the fair-
competition regime (m — 1 = —k), and the attraction-dominated regime (m — 1 < —k). We will here

concentrate mostly on the fair-competition regime.

This chapter can be viewed as a continuation of the seminal paper by McCann [234] in a non-
convex setting. Indeed, McCann used the very powerful toolbox of Euclidean optimal transporta-
tion to analyse functionals like (1.1) in the case m > 0 and for a convex interaction kernel W},. He
discovered that such functionals are equipped with an underlying convexity structure, for which
the interpolant [pg, p1]; follows the line of optimal transportation [295]. This provides many in-
teresting features among which a natural framework to show uniqueness of the ground state as
soon as it exists. In this chapter we deal with concave homogeneous interaction kernels W, given
by (1.2) for which McCann'’s results [234] do not apply. Actually, the conditions on k imply that
the interaction kernel Wy, is locally integrable on R and concave on R, which means that Wj[-] is
displacement concave as shown in [85]. We explain in this chapter how some ideas from [234] can
be extended to some convex-concave competing effects. Our main statement is that the functional
(1.1) - the sum of a convex and a concave functional — behaves almost like a convex functional
in some good cases detailed below. In particular, existence of a critical point implies uniqueness
(up to translations and dilations). The bad functional contribution is somehow absorbed by the

convex part for certain homogeneity relations and parameters x.

The analysis of these free energy functionals and their respective gradient flows is closely re-
lated to some functional inequalities of Hardy-Littlewood-Sobolev (HLS) type [218, 163, 74, 39].
To give a flavour, we highlight the case (m = 1,k = 0), called the logarithmic case. It is known
from [136, 41] using [77, 19] that the functional F; o is bounded from below if and only if 0 < x < 1.
Moreover, F; o achieves its minimum if and only if x = 1 and the extremal functions are mass-
preserving dilations of Cauchy’s density:

pola) = (1) . (1.3)

1+ |z|?
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In [77] authors have proved the uniqueness (up to dilations and translations) of this logarithmic
HLS inequality based on a competing-symmetries argument. We develop in this chapter an alter-
native argument based on some accurate use of the Jensen’s inequality to get similar results in the
porous medium case —1 < k < 0. This goal will be achieved for some variant of the HLS inequal-
ity as in [39], indeed being a combination of the HLS inequality and interpolation estimates, see
Theorem 3.1. The case 0 < k < 1 has been a lot less studied, and we will show here that no crit-
ical interaction strength exists as there is no x > 0 for which 7, ;, admits global minimisers. On
the other hand, we observe certain similarities with the behaviour of the fast diffusion equation
(0 <m < 1, x = 0) [287]. The mass-preserving dilation homogeneity of the functional F,, , is
shared by the range of parameters (m, k) with N(m — 1) + k = 0 for all dimensions, m > 0 and

k € (—N, N). This general fair-competition regime is analysed in Chapter 2.

In a second stage, here we also tackle the behaviour of the following family of partial differen-
tial equations modelling self-attracting diffusive particles at the macroscopic scale,

Otp = Oz (P™) +2X02 (p0sSE) , t>0, zeR,
: (™) (p 0zSk) w4

p(t =0,2) = po(z).
where we define the mean-field potential Sy (x) := Wi (z) * p(x). For k > 0, the gradient 0,5y, :=
0z (Wi, = p) is well defined. For k < 0 however, it becomes a singular integral, and we thus define
it via a Cauchy principal value. Hence, the mean-field potential gradient in equation (1.4) is given
by

0:Wi % p, ifo<k<l1,

02 Sk () (1.5)

| oW =) (o)~ ple)) dy. if 1<k <0.
R
Further, it is straightforward to check that equation (1.4) formally preserves positivity, mass and

centre of mass, and so we can choose to impose

pl@) =0, [ mia)de =1, [op(a)ds =0,

This class of PDEs are one of the prime examples for competition between the diffusion (possibly
non-linear), and the non-local, quadratic non-linearity which is due to the self-attraction of the
particles through the mean-field potential Sy(x). The parameter x > 0 measures the strength of
the interaction. We would like to point out that we are here not concerned with the regularity of
solutions or existence/uniqueness results for equation (1.4), allowing ourselves to assume solu-
tions are 'nice” enough in space and time for our analysis to hold (for more details on regularity

assumptions, see Section 4).
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There exists a strong link between the PDE (1.4) and the functional (1.1). Not only is Fy,
decreasing along the trajectories of the system, but more importantly, system (1.4) is the formal
gradient flow of the free energy functional (1.1) when the space of probability measures is en-

dowed with the Euclidean Wasserstein metric W:

atp(t) = _vwfm,k’[p(t)] . (16)

This illuminating statement has been clarified in the seminal paper by Otto [248]. We also refer
to the books by Villani [295] and Ambrosio, Gigli and Savaré [3] for a comprehensive presenta-
tion of this theory of gradient flows in Wasserstein metric spaces, particularly in the convex case.
Performing gradient flows of a convex functional is a natural task, and suitable estimates from
below on the Hessian of F,, j in (1.1) translate into a rate of convergence towards equilibrium for
the PDE [96, 295, 97]. However, performing gradient flow of functionals with convex and concave
contributions is more delicate, and one has to seek compensations. Such compensations do exist
in our case, and one can prove convergence in Wasserstein distance towards some stationary state
under suitable assumptions, in some cases with an explicit rate of convergence. It is of course
extremely important to understand how the convex and the concave contributions are entangled.

The results obtained in the fully convex case generally consider each contribution separately,
resp. internal energy, potential confinement energy or interaction energy, see [96, 295, 3, 97]. It
happens however that adding two contributions provides better convexity estimates. In [96] for
instance the authors prove exponential speed of convergence towards equilibrium when a degen-

erate convex potential W, is coupled with strong enough diffusion, see [44] for improvements.

The family of non-local PDEs (1.4) has been intensively studied in various contexts arising in
physics and biology. The two-dimensional logarithmic case (m = 1, k = 0) is the so-called Keller—
Segel system in its simplest formulation [196, 197, 243, 194, 41, 256]. It has been proposed as a
model for chemotaxis in cell populations. The three-dimensional configuration (m = 1,k = —1)
is the so-called Smoluchowski-Poisson system arising in gravitational physics [105, 107, 106]. It
describes macroscopically a density of particles subject to a self-sustained gravitational field.

Let us describe in more details the two-dimensional Keller-Segel system, as the analysis of its
peculiar structure will serve as a guideline to understand other cases. The corresponding gradient
flow is subject to a remarkable dichotomy, see [113, 194, 242, 159, 136, 41] . The density exists
globally in time if xy < 1 (diffusion overcomes self-attraction), whereas blow-up occurs in finite
time when x > 1 (self-attraction overwhelms diffusion). In the sub-critical case, it has been proved
that solutions decay to self-similarity solutions exponentially fast in suitable rescaled variables [70,
71,148]. In the super-critical case, solutions blow-up in finite time with by now well studied blow-

up profiles for close enough to critical cases, see [187, 260].
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Substituting linear diffusion by non-linear diffusion with m > 1 in two dimensions and higher
is a way of regularising the Keller-Segel model as proved in [61, 277] where it is shown that so-
lutions exist globally in time regardless of the value of the parameter x > 0. It corresponds to
the diffusion-dominated case in two dimensions for which the existence of compactly supported
stationary states and global minimisers of the free energy has only been obtained quite recently
in [89]. The fair-competition case for Newtonian interaction k¥ = 2 — IV was first clarified in [39],
see also [276], where the authors find that there is a similar dichotomy to the two-dimensional
classical Keller-Segel case (N = 2,m = 1,k = 0), choosing the non-local term as the Newtonian
potential, (N > 3,m = 2—2/N, k = 2— N). The main difference is that the stationary states found
for the critical case are compactly supported. We will see that such dichotomy also happens for
k < 0in our case while for k£ > 0 the system behaves totally differently. In fact, exponential con-
vergence towards equilibrium seems to be the generic behaviour in rescaled variables as observed

in Figure 3.1.

12¢

10+

density
()]

1

space

Figure 3.1: Density evolution for parameter choices x = 0.7, &k = —0.2, m = 1.2 following the
PDE (1.4) in rescaled variables from a characteristic supported on B(0, 1/2) (black) converging to
a unique stationary state (red). For more details, see Figure 3.6 and the explanations in Section 5.

The chapter is structured as follows: in Section 2, we give an analytic framework with all nec-
essary definitions and assumptions. In cases where no stationary states exist for the aggreg-ation-
diffusion equation (1.4), we look for self-similar profiles instead. Self-similar profiles can be stud-
ied by changing variables in (1.4) so that stationary states of the rescaled equation correspond to
self-similar profiles of the original system. Further, we give some main results of optimal trans-
portation needed for the analysis of Sections 3 and 4. In Section 3, we establish several functional
inequalities of HLS type that allow us to make a connection between minimisers of 7, ; and
stationary states of (1.4), with similar results for the rescaled system. Section 4 investigates the
long-time asymptotics where we demonstrate convergence to equilibrium in Wasserstein distance

under certain conditions, in some cases with an explicit rate. Finally, in Section 5, we provide
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numerical simulations of system (1.4) to illustrate the properties of equilibria and self-similar pro-
files in the different parameter regimes for the fair-competition regime. In Section 6, we use the
numerical scheme to explore the asymptotic behaviour of solutions in the diffusion- and attraction-

dominated regimes.

2 Preliminaries

2.1 Stationary states: definition & basic properties

Let us define precisely the notion of stationary states to the aggregation-diffusion equation (1.4).

Definition 2.1. Given p € L1 (R) n L* (R) with ||p||1 = 1, it is a stationary state for the evolution
equation (1.4) if p™ € Wllof (R), 0.5k, € L}, (R), and it satisfies

0pp™ = —2X PO Sk
in the sense of distributions in R. If k € (—1,0), we further require p € C** (R) with o € (—k, 1).

In fact, the function Sj, and its gradient defined in (1.5) satisfy even more than the regularity

0.5k € L}, (R) required in Definition 2.1. We have from Chapter 2 Lemma 2.2:

Lemma 2.2. Let p € L1 (R) n L® (R) with ||p||s = 1. If k € (0,1), we additionally assume |z|*p €
L' (R). Then the following reqularity properties hold:

i) S,e L, (R) for0 <k <1land S, e L* (R) for —1 < k < 0.

loc

ii) 0,5k € L (R) for k € (—1,1)\{0}, assuming additionally p € C%* (R) with o € (—k, 1) in the

range —1 < k < 0.

Furthermore, for certain cases, see Chapter 2, there are no stationary states to (1.4) in the sense
of Definition 2.1 (for a dynamical proof of this fact, see Remark 4.6 in Section 4.1.2), and so the
scale invariance of (1.4) motivates us to look for self-similar solutions instead. To this end, we

rescale equation (1.4) to a non-linear Fokker-Planck type equation as in [100]. Let us define

u(t, ) := a(t)p (B(t), a(t)z),

where p(t, x) solves (1.4) and the functions a(t), 8(t) are to be determined. If we assume (0, x) =

p(0,z), then u(t, z) satisfies the rescaled drift-diffusion equation
Ot = Opat™ + 2x0y (W0 Sk) + 0y (xu) , t>0, zeR,
0 0 (2.7)
u(t =0,2) = po(z) =0, J po(z)dx =1, f zpo(x)de =0,
0
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for the choices

A (e@Rt 1) ifk £ 2,
alty=e', Bt)y=4"" ( ) (2.8)
t, ifk =2,

and with J,.5); given by (1.5) with u instead of p. By differentiating the centre of mass of u, we see
easily that
J xu(t,x)dx:e*tf xzpo(x)dz =0, vt >0,
R R
and so the initial zero centre of mass is preserved for all times. Self-similar solutions to (1.4) now
correspond to stationary solutions of (2.7). Similar to Definition 2.1, we state what we exactly

mean by stationary states to the aggregation-diffusion equation (2.7).

Definition 2.3. Given u € L! (R) n L* (R) with ||u||; = 1, it is a stationary state for the evolution

equation (2.7) if i™ € W12 (R), 0,5y € L) (R), and it satisfies

loc loc

0, U™ = —2x U0, S, — U
in the sense of distributions in R. If —1 < k < 0, we further require i € C%* (R) with o € (—k, 1).

From now on, we switch notation from w to p for simplicity, it should be clear from the context
if we are in original or rescaled variables. In fact, stationary states as defined above have even
more regularity:

Lemma 2.4. Let k € (—1,1)\{0} and x > 0.
(i) If p is a stationary state of equation (1.4) with |x|*p € L' (R) in the case 0 < k < 1, then p is
continuous on R.
(ii) If presc is a stationary state of equation (2.7) with || presc € L (R) in the case 0 < k < 1, then presc

is continuous on R.

In the case k < 0, we furthermore have a non-linear algebraic equation for stationary states as

shown in Chapter 2 Corollary 2.5:
Corollary 2.5 (Necessary Condition for Stationary States). Let k € (—1,0) and x > 0.
(i) If p is a stationary state of equation (1.4), then p € Wb (R) and it satisfies

ﬁ(l')m_l _ (m — 1)

(Crlp)(2) = 2x Sk(x)), ,  VaeR,
where Cy[p](x) is constant on each connected component of supp (p).
(ii) If presc s a stationary state of equation (2.7), then presc € Wlloso (R) and it satisfies
Prese(x)™ 7 = % (Ckﬁmc[p] () — 2x Sk(x) — |$2|2> . VzeR,

where Cy, resc[p](x) is constant on each connected component of supp (presc)-
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2.2 Overview of results in the fair-competition regime

It is worth noting that the functional ., ;[p] possesses remarkable homogeneity properties, see
Chapter 1 Section 3.1. We will here only concentrate on the one-dimensional fair-competition
regime m + k = 1, and denote the corresponding energy functional by F.[p] = Fi_i x[p]. For a
definition of the different regimes and detailed explanations and references, see Chapter 1 Defini-
tion 3.1. An overview of the parameter space (k, m) and the different regimes is given in Chapter

1 Figure 1.4. Notice that the functional F} is homogeneous in the fair-competition regime, i.e.,
Filoal = X Filp]-

In this chapter, we wil first do a review of the main results known in one dimension about the sta-
tionary states and minimisers of the aggregation-diffusion equation in the fair-competition case.
The novelties will be showing the functional inequalities independently of the flow and studying
the long-time asymptotics of the equations (1.4) and (2.7) by exploiting the one dimensional set-
ting. The analysis in the fair-competition regime depends on the sign of k, see Chapter 1 Definition
3.7, and we therefore split our investigations into the porous medium case (k¥ < 0), and the fast dif-
fusion case (kK > 0). More information on the logarithmic case (k = 0) can be found in [62]. When

dealing with the energy functional 7}, we work in the set of non-negative normalised densities,

v {pe Lh® L™ ®): ol = 1. [ap(a) dz <o}

In rescaled variables, equation (2.7) is the formal gradient flow of the rescaled free energy func-

tional F, resc, Which is complemented with an additional quadratic confinement potential,

Felpl = Filo) + 3Vl6l. Vo) = | Jafp(o) ds.
R

Defining the set YV, := {pe Y : V[p] < v}, we see that Fy, resc is well-defined and finite on ).
Thanks to the formal gradient flow structure in the Euclidean Wasserstein metric W, we can write
the rescaled equation (2.7) as

5t/) = _vwfk,resc[p] .

In what follows, we will make use of a different characterisation of stationary states based on
some integral reformulation of the necessary condition stated in Corollary 2.5. This characterisa-
tion was also the key idea in [62] to improve on the knowledge of the asymptotic stability of steady

states and the functional inequalities behind.
Lemma 2.6 (Characterisation of stationary states). Let ke (—1,1)\{0}, m =1 —kand x > 0.
(i) Any stationary state p, € Y of system (1.4) can be written in the form
1
puo)™ = [ | 1ol o = s0)ulo = sa + @) dsda. 9)
Moreover, if such a stationary state exists, it satisfies F,[px] = 0.
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(ii) Any stationary state p, resc € Vo of system (2.7) can be written in the form
! 1 la|*
ﬁk,resc(p)m = J f (X|q M4 9 > ﬁk,resc(p - SQ)/Bk,resc(p —8q + Q) deq (210)
R JO
Moreover, it satisfies

1 1

Vo] = (5~ 1 ) Vi (2.11)

m+1

Fe,resc| Pk resc] = m

Proof. We can apply the same methodology as for the logarithmic case (Lemma 2.3, [62]). We will
only prove (2.9), identity (2.10) can be deduced in a similar manner. We can see directly from the

equation that all stationary states of (1.4) in ) satisfy
Hence, if k € (0, 1), we can write for any test function ¢ € CZ(R)

0=— J-R &' (p)pi(p) dp + 2x ff o()|x — y* 2z — y)pr () pr(y) dady

—— [ dwmeax [[ (A2 o @) dody.
RxR

For k € (—1,0), the term 8,5, is a singular integral, and thus writes

028y (z) = lim |z —y|" 2z — y)pe(y) dy
e—0 Be(z,€)

=fR @ — 52 — ) (Bry) — pu(a) dy.

The singularity disappears when integrating against a test function ¢ € C°(R),
= _ 1 T)— _ _
[ ersiomwan - [[ (F9=ED) oo yrn@miasty. @12
® RxR
In order to prove (2.12), let us define
F@=p@) || ey i
Be(z,e

Then by definition of the Cauchy Principle Value, f.(x) — ¢()0,Sk(2) pointwise for almost every

z € Rase — 0. Further, we have for0 < e < 1,

|fe(@)] = ()] Wi (x — y)pr(y) dy + J 0 Wi(z —y)pr(y) dy

Be(xz,e)nBe(z,1)

+J 1 — 3" Buly) dy>
|[z—y|=1

)

JBC(I,E)mB(w,l)

J 0= Wi (2 — y)pr(y) dy
Be(z,e)nB(z,1)

0:Wi(x — y)pr(y) dy

J‘BC(I,E)HB(CE,l)
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Since 0, W}, is anti-symmetric, the term S Be 0 Wi (x — y) dy vanishes and we are thus

(z,e)nB(z,1)
free to subtract it. Using the fact that pj, € C%“(R) for some a € (—k, 1), we have

Ox Wi (2 — y)pr(y) dy| = 0:Wi(z —y) [pr(y) — pr(x)] dy

JBC(x,E)mB(x,l) fBC(w e)nB(xz,1)

|z —y* " o (y) — pi(z)| dy
Be(xz,e)nB(x,1)

J _y|k+o¢71 dy
(:p e)nB(z,1)

= (1—eMr) < 2 .
k;+a k+a

We conclude that |f.(z)] < (24];172&) |o(x)] for all 0 < € < 1, and therefore by Lebesgue’s domi-

nated convergence theorem,

[ e@asi@pte) s = [ 1 (@) = i [ fo0)orla) do
R R R

e—0

it [ el -y - vpnle)an(e) dedy

e—0
lo—y|>e
T2 il—% f|£ ( )> |z — y|* pr(x) pr (y) davdy
B % H (W) o = yI* pr ()i (y) ddy
RxR

This concludes the proof of (2.12). Hence, we obtain for any k € (—1,1)\{0},

0=~ [ e o+ f f (P20 o ot dody

f "()pi' (p dp+xﬂf (1= s)z + sy) |z — y[* pr(x)pr(y) dsdady

= - JR ¢'(p)pi’ (p) dp + x fR ¢'(p) UR L lal* (P — 59)pr(p — 59 + q) dsdq} dp

and so (2.9) follows up to a constant. Since both sides of (2.9) have mass one, the constant is zero.

To see that F,[pr] = 0, we substitute (2.9) into (1.1) and use the same change of variables as above.

Finally, identity (2.11) is a consequence of various homogeneities. For every stationary state

Phrese Of (2.7), the first variation ke |

P resc] = m/(m—1)p}" resc+2XWk # D rese+|7|%/2 vanishes on
the support of pj, resc and hence it follows that for dilations px(z) := AP resc(Az) Of the stationary
state P resc:

k d

_kfk,resc[pk,resc] + (2 - 1) V[pk resc] = afk,resc[p/\]

A=1

- [ (Fe=pi@ Bw) adf
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In the fair-competition regime, attractive and repulsive forces are in balance m + k = 1, and so

(2.11) follows. O

2.3 Optimal transport tools

This sub-section summarises the main results of optimal transportation we will need. They were
already used for the case of logarithmic HLS inequalities and the classical Keller-Segel model in
1D and radial 2D, see [62], where we refer for detailed proofs.
Let p and p be two density probabilities. According to [53, 233], there exists a convex function
1 whose gradient pushes forward the measure g(a)da onto p(z)dz: '# (p(a)da) = p(x)dz. This
convex function satisfies the Monge-Ampeére equation in the weak sense: for any test function
¢ € Cp(R), the following identity holds true
| et @yitayaa - | @@ d. (2.13)
The convex map is unique a.e. with respect to p and it gives a way of interpolating measures. In
fact, the interpolating curve p,, s € [0, 1], with py = p and p1 = j can be defined as p,(z) dx =
(s¢' + (1 — s)ld)(x)#p(z) dx where |d stands for the identity map in R. This interpolating curve
is actually the minimal geodesic joining the measures p(x)dz and j(x)dz. The notion of convex-
ity associated to these interpolating curves is nothing else than convexity along geodesics, intro-
duced and called displacement convexity in [234]. In one dimension, the displacement convex-
ity /concavity of functionals is easier to check as seen in [85, 98]. The convexity of the functionals

involved can be summarised as follows [234, 85]:

Theorem 2.7. The functional U,,[p] is displacement-convex provided that m > 0. The functional Wi p]

is displacement-concave if k € (—1,1).

This means we have to deal with convex-concave compensations. On the other hand, regularity
of the transport map is a complicated matter. Here, as it was already done in [62], we will only use
the fact that the Hessian measure dety D?1)(a)da can be decomposed in an absolute continuous
part det 4 D?3(a)da and a positive singular measure (Chapter 4, [295]). Moreover, it is known
that a convex function ¢ has Aleksandrov second derivative D% (a) almost everywhere and that
det 4 D% (a) = det D41 (a). In particular we have dety D?t(a) > detD?1(a). The formula for
the change of variables will be important when dealing with the internal energy contribution. For
any measurable function U, bounded below such that U(0) = 0 we have [234]

JR U(p(x)) dx = JR U (%) det 4 D*)(a) da . (2.14)

Luckily, the complexity of Brenier’s transport problem dramatically reduces in one dimension.

More precisely, the transport map ¢’ is a non-decreasing function, therefore it is differentiable a.e.
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and it has a countable number of jump singularities. The singular part of the positive measure
¢ (x) dx corresponds to having holes in the support of the density p. Also, the Aleksandrov sec-
ond derivative of ¢ coincides with the absolutely continuous part of the positive measure " (z) dz
that will be denoted by ¢..(z) dz. Moreover, the a.e. representative ¢’ can be chosen to be the
distribution function of the measure " () dz and it is of bounded variation locally, with lateral
derivatives existing at all points and therefore, we can always write for all a < b

b
OO IRUCLTE f o () da

(a,b

for a well chosen representative of v’

The following Lemma proved in [62] will be used to estimate the interaction contribution in

the free energy, and in the evolution of the Wasserstein distance.

Lemma 2.8. Let K : (0,00) — R be an increasing and strictly concave function. Then, for any (a, b)

K (djl(b)_wl(a)> > Jl K (¢ ([a,bls)) ds, (2.15)

b—a 0

where the convex combination of a and b is given by [a, b]s = (1 — s)a + sb. Equality is achieved in (2.15)

if and only if the distributional derivative of the transport map " is a constant function.

Optimal transport is a powerful tool for reducing functional inequalities onto pointwise in-
equalities (e.g. matrix inequalities). In other words, to pass from microscopic inequalities between
particle locations to macroscopic inequalities involving densities. We highlight for example the
seminal paper by McCann [234] where the displacement convexity issue for some energy func-
tional is reduced to the concavity of the determinant. We also refer to the works of Barthe [17, 18]
and Cordero-Erausquin et al. [117]. The previous lemma will allow us to connect microscopic to

macroscopic inequalities by simple variations of the classical Jensen inequality.

3 Functional inequalities

The first part of analysing the aggregation-diffusion equations (1.4) and (2.7) is devoted to the
derivation of functional inequalities which are all variants of the Hardy-Littlewood-Sobolev (HLS)

inequality also known as the weak Young’s inequality [218, Theorem 4.3]:

j j F(@)|x — yl* £ (y) dedy < Crrps(p, @, VI ool (3.16)

RxR

1 1
—+-=2+k, pqg>1, ke(-1,0).
p q
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3. Functional inequalities

Theorem 3.1 (Variation of HLS). Let k € (—1,0) and m = 1 — k. For f € L*(R) n L™(R), we have

f j F(@) [z — yl* f(y)dady| < Coll A1 (3.17)
xR

where Cy, = C (k) is the best constant.

Proof. The inequality is a direct consequence of the standard HLS inequality (3.16) by choosing
p = q = 557, and of Holder’s inequality. For k € (—1,0) and for any f € L'(R) n L™(R), we have

j j (@)l -yl F () dady| < CrnslIFI2 < Cawsl|FIFHIAII.
xR

Consequently, C\ is finite and bounded from above by C1s. O

For instance inequality (3.17) is a consequence of interpolation between L! and L™. We de-
velop in this section another strategy which enables to recover inequality (3.17), as well as further
variations which contain an additional quadratic confinement potential. This method involves

two main ingredients:

e First it is required to know a priori that the inequality possesses some extremal function
denoted e.g. by p(z) (characterised as a critical point of the energy functional). This is not
an obvious task due to the intricacy of the equation satisfied by p(z). Without this a priori
knowledge, the proof of the inequality remains incomplete. The situation is in fact similar
to the case of convex functionals, where the existence of a critical point ensures that it is a

global minimiser of the functional. The existence of optimisers was shown in Chapter 2.

¢ Second we invoke some simple lemma at the microscopic level. It is nothing but the Jensen’s
inequality for the case of inequality (3.17) (which is somehow degenerated). It is a variation

of Jensen’s inequality in the rescaled case.

3.1 Porous medium case k < 0

In the porous medium case, we have k € (—1,0) and hence m € (1,2). For x = 0, this corresponds
to the well-studied porous medium equation (see [289] and references therein). It follows directly
from Theorem 3.1, that for all p € J and for any x > 0,

1 —xCx
m—1

m

Frlp] = lollm »

where C. = C (k) is the optimal constant defined in (3.17). Since global minimisers have always
smaller or equal energy than stationary states, and stationary states have zero energy by Lemma

2.6, it follows that x > 1/C.. We define the critical interaction strength by

Xe(k) = , (3.18)

143
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and so for x = x.(k), all stationary states of equation (1.4) are global minimisers of 7. From
Theorem 2.6 in Chapter 2, we further know that there exist global minimisers of ¥, only for crit-
ical interaction strength x = x.(k) and they are radially symmetric non-increasing, compactly
supported and uniformly bounded. Further, all minimisers of Fj, are stationary states of equation
(1.4).

From the above, we can also directly see that for 0 < x < x.(k), no stationary states exist for
equation (1.4). Further, there are no minimisers of ;. However, there exist global minimisers
of the rescaled free energy Fj, resc and they are radially symmetric non-increasing and uniformly

bounded stationary states of the rescaled equation (2.7) (Chapter 2 Theorem 2.7).

Theorem 3.2. Let k € (—1,0) and m = 1 — k. If (1.4) admits a stationary density py in Y, then for any
x>0

fk: [p] = 07 Vp € y
with the equality cases given dilations of py. In other words, for critical interaction strength x = x.(k),

inequality (3.17) holds true for all f € L*(R) n L™(R).

Proof. For a given stationary state p;, € Y and solution p € Y of (1.4), we denote by ¢ the con-
vex function whose gradient pushes forward the measure gy (a)da onto p(z)dz: '# (pr(a)da) =

p(x)dz. Using (2.14), the functional F;[p] rewrites as follows:

ﬂm—mlﬁx%@)m}mma

-1 ae(a)
"(a) — ' k
RxR
- fR (@) ™" pi(a)™ da
+ 1 i(m JJ (d)/(ai : Z[}’(b)> - |a _ b|1imﬁk(a)ﬁk(b) dadb,
RxR

where ¢’ non-decreasing. By Lemma 2.6 (i), we can write for any v € R,

J (Vace(a)) " prla)™ da = x ﬂ (Wae(la, b)) ™ )la = '~ pi(a) p (b) dadb,
R

RxR

where
<u([a,b])>=J0 w([a,b].) ds

and [a,b]s = (1 — s)a + sbforany a,b € Rand u : R — R,. Hence, choosing v = m — 1,
X " —m Y'(a) —¢'(b) o —m = =
ﬂm—m;J]&%ﬂww y- (K= la = b (@) () dad.
RxR
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3. Functional inequalities

Using the strict concavity and increasing character of the power function —(-)!~" and Lemma 2.8,
we deduce Fi[p] = 0. Equality arises if and only if the derivative of the transport map ¢"” is a
constant function, i.e. when p is a dilation of py.

We conclude that if (1.4) admits a stationary state p, € Y, then F;(p) > 0 for any p € V. This

functional inequality is equivalent to (3.17) if we choose x = x.(k). O

Remark 3.3 (Comments on the Inequality Proof). In the case of critical interaction strength x = x.(k),
Theorem 3.2 provides an alternative proof for the variant of the HLS inequality Theorem 3.1 assuming
the existence of a stationary density for (1.4). More precisely, the inequalities Fj,[p] > 0 and (3.17) are
equivalent if x = x.(k). However, the existence proof Proposition 3.4 in Chapter 2 crucially uses the HLS
type inequality (3.17). If we were able to show the existence of a stationary density by alternative methods,

e.g. fixed point arguments, we would obtain a full alternative proof of inequality (3.17).

Remark 3.4 (Logarithmic Case). There are no global minimisers of Fy in the logarithmic case k = 0,
m = 1 except for critical interaction strength x = 1. To see this, note that the characterisation of stationary
states [62, Lemma 2.3] which corresponds to Lemma 2.6(i) for the case k # 0, holds true for any x > 0.
Similarly, the result that the existence of a stationary state p implies the inequality Folp] > Folp] [62,
Theorem 1.1] holds true for any x > 0, and corresponds to Theorem 3.2 in the case k # 0. Taking dilations
of Cauchy’s density (1.3), px(x) = Apo (Ax), we have Fo[pr] = (1 —x)log A+ Fo[po], and letting A — oo
for super-critical interaction strengths x > 1, we see that F is not bounded below. Similarly, for sub-critical
interaction strengths 0 < x < 1, we take the limit X — 0 to see that F is not bounded below. Hence, there

are no global minimisers of Fo and also no stationary states (by equivalence of the two) except if x = 1.
Further, we obtain the following uniqueness result:

Corollary 3.5 (Uniqueness in the Critical Case). Let k € (—1,0) and m = 1 — k. If x = x.(k), then
there exists a unique stationary state (up to dilations) to equation (1.4), with second moment bounded, and

a unique minimiser (up to dilations) for Fy, in Y.

Proof. By Theorem 2.6 in Chapter 2, there exists a minimiser of Fj, in ), which is a stationary state
of equation (1.4). Assume (1.4) admits two stationary states p; and p2. By Lemma 2.6, Fi[p1] =
Fi[p2] = 0. It follows from Theorem 3.2 that p; and p, are dilations of each other. O

A functional inequality similar to (3.17) holds true for sub-critical interaction strengths in

rescaled variables:

Theorem 3.6 (Rescaled Variation of HLS). Forany x > 0,let k € (—1,0)andm = 1—k. If py, resc € Vo

is a stationary state of (2.7), then we have for any solution p € ),
J:k,resc[p] = ]:k,resc[ﬁk,resc]
with the equality cases given by p = p resc-
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The proof is based on two lemmatas: the characterisation of steady states Lemma 2.6 and a
microscopic inequality. The difference with the critical case lies in the nature of this microscopic
inequality: Jensen’s inequality needs to be replaced here as homogeneity has been broken. To
simplify the notation, we denote by u,.(s) := ¥/, ([a, b]s) as above with [a, b], := (1 — s)a + sb for

any a,b € R. We also introduce the notation

<'LL> ¢ J w// a b
with u(s) := ¢” ([a, b]s). Both notations coincide when " has no singular part. Note there is a

little abuse of notation since " is a measure and not a function, but this notation allows us for

simpler computations below.
Lemma 3.7. Let o, f > 0and m > 1. For any a,b € R and any convex function ¢ : R — R:

(" ([a,0]))" " + B0 = m)(" ([a,0]))" < (a +28) (We([a,b])) " )= Bm+1),  (319)
where equality arises if and only if )" = 1 a.e.
Proof. We have again by Lemma 2.8,

(a4 26)(u)’ ™™ < (o +20)Cug™).
thus
aluy' ™" 4 B = m)(w) < (a+ 28)Culs™) = B[2¢w) " + (m - 1)(w)’]
We conclude since the quantity in square brackets verifies
YX>0:2X" ™+ (m—-1D)X2=>m+1.

Equality arises if and only if u is almost everywhere constant and (u) = 1. O

Proof of Theorem 3.6. We denote by p = p, resc € V2 a stationary state of (2.7) for the sake of clarity.
Then for any solution p € Vs of (2.7), there exists a convex function ) whose gradient pushes

forward the measure p(a)da onto p(x)dz,

'# (p(a)da) = p(x)dz.

Similarly to the proof of Theorem 3.2, the functional Fj resc[p] rewrites as follows:

Prresls] = =5 | WLl ey da

X (W}ka—bw)p(b)dadb

RxR

H <W a—b ))Qabzﬁ(a)ﬁ(b)dadb.

RxR
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From the characterisation of steady states Lemma 2.6 (ii), we know that for all v € R:

a— b2
[[wtanntarmda = [ Corttamn =y (o= o=+ 250 payptr doas.

RxR

Choosing v = m — 1, we can rewrite the energy functional as

= 1Pl = [[ ety (o= o+ A5 )t doas
RxR
] (@t m)t " xa = b
RxR

la — bJ?

(0, B (1= m) )p(a)p(b)dadb

> (m+1) ” o _4b| p(a)p(b) dadb
RxR

= ;_ 1 JR |a\25(a) da = (m - 1)-7:k,resc[ﬁ] .

Here, we use the variant of Jensen’s inequality (3.19) and for the final step, identity (2.11). Again
equality holds true if and only if ¢” is identically one. O

Remark 3.8 (New Inequality). Up to our knowledge, the functional inequality in Theorem 3.2 is not
known in the literature. Theorem 3.6 makes a connection between equation (2.7) and this new general
functional inequality by showing that stationary states of the rescaled equation (2.7) correspond to global

minimisers of the free energy functional Fy, sesc. The converse was shown in Theorem 2.7 in Chapter 2.

As a direct consequence of Theorem 3.6 and the scaling given by (2.8), we obtain the following

corollaries:

Corollary 3.9 (Uniqueness in the Sub-Critical Case). Let k € (—1,0)and m = 1—k. If0 < x < x.(k),
then there exists a unique stationary state with second moment bounded to the rescaled equation (2.7), and

a unique minimiser for Fy, resc in Va.

Proof. By Theorem 2.7 in Chapter 2, there exists a minimiser of Fy, resc in Vs for sub-critical inter-
action strengths 0 < x < x.(k), which is a stationary state of equation (2.7). Assume (2.7) admits
two stationary states p; and p,. By Theorem 3.6, F, resc[01] = Fi resc[p2] and it follows that p; and

po are dilations of each other. O

Corollary 3.10 (Self-Similar Profiles). For 0 < x < x.(k), let k € (—1,0) and m = 1 — k. There exists

a unique (up to dilations) self-similar solution p to (1.4) given by
pltz) = (2= k)t +1)F7 u (((2 k)t 1)FE x) :
where w is the unique minimiser of Fi, resc it Va.
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Corollary 3.11 (Non-Existence Super-Critical and Critical Case). (i) Ifx > x.(k), there are no sta-
tionary states of equation (1.4) in Y, and the free energy functional Fj, does not admit minimisers in

V.

(i) If x = x.(k), there are no stationary states of the rescaled equation (2.7) in Vs, and the rescaled free

energy functional Fi, ypsc does not admit minimisers in Ys.

Proof. For critical x.(k), there exists a minimiser p € ) of Fj, by Theorem 2.6 in Chapter 2, which
is a stationary state of equation (1.4) by Theorem 3.14 in Chapter 2. For x > x.(k), we have

Filp] = U [p] + xWe[p] < Un[p] + xc(k)Wi[p] = 0

since stationary states have zero energy by Lemma 2.6 (i). However, by Theorem 3.2, if there exists
a stationary state for x > x.(k), then all p € Y satisfy Fj[p] = 0, which contradicts the above.
Therefore, the assumptions of the theorem cannot hold and so there are no stationary states in
original variables. Further, taking dilations py(z) = A\p (A\z), we have Fi[pr] = A"FFx[p] < 0, and

letting A — oo, we see that inf ,cy Fi[p] = —o0, and so (i) follows.

In order to prove (ii), observe that the minimiser p € ) of 7, for critical x = x.(k) is in J» as it
is compactly supported (Corollary 3.8 in Chapter 2). We obtain for the rescaled free energy of its
dilations

D
]:k,resc[p)\] = /\_k]:k[P] + TV[p] — —0, as A — .

Hence, Fj resc is not bounded below in Y. Similarly, for x = x.(k),
A2
fk,resc[ﬂ)\] = TV[p] -0, as A\ — o,
and so for a minimiser g € ) to exist, it should satisfy Fy, resc[#] < 0. However, it follows from
Theorem 3.1 that Fj resc[p] = %V[p] > 0 for any p € )s, and therefore, Fj resc does not admit
minimisers in Y, for x = x.(k).
Further, if equation (2.7) admitted stationary states in }» for any x > x.(k), then they would be

minimisers of Fj, resc by Theorem 3.6, which contradicts the non-existence of minimisers. O

Remark 3.12 (Linearisation around the stationary density). We linearise the functional Fi, around
the stationary distribution py, of equation (1.4). For the perturbed measure p. = (Id + en’)#pny, with
dig(z) = pp(x) de and du. (z) = pe(x) dx, we have

Flod = Sm [ [ @parman— oo || (””_Z(b)) la — "™ 5 (@) (b) dadb

2
RxR
+ o(e?)
g2 2
= S [[ {Gra,n)?) = G (a0} la = 6" (@) ) dadb + of ).

RxR
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We define the local oscillations (in L?) of functions over intervals as

0SC (q,p)(V J {1} ([a, b+ <11 ([a,b]) >} dt =

The Hessian of the functional Fj, evaluated at the stationary density py, then reads

D2Filu](n,m) = mxe(k) f j 05 (o) (1)@ — B[V~ 7 (@) k(b) dadb > 0.
RxR

Similarly, we obtain for the rescaled free energy

Fi resc[ps] Fi resc[pk] + 82 mJ pk( ) da
2
m A a—>b"""pr(a)p a
xﬂ (=T o o a)pu0) dac
* ZzR[L (W) 2 |a — b]* Pk (a) pr.(b) dadb + o(e?)
= -Fk,resc[ﬁk]

* % [mx Jf {<77”([a7 o)) = (0" ([a, b])>2} |la — 0"~ pr.(a) px (b) dadb

RxR

| {’;’L<n"<[a,b]>2>+§<n"<[a,b]>>2}|ab|2pk<a>pk<b>dadb] +o(e)

RxR

to finally conclude

}—k,resc[Pe] Fi resc[pk

+LJJOSC (@) (") mx|afb|17m+75\afb\) (@) pr (b) dadb

+ m; 1 ff (1 (@) — 7' (6)” (@) () dadb} +o(e?),

RxR

and hence, the Hessian evaluated at the stationary state py, of (2.7) is given by the expression

D Fpl el 1.1 = [ 056 (aay ) (mxla = b= + 2o~ 7) pu(@)u ) dad

RxR

+ (m+1) JR 7 (a)*pr(a)da = 0.

We have naturally that the functional Fy, yesc is locally uniformly convex, with the coercivity constant m + 1.
However, the local variations of Fi, resc can be large in the directions where the Brenier’s map  is large in the

C3-norm. Interestingly enough the coercivity constant does not depend on x, even in the limit x /" x.(k).
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3.2 Fast diffusion case & > 0

Not very much is known about the fast diffusion case where k € (0,1) and hencem = 1—% € (0,1),
that is diffusion is fast in regions where the density of particles is low. In Chapter 2, we showed
that equation (1.4) has no radially symmetric non-increasing stationary states with kth moment
bounded, and there are no radially symmetric non-increasing global minimisers for the energy
functional F, for any x > 0. By Theorem 2.9 in Chapter 2, there exists a continuous radially
symmetric non-increasing stationary state of the rescaled equation (2.7) for all x > 0. In this
sense, there is no criticality for the parameter x. We provide here a full proof of non-criticality
by optimal transport techniques involving the analysis of the minimisation problem in rescaled
variables, showing that global minimisers exist in the right functional spaces for all values of the
critical parameter and that they are indeed stationary states - as long as diffusion is not too fast.
More precisely, we showed in Chapter 2 that global minimisers with finite energy Fj resc can only
exist in the range 0 < k < 2, thatis + < m < 1. This restriction is exactly what we would expect
looking at the behaviour of the fast diffusion equation (x = 0) [287]. In particular, for k € (0,1) and
m = 1—k € (0, 1), radially symmetric non-increasing stationary states, if they exist, are integrable
and have bounded kth moment (Chapter 2 Remarks 4.6 and 4.9). By Remarks 4.13 in Chapter 2
however, their second moment is bounded and p™ € L' (R) if and only if k£ < 2/3, in which case
they belong to ) and their rescaled free energy is finite. This restriction corresponds to % <m<1
and coincides with the regime of the one-dimensional fast diffusion equation (x = 0) where the
Barenblatt profile has second moment bounded and its mth power is integrable [47]. Intuitively,
adding attractive interaction to the dynamics helps to counteract the escape of mass to infinity.
However, the quadratic confinement due to the rescaling of the fast-diffusion equation is already
stronger than the additional attractive force since k£ < 2 and hence, we expect that the behaviour
of the tails is dominated by the non-linear diffusion effects even for x > 0 as for the classical fast-

diffusion equation.

Using completely different methods, the non-criticality of x has also been observed in [116, 115]
for the limiting case in one dimension taking m = 0, corresponding to logarithmic diffusion, and
k = 1. The authors showed that solutions to (1.4) with (m = 0,k = 1) are globally defined in time

for all values of the parameter y > 0.

In order to establish equivalence between global minimisers and stationary states in one di-

m

mension, we prove a type of reversed HLS inequality providing a bound on { p™ in terms of the

interaction term {(W), = p)p. The inequality gives a lower bound on the rescaled energy Fj, resc:
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Theorem 3.13. Let k€ (0,1), m = 1 — kand x > 0. Then p € YV, is a stationary state of (2.7) if and

only if for any solution p € Vs . we have the inequality

]:k,resc[p] = ]:k,resc[ﬁ]
with the equality cases given by p = p.

The above theorem implies that stationary states in )s ;, of the rescaled equation (2.7) are mim-
imisers of the rescaled free energy i, resc. Since the converse is true by Theorem 2.9 in Chapter
2, it allows us to establish equivalence between stationary states of (2.7) and minimisers of Fj, resc-

To prove Theorem 3.13, we need a result similar to Lemma 3.7:

Lemma 3.14. Let o, 8 > 0 and m € (0,1). For any a,b € R and any convex function ¢ : R — R:

(04 8) W) ™) < ol (b)) + 2 oy 4 2D a0

where equality arises if and only if " = 1 a.e.

Proof. Denote u(s) := ¢” ([a, b],) with [a,b]s := (1 — s)a + sb and we write u,. for the absolutely

continuous part of u. We have by Lemma 2.8,

(@ + B)uls™) < (a+B)lu)' ™.

Further by direct inspection,

! 1—m , Lo m+ 1
T — _ 2 —
o m—lX +2X 2(m —1)
thus
-m —-m 1-— 1
(0 + B)uae)' " < aduy' ™" T g2 At D)
and equality arises if and only if u is almost everywhere constant and <u> =1. O

Proof of Theorem 3.13. For a stationary state p € Vs ;, and any solution p € ) i, of (2.7), there exists

a convex function 1 whose gradient pushes forward the measure p(a)da onto p(z)dx

P'# (pla)da) = p(x)dx.

From characterisation (2.10) we have for any v € R,

(. 0) " ey da = [[ (a0 2 Gt 00, 0) 7 ) 0) .
R

RxR
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Choosing v = m — 1, the functional Fj resc[p] rewrites similarly to the proof of Theorem 3.6:

1

Fhresc|p] = 7_1 (ZZ’” (a))l "p(a)™ da
2 ] (PO o) daa
RxR
+ % Jf (W)Q la — b*p(a)p(b) dadb
RxR

a—bl2
[ ety (da= oo+ ESE pap) doas

RxR

- ] (@ o b

RxR
ja — b|?

(" ([a, b)Y (1 — m) ) 5(a)p(b) dadb

Now, using the variant of Jensen’s inequality (3.20) of Lemma 3.14, this simplifies to

1 —b2 1
Fioresclp /"” f o b )dadb—LJmm a) da = Firesc[7] -
RxR

Here, we used identity (2.11) for the final step. Again equality holds true if and only if " is
identically one. O

Remark 3.15 (Sign of the Rescaled Free Energy). In fact, F, resc[p] < 0. Choosing px(x) = Ap(Azx) a

dilation of the stationary state, we obtain thanks to the homogeneity properties of the energy functional,
AT ku [ ] + A7 ka[ ] + A7 QV[ ] fk,resc[p)\] = ‘Fk,I’ESC[ﬁ]a

and so we conclude that Fy, sesc|p] must be non-positive for any stationary state p € Y, by taking the limit

A — o0,

Corollary 3.16 (Uniqueness). Let k € (0,2) and m = 1 — k. For any x > 0, there exists a unique
stationary state with second and kth moment bounded to equation (2.7), and a unique minimiser for Fi, resc

in YV k.

Proof. By Theorem 2.9 in Chapter 2 there exists a minimiser of Fj, resc in V2 1, which is a stationary
state of equation (2.7). Assume (2.7) admits two stationary states p; and ps in ) ;. By Theorem
313/ fk,resc[,ﬁl] = fk,resc[ﬁQ] and so ﬁl = 52- O

Corollary 3.17 (Self-Similar Profiles). Let k € (0,1) and m = 1 — k. For any x > 0, if u is a symmetric

stationary state of the rescaled equation (2.7), then there exists a self-similar solution to (1.4) given by
plt,z) = (2= Rt + )72 w (2= k)t + )77 ).
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4 Long-time asymptotics

This part is devoted to the asymptotic behaviour of solutions, adapting the above computations,
ensuring e.g. uniqueness of the functional ground state, at the level of the gradient flow dynam-
ics. We will demonstrate convergence towards these ground states in Wasserstein distance under
certain conditions, in some cases with an explicit rate. Our results rely on the fact that there is
a simple expression for the Wasserstein distance in one dimension. Therefore, our methodology
cannot be extended to dimension two or more so far except possibly under radial symmetry as-

sumptions.

We assume here that solutions are smooth enough so that the operations in this section are
well-defined. Firstly, we require the mean-field potential gradient 0, Sk (¢, z) to be well-defined
for all t > 0 which is guaranteed if p(, z) has at least the same regularity at each time ¢ > 0 as
provided by Definition 2.1 for stationary states. From now on, we assume that solutions of (1.4)
satisfy p(t, z) € C ([o, T],C%% (R) A Y A L® (R)) with a € (—k, 1).

Secondly, certain computations in this section remain formal unless the convex Brenier map
satisfying p(t, x)dx = 0,9(t, x)#pi(x)dx is regular enough. As shown in Chapter 2 for the fast
diffusion regime k > 0, stationary states are everywhere positive, and thus v is absolutely con-
tinuous. However, in the porous medium regime k& < 0, stationary states are compactly supported,
and therefore, the following computations remain formal depending on the regularity and prop-

erties of the solutions of the evolution problem. From now on, we assume that ¢ is absolutely

continuous whenever we talk about solutions of the evolution problems (1.4) or (2.7).

In order to analyse the asymptotic behaviour of solutions, we make use of the fact that one
can find an upper bound on the disspation of the Wasserstein-2 distance W in terms of the push-

forward between two absolutely continuous probability measures.

Theorem 4.1. Let p(x) be a stationary state to equation (1.4). For any solution p(t,z) of (1.4), let ¢(t,x)

denote the convex Brenier map that pushes forward p(z) onto p(t, x):

[)(Z‘) dr = ayqi)(t,l’)#p(t,f) dx.

Then

d

ZW(p(1).p)" < " ((0z¢(t,2) — x) , 0T wp](t, ) pp(t, x) da (4.21)

with the first variation Ty, j, given by (2.20) in Chapter 1. Identity (4.21) also holds true with equality
under the additional assumption that the velocity field N Tp, i [p](¢, -) is locally Lipschitz.

For a detailed proof, see [297, Theorem 23.9]. A similar identity can be obtained for the rescaled
equation (2.7).
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4.1 Porous medium asymptotics
4.1.1 The critical case x = x.(k)

In the critical case, the set of global minimisers coincides with the set of stationary states of equa-
tion (1.4) (Chapter 2 Theorem 2.6), but as we will see, it is not clear whether this set is a global
attractor in the Wasserstein sense or not. We will prove here a convergence result under some
conditions, which provides a dynamical proof of uniqueness up to dilations. Recall that in the
fair-competition regime, we have Fi[px] = A~¥Fi[p] for any dilation py(z) = Ap(Az), A € R of a
density p € Y, and so every stationary state provides in fact a family of stationary states by scale

invariance. Given a density p € Y, |z|?p(z) € L (R), we define the rescaling p; by

pla) = aploa). ot = Vol = | fePpla)da, (422)

and so any stationary state p;, with finite second moment has a dilation py, ; with normalised sec-
ond moment V[py 1] = 1. In particular, py 1 provides a convenient representative for the family of
stationary states formed by dilations of p;. Our aim here is to show that although uniqueness is
degenerate due to homogeneity, we have a unique representative p; ; with second moment equal
to one. We will present here a discussion of partial results and open questions around the long-

time behaviour of solutions in the critical case.

We first recall the logarithmic case (m = 1,k = 0), where the ground state is explicitly given
by Cauchy’s density po (1.3). The second momentum is thus infinite, and the Wasserstein distance
to some ground state cannot be finite if the initial datum has finite second momentum. For a p(¢)

satisfying (1.4), we have the estimate [62]

where equality holds if and only if p(¢) is a dilation of py. This makes sense only if p(0) has infinite
second momentum, and is at finite distance from one of the equilibrium configurations. Notice
that possible ground states (dilations of Cauchy’s density) are all infinitely far from each other
with respect to the Wasserstein distance,

(A1 — o)

w(PA1aPA2)2 = )\1)\2

VIpo] = .

Dynamics have been described in [40] when the initial datum has finite second momentum: the
solution converges to a Dirac mass as time goes to +c0. However, this does not hold true in the
porous medium case k € (—1,0), m = 1 — k, since stationary states are compactly supported by
Corollary 3.9 in Chapter 2. The case where the initial data is at a finite distance from some dilation

of a thick-tail stationary state has been investigated in [37] in two dimensions.
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4. Long-time asymptotics

Proposition 4.2. For x = x.(k), let p(t) satisfy (1.4) in the porous medium case k € (—1,0) and m =
1 — k. If py, is a stationary state of (1.4), then the evolution of the Wasserstein distance to equilibrium can

be estimated by
d

dt
where equality holds if and only if p(t) is a dilation of py.

= Wip(t), pr)* < (m — 1) Fi[p(t)], (4.23)

Proof. Let ¢ be the convex Brenier map such that py(z)dz = 0,¢(t, z)#p(t, x)dz and denote by
09 (t, x) the reverse transport map, 0,¢(t, 0¥ (t, a)) = a. By (4.21), following [62, 295] and using
the regularity of p(t, x) together with the argument as in the proof of Lemma 2.6 that allows for
the singularity of the mean-field potential gradient to disappear, we have

5 W00 = [ @00 -0 (£ (g0 ) 4 20l092500,0)) plta) do

J " (t,x)p(t,x)™ dx
RxR

T (m— DF[p(t)]
. f (" (@) (" (1 @) ™ (@)™ da

s [ (1"/ vt b)) la — " i (a) i (b) dadb

RxR

+ (m = 1) Fi[p(t)]

to finally conclude that
1d _ -m _  \m
W5 < = | (0 (ta) " (e da

2.dt
o) [ @) o= pl)(0) dsdaas

RxR
+ (m = 1)Fi[p(t)],

where we have crucially used the convexity of (-)~™ in the last step. We conclude as for the proof

of Theorem 3.2 thanks to the characterisation (2.9). O

By definition of the critical value x.(k), the functional F}, is everywhere non-negative. It van-
ishes if and only if p is a dilation of some critical density. Therefore we cannot deduce from (4.23)
that the density p(t) converges to some dilation of p,. However, we can show convergence in
Wasserstein distance if we assume a rather restrictive uniform W% (R)-stability estimate on the

Brenier map 1 connecting the solution density to the stationary state:
1
Y'(t,x) e L (Ry, L*(R)) suchthat |[¢"]| @, ro@) <1+ —. (4.24)
m
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3. 1D Far-CompETITION REGIME

This condition is equivalent to

1
vE>0 (¢ (2,y)) = L (L, [z, y]s) ds € (O, 1+ ;] , foraexz,yeR, Vt>0. (425

where [z, y]s := (1 — s)z + sy. If we want to show convergence of a solution p(t) to a stationary

state pj, in Wasserstein distance, we need to investigate quantities that are comparable.

Proposition 4.3. For x = x.(k), let py, be a stationary state of (1.4) in the porous medium case k € (—1,0),
m = 1 — k. Let p(t) be a solution such that

Vo 1= lim V[p(t)] < o0,

t—0

and we denote by 1) the transport map from py, onto the solution,

plt,x)dz = 0pb(t, 2)#pn(w)da

If 4 satisfies the uniform stability estimate (4.24), then

d

—Wi(p(t), pr)?* <

where equality holds if and only if p(t) is a dilation of py.

Proof. Note that V[py] < oo since py, is compactly supported (Chapter 2 Corollary 3.9). We com-
pute the evolution of the Wasserstein distance along the gradient flow, denoting by ¢ the inverse

transport map, d,¢(t, z) = 9,9 (t,x) !, we proceed as in Proposition 4.2:

L o(t). 1)

2 dt
< [ ottty e o) [ (FEDZEED) oyt ot ) dedy
RxR

-y
# | ot do = xetb) [[ fo = iolt,2)ott,y) dady,
* RxR
which we can rewrite in terms of the transport map 1’ as

1d

i%w(ﬂ(t)v i)’

< - JR (¥"(t,a)) """ prla)™da + x.(k) J G (t, (a,)) " |a = b*" i () 5 (b) dadb

RxR

s j (" (1)) ™™ pel@)™ da — e (k) f f G (¢, ()Y ™| — b 7 (@) 7 (b) dadb
R

RxR

Using the characterisation (2.9), we obtain for any v € R,

j (" (t,a)) ™" Br(a)™ da = xe(k) f j G (¢, (,5) M — b () (b) dadb
R

RxR
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Hence, the dissipation of the distance to equilibrium can be written as

5 W0 50% < xeh) [[ o= 8 ( = (e @)™ + e b))

RxR
+ W (t, (a,0)) " = (W (, (a, b))>1_’”) B1o(a) s (b) dadb .

We now investigate the sign of the microscopic functional J,,,[u] defined for non-negative func-

tions w : (0,1) — R4 by

Imfu] = =(u™™) + {u' ™) + <u>7m - <u>17m .

The first two terms can be written as

—(ummy 4 Wty = —adu) " 4 BT
where a = (u)"(u"™) and 8 = <u>m_1<u1_m>. By Jensen’s inequality we have e > 1, 8 > 1,

and by interpolation we have 3 < o/(™+1)_ Therefore,

Im[u] < jm({u)) = max{ aluy ™ + am/(m+1)<u>17m} +uy " - <u>17m .

We can compute explicitly the maximal value in the above expression. The first order condition

m m+1
s = <m+ 1<u>> .

a)i=—aluy "+ am/(m+1)<u>l_m

achieves its maximum at @4, < 1 for <u> < 1+ 1/m and is strictly decreasing for o > qq4, We

gives

Since the function

have
rélgicg(a) = g(1), for (uy <1+ 1/m

and so we conclude jy, ((u)) = 0 for (uy < 1 + 1/m. Therefore

5 Wl 5 < xelh) [ a8 (0710 (0,01 @) 0) dadb
RxR
<xo(®) [[ la = 50" (001 @)pn(8) dads = 0
RxR

thanks to the stability estimate (4.25). To investigate the equality cases, note that g = o™/(m+1) jf
and only if u = 1 (looking at the equality cases in Holder’s inequality). Moreover, {u) € (0, 1+1/m]
implies

T [u] < —adu)™ ™ + am/(m+1)<u>17m +uy™™ — <u>17m <0

m+1), and so u = 1. The converse

using a > 1. Hence, if J,,,[u] = 0, then we must have 3 = a™/(
is trivial by substituting into the expression for J,,[u]. Taking u to be the Brenier map ", we

conclude that %W(p(t), pr)? = 0if and only if p = py. O
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The utility of the previous result for understanding the asymptotic behaviour of solutions de-
pends of course on the set of initial data for which solutions satisfy the stability estimate (4.24) at

all times. This set is rather difficult to characterise, and we do not know its size.

Let us now explore what we can say about the long-time behaviour of solutions in the general
case. The first insight consists in calculating the evolution of the second moment. It follows from

homogeneity that

EVIp(0)] = 20m ~ DFp(1)] (4.26)

Identity (4.26) implies that the second moment is non-decreasing, and it converges to some value
Vo € Ry u {+x}. Following [39] we discuss the dichotomy of V,, < +00 and V,, = +o0. Let
p(t) € Y be a solution of (1.4) such that |z|?p(t) € L1 (R) for all ¢ > 0. Let pj be a stationary
state of (1.4) according to Definition 2.1. Note that V[px] < 0 since py, is compactly supported by
Corollary 3.9 in Chapter 2.

’ Case1: Vo, < +0| If the second moment V[p(t)] converges to Vo, < +o, then we deduce

from (4.26) that the energy functional F[p(t)] converges to Fj[pr] = 0 since F}, is non-increasing
along trajectories. This is however not enough to conclude convergence of p(t) to pi, and the ques-
tion remains open. Note further that in order to have convergence, we need to choose a dilation
of p, with second moment equal to V... For any dilation p of px, we have V[p}] = V[pr]/A\%, and
so there exists a unique A, such that V[ﬁz*] = Vy. This would be the natural candidate for the

asymptotic behaviour of the solution p(¢).

Case 2: Vo, = +o0| If the second moment V[p(t)] diverges to V,, = 400 however, the dis-

cussion is more subtle and we can give some further intuition. First of all, let us remark that one
has to seek a convergence other than in Wasserstein distance since o0 = V,, # V[p] < . We
can not exclude this case a priori however since a convergence in another sense may be possible
in principle. We use the homogeneity properties of the flow to derive refined inequalities. To do

this, we renormalise the density as in (4.22), but now with a time dependency in o:

pty) = o(Bplt,o(t)y), o) = Vip(t)] = f 2l p(t, ) da. (4.27)

Then p satisfies the equation

0ip(t,y) =o()dip(t,x) + &(t) (p(t, ) + 2 - dup(t, x))

=a(t) {o(t) > 0yyp(t,y)™ + 2xe (k) (t) 40, (p(t, y) oy (Wi (y) * p(t,y))) }
&(t)

+ o) (P(t,y) +y-0yp(t,y)) -
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By homogeneity of 7}, we have
Frlp)] = o) =" Fe[p(t)], (4.28)

and so it follows from (4.26) that 20 (t)d(t) = 2(m — 1)Fx[p(t)] = 2(m — V)o(t)' =™ Fx[p(t)]. We

deduce

Oup(t,y) =o(t) " " {0y, plt, )™ + 2xc(k)y (AL, y)0y (Wi(y) = p(t,y)))}
)

+o(®)7 " (m = D) FRp)] (p(t,y) +y - 0yh(t,y)) -

Alternatively, we get

ifk {0 )" Felp(t)]}

= —o(t)y™! JR p(t,x) |0y (mlp(t o)™ 4 2x (k)W () * p(t,x)) dx

+(m =120 (t)™ 2o ()" Fi[p(t)] Frlp(t)]
=a(t)"1""g[p], (4.29)

where

py) dy + (m = 1)* Fe[p].

Ll - |

Proposition 4.4. The functional H defined by H|[p| := G[p] on Vs is zero-homogeneous, and everywhere

o0 (0 + 2 W) 50 )

non-positive. Moreover, H[p]| = 0 if and only if p is a stationary state of equation (1.4).

Proof. Homogeneity follows from the very definition of H. Non-positivity is a consequence of the
Cauchy-Schwarz inequality:
2

Km—nﬂ@W—}J;w@<7”ﬁ@w1+zhwmmw*mw)mw@

m—1

s(Lw%@m@(R

If pis a stationary state of equation (1.4), so is p and it follows from (4.29) that G[p] = 0. Conversely,

2

m—1

@(”‘mmﬂ+nmwmwmw)

A(y) dy) :

(4.30)

if G[p] = 0, then we can achieve equality in the Cauchy-Schwarz inequality (4.30) above, and so

the two functions y and

oo (00 + D)+ 0))

are proportional to each other. In other words, there exists a constant # such that for all y € R,
m — . .
0y (9™ + 2B ) 50) ) + 73 = 0. @31)
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3. 1D Far-CompETITION REGIME

This equation is the Euler-Langrange condition of the gradient flow given by the energy functional

Fi + @V
Oru = 0Oy (u Oy ((;L (Fr + V) [u])) , (4.32)

and since p satisfies (4.31), it is a stationary state of equation (4.32). Testing this equation against
yp(y), we obtain
= (m—1)Fg[p] = 0.

Non-negativity of 7 follows from the variant of the HLS inequality Theorem 3.1 since Fj[p] = 0 for
any p € YV if x = x.(k). We will show & = 0 by contradiction. Assume # > 0. Applying Theorem
3.6 for Fi[-]+ #V[] instead of Fi[-] + 3 V[-], we deduce that j is a minimiser of the rescaled energy

Fi[-] + #V[-]. In particular, this means that we have for any u € )»,
Frlu] + 7V[u] = Fe[p] + 7V[p] = &/(m —1) + & > 7.

However, Proposition 3.4(i) and Corollary 3.8 in Chapter 2 provide a global minimiser p; 1 € Vs
with unit second moment for F;, which is also a stationary state by Theorem 3.14 in Chapter 2.
Then choosing u = py, 1 in the above inequality yields Fi[pk.1] + 7V [pk,1] = 0+ 7, a contradiction.
Therefore we necessarily have # = 0 and so F;[p] = 0. By (4.28), Fi[p] = 0 and this implies that
p is a global minimiser of F; by Theorem 3.1, and consequently it is a stationary state of (1.4) by

Theorem 2.6 in Chapter 2. O

It would be desirable to be able to show that H[p(t)] — H[px,1] as t — o to make appropriate
use of the new energy functional 7. But even then, similar to the first case, we are lacking a sta-
bility result for # to prove that in fact 5(t) converges to p 1. Here, in addition, we do not know at

which rate the second moment goes to +0.

We conjecture that only the first case V,, < +o0 is admissible. The motivation for this claim is
the following: F and # have both constant signs, and vanish only when p = py, ;. If the stability
inequality

nFilpl < —Hlpl, Vp (4.33)

were satisfied for some > 0, then we would be able to prove that V,, < +o0. To see this, we

derive a second-order differential inequality for w(t) := o(t)™*!. We have
(1) = (m + Do()™6(t) = (m +1)(m — ) Felp(t)] > 0,
and so by (4.29),
B(t) = (m + 1)(m — () H[p()] <0.
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4. Long-time asymptotics

Here, non-positivity of c(t) follows from Proposition 4.4. Therefore, the stability estimate (4.33),

if true, would imply that c)(¢) < —nw(t)~'w(t), hence
w(t) < C —nlogw(t).

Consequently, w(t) would be bounded, and so we arrive at a contradiction with the assumption

4.1.2 The sub-critical case x < x.

We know that in the logarithmic case (m = 1,k = 0), solutions to (1.4) converge exponentially
fast towards a unique self-similar profile as ¢ — o, provided that the parameter x is sub-critical
(x < 1) [62]. A similar argument works in the porous medium regime & € (—1,0) under certain
regularity assumptions as we will show below. Surprisingly enough, convergence is uniform as
the rate of convergence does not depend on the parameter x. In particular, it was shown in [62]
for k£ = 0 that we have uniform convergence in Wasserstein distance of any solution p(¢) for the

rescaled system (2.7) to the equilibrium distribution py of (2.7),

d

V(1) p0)* < —2W(p(t), po)*

A similar result has been obtained in two dimension in [71].

Studying the long-time behaviour of the system in the porous medium case k& < 0 is more
subtle than the logarithmic case and we cannot deduce exponentially fast convergence from our
calculations without assuming a uniform stability estimate, which coincides with (4.25). But as in
the critical case, we do not know how many initial data actually satisfy this condition. Note also
that due to the additional confining potential, homogeneity has been broken, and so we cannot
renormalise the second moment of minimisers as we did in the critical case. As in the critical
case, stationary states of the rescaled equation (2.7) are compactly supported by Corollary 3.9 in

Chapter 2.

Proposition 4.5. For sub-critical interaction strength 0 < x < x.(k), let p(t) be a solution to (2.7) in the
porous medium case k € (—1,0), m = 1 — k and py, a stationary state of (2.7). If the transport map
given by p(t, x)dx = 0y (t, ) #pr(x)dx satisfies the uniform stability estimate (4.24), then

dt

where equality holds if and only if p(t) is a dilation of py. It follows that

lim V[p(t)] = VI

t—00
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3. 1D Far-CompETITION REGIME

Proof. We compute the evolution of the Wasserstein distance along the gradient flow similar to

the proof of Proposition 4.3, denoting by ¢ the inverse transport map, 0, ¢(t, z) = 0,9 (t,x) !,

; th< (6, )
J &' (t,x)p(t,x)™ dx + x fj ( (;S’( ’y)> |z — y|Fp(t, x)p(t, y) dedy
RxR
+ | pteom e = [[ o= sl ottt ) dody
RxR
=5 | @ o - o —notap duay = | jaPote.a) de.

RxR

where we have used the fact that the centre of mass is zero at all times to double the variables:

J ¢'(t, x)zp(t, x) H (t,z) — ¢'(t,y))(x —y)p(t, 2)p(t, y) dzdy .

RxR

This rewrites as follows in terms of the transport map ¢":

A ON N
< | @) pula)™ dact x [ (e (@) a = b @) dadb
® RxR
@) " pu@)™ da = x ([ e @) e = b @) (8) dadd
R RxR
+5 ] @ @mia - b)) doa
RxR
=5 |[ @@y @) da.
RxR

Using the characterisation (2.10), we obtain for any v € R,
J (¥"(t, )" prla)™da
R
1-m ‘a B b‘Q " —\ = —
— [ (o — o+ 5P (0, 8) () 8)
RxR

Hence, the dissipation of the distance to equilibrium can be written as

1d )
S Wo(t), )

<x f la— b {—C"(t, (a,5) ™™ + (" (£, (a, D)™

RxR

(s (a,0)) ™" = (8 (8 (a,0)' T} (@) (b) dadb
+5 [[ la= bR e @by + e aby

RxR

+ (2, (a,0))) = ("t (@) | @) (b) dadb
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4. Long-time asymptotics

We now examinate the signs of the microscopic functionals J,,,[u] and J,, 2[u] defined as follows

for non-negative functions v : (0,1) — Ry,
Inlu] = =Cu™™y + Wy + (u) ™" - <u>1_m ) (4.34)
Imolu] = —(u™™y + u =" + (uy — <u>2 : (4.35)

The first two terms in the functionals J,, and J,, 2 are common. We can rewrite them as

—u™y + <u1_m> = —a<u>_m + ﬁ<u>1_m )

where a = (u)"(u"™) and 8 = <u>m_1<u1_m>. By Jensen’s inequality we have o > 1, 8 > 1,

and by interpolation we have 3 < o”/(™+1)_ Therefore,
X —m 1-m
T[] < o ((w)) 1= max g(e) + Cuy™™ = u) ™,
. 2
m2[ul < jm2((w) = maxg(a) + (uy = {u)”,

where

9(a) = —alu)y ™ + am/(m+1)<u>1_m.

We can compute explicitly the maximal value of g, and as before the first order condition gives

m m+1
Amaxr = (m T 1<U>) .

It is straight forward to see that

max g(a) = g(1) for (u)y <1+ 1/m,

a=1

and hence we obtain

o if (uy <1+ %
@) =3 o T s
<m+1> m+1<u>+<u> 7<U> ) if <u>>1+E
—(uy™" + <“>lim +(uy — <u>2, if (u) <1+ %
A M . L (4.37)
(m+1> m+1<u>+<“>*<“>, if <u>21+E
We have lim o j,, = +00, and lim o jm2 = —oo. In addition, the function js ,,, is non-positive

and uniformly strictly concave:

vae (004 ] () = mw ™ 1)+ - 1)) -2

<—(m+1)w ™ 2-2.
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3. 1D Far-CompETITION REGIME

Thus, ¥ (uy € Ry, jy, »({w)) < —2 and so the following coercivity estimate holds true:

V(uy e <0, 14 nll] » ma(@w) < — ((ud—1)2. (4.38)

Furthermore, the function j,, is everywhere non-negative. The above analysis allows us to rewrite
the dissipation in Wasserstein distance as

1d

S EW((0), 70 < j j xla = bE L[ (£, (a, b)) 17 () 1 (b) dadb

RxR

+ % fj |Cl — b|2Jm,2[¢”(f” (a7 b))]ﬁk(a)ﬁk(b) dadb

RxR

<[] xa = bl . ) (@ ) dad
RxR
1 . _ _
+5 [[ 1o = bRl ¢ @ )@ 0) dadd
RxR
to finally conclude that
1d "
5 W0.50° < =3 [ 1a =0 (0. (@) = 1)? @) dac,
RxR
where the last inequality follows from (4.36) and the coercivity property (4.38) thanks to the sta-

bility estimate (4.25). This concludes the proof,

d
W50 <~ [[ la= 82 (0 (@)~ 1)? pu(@ipe o) daa
RxR
—— || @@ —a= @®) 1) alepn(b) dad,
RxR
-2 [ (W) = )" 7o) da. = 2 W), )"
using the fact that p(¢) and py, both have zero centre of mass. O

Remark 4.6 (Non-Existence of Stationary States). Proposition 4.5 motivates the rescaling in the sub-
critical case since it means that there are no stationary states in original variables. Indeed, assume u is a
stationary states of equation (1.4), then its rescaling p(t, z) = e'u(e'x) is a solution to (2.7) and converges to
do as t — co. Proposition 3.4(ii) and Theorem 3.14 in Chapter 2 on the other hand provide a stationary state
Pr, and the transport map 0,4 (t, x) pushing forward py, onto p(t, x) can be written as (t,z) = e t¢(x)
for some convex function ¢. Hence, for large enough t > 0, 1 (t, x) satisfies the stability estimate (4.24) and

so eventually p(t, x) converges to py, by Proposition 4.5 which is not possible.

4.1.3 The super-critical case x > x.

Here, we investigate the possible blow-up dynamics of the solution in the super-critical case. In

contrast to the logarithmic case (m = 1,k = 0), for which all solutions blow-up when x > x.,
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4. Long-time asymptotics

provided the second momentum is initially finite, see [41], the picture is not so clear in the fair-
competition regime with negative homogeneity & < 0. There, the key identity is (4.26), which

states in particular that the second momentum is a concave function.

It has been observed in [39] that if the free energy is negative for some time to, Fx[p(to)] < O,
then the second momentum is a decreasing concave function for ¢t > ty. So, it cannot remain non-
negative for all time. Necessarily, the solution blows up in finite time. Whether or not the free
energy could remain non-negative for all time was left open. In [302], the author proved that so-
lutions blow-up without condition on the sign of the free energy at initial time, but for the special
case of the Newtonian potential, for which comparison principles are at hand.

In [67], a continuous time, finite dimensional, Lagrangian numerical scheme of [36] was analysed.
This scheme preserves the gradient flow structure of the equation. It was proven that, except for a
finite number of values of x, the free energy necessarily becomes negative after finite time. Thus,
blow-up seems to be a generic feature of (1.4) in the super-critical case. However, we could not
extend the proof of [67] to the continuous case for two reasons: firstly, we lack compactness esti-
mates, secondly, the set of values of x to be excluded gets dense as the number of particles in the

Lagrangian discretisation goes to co.

Below, we transpose the analysis of [67] to the continuous level. We highlight the missing
pieces. Let us define the renormalised density p as in (4.27). The following statement is the ana-

logue of Proposition 4.4 in the super-critical case.

Proposition 4.7. The functional H defined by H[p] := G[p] on Y- is zero-homogeneous, and everywhere

non-positive. Moreover, it cannot vanish in the cone of non-negative energy:
(Flpl = 0) = (H[p] <0) . (4.39)

Proof. We proceed as in the proof of Proposition 4.4. Zero-homogeneity follows from the defini-
tion of H, and non-positivity is a direct consequence of the Cauchy-Schwarz inequality. It remains
to show (4.39). Assume that p is such that F[p] = 0 and H[p] = 0. The latter condition ensures

that there exists a constant 7 such that j is a critical point of the energy functional 7 + #V:
m A~ m—1 A A
Oy | =7 PW)™ "+ 2xWi(y) = ply) | + 7y = 0.
Testing this equation against y(y), we obtain
7 = (m = DF[P] = (m— Do) Filo] = 0.

Applying as in the proof of Proposition 4.4 a variant of Theorem 3.6, we obtain that p is a global

minimiser of the energy functional 7 + 7). Here, the amplitude of the confinement potential 7
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3. 1D Far-CompETITION REGIME

plays no role, but the sign 7 > 0 is crucial. By Theorem 2.6 in Chapter 2, there exists a stationary

state p € ), for critical interaction strength x = x.(k). If x > x.(k), we have

Fk[ﬁ] = um[ﬁ] + ka[ﬁ] < Mm[ﬁ] + XC(k)Wk [,5] =0.

Taking mass-preserving dilations of p, we see immediately that the functional F + 7V is not
bounded below in the super-critical case. This is a contradiction with j being a minimiser. Hence,

H[p] < 0 and (4.39) holds true. O

As in Section 4.1.1, the following non-linear function of the second momentum,

o) = o0 = ([ lafptta)as)
R
satisfies the second order differential inequality,
O(t) = (m? — Dw(t)"H[p(t)] <0. (4.40)

In view of the property (4.39) of the zero-homogeneous functional H, it seems natural to ask

whether there exists a positive constant § > 0, such that
(FIpl = 0) = (H[p] < —0) - (4.41)

If this would be the case, then (4.40) could be processed as follows: assume that w(¢) > 0 for all
t. This is equivalent to say that the free energy remains non-negative for all ¢ > 0 using (4.26).

Hence, assuming (4.41) holds, (4.40) becomes
G(t) < =6(m? — Dw(t)™t < 0. (4.42)
Multiplying by w(t) > 0, and integrating between 0 and 7', we would get

%d)(T)2 +0(m? — 1) log (w(T)) < %w(of + 5(m? — 1) log (w(0)) .

Hence, for any ¢ > 0,

w(t) < w(0) exp (%) .

Back to estimate (4.42), we would conclude that w is uniformly concave,

Therefore, %V[p(t)] would become negative in finite time. This would be a contradiction with the
everywhere non-negativity of the free energy by (4.26). As a conclusion, the existence of positive
d > 0 as in (4.41) implies unconditional blow-up. In [67], existence of such 4 is proven for a finite
dimensional Lagrangian discretisation of F%, and accordingly #, except for a finite set of values
for x. Numerical simulations using the numerical scheme proposed in [36] clearly show that the
energy has the tendency to become negative, even for positive initial data. Proving (4.41) remains

an open problem.
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4. Long-time asymptotics

4.2 Fast diffusion asymptotics

In the fast diffusion case k > 0, we are able to show a much stronger result: every stationary
state of (2.7) is in fact a global attractor for any choice of interaction strength x > 0. Investigating
the evolution of the Wasserstein distance to equilibrium yields exponential convergence with an
explicit rate which is independent of the interaction strength x > 0. In contrast to the porous
medium case, where we required a stability estimate on Brenier’s map, we do not need such an
estimate here. As a consequence, we obtain an alternative proof of uniqueness of stationary states

by a dynamical argument.

Proposition 4.8 (Long-time asymptotics). For k € (0,1) and m = 1 — k, if p(t) has zero centre of mass
initially and satisfies (2.7), then the evolution of the Wasserstein distance to the stationary states py, of (2.7)

can be estimated by

LW((0), p1)? < ~2W(o(0), )’ (4.43)

for any interaction strength x > 0. As a consequence, stationary states are unique if they exist.

Proof. We compute the evolution of the Wasserstein distance along the gradient flow, denoting by
¢ the inverse transport map, 0,¢(t,z) = 9,¢(t,x)~!. Proceeding as in the proof of Proposition

4.5, we can write the dissipation of the distance to equilibrium as

1d

5 W0 50% < x [ o= b (=8 (@ b)) 4 (e (b))

RxR

(1 (0,0)) 7" = (0 (8 (0, 0))' T} i(a)pe (b) dadb
w5 [l bR e @by e by

RxR

+ (1 (a,8))) = (Ut (a,0)))" | r(a)u(b) dadb .

We now examine the signs of the microscopic functionals J,,,[v] and Jy, o[u] defined as in (4.34)

and (4.35) for non-negative functions  : (0,1) — R, by
Im|u] = _<u—m> + <u1—m> i <u>—m B <u>1—m7
Tmalul = =™y + =™ + (uy — (u)?.

However, since m < 1 we now have by convexity <u>_m —{u™™) < 0and (u'™™) — <u>1_m <0,
hence

Imu] <0, me(0,1). (4.44)
For the functional .J, 5, the first two terms can be written as

~u) 4+ T = —aduy™" 4 Bluy
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where o = (u)"(u™™) and 8 = <u>m_1<u1_m>. As opposed to the proof of Proposition 4.5, we

now have 3 < 1 < a by Jensen’s inequality since m < 1, and therefore,

V(e Ry, Tmoalul < jma((w)) = —Cu) ™ + (ud' ™" + (u) — (u)’.

Note that lim o ji, 2 = —00. In addition, the function js ,,, is non-positive and uniformly strictly

concave:
Ve Ry, () = —m(1+m)wy "2 —m(l—m) ™" —2< -2,
and hence
V@ eRy, jmalw) < —(w—1)". (4.45)

From these estimates, we can deduce the exponential speed of convergence for the stationary state

pr, by rewriting the dissipation to equilibrium as

5 W05 < [ xla = 0 [0 1 (0.6 (@) dac
RxR
+ [ gla = bR ale . (@ D)o@ ) dad
RxR
< [ 3la = bR alCo" (e (0.1 0)pu(0) dac
RxR
<=L [[ 0=t (@ @0~ )7 ettt do
RxR

where the last inequality follows from (4.44) and (4.45). This concludes the proof,

d
LW H la — b (8" (t, (a,5)) — 1) (@) e (b) dadb
RxR
|| W@~ a= @ ®) 1) alepnlb) dod,
RxR
——2 [ W)= )" ule) da, = —2Wio(), )"
using the fact that p(t) and py, both have zero centre of mass. O

Remark 4.9 (Non-Existence of Stationary States). This result also provides a dynamical proof for the
non-existence of stationary states for k € (0, 2/3) in original variables. Indeed, if & were a stationary state
of equation (1.4), then its rescaled density p(t, x) would converge to dq for large times. This contradicts the
existence of a stationary state in rescaled variables (Chapter 2 Theorem 4.10) for k € (0, 2/3) together with

exponential convergence to equilibrium Proposition 4.8.
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5. Numerical simulations

5 Numerical simulations

There exists an illuminating way to rewrite the energy functional F;[p] due to the particular form
of the transport map. We use the Lagrangian transformation p — X, where X : (0,1) — R denotes

the pseudo-inverse of the cumulative distribution function (cdf) associated with p [295, 171, 36, 62],

X() = P =it fo s P@) ), F@) = [ pw)dy.

We introduce the parameter r € {0, 1} as we are interested in both original (r = 0) and rescaled
(r = 1) variables. Integrating equations (1.4) and (2.7) over (—o0, X (¢, 1)) with respect to the space
variable yields
X (tm)
Or f_m p(t,y) dy = [0up™ + 2xp0s (Wi * p) +12p)|,_x (1.0 - (5.46)

Differentiating the identity F'(¢, X (t,n)) = n with respect to n twice yields

p(t, X(t,m) = (2, X (6,m) " and  Qup(t, X(t,m)) = =0y X (8,m)/ (05X (t,m))* .

Differentiating with respect to time, we obtain 0, F'(t, X (t,n)) = —0: X (t,n)/2, X (t,n). This allows
us to simplify (5.46),
1

0 (tm) = =0 (@ X (6m) ™™ ) = 2 | X (1) = X (6| (X (1) = X(6) i = rX (1),

Similarly, the functionals Gy, o := Fi and Gi 1 := Fy resc read equivalently

1

1 Ul x(n) — X(7)F I
6,01 = 1 [ @xyman x| [ A g L e an.

for k € (—1,1)\{0}, and

1

Goo 1= = [ 102 (o)) - x [ [ oo x@lanan + 5 [ pxianan.

0
in the logarithmic case k = 0. Intuitively, X encodes the position of particles with respect to the
partial mass 7 € (0, 1), and the same homogeneity is preserved: Gi o[A\X] = \*Gy. o[ X].

In Section 3, we showed uniqueness of minimisers of the rescaled energy functional Fj, resc[p]
for 0 < k < 2/3 and any x > 0 (Corollary 3.16) and also for the sub-critical porous medium
case —1 < k < 0, x < xc(k) (Corollary 3.9). One may take these results as an indication that
Fi resc[p] could in fact be displacement convex. As discussed in Section 2.3, Fj, resc[p] is a sum of
displacement convex and concave contributions and we do not know its overall convexity proper-
ties. We recall that the functionals related to the classical Keller-Segel models in two dimensions
are displacement convex once restricted to bounded densities [94]. We will give some heuristics for
the power-law potential case. If G, 1 [ X ]| were convex, then Fy, resc[p] would be displacement con-

vex [295, 98] and uniqueness of minimisers directly follows [234]. Taylor expanding G 1 around
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3. 1D Far-CompETITION REGIME

X yields for any test function ¢ € C ([0,1]),

2
Gra[X + €] = Gra[X] + €DuGra[X] + %Digk,l[x] + O,

where DGy, 1[X So 8Gk1[X](n) ¢(n) dn with the first variation 5%(’1 [X](n) given by
5?5(’1 [X1() = 0y ((0,X) ™) + 2x L X () — X ()"~ (X (n) — X (7)) dijp + X (1)

for k € (—1,1)/{0}. However, the Hessian

D26y [X mf (@yp(m)2 (20X ()"
1

k—l)jo j X () — X@)F2 (o) — ()2 dndit + j o(n)? dn

0

does not have a sign. In other words, we cannot use this strategy to conclude overall convex-
ity /concavity properties of the rescaled energy functional Fj, resc. It is an interesting problem to
explore convexity properties of Gy, in a restricted set of densities such as bounded densities as

in [94, 119].

5.1 Nwumerical scheme

To simulate the dynamics of X we use a numerical scheme which was proposed in [36, 67] for the
logarithmic case, and generalised to the one-dimensional fair-competition regime for the porous
medium case k € (—1,0) in [66]. It can easily be extended to rescaled variables adding a confining
potential, and works just in the same way in the fast diffusion case k € (0,1). We discretise the
energy functional via a finite difference approximation of X (1) on a regular grid. If (X;),_,,, are
the positions of n ordered particles sharing equal mass An = 1/n such that X; < X <--- < X,,,

then we define the discretised energy functional by

AL n
Z =X A Y Rl lel +7"A277i_21Xi|2

s} I<i#j<n

gl?,r [( i

for k € (—1,1)\{0}, and by

i X;
Go.r [(X3)] AnZlo( S )+X(An) Z log | X, — X|+r Z|X\2

1<i#j<n

in the logarithmic case k£ = 0. The Euclidean gradient flow of G!, writes for 1 <i <n

Xi = = (A" (X = X) " = (X = X))

—2xAn Y, sign(i—j) X — X" X, (5.47)

1<j#is<n
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complemented with the dynamics of the extremal points

Xy = —(An)™ 7 (X = X0) " 4 20 Y 1N - X - (5.48)
J#1
; m—1 -m k—1
Xn = (An)™ ™ (X = Xp1) " = 2¢A0 Y |X; = X [T X, (5.49)
Jj#n

Equations (5.48)-(5.49) follow from imposing X, = —coand X,, 1 = 400 so that the initial centre of
mass Y, ; X; = 0is conserved. Working with the pseudo-inverse of the cummulative distribution
function of p also has the advantage that we can express the Wasserstein distance between two
densities p and j in a more tractable way. More precisely, if ¥’ is the optimal map which transports
p onto p, then the Monge-Ampére equation (2.13) is an increasing rearrangement. Let F and F’
be the cummulative distribution function of p and j respectively, with pseudo-inverses X and X.

Then we have

. . e
Fo) = | swdy= [ stw)dy=Fov(a).

Hence the transport map is given explicitly by ¢/ = F~! o F, and we have for the Wasserstein

distance

wmm?:jo B () — P ()| dn = f X)) - X dy = IR~ XIE. (550)

This means that this numerical scheme can be viewed formally as the time discretisation of the
abstract gradient flow equation (1.6) in the Wasserstein-2 metric space, which corresponds to a

gradient flow in L? ((0, 1)) for the pseudo-inverse X,
X(t) = —Vi2G, [X(1)].

Discretising (5.47)-(5.48)-(5.49) by an implicit in time Euler scheme, this numerical scheme then
coincides with a Jordan-Kinderlehrer-Otto (JKO) steepest descent scheme (see [248, 36] and refer-
ences therein). The solution at each time step of the non-linear system of equations is obtained by

an iterative Newton-Raphson procedure.

5.2 Results

For the logarithmic case k¥ = 0, m = 1, we know that the critical interaction strength is given by
Xc = 1 separating the blow-up regime from the regime where self-similar solutions exist [136, 41,
33]. Asshown in Chapter 2, there is no critical interaction strength for the fast diffusion regime & >
0, however the dichotomy appears in the porous medium regime k£ < 0 (see Chapter 2 and [39]).
It is not known how to compute the critical parameter x. (k) explicitly for £ < 0, however, we can
make use of the numerical scheme described in Section 5.1 to compute x. (k) numerically.

Figure 3.2 gives an overview of the behaviour of solutions. In the grey region, we observe finite-

time blow-up of solutions, whereas for a choice of (k, x) in the white region, solutions converge

171
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k

Figure 3.2: Regions of blow-up (grey) and convergence to self-similarity (white). The notation
refers to subsequent figures as follows: Lines L;, Ly and L3 show the asymptotic profiles over
the range k € (—1,1) for x = 0.05, x = 0.8 and x = 1.2 respectively (Figure 3.3). Point A shows
the density evolution at (k, x) = (—0.5,0.2) in original variables (Figure 3.4), and Point B for the
same choice of parameters (k, x) = (—0.5,0.2) in rescaled variables (Figure 3.5). Points C', D and
E correspond to simulations at (—0.2,0.7) (Figure 3.6), (0.2, 0.8) (Figure 3.7) and (0.2, 1.2) (Figure
3.8) respectively in the parameter space (k, x), all in rescaled variables. Point F' corresponds to
simulations at (k, x) = (—0.5,1.0) in original variables (Figure 3.9).

exponentially fast to a unique self-similar profile. The critical regime is characterised by the black
line x.(k), —1 < k < 0, separating the grey from the white region. Note that numerically we have
Xc(—0.99) = 0.11 and x.(0) = 1. Figure 3.2 has been created by solving the rescaled equation (2.7)
using the numerical scheme described above with particles equally spaced at a distance Anp =
1072, For all choices of k € (—1,0) and x € (0,1.5), we choose as initial condition a centered
normalised Gaussian with variance 02 = 0.32, from where we let the solution evolve with time
steps of size At = 1073. We terminate the time evolution of the density distribution if one of the
following two conditions is fullfilled: either the L?-error between two consecutive solutions is less
than a certain tolerance (i.e. we consider that the solution converged to a stationary state), or the
Newton-Raphson procedure does not converge for p(t, z) at some time ¢ < t,,,4,, because the mass
is too concentrated (i.e. the solution sufficiently approached a Dirac Delta to assume blow-up).
We choose t,,4, large enough, and An and At small enough so that one of the two cases occurs.

For Figure 3.2, we set the maximal time to ¢,,,, = 10 and the tolerance to 10~°. For a fixed k, we
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5. Numerical simulations

start with x = 0.01 and increase the interaction strength by 0.01 each run until x = 1.5. This is
repeated for each k from —0.99 to 0 in 0.01 steps. For a given k, the numerical critical interaction
strength x.(k) is defined to be the largest x for which the numerical solution can be computed
without blow-up until the L?-error between two consecutive solutions is less than the specified
tolerance. In what follows, we investigate the behaviour of solutions in more detail for chosen

points in the parameter space Figure 3.2.

(©

Figure 3.3: Profiles of stationary states in rescaled variables (r = 1) corresponding to lines L;, Lo
and L3 in Figure 3.2 for (a) x = 0.05, (b) x = 0.8 and (c) x = 1.2 with k ranging from 0.95 to (a)
—0.95, (b) —0.1 and (c) 0.1 in 0.05 steps respectively. All stationary states are centered at zero, but
are here displayed shifted so that they are centered at their corresponding value of k. The black
curve indicates the stationary state for £ = 0.

5.2.1 Lines Ly, Ly and L3

Apart from points A — F shown in Figure 3.2, it is also interesting to observe how the asymptotic

profile changes more globally as we move through the parameter space. To this purpose, we
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3. 1D Far-CompETITION REGIME

choose three different values of y and investigate how the stationary profile in rescaled variables
changes with k. Three representative choices of interaction strengths are given by lines L;, Lo
and L3 as indicated in Figure 3.2, where L, corresponds to x = 0.05 and lies entirely in the self-
similarity region (white), Ly corresponds to x = 0.8 and captures part of the sub-critical region in
the porous medium regime £ < 0 (white), as well as some of the blow-up regime (grey), and finally
line Ls which corresponds to xy = 1.2 and therefore captures the jump from the self-similarity
(white) to the blow-up region (grey) at £ = 0. Note also that points D and E are chosen to lie on
lines Ly and L3 respectively as to give a more detailed view of the behaviour on these two lines
for the same k-value. The asymptotic profiles over the range k € (-1, 1) for lines L;, L, and L3 are
shown in Figure 3.3, all with the same choice of parameters using time step size At = 1072 and

equally spaced particles at distance Ap = 1072

For each choice of interaction strength x, we start with £ = 0.95 and decrease k in 0.05 steps for
each simulation either until £ = —0.95 is reached, or until blow-up occurs and (k, x) lies within the
grey region. For each simulation, we choose as initial condition the stationary state of the previous
k-value (starting with a centered normalised Gaussian distribution with variance ¢ = 0.32 for
k = 0.95). As for Figure 3.2, we terminate the time evolution of the density distribution for a given
choice of k and Y if either the L2-error between two consecutive solutions is less than the tolerance
1075, or the Newton-Raphson procedure does not converge. All stationary states are centered at
zero. To better display how the profile changes for different choices of k, we shift each stationary
state in Figure 3.3 so that it is centered at the corresponding value of k. The black curve indicates

the stationary profile for k = 0.

In Figure 3.3(a), we observe corners close to the edge of the support of the stationary profiles for
k < 0. This could be avoided by taking Arn and A¢ smaller, which we chose not to do here, firstly to
be consistent with Figure 3.2 and secondly to avoid excessive computation times. For interaction
strength x = 0.8, the smallest k for which the solution converges numerically to a stationary state
is k = —0.1 (see Figure 3.3(b)). This fits with what is predicted by the critical curve x.(k) in Figure
3.2 (line Ly).

In Figures 3.3(b) and 3.3(c), we see that the stationary profiles become more and more concen-
trated for k£ approaching the critical parameter £ = k* with x = x.(k*), which is to be expected
as we know that the stationary state p;, converges to a Dirac Delta as k approaches the blow-up
region. In fact, for y = 1.2 the numerical scheme stops converging for k£ = 0.05 already since the
mass is too concentrated, and so we only display profiles up to £ = 0.1 in Figure 3.3(c). Further,
in all three cases x = 0.05, x = 0.8 and x = 1.2 we observe that the stationary profiles become
more and more concentrated as & — 1. This reflects the fact that attractive forces dominate as the
diffusivity m converges to zero. Finally, note that we have chosen here to show only a part of the

full picture for Figures 3.3(b) and 3.3(c), cutting the upper part. More precisely, the maximum of
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5. Numerical simulations

the stationary state for £ = 0.95 and x = 0.8 in Figure 3.3(b) lies at 75.7474, whereas it is at 3, 216.8

for parameter choices £ = 0.95 and x = 1.2 shown in Figure 3.3(c).
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Figure 3.4: Point A: x = 0.2,k = —0.5,7 = 0.
(a) Inverse cumulative distribution function, (b) solution density, (c) free energy.

5.2.2 Points A-F

Let us now investigate in more detail the time-evolution behaviour at the points A—F in Figure 3.2.
For k£ = —0.5 in the porous medium regime and sub-critical x = 0.2 (point A in Figure 3.2), the
diffusion dominates and the density goes pointwise to zero as ¢ — oo in original variables. Figure
3.4(a) and 3.4(b) show the inverse cumulative distribution function and the density profile for
(k,x) = (—0.5,0.2) respectively, from time ¢ = 0 (black) to time ¢ = 100 (red) in time steps of
size At = 1073 and with An = 1072, We choose a centered normalised Gaussian with variance
0? = (0.32 as initial condition. Figure 3.4(c) shows the evolution of the free energy (1.1) over time,

which continues to decay as expected.
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For exactly the same choice of parameters (k, x) = (—0.5,0.2) and the same initial condition we
then investigate the evolution in rescaled variables (point 5 in Figure 3.2), and as predicted by
Proposition 4.5, the solution converges to a stationary state. See Figures 3.5(a) and 3.5(b) for the

evolution of the inverse cumulative distribution function and the density distribution with At =
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Figure 3.5: Point B: x = 0.2,k = —-0.5,r = L.
(a) Inverse cumulative distribution function from initial condition (black) to the profile at the last
time step (red), (b) solution density from initial condition (black) to the profile at the last time step
(red), (c) relative free energy, (d) log(relative free energy) and fitted line between times 0 and 0.9
with slope —7.6965 (red), () L?-error between the solutions at time ¢ and at the last time step, (f)
log(L?-error) and fitted line with slope —4.392 (red).
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1073 and An = 1073 from ¢ = 0 (black) to the stationary state p (red). Again, we terminate the
evolution as soon as the L2-distance between the numerical solution at two consecutive time steps
is less than a certain tolerance, chosen at 107°. We see that the solution converges very quickly both
in relative energy | Fi[p(t)] — Fi[p]| (Figure 3.5(c)) and in terms of the Wasserstein distance to the
solution at the last time step W (p(t), p) (Figure 3.5(e)). To check that the convergence is indeed
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Figure 3.6: Point C: x = 0.7, k = =0.2,r = 1.
(a) Inverse cumulative distribution function from initial condition (black) to the profile at the last
time step (red), (b) solution density from initial condition (black) to the profile at the last time step
(red), (c) relative free energy, (d) log(relative free energy) and fitted line between times 0 and 1.8
with slope —3.2522 (red), (e) L?-error between the solutions at time ¢ and at the last time step, (f)
log(L?-error) and fitted line with slope —1.8325 (red).
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exponential as predicted by Proposition 4.5, we fit a line to the logplot of both the relative free
energy (between times ¢t = 0 and ¢ = 0.9), see Figure 3.5(d), and to the logplot of the Wasserstein
distance to equilibrium, see Figure 3.5(f). In both cases, we obtain a fitted liney = —a xt + b

with some constant b and rate a = 7.6965 for the relative free energy and rate a = 4.392 for the
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Figure 3.7: Point D: x = 0.8, k =0.2,r = 1.

(a) Inverse cumulative distribution function from initial condition (black) to the profile at the last
time step (red), (b) solution density from initial condition (black) to the profile at the last time step
(red), (c) relative free energy, (d) log(relative free energy) and fitted line between times 0.2 and 3.8
with slope —3.6904 (red), () L?-error between the solutions at time ¢ and at the last time step, (f)
log(L?-error) and fitted line between times 0.2 and 3.8 with slope —1.9148 (red).
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Wasserstein distance to equilibrium. Recall that the L2-error between two solutions X (1) and

X (n) is equal to the Wasserstein distance between the corresponding densities p(z) and j(x) as

described in (5.50). We observe a rate of convergence that is in agreement with [62, 71, 148] for the

logarithmic case k£ = 0.
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time step (red), (b) solution density from initial condition (black) to the profile at the last time step
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For parameter choices k£ = —0.2 and x = 0.7 (point C in Figure 3.2), we are again in the sub-
critical regime where solutions converge to a stationary state in rescaled variables according to
Proposition 4.5, see Figures 3.6(a) and 3.6(b). However, point C is closer to the critical interaction
strength x. (k) than point B (numerically, we have x.(—0.2) = 0.71), and as a result we can observe
that the stationary density p in Figure 3.6(b) (red) is more concentrated than in Figure 3.5(b). Here,
we choose as initial condition a characteristic function supported on the ball centered at zero with
radius 1/2 (black, Figure 3.6(b)), and fix At = 1073, An = 5 x 102 with tolerance 107°. We
observe that the solution converges very quickly to a stationary state both in relative free energy
| Fi[p(t)] — Fi[p]] (Figure 3.6(c)) and in terms of the Wasserstein distance to equilibrium W(p(t), p)
(Figure 3.6(e)). To investigate the exponential rate of convergence, we fit again a line to the logplot
of both the relative free energy (here between times t = 0 and ¢ = 1.8) see Figure 3.6(d), and the
Wasserstein distance to equilibrium, see Figure 3.6(f). We obtain fitted lines y = —a * t + b with
some constant b and rate ¢ = 3.2407 for the relative free energy, whereas the rate is a = 1.8325 for

the Wasserstein distance to equilibrium.

Next, we are looking at point D in Figure 3.2, which corresponds to the choice (k, x) = (0.2,0.8)
and is part of line L, (see Figure 3.3(b)). Since point D lies in the fast diffusion regime k£ > 0, no
critical interaction strength exists as shown in Chapter 2, and so we look at convergence to self-
similarity. Figures 3.7(a) and 3.7(b) display the evolution of the inverse cumulative distribution
function and the density distribution from ¢ = 0 (black) to the stationary state p (red) in rescaled
variables including the solutions at 50 intermediate time steps. We start with a characteristic func-
tion supported on a centered ball of radius 1/2. Choosing At = 1073 and An = 10~2 is enough.
The density seems to become instantaneously supported on the whole space for any ¢ > 0, which
cannot be fully represented numerically since the tails are cut by numerical approximation, see
Figure 3.7(a)-(b). Again, we observe very fast convergence both in relative energy (Figure 3.7(c)-
(d)) and in Wasserstein distance to equilibrium (Figure 3.7(e)-(f)) as predicted by Proposition 4.8.
A logplot of the relative free energy (Figure 3.7(d)) and the Wasserstein distance to equilibrium
(Figure 3.7(f)) show exponential rates of convergence with rates a = 3.6904 and a = 1.9148 respec-

tively for the fitted line y = —a * ¢ + b with some constant b and for times 0.2 <t < 3.8.

For the same choice of £ = 0.2 in the fast diffusion regime, but with higher interaction strength
x = 1.2 (point E in Figure 3.2, which is part of line L3, see Figure 3.3(c)), we obtain a similar
behaviour. Figures 3.8(a) and 3.8(b) show the inverse cumulative distribution function and the
density distribution, both for the initial data (black), a characteristic supported on the centered
ball of radius 1/2, and for the stationary state p (red). Here we choose as before At = 1073 and
An = 1072. We observe that the stationary state for y = 1.2 (Figure 3.8(b)) is more concentrated
than for x = 0.8 (Figure 3.7(b)), which is exactly what we would expect for decreasing k as p
approaches a Dirac Delta for £ — 0if x = 1.2, whereas it becomes compactly supported if y = 0.8
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as k crosses the x-axis (see Chapter 2 Corollary 3.9). Again, we observe very fast convergence
both in relative energy (Figure 3.8(c)-(d)) and in Wasserstein distance to equilibrium (Figure 3.8(e)-
(f)) as predicted by Proposition 4.8. A logplot of the relative free energy (Figure 3.8(d)) and the
Wasserstein distance to equilibrium (Figure 3.8(f)) show exponential rates of convergence with
rates a = 3.6898 and a = 1.9593 respectively for the fitted lines y = —a * ¢ + b and some constant

b between times 0.3 < t < 3.5.
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Figure 3.9: Point F: x =1,k = —0.5,r = 0.

(a) Inverse cumulative distribution function from initial condition (black) to the profile at the last
time step (red), (b) solution density from initial condition (black) to the profile at the last time step
(red), (c) free energy.

Finally, let us investigate the behaviour for (k,x) = (—0.5,1) in original variables (point F in
Figure 3.2). Point F' lies in the porous medium regime and we expect blow-up as x.(—0.5) < 1,
see Section 4.1.3. If the mass becomes too concentrated, the Newton-Raphson procedure does not
converge and the simulation stops. We have therefore adapted the numerical scheme to better
capture the blow-up. We fix At = 1073 and An = 1072 and take a centered normalised Gaussian

with variance o = 0.32 as initial data. When the simulation stops, we divide the time step size At

181



3. 1D Far-CompETITION REGIME

by two and repeat the simulation, taking as initial condition the last density profile before blow-
up. This process can be repeated any number of times, each time improving the approximation
of an emerging Dirac Delta. The formation of a Dirac Delta in Figure 3.9(b) corresponds to the
formation of a plateaux in 3.9(a). As expected from the analysis in Section 4.1.3, the free energy

diverges to —oo (Figure 3.9(c)).

6 Explorations in other regimes

6.1 Diffusion-dominated regime in one dimension

The numerical scheme described here gives us a tool to explore the asymptotic behaviour of solu-
tions for parameter choices that are less understood. For example, choosing x = 0.3, kK = —0.5 and
m = 1.6 in original variables (r = 0), we observe convergence to a compactly supported stationary
state, see Figure 3.10. This choice of parameters is within the diffusion-dominated regime since
m + k > 1 (see Definition 3.1 in Chapter 1). We choose as initial condition a normalised charac-
teristic function supported on B(0, 15) from where we let the solution evolve with time steps of
size At = 1072 and particles spaced at An = 1072, We let the density solution evolve until the
L?-error between two consecutive solutions is less than 10~7. Note that here m + k = 1.1 is close

to the fair-competition regime, for which x. (—0.5) = 0.39 (see Figure 3.2).

6.2 Attraction-dominated regime in any dimension

In the attraction-dominated regime N (m—1)+k < 0 (corresponding to Definition 3.1 in Chapter 1)
both global existence of solutions and blow-up can occur in original variables in dimension IV > 1
depending on the choice of initial data [118, 275, 278, 109, 32, 110, 224, 65]. Using the numerical
scheme introduced in Section 5, we can demonstrate this change of behaviour numerically in one

dimension, see Figures 3.11 (dispersion) and 3.12 (blow-up).

We will now investigate in more detail a special parameter choice (m, k) that belongs to the
attraction-dominated regime. Instead of fixing m and k such that attractive and repulsive forces
are in balance (N(m — 1) + k = 0), one may choose instead to investigate the regime m = m**
where the free energy functional (1.1) is conformal invariant,

o _ 2N
" 2N+ k-

For k < 0, this corresponds to the case p = ¢ = m in the HLS inequality (3.16) for which the
optimisers pr 1 g and the optimal constant C'r1, g are known explicitly [217]. We have the following

existence result:
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Figure 3.10: Diffusion-dominated regime: x = 0.3, k = —0.5, m = 1.6, r = 0.

(a) Inverse cumulative distribution function from initial condition (black) to the profile at the last
time step (red), (b) solution density from initial condition (black) to the profile at the last time step
(red), (c) relative free energy, (d) log(relative free energy).

Theorem 6.1. Let x > 0, k € (—N,0) and m = m™* e (1,2). Then the free energy functional Fj, admits

a critical point in Y.

Proof. Following the approach in [109], we rewrite the free energy functional (1.1) as a sum of two

functionals
Filpl = Filpl + Frlol,
where
. L m N(m—1)
R =gy ol (1= xCnns M
_2N+k: m B N o m
S ) 651)
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and

Foo] =X (CHLsnmfn— Il |x—y|kp<a:>p(y>da:dy). (652)

(=)
RN xRN

By the HLS inequality (3.16), the second functional (6.52) is bounded below for any x > 0,
Filpl =0, VYpely,

and by [217, Theorem 3.1], there exists a family of optimisers pg s x,c,

A N/m
PHLS N c(T) = ¢ (>‘2+|$|2> , A>0,c>0 (6.53)

satisfying F7 [prrs,a,c] = 0 with the optimal constant C'y s given by

Cs 1= ( r () ) (r (IQV))_(NW/N |

I'(N)
The parameter A > 0 in (6.53) corresponds to the scaling that leaves the L™-norm of prrg e
invariant. Since the first variation of the functional F} defined in (6.51) is given by

5 () = & (1= xCrzsllolZ™) o™ (2)

and since the L™-norm of the optimiser can be calculated explicitly,

llpELS A cllm =€ (F(N-H)

there exists a unique choice of (A, c) = (A*, ¢*) for each x > 0 such that

SFL
Tpk[pHLS,)\*,c*](x) =0 and J PHLS N * % (T) dr =1
]RN

given by

g1-N g\ T ) 2/k
C*(X) = <N+1> (XCHLS)I/(mi ) , )\*(X) = (JRN pHLS’l,C*(X)(LU) d!L‘) . (654)

r (%)

Hence ppy s 2+ o+ is a critical point of Fj in Y. O
We can choose to leave A > 0 as a free parameter in (6.53), only fixing ¢ = ¢*(x) so that

PHLS ) c* is a critical point of Fj, with arbitrary mass. We conjecture that a similar result to [109,

Theorem 2.1] holds true for general k € (—N,0) and m = m** for radially symmetric initial data:
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6. Explorations in other regimes

Conjecture 1 (Global Existence vs Blow-up). Let x > 0, k € (=N, 0) and m = m** in dimension

N > 1. Assume the initial datum py € Y is radially symmetric.

(i) If there exists Ao > 0 such that

po(r) < pHLS N ex(T), Y7 =0,

then any radially symmetric solution p(t,r) of (1.4) with initial datum p(0,r) = po(r) is vanishing

in L},, (RY) ast — co.

loc

(ii) If there exists Ao > 0 such that

po(r) > pHLS Agex(T), Y7 =0,

then any radially symmetric solution p(t,r) of (1.4) with initial datum p(0,r) = po(r) must blow-up
at a finite time T* or has a mass concentration at r = 0 as time goes to infinity in the sense that there

exist R(t) — 0as t — oo and a positive constant C' > 0 such that
f p(t,z)dx = C.
B(0,R(t))

Further, we expect the following to be true analogous to [109]:

Conjecture 2 (Unstable Stationary State). For any x > 0, the density pyps o+ € Y with (A\*,c*)
given by (6.54) is an unstable stationary state of equation (1.4).

Numerically, we indeed observe the behaviour predicted in Conjecture 1 for N = 1. Using
the scheme introduced in Section 5, we choose as initial data the density pfr 1.5, 5,c, given by the
optimisers of the HLS inequality (6.53). For any choice of ¢y > 0, we fix A\; > O such that prr.s,x,c,
has unit mass and is therefore in . Note that pr1.s , ¢, iS not a critical point of F, unless ¢y = c*.

Comparing with the stationary state pg 1.5 »,,c+, we have

sign (c* — co) = sign (prLs,rg,c* (T) — PHLS, 0o (Z)) VreR.

Note that the mass of the stationary state py g, .+ is given by

—k
f PHLS,\o,c*(x) (z)dr = Ao /ZJ
RN R

. PHLS,1,c*(x)(T) dT
which is equal to one if and only if A\g = A*, thatis ¢g = c¢*. If we choose ¢y < ¢*, then
PO = PHLSNo.co < PHLS ),c* and according to Conjecture 1(i), we would expect the solution

p(t,7) to vanish in L},

(R). This is exactly what can be observed in Figure 3.11 for the choice of
parameters x = 0.35, k = —1/2, m = 4/3 in original variables (r = 0) and with ¢y = 0.4c*. Here,
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3. 1D Far-CompETITION REGIME

we chose time steps of size At = 1072 and particles spaced at An = 1072. We let the density
solution evolve until the L%-error between two consecutive solutions is less than 10~* (plotting

every 1000 iterations).
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Figure 3.11: Attraction-dominated regime: x = 0.35, k = —1/2, m = 4/3, r = 0 with initial data
p(t =0,2) = pPHLS No,c0 (%) < PHLS A, cx () for all z € R with ¢ = 0.4¢*.

(a) Solution density from initial condition (black) to the profile at the last time step (red), (b) zoom
of Figure (a), (c) inverse cumulative distribution function from initial condition (black) to the pro-
file at the last time step (red), (d) free energy, (e) log-log plot of the L?-error difference between
two consecutive solutions and fitted line with slope —0.37987, (f) time evolution of max, p(t, x) .

186



6. Explorations in other regimes

For the same choice of initial data, but with ¢g = 1.1¢* > ¢* we observe numerically that
the solution density concentrates at + = 0 as predicted by Conjecture 1(ii), see Figure 3.12. The

Newton-Raphson procedure stops converging once the mass it too concentrated. Here, we chose

time steps of size At = 1073 and particles spaced at An = 2 x 1075.

One may also take as initial condition exactly the steady state py = pg g r* o+, see Figure 3.13.
However, the numerical approximation of the initial data is only accurate up to An = 1072 and
we observe indeed pointwise convergence to zero, in accordance with the statement of Conjecture
2 that the stationary state py1s z# o+ is unstable. Again, we let the Newton-Raphson procedure

evolve with time steps of size At = 1072 until the L?-error between two consecutive solutions is

less than the tolerance 10~4.
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Figure 3.12: Attraction-dominated regime: x = 0.35, k = —1/2, m = 4/3, r = 0 with initial data
p(t =0,2) = PHLS No,00 (&) > PHLS A.cx () for all 2 € R with ¢g = 1.1¢*,

(a) Solution density from initial condition (black) to the profile at the last time step (red), (b) zoom
of Figure (a), (c) inverse cumulative distribution function from initial condition (black) to the pro-
file at the last time step (red), (d) free energy.
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Figure 3.13: Attraction-dominated regime: x = 0.35, k = —1/2, m = 4/3, r = 0 with initial data
p(t =0,2) = pyrs i+ o+ () given in (6.53).

(a) Solution density from initial condition (black) to the profile at the last time step (red), (b) zoom
of Figure (a), (c) inverse cumulative distribution function from initial condition (black) to the pro-
file at the last time step (red), (d) free energy, (e) log-log plot of the L?-error difference between
two consecutive solutions and fitted line with slope —0.52817, (f) log-log plot of max, p(t, ) and

fitted line with slope —0.45431 .
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CHAPTER 4

Ground States in the

Diffusion-Dominated Regime

This chapter follows in most parts the article “Ground states in the diffusion-dominated regime”
written in collaboration with José A. Carrillo!, Edoardo Mainini?> and Bruno Volzone?, and sub-
mitted for publication. The radiality proof in Section 2.1 of Chapter 4 was contributed by José A.

Carrillo and Bruno Volzone.

Chapter Summary

We consider macroscopic descriptions of particles where repulsion is modelled by non-
linear power-law diffusion and attraction by a homogeneous singular kernel leading to vari-
ants of the Keller-Segel model of chemotaxis. We analyse the regime in which diffusive forces
are stronger than attraction between particles, known as the diffusion-dominated regime, and
show that all stationary states of the system are radially symmetric decreasing and compactly
supported. The model can be formulated as a gradient flow of a free energy functional for
which the overall convexity properties are not known. We show that global minimisers of the
free energy always exist. Further, they are radially symmetric, compactly supported, uniformly
bounded and C® inside their support. Global minimisers enjoy certain regularity properties if
the diffusion is not too slow, and in this case, provide stationary states of the system. In one
dimension, stationary states are characterised as optimisers of a functional inequality which es-
tablishes equivalence between global minimisers and stationary states, and allows to deduce

uniqueness.

lDepartment of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
2Dipartimento di Ingegneria Meccanica, Universita degli Studi di Genova, Genova, Italia
3Dipartimento di Ingegneria, Universita degli Studi di Napoli “Parthenope”, Napoli, Italia
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Man begreift nur,
was man selbst machen kann,

und man fafdt nur,

was man selbst hervorbringen kann®.

Johann Wolfgang von Goethe

“4quoted from a letter from Johann Wolfgang von Goethe to Carl Friedrich Zelter, 28th March 1804 [299].
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1. Introduction

1 Introduction

As in Chapters 2 and 3, we are interested in the aggregation-diffusion equation
1
0p = 7 AP™ +2XV - (pVSh) (1.1)

for a density p(¢, ) of unit mass defined on R, x R”, and where we denote the mean-field potential

by Si(x) := Wi(x) * p(z) with the interaction kernel W, given by the Riesz potential,

|z
Wk(.’IJ) = T, ke (—N, 0)

For an extensive survey of applications and literature around equation (1.1), see Chapters 1, 2 and
3. In this chapter, we focus on the case when diffusion is non-linear and of porous medium type
m > 1 whilst W, has a singularity at the origin £ < 0. The lower bound on k ensures that the
kernel Wy, is locally integrable in RV, As the Riesz potential W, is the fundamental solution of the
fractional Laplacian (—A)® with k = 2s— N, we sometimes use the notation s € (0, N/2) instead of

k € (—N,0). More precisely, the convolution term Sy, is governed by a fractional diffusion process,

I

CN,s(fA)SSk =p, CN,s = (28 — N)m .
For k > 1 — N, the gradient V.S, := V (W}, *p) is well defined locally. For k € (—N,1— N]|

however, it becomes a singular integral, and we thus define it via a Cauchy principal value,

V (W = p) (z), ifl-N<k<D0,
VS (z) := (1.2)

RNVVVk(z—y)(p(y)—p(af)) dy, if ~-N<k<1-N.

The parameter x > 0 denotes the interaction strength and scales with the mass of solutions. Since
(1.1) conserves mass, is positivity preserving and invariant by translation, we work with solutions
p in the set

v {pe LL@) @), fiolh =1, [ apte)do =0}

The associated free energy functional to the evolution equation (1.1) is given by

Fumklpl := Himlpl + xWelp]

with i
Hold) = s | @ e, wilali= [[ B oot daay

N(m—1) N
X

Note that F,,, , < coon Y. The noticeable characteristic of the class of PDEs (1.1) and the functional
Fm,k consists in the competition between non-linear diffusion and a non-local quadratic interac-
tion term which is due to the self-attraction of the particles through the mean-field potential Sj.

The free energy functional F,, i is not only non-increasing along the trajectories of the system,
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4. DirrusioN-DOMINATED REGIME

equation (1.1) is also the formal gradient flow of 7, ;. when the space of probability measures is
endowed with the Euclidean Wasserstein metric W, see Chapter 1 Section 2.3.2. This means that

the family of PDEs (1.1) can be written as

Oip(t) = —VwFmklp(t)] -

Performing gradient flows of a convex functional is a natural task, and suitable estimates from
below on the right notion of Hessian of F,, j translate into a rate of convergence towards equilib-
rium for the PDE [295, 96, 3]. However, in our case, the overall convexity properties of the free
energy functional F,, j are not known, see Chapter 1 Section 2.3. Performing gradient flows of
functionals with convex and concave contributions is much more delicate, and one has to seek
compensations. Such compensations do exist in our case, and we will observe them at the level of
existence of minimisers for the free energy functional F,,, ;, and stationary states of the family of

PDEs (1.1) for certain ranges of the diffusion exponent m > 1.

The functional F,,, ;, possesses remarkable homogeneity properties that motivate the definition
of the fair-competition regime N(m — 1) + k = 0, the diffusion-dominated regime N(m —1)+k > 0 and
the attraction-dominated regime N(m — 1) + k < 0, see Chapter 1 Definition 3.1. An overview of the
parameter space (k, m) and the different regimes is given in Chapter 1 Figure 1.4. More precisely,

taking mass-preserving dilations p*(z) := AV p(\z) for A > 0 of a density p € V), we obtain
Fongelp*] = AV DH,, [p] + A Wi [p]

In other words, the diffusion and aggregation forces are in balance if N(m — 1) = —k. This is the

case for choosing the critical diffusion exponent

k

In this chapter, we deal with the diffusion-dominated regime m > m,, i.e. diffusion is expected
to overcome aggregation as A — oo, for any choice of x > 0. This domination effect means that
solutions exist globally in time and are bounded uniformly in time [61, 277, 276]. Stationary states
were found by minimisation of the free energy functional in two and three dimensions [273, 78, 99]
in the case of attractive Newtonian potentials k = 2 — N. Stationary states are radially symmetric
if 2— N < k < 0 as proven in [89]. Moreover, in the particular case of N = 2, k = 0, and m > 1 it
has been shown in [89] that the asymptotic behaviour is given by compactly supported stationary
solutions independently of x. For a detailed review of known results, see Chapter 1 Section 3.
Our goal is to generalise these results to the full range k € (=N, 0) and m > m,. Stationary states
of the system (1.1) provide natural candidates for asymptotic profiles of the evolution problem,

and we focus therefore on understanding the stationary problem first, making the connection to
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2. Stationary states

minimisers of the energy functional F,, ;.. In what follows, we denote F := F,, ;, for simplicity.
Further, we define the diffusion exponent m* that will play an important role for the regularity
properties of global minimisers of F:

2=h=N © jf N>1 and —-N<k<1-N,
m* = (1.4)

+ o0 if N>2 and 1-N<k<0.

In this chapter, we will prove the following main results:

Theorem 1.1. Let N > 1, x > O0and k € (—N,0). All stationary states of equation (1.1) are radially
symmetric decreasing. If m > m,, then there exists a global minimiser p of F on ). Further, all global
minimisers p € ) are radially symmetric non-increasing, compactly supported, uniformly bounded and
C® inside their support. Moreover, all global minimisers of F are stationary states of (1.1) whenever

me < m < m*. Finally, if m. < m < 2, we have p € WH* (RV).

Theorem 1.2. Let N = 1, x > Oand k € (—1,0). All stationary states of (1.1) are global minimisers of
the energy functional F on Y. Further, stationary states of (1.1) in Y are unique.

2 Stationary states

Let us begin by defining precisely the notion of stationary states to the aggregation-diffusion equa-

tion (1.1).

Definition 2.1. Given p € L1 (RY) n L* (RY) with ||p||1 = 1, and letting S, = Wy, = p, we say that
p is a stationary state for the evolution equation (1.1) if g™ € W2 (RN), VS, € L}, (RN), and it

satisfies

1 _
_ -m — _2 =
NVP X PV Sk

in the sense of distributions in RN. If —-N < k < 1 — N, we further require p € C%* (RN) for some
ae(l—k—N,1).

In fact, as shown in Chapter 2, the function S; and its gradient defined in (1.2) satisfy even

more than the regularity VSy, € L}, . (RY) required in Definition 2.1:

loc

Lemma2.2. Let p € LY (RN) A L* (RY) with ||p||y = 1and k € (=N, 0). Then the following regularity
properties hold:

(i) Sy e L (RV).

(ii) VS, € L* (RY), assuming additionally p € C%* (RN) with a € (1 — k — N, 1) in the range
ke (—N,1— NI.
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Using the same techniques as in Chapter 2, we can show that Lemma 2.2 implies further reg-

ularity properties for stationary states of (1.1).

Proposition 2.3. Let k € (—N, 0) and m > m.. If pis a stationary state of equation (1.1) and Sy, = Wi,=p,

then p is continuous on RN, pm=1 € Wh (RN), and it satisfies

sy = YD () - xSue)), . Ve RN

where C[p](x) is constant on each connected component of supp (p).

It follows from Proposition 2.3 that any stationary state p of equation (1.1) enjoys W' ®-regularity

in the case m. < m < 2.

2.1 Radial symmetry of stationary states

The aim of this section is to prove that stationary states of (1.1) are radially symmetric. This is one
of the main results of [89], and is achieved there under the assumption that the interaction kernel
is not more singular than the Newtonian potential close to the origin. As we will briefly describe
in the proof of the next result, the main arguments continue to hold even for the more singular

Riesz kernels Wj,.

Theorem 2.4 (Radiality of stationary states). Let x > 0and m > m.. If p € L} (RY) n L®(RY)
with |p|1 = 1 is a stationary state of (1.1) in the sense of Definition 2.1, then p is radially symmetric

non-increasing up to a translation.

Proof. The proof is based on a contradiction argument, being an adaptation of that in [89, Theo-
rem 2.2], to which we address the reader the more technical details. Assume that p is not radially

decreasing up to any translation. By Proposition 2.3, we have
Vo™ Haz)| < e (2.5)

for some positive constant c in supp(p). Let us now introduce the continuous Steiner symmetrisation

S7p in direction e; = (1,0, -+ ,0) of p as follows. For any z; € R,2’ e RN =1 h > 0, let

0
S™p(z1,2") = J Lpgrn ) (1)dh,
0 @x

where

UL = {w1 € R : plar,a) > h)

and M7 (U") is the continuous Steiner symmetrisation of the U”, (see [89] for the precise defini-

tions and all the related properties). As in [89], our aim is to show that there exist a continuous
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family of functions u(7, x) such that 1(0,-) = p and some positive constants C; > 0, ¢y > 0 and a

small §p > 0 such that the following estimates hold for all 7 € [0, d¢]:

Flulr]] = Flpl < —cot (2.6)

|p(r,2) — p(x)] < Cip(a)T for all z € RY 2.7)

J [p(r,x) — p(x)]de =0 for any connected component ; of supp(p). (2.8)
Q;

Following the arguments of the proof in [89, Proposition 2.7], if we want to construct a continuous
family p(r, -) for (2.7) to hold, it is convenient to modify suitably the continuous Steiner symmetri-
sation S7p in order to have a better control of the speed in which the level sets U/, are moving.
More precisely, we define y(7,-) = Sp as

a0
STﬁO(xlv‘r/) = J Iljwv(h)T(Uh,)(xl)dh
O x

with v(h) defined as
o(h) = 1 h>hg,
0 0<h<h,
for some sufficiently small constant kg > 0 to be determined. Note that this choice of the veloc-
ity is different to the one in [89, Proposition 2.7] since we are actually keeping the level sets of
S7p(-,x') frozen below the layer at height ho. Next, we note that inequality (2.5) and the Lips-
chitz regularity of Sj, (Lemma 2.2) are the only basic ingredients used in the proof of [89, Propo-
sition 2.7] to show that the family p(7, -) satisfies (2.7) and (2.8). Therefore, it remains to prove
(2.6). Since different level sets of S™(-,2’) are moving at different speeds v(h), we do not have
MetOT Uy = Mrt2)T(UT2) for all by > hy, but it is still possible to prove that (see [89, Propo-
sition 2.7])
Hum[S7p] < Hon[p] for all 7 = 0.

Then, in order to establish (2.6), it is enough to show
Wi[S™p] < Wi[p] — 2xcor  forall 7 € [0, 8], for some ¢y > 0 and §y > 0. (2.9)

As in the proof of [89, Proposition 2.7], proving (2.9) reduces to show that for sufficiently small
hg > 0 one has

(Wi[S7p] = Wi[STp]| < exr  forall 7. (2.10)

To this aim, we write

0

ho
S"p(x1,2') = J Lysruny(z1)dh +J Lysrny(z1)dh =: fi(1,2) + fa(7, 2)

ho
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and we split 57 similarly, taking into account that v(h) = 1 for all & > hy:

ho
STp(x1,2") = fi(r, @) + J Lyponrny(z1)dh =: fi(7,2) + fo(7, 7).
0 -

Note that
fo=587(Thp),

where 7" is the truncation at height hg of p. Since v(h) = 0 for h < hg, we have
fa=T"p.

If we are in the singular range k € (—N,1 — N], we have p € C%* (R") for some v € (1 — k —
N, 1). Since the continuous Steiner symmetrisation decreases the modulus of continuity (see [54,
Theorem 3.3] and [54, Corollary 3.1]), we also have S7p, fa, fo € C*® (RY). Further, Lemma 2.2

guarantees that the expressions

Ai(T) = UfQ(Wk # f1) — fo(Wi = f1)dz| and  As(r) := Ufz(Wk 5 fo) — fo(Wy = fo)dz

can be controlled by ||p|| and the a-Holder seminorm of p. Hence, we can apply the argument
in [89, Proposition 2.7] to conclude for the estimate (2.10). Now it is possible to proceed exactly as
in the proof of [89, Theorem 2.2] to show that for some positive constant C3, we have the quadratic
estimate

(Flulr]] = Flpll < Cor?,

which is a contradiction with (2.6) for small 7. O

2.2 Stationary states are compactly supported

In this section, we will prove that all stationary states of equation (1.1) have compact support,
which agrees with the properties shown in [199, 78, 89]. We begin by stating a useful asymptotic
estimate on the Riesz potential inspired by [269, §4]. For the proof of Proposition 2.5, see Appendix
A.

Proposition 2.5 (Riesz potential estimates). Let k € (—N,0) and let p € Y be radially symmetric.
(i) If1 — N <k <0, then |z|* % p(x) < C1|z|* on RN,
(ii) If -N < k <1 — N and if p is supported on a ball B, for some R < oo, then
2" 5 p() < CoTx(Jal, B o,V [al > R,

where

1-k—N
(BR) ifke(-N,1-N),

T (||, R) := (1+1og(IiIf§)) ifk=1—-N

.11)
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Here, Cy > 0and Cy > 0 are explicit constants depending only on k and N.
From the above estimate, we can derive the expected asymptotic behaviour at infinity.

Corollary 2.6. Let p € Y be radially non-increasing. Then Wy, = p vanishes at infinity, with decay not
faster than that of |z|".

Proof. Notice that Proposition 2.5(i) entails the decay of the Riesz potential at infinity for 1 — N <
k < 0. Instead, let —N <k <1— N. Letr € (1 — k — N, 1) and notice that |y|* < |[y/**"if |y| > 1,
so that if B; is the unit ball centered at the origin we have

ol splo) < [ oo -l du+ [ plo— o)l dy

By BE

< (sup ol — y)) | b dy+ Wi (o).

yEBy 1
The first term in the right hand side vanishes as |z| — o, since y > |y|* is integrable at the origin,
and since p is radially non-increasing and vanishing at infinity as well. The second term goes to
zero at infinity thanks to Proposition 2.5(i), since the choice of r yields k +r > 1 — N.
On the other hand, the decay at infinity of the Riesz potential can not be faster than that of |z|*.
To see this, notice that there holds

l'k* ) = T — k = T k
2l * >>fBlp<y>| ylFdy > (2] + 1) Lmy)dy

with § B, P> 0since pe Vis radially non-increasing. O
As a rather simple consequence of Corollary 2.6, we obtain:

Corollary 2.7. Let p be a stationary state of (1.1). Then p is compactly supported.

Proof. By Theorem 2.4 we have that pis radially non-increasing up to a translation. Since the trans-
lation of a stationary state is itself a stationary state, we may assume that p is radially symmetric
with respect to the origin. Suppose by contradiction that p is supported on the whole of RY, so
that equation (2.9) holds on the whole RY, with Cy[p](z) replaced by a unique constant C. Then
we necessarily have C' = 0. Indeed, p™~! vanishes at infinity since it is radially decreasing and

integrable, and by Corollary 2.6 we have that Sj, = W}, * p vanishes at infinity as well. Therefore

B Nim —1) - 1/(m—1)
p = (ZX( )Sk> .
m

But Corollary 2.6 shows that W}, = p decays at infinity not faster than |z|* and this would entail,
since m > m,, a decay at infinity of p not faster than that of |z| =", contradicting the integrability

of p. O
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3 Global minimisers

3.1 Existence of global minimisers

Theorem 3.1 (Existence of Global Minimisers). For all x > 0and k € (—N,0), there exists a global

minimiser p of F in ). Moreover, all global minimisers of F in ) are radially non-increasing.

We follow the concentration compactness argument as applied in Appendix A.1 of [199]. Our

proof is based on [220, Theorem II.1, Corollary IL.1]. Let us denote by MP(RY) the Marcinkiewicz

space or weak L? space.

Theorem 3.2. (see [220, Theorem I1.1]) Suppose W € MP(RY), 1 < p < oo, and consider the problem

1
Iy = inf { ——m— d dx ¢ .
M PEI)I’LM{N(m_l) JRNP x+XJ]RN ploxW) x}

where
N 1mN p+1
Yom ={peLI(RY)nL(RY), p=0 ae., plx)yde =M, q= <m
RN p
Then there exists a minimiser of problem (Iyr) if the following holds:
IM0<IM+IMU—M fOT’allME(O,Mo).

Proposition 3.3. (see [220, Corollary I1.1]) Suppose there exists some X € (0, N) such that
W(tz) =t W ()
forallt = 1. Then (3.12) holds if and only if

Ing <0 forall M >0.

(3.12)

(3.13)

Proof of Theorem 3.1. First of all, notice that our choice of potential Wy (z) = |z|*/k is indeed in

MP(RYN) with p = —N/k. Further, it can easily be verified that Proposition 3.3 applies with A =

—Fk. Hence we are left to show that there exists a choice of p € Y, ys such that F[p] < 0. Let us fix

R > 0 and define

MN

px(T) = W 1p,(z),

where By denotes the ball centered at zero and of radius R > 0, and where o = 27(V/2)/T'(N/2)

denotes the surface area of the N-dimensional unit ball. Then
1 (MN)"oN™ N
. - - mie — SV YN (1-m)
Homlps] N(m—1) JRNP* v N2(m —1) R ’

Wilp«] = H Wi(x — y)ps () px (y) dzdy

RN xRN
(MN)?
= Tl RN |z — y|" 1, (2) 1B, (y) dedy
RN xRN
(MN)2 k‘712v 2N k sz
< ——-2R)"—=R*" =2"M*“"— < 0.
kot N RV BT
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We conclude that

MmNm72O_1—m

R*
_ < N N(1—m) 2k 2. v )
J [p*] Hm[p*] - XWk[p*] (m 1) R M=x 2

Since we are in the diffusion-dominated regime N(1 — m) < k < 0, we can choose R > 0 large
enough such that F[p.] < 0, and hence condition (3.13) is satisfied. We conclude by Proposition
3.3 and Theorem 3.2 that there exists a minimiser p of F in Y, s withg = (p+1)/p = (N — k)/N.

It can easily be seen that in fact p € L™ (R") using the HLS inequality (3.21) in Chapter 1:

CHLs

k
.
Bt ptaloty) dody < 22,

(=F)

~Welp] =

RN xRN
where r = 2N /(2N + k) = 2p/(2p — 1). Using Holder’s inequality, we find

C _
“Wilpl < T lellgllell -

Hence, since F[p] < 0,

_im _ M?*Cyrs) | -
ol <~ — DWala] < xom - 1) (22T ) i < o,
Translating p so that its centre of mass is at zero and choosing M = 1, we obtain a minimiser p of

F in Y. Moreover, by Riesz’s rearrangement inequality [218, Theorem 3.7], we have
Wilp®] < Wilpl,  Vpe,,

where p* is the symmetric decreasing rearrangement of p. Thus, if p is a global minimiser of F in

Y, then so is 57, and it follows that
Wilo"] = Wi[p] -

We conclude from [218, Theorem 3.7] that p = p#, and so all global minimisers of F in ) are

radially symmetric non-increasing. O

Global minimisers of F satisfy a corresponding Euler-Lagrange condition. The proof can be

directly adapted from [78, Theorem 3.1] or Chapter 2 Proposition 3.6, and we omit it here.

Proposition 3.4. Let k € (—N,0) and m > m.. If p is a global minimiser of the free energy functional F

in Y, then p is radially symmetric and non-increasing, satisfying

P Hx) = w (D[p] = 2xWy # p(x)), ae. in RV, (3.14)

Here, we denote

m

— 92 m
7_1)||P||m7 peEY.

Dlp] := 2F[p] + N(m
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3.2 Boundedness of global minimisers

This section is devoted to showing that all global minimisers of F in ) are uniformly bounded. In
the following, for a radial function p € L' (R") we denote by M,(R) := § B, P da the corresponding
mass function, where B, is a ball of radius R, centered at the origin. We start with the following

technical lemma:

Lemma3.5. Let x >0, —N <k <0,m > 1land0 < g < m/N. Assume p € Y is radially decrasing. For
afixed H > 0, the level set {p > H} is a ball centered at the origin whose radius we denote by Ag. Then we
have the following cross-range interaction estimate: There exists Hy > 1, depending only on ¢, N, m, | p|m.,

such that, for any H > H,,
| . J, o= oot e < Coy M) K (D,
B Ba

where

Hl-a(k+N) 4 fr—ka ifke (=N,0), k#1—N,

’Ck,q,N(H) = )
H'9(2 +log(1 + HY)) + HIN-D ifk=1-N

and Cy, n is a constant depending only on k and N.

Proof. Notice that the result is trivial if p is bounded. The interesting case here is p unbounded,
implying that Ay > 0 for any H > 0.

First of all, since p € L™(R") and p > H on Bj,,,, the estimate

NHH = H <f p™ < lpllm
Bay B

AH

implies that H? Ay is vanishing as H — 400 as soon as ¢ < m/N, and in particular that we can

find Hy > 1, depending only on ¢, m, N, ||p||m, such that
H™%>2Ay forany H > H,.

We fix g € [0,m/N) and H > Hj as above from here on.

Let us make use of Proposition 2.5, which we apply to the compactly supported function

pu = pli=my/ M, (Am).

Casel - N <k<0 ‘Proposition 2.5(i) applied to py gives the estimate

J lz —y|"p(y) dy < C1 M, (Ag) |z[*, VYo eRY,
B

Al
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3. Global minimisers

and hence, integrating against p on B, and using p < H on Bf,

f L 2 =yl p(a)p (y)dil?dy<C’1Mp(AH)Jc l2|* p(x) da

BS,
e ([

ol plo) o+ | 2l p() dx>
NBp—q BgH\Bqu

Al
< C1M, (An) (HJ |z|* do + H™* p(x) dac)
BS, nByq BY \By_q
H_q
< ClMp (AH) HJNJ phtN-1 dT‘+H7kq
Ag

< ClMp (AH) (l{:j—]\f]le—q(k-&-N) + H—kQ) ;

which conludes the proof in that case.

Case -N <k<1-N ‘ In this case, we obtain from Proposition 2.5(ii) applied to pq the esti-

mate

fB & — ylFp(y) dy < CoM, (A) Te(lel, e/t vae BS, |

AH

and integrating against p(x) over BY,, we have

J,. fB o=y pla)p(v) dody < CaM, (A) | Tullal, Aol plo)de. @15)

BS,
We split the integral in the right hand side as I; + I, where

Il = J
B¢

Ay " Bu-a

Tio(lz|, A2l p(z) dz, Iz := f ¢ Tio(lz], App)l[*p(z) dz

H—4
Let us first consider I, where we have |z| = H~? > 2Ap on the integration domain. Since the

map |z| — mfi‘:ﬁ is monotonically decreasing to 1 in (Ag, 4+00), it is bounded above by 3 on

(2Ag, +0). We conclude from (2.11) that Ty (|z|, Ag) < 3 for |z| € (H ™9, +00). This entails

I < 3f lz|*p(z) dox < 3 HF, (3.16)
C \B

where we used once again |z| > H 9, recalling that £ < 0.

Concerning I;, we have p < H on BSH which entails
H*q
L <H Ti(|z|, Ag)|z|* dz = on H Ty (r, A )r* N =1 ar, (3.17)
BgHmBH*q AH

If —-N <k<1—N,weuse(2.11)and (r + 2Ag)/(r + Ag) < 2 for r € (0, +00), so that

e k+N—1 e+ 24\ v 2l kN (k+N)
T A THdr < _ Thdr < H™1 . (3.18
LH k(r An)r " JO <r+AH> " "STEIN (3-18)
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If Kk =1— N we have from (2.11), since 2Ay < H %< 1,

H? H?
A
J Ty (r, Ag)rF TN =1 dr = J (1 + log <r * H>) dr
Ay Ap ’I"—AH

A +1

=H 74+ H log(1+ H?) + log(1+ H™9)

< H79(2+1og(l + HY)).

O_N217k+N

Combining (3.17), (3.18), (3.19) we conclude I} < -
I <onH'™9(2 +log(l + HY)) if k = 1 — N. These information together with the estimate (3.16)

H-ak+N) jf N <k <1— N, and

can be inserted into (3.15) to conclude. O

We are now in a position to prove that any global minimiser of F is uniformly bounded.

Proposition 3.6. Let x > 0, k € (—N,0) and m > m.. Then any global minimiser of F over Y is
uniformly bounded and compactly supported.

Proof. Since p is radially symmetric decreasing by Proposition 3.4, it is enough to show p(0) < .
Let us reason by contradiction and assume that p is unbounded at the origin. We will show that
Flp] = F[p] > 0 for a suitably chosen competitor 5,

~ - NM/)(AH)

pla) = pr.r(x) : Ip, () + p(x)lpg (z),

onrN Ay

where B,,, and ¢ are defined as in Lemma 3.5, B = denotes the complement of By,, and 1p, is
the characteristic function of a ball D,. := B,.(zg) of radius r > 0, centered at some xy # 0 and such
that D, n Ba,, = . Note that Ay < H /2 < H;?/2 < 1/2. Hence, wlog, we can take > 1 and
D, centered at the point xo = (2,0, ...,0) € RY. Notice in particular that since p is unbounded,
for any H > 0 we have that B4,, has non-empty interior. On the other hand, B4,, shrinks to the

origin as H — o0 since p is integrable. As D, © BY and p = jpon BY, \D,, we obtain

NM,(A "
L e (e M, )
BC BC ONT

AH Ap Ay

o] o )]

Ay r

N(m — 1) (Honlp) — Hunl5]) = L

:L
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3. Global minimisers

We bound
NM,(A m 1-m
ET:ZJ [Pm—(f)‘f‘ P(H)> :|<Mp(AH)m (Uzijv) rN(lfm)7

onrN N
where we use the convexity identity (a + b)™ > |a™ — b™| for a,b > 0. Hence, ¢, goes to 0 as

r — . Summarising we have for any r > 1,

N = 1) (ol = Halp) = | o7 (3.20)

AH
with €, vanishing as r — 0.

To estimate the interaction term, we split the double integral into three parts:

K (Welp] — Welf]) = ﬂ & — yl* (p()p(y) — p()p(y)) ddy

RN xRN

ﬂ [ — yl*p(2)py) dudy

XBAH

T2 ﬂ [ =yl plw)p(y) dady (3.21)

><BC

H & — yl* (p(@)ply) — p(a)py)) ddy

Bf{HngH
=1+ 1+ Ig(’l“) .

Let us start with J5. By noticing once again that p = g on B, \D,. for any r > 0, we have
- H & — yl* (o(@)ply) — F@)P(y)
D, xD,
2 j f & — ¥ (o(@)ply) — F@)P()
D, x(BS, \Dr)

= 131(7") + .[32(7’) .

Since p =p + %ﬁﬁ*’) on D,., we have
NM (Am)
() = 2" [ ] 2 — y[*p(y) dudy.
onr¥ D, x(B§, \Dy)

By the HLS inequality (3.21) in Chapter 1, we have

NM A
I (r)| <22 Mol Ar) f f @ — yl*p(y) dady
D, ><]RN

aNrN
(AH)
N

<2CHL 1, [allols

ifa>1b>1and 1/a +1/b — k/N = 2. We can choose b € (1,min{m, N/(k+ N)}), which is

possibleas —N < k < 0,m > 1,and then we geta > 1, pe L*(R¥)as 1 < b < m, and

o\ 7L
)] < 2Cmsliolbaty(am) (P-)
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and the latter vanishes as r — co. For the term I3;, we have

NM AH
e j jD =yl dedy

NM, (A
< NH ) JJ |$—y|kda?dy
ONT D, xD,

With the same choice of a, b as above, the HLS inequality implies

NM,(An) JJ
I31(r)| <2——-—~ T — dxd
I <=0 | e alo() dudy

NM, (A
(YT
ONT D, xD,
SN & — ti-2
<CursM,(Au) | 2llplls N +Mp(An) ( — ,

which vanishes as r — oo since a > 1 and b > 1. We conclude that I5(r) — 0 as r — 0.

131 (T) =

The integral I; can be estimated using Theorem 3.4 in Chapter 1, and the fact that p > H > 1
on By, together with m > m,,

H o=y p()ply) dody < CoMy(An) Y [ () d

Ba
><BAH H

< Cu M, (Ag )TN JB p™(x) da . (3.22)

On the other hand, the HLS inequalities (3.21) and (3.23) in Chapter 1 do not seem to give a

sharp enough estimate for the cross-term I, for which we instead invoke Lemma 3.5, yielding
I <2Cun My(An) Ky gn(H), (3.23)

for given ¢ € [0, m/N) and large enough H as specified in Lemma 3.5.
In order to conclude, we join together (3.20), (3.21), (3.22) and (3.23) to obtain for any ~ > 1 and
any large enough H,

Flpl = Flpl = Hmlpl = Hmlp] + x Wilp] — Welp])

1 C* 1+k/N J m Ck? N
Z | = M — M s
(N(ml) X p(An) BAH'O +2x p(An) K8 (H)
Er X
—+ =1 . .
TN T EB0 (3:24)

Now we choose ¢. On the one hand, notice that for a choice n > 0 small enough such that
m > m, + 1, we have
2—-m+n M- 1—n
k+ N (—k)
On the other hand, —N < k < 0 implies 1 — k/N > 2N /(2N + k). Since m > m,, this gives the

(3.25)

inequality m > 2N /(2N + k). Hence, for small enough n > 0 such that m > N(2 + n)/(2N + k),

we have
2—-m+n m
hrN N (3.26)
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3. Global minimisers

Thanks to (3.25) and (3.26) we see that we can fix a non-negative g such that

2—m+n . (m (m—=1-n)

_ —, " 27

TN <q<mm{N, =) (3.27)

Since ¢ satisfies (3.27), it follows that —kq < m — 1 — 5 and at the same time 1 — ¢(k + N) <
m — 1 — n, showing that K. , v (H) from Lemma 3.5 grows slower than H™~'~" as H — o for
k#1—N.Ifk=1- N, wehave that for any C' > 0 there exists H > Hj large enough such that
CH'"%log(1+ H?) < H™ =" since ¢ > 2 —m + 7, and so the same result follows. Hence, for any
large enough H we have

Chon My (Agt) K g (H) < Con H™ 7 M,y (Apr) < ck,NH*"f o

Bay

since p > H on By, . Inserting the last two estimates in (3.24) we get for some n > 0

_ 1 C ChnH N
Flol = 719> (s + X M) Y o B [
B

(m—1) k k .
Er X
+N(m—1) + k]g(?")

for any > 1 and any large enough H. First of all, notice that §,  p™ is strictly positive since we
H

are assuming that p is unbounded. We can therefore fix H large enough such that the constant in

front of § Ba, p™ is strictly positive. Secondly, we have already proven that ¢, and /3(r) vanish as

r — 00, s0 we can choose r large enough such that
Flo) = Flpl > 0,

contradicting the minimality of p. We conclude that global minimisers of F are bounded. Finally,
we can just use the Euler-Lagrange equation (3.14) and the same argument as for Corollary 2.7 to

prove that p is compactly supported. O

3.3 Regularity properties of global minimisers

This section is devoted to the regularity properties of global minimisers. With enough regularity,
global minimisers satisfy the conditions of Definition 2.1, and are therefore stationary states of
equation (1.1). This will allow us to complete the proof of Theorem 1.1.

We begin by introducing some notation and preliminary results. As we will make use of the

Holder regularising properties of the fractional Laplacian, see [261, 270], the notation
cns(=A)°Sk =p, s€(0,N/2)

is better adapted to the arguments that follow, fixing s = (k + N)/2, and we will therefore state

the results in this section in terms of s.
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One fractional regularity result that we will use repeatedly in this section follows directly from
the HLS inequality (3.21) in Chapter 1 applied with k = 2r — N for any r € (0, N/2):

(-A)feLl (RY) = feLt(RY), q:& 1<p<ﬁ,

N 5o re(0N/2). (328)

For 1 < p < o and s > 0, we define the Bessel potential space £2*P(R™) as made by all functions
f € LP(RY) such that (I — A)*f € LP(RY), meaning that f is the Bessel potential of an LP(RY)
function (see [272, pag. 135]). Since we are working with the operator (—A)? instead of (I—A)°, we
make use of a characterisation of the space £2¢?(R%) in terms of Riesz potentials. For 1 < p <

and 0 < s < 1 we have
£2PRY) = {fe LP(RN): f = g» Was_n, g€ LP(RY)}, (3.29)

see [264, Theorem 26.8, Theorem 27.3], see also exercise 6.10 in Stein’s book [272, pag. 161]. More-

over, for 1 < p < cwand 0 < s < 1/2 we define the fractional Sobolev space W?*:P(R"Y ) by

s vl
W2,p(RN). {feLPRN Jj |x— |N+2Spd rdy < 0 p.

RN xRN
We have the embeddings
L2PRY) c W2P(RN) for p=2, se(0,1/2), (3.30)
w2sr (RV) <« %9 (RN) for B=25s—N/p, p>N/2s, se(0,1/2), (3.31)

see [272, pag. 155] and [126, Theorem 4.4.7] respectively.
Letting s € (0,1) and o > 0 such that o + 2s is not an integer, since ¢y s(—A)*S; = p holds in

RY, then we have from [261, Theorem 1.1, Corollary 3.5] (see also [60, Proposition 5.2] that

HSk’HCU,oH»ZS(m) sc (”Sk HL*(RN) + HpHCO,a(m)) ) (3.32)

with the convention that if o > 1 for any open set U in RN, C(T) := 0" (U), where o/ + " =
o, o € (0,1) and o’ is the greatest integer less than . With this notation, we have C10(RY) =
COYRN) = WL*(RYN). In particular, using (3.32) it follows that for @ > 0, s € (0,1) and « + 2s
not an integer,

ISkl co.aresmvy < ¢ ([Sklpo@yy + plco.e@ny) - (3.33)

Moreover, rescaling inequality (3.32) in any ball Bg(z¢) where R # 1, we have the estimate

2
2 REID Skl Lo (B we)) + RO [DM Skl go.atzo-s (B o a0))

=0 (3.34)

aq
ISk | Loo (mavy + 2 R** D"l 1o (Br(an)) + RT3 [D* pleo.a-or (Ba(zo)
=0
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3. Global minimisers

where aq, a; are the greatest integers less than o and o + 2s respectively. In (3.34) the quantities
| D!Sk| = and [Dfp]co.« denote the sum of the L*-norms and the a-Holder semi-norms of the
derivatives D(?) S, of order / (that is | 3| = /).

Finally, we recall the definition of m. and m™* in (1.3)-(1.4):

2s
c:=2_7a
m N
2-9
 if N>1 and se(0,1/2),
m*.={1—2s

+ o0 if N>2 and se[l/2,N/2).

Let us begin by showing that global minimisers of F enjoy the good Holder regularity in the

most singular range, as long as diffusion is not too slow.

Theorem 3.7. Let x > Oand s € (0, N/2). If m. < m < m*, then any global minimiser p € Y of F
satisfies S, = Wy = p e WHP(RN), pm=t e WEO(RN) and p € C%*(RN) with o = min{1, —1}.

Proof. Recall that the global minimiser p € Y of F is radially symmetric non-increasing and com-
pactly supported by Theorem 3.1 and Proposition 3.6. Since p € L' (RY) n L* (RY) by Proposi-
tion 3.6, we have p € L? (R") for any 1 < p < 0. Since p = cn,s(—A)* Sy, it follows from (3.28)
that S, € LI(RYN), ¢ = N]jg’sp forall1 < p < &, thatis S € LP(RY) forall p € (525, 0). If
s € (0,1), by the definition (3.29) of the Bessel potential space, we conclude that S € £2?(RY)

N

fOr allp > N—9s

. Let us first consider s < 1/2, as the cases s > 1/2 and s = 1/2 will follow as a

corollary.

0 < s < 1/2 |In this case, we have the embedding (3.30) and so Sj, € W?P(RY) forallp > 2 >

- if N > 2and forall p > max{2, ;2-}if N = 1. Using (3.31), we conclude that Sj, € C%# (RV)
with
6 =25 — N/p7

forany p > &£ > 2if N > 2 and for any p > max{4, 25-} if N = 1. Hence p™~! € C%# (RY)

25
for the same choice of 3 using the Euler-Lagrange condition (3.14) since p™ ! is the truncation of
a function which is Sy up to a constant.

Note that m. € (1,2) and m* > 2, and in what follows we split our analysis into the cases
me. <m < 2and 2 < m < m*, still assuming s < 1/2. If m < 2, the argument follows along the
lines of Chapter 2 Corollary 3.12 since p™ ! € C%(R") implies that p is in the same Holder space

for any a € (0,1). Indeed, in such case we bootstrap in the following way. Let us fix n € N such

that

—_

1
<< (3.35)
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and let us define

Br =B+ (n—1)2s = 2ns — N /p. (3.36)

Form (3.35) and (3.36) we see that by choosing large enough p there hold 1 -2s < §,, < 1. Note that
Sp € L* (RY) by Lemma 2.2, and if p € C%7 (RY) for some ~ € (0,1) such that y + 2s < 1, then
Si € CO7+2 (RY) by (3.33), implying p™ ! € C*7+2¢ (RY) using the Euler-Lagrange conditions
(3.14), therefore p € C%7F25 (R since m € (my, 2]. Iterating this argument (n — 1) times starting
with v = 3 gives p € C%F» (RY). Since 8, < 1and 3, + 2s > 1, a last application of (3.33) yields
S € WL (RYN), so that p™~1 € Wh®(RY), thus p € WH*(RY). This concludes the proof in the
case m < 2.

Now, let us assume 2 < m < m* and s < 1/2. Recall that p™~! € C%7 (RY) for any v < 2s,

and so p € C%7 (RY) for any v < —25-. By (3.33) we get S, € C%7 (RY) forany vy <

m—1"

Qfl + 25, and

m

the same for p™~! by the Euler Lagrange equation (3.14). Once more with a bootstrap argument,

we obtain improved Holder regularity for p”~!. Indeed, since

+0
2 2 -1
> 81 i o 2 ! (3:37)
j=0 (m - ) m —
and since m < m™ means 28;:1_21) > 1, after taking a suitably large number of iterations we get

Sy € WH*(RY) and p™~1 e WH*(RY). Hence, p € C%V/(m=1) (RV).

’N >2,1/2<s<N/2 ‘We start with the case s = 1/2. We have S, € LP(R") forany p > "~

as shown at the beginning of the proof. By (3.29) we get S, € £ (RV) for all p > ~-. Then

we also have Sy, € £L2"P(RY) for all p > <~ and for all r € (0,1/2) by the embeddings between

Bessel potential spaces, see [272, pag. 135]. Noting that 2 > -~ for N > 2, by (3.30) and (3.31)
we get S, € CO¥~N/P(RN) for any r € (0,1/2) and any p > . Thatis, Sy € C*(RY) for
any v € (0,1). Since m < m* we may choose 7 close enough to 1 such that ﬁ + 25 > 1.
Therefore (3.33) implies S, € W1 *(RY). By the Euler-Lagrange equation (3.14), we obtain again
pmt e WL (RN).

If 1/2 < s < N/2 on the other hand, we obtain directly that S € W (R") by Lemma 2.2, and so
pmte WL (RN),

We conclude that p € C%*(R") with a = min{1, -1} forany 1/2 < s < N/2. O

Remark 3.8. If m > m™* and s < 1/2, we recover some Holder reqularity, but it is not enough to show that

2s(m—1)
m—2

global minimisers of F are stationary states of (1.1). More precisely, m > m™ means < 1,and so

it follows from (3.37) that p € C%7 (RN) for any v <

2s

= 25 < 1-2s,

Note that m > m* also implies

3¢

and we are therefore not able to go above the desired Hélder exponent 1 — 2s.

Remark 3.9. In the proof of Theorem 3.7 one may choose to bootstrap on the fractional Sobolev space

W2sp (RN) directly, making use of the Euler-Lagrange condition (3.14) to show that p € WP (RY) =

208
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Sp € Wrt2sp (RN) with r € (0,1) for p large enough depending only on N. This is possible since
p € L' n L®(RYN), so we can use the reqularity properties of the Riesz potential see [272, Chapter V].
Further, for m. < m < 2, we have that p has the same Sobolev regularity as p™ 1. If m > 2 on the other
hand, we can make use of the fact that p™= € W2¢» implies p € W1 P~V gs suggested by Mironescu
in [236]. Indeed, let v < 1 and uw € W?SP, where 0 < s < 1/2 and p € [1, o0). By the algebraic inequality

[la|® — [b|*| < Cla — b|* we have

[fu(z u(y)|* [P \u
J ‘N+a23(p/oc) dx dy |N+2sp d‘E dy

thus |u|® € WesP/*_ This property is also valid for Sobolev spaces with integer order, see [236].

We are now ready to show that global minimisers possess the good regularity properties to be

stationary states of equation (1.1) according to Definition 2.1.

Theorem 3.10. Let x > 0, s € (0, N/2) and m. < m < m*. Then all global minimisers of F in Y are

stationary states of equation (1.1) according to Definition 2.1.

Proof. Note that m < m* means 1 — 2s < 1/(m — 1), and so thanks to Theorem 3.7, S and
p satisfy the regularity conditions of Definition 2.1. Further, since p™~! € Wh* (R"), we can
take gradients on both sides of the Euler-Lagrange condition (3.14). Multiplying by p and writ-
m—1

ing pVp = 2=1Yp™, we conclude that global minimisers of F in Y satisfy relation (2.1) for

stationary states of equation (1.1). O

In fact, we can show that global minimisers have even more regularity inside their support.

Theorem 3.11. Let x > 0, m. < mand s € (0, N/2). If p € Y is a global minimiser of F, then p is C®

in the interior of its support.

Proof. By Theorem 3.7 and Remark 3.8, we have p € C%%(R") for some o € (0,1). Since p is
radially symmetric non-increasing, the interior of supp (p) is a ball centered at the origin, which
we denote by B. Note also that p € L' (RY) n L®(RY) by Proposition 3.6, and so Sy, € L (RY) by
Lemma 2.2.

Assume first that s € (0,1) n (0, N/2). Applying (3.34) with Bp centered at a point within B
and such that Bg cc B, we obtain S}, € CO’V(BR/Q) for any v < a + 2s. It follows from the
Euler-Langrange condition (3.14) that p™~! has the same regularity as Sy on By /2, and since p is
bounded away from zero on B/, we conclude p € C%7(Bpg/,) for any 7 < a + 2s. Repeating the
previous step now on B/, we get the improved regularity Sy, € C%Y(Bpg4) for any v < a + 4s by
(3.34), which we can again transfer onto p using (3.14), obtaining p € C%7(Bg /4) forany v < a+4s.
Iterating, any order ¢ of differentiability for Si, (and then for p) can be reached in a neighbourhood

of the center of Br. We notice that the argument can be applied starting from any point z, € B,
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and hence p € C*(B).
When N > 3 and s € [1, N/2), we take numbers sq,. .., s; such that s; € (0,1) forany i = 1,...,1
and such that 3'_, s; = s. We also let

Sitli= Sk, SLi=T_,(-A)¥Sk,  Vje{l,... l}.

Then S{ = p. Note that Lemma 2.2(i) can be restated as saying that p € Y n L®(R”) implies
(—=A)°p e L®(RY) forall § € (0, N/2). Taking § = s — r for any r € (0, s), we have (—A)"S), =
(=A)"%p e L*. In particular, this means Si € L°(RY) forany j = 1,...,1 + 1. Moreover, there

holds
(~A)HSIT =8 vie{l,...,1}.

Therefore we may recursively apply (3.34), starting from S} = p € C%(Bg), where the ball By, is

centered at a point within B such that B cc B, and using the iteration rule

51 CP(By) = ST e OO (B, )

Vie{l,...,l}, VYvy>0st v+2s;isnotaninteger, VB, cc B.

We obtain S;t' = S, € C%7(Bgya) for any v < a + 2s, and as before, the Euler-Lagrange
equation (3.14) implies that p € C%7(Bp/(:)) for any v < a + 2s. If we repeat the argument, we
gain 2s in Holder regularity for p each time we divide the radius R by 2'. In this way, we can reach

any differentiability exponent for p around any point of B, and thus p € C*(B). O

The main result Theorem 1.1 follows from Theorem 2.4, Corollary 2.7, Theorem 3.1, Proposi-

tion 3.4, Proposition 3.6, Theorem 3.14 and Theorem 3.11.

4 Uniqueness in one dimension

4.1 Optimal transport tools

Optimal transport is a powerful tool for reducing functional inequalities onto pointwise inequal-
ities. In other words, to pass from microscopic inequalities between particle locations to macro-
scopic inequalities involving densities. This sub-section summarises the main results of optimal
transportation we will need in the one-dimensional setting. They were already used in [62] and

in Chapter 3, where we refer for detailed proofs.

Let p and p be two probability densities. According to [53, 233], there exists a convex function
1 whose gradient pushes forward the measure g(a)da onto p(x)dz: ¥'# (p(a)da) = p(x)dz. This

convex function satisfies the Monge-Ampére equation in the weak sense: for any test function
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4. Uniqueness in one dimension

¢ € Cp(R), the following identity holds true

| et @pitaraa = | s@ipt@)d.
The convex map is unique a.e. with respect to p and it gives a way of interpolating measures
using displacement convexity [234]. The convexity of the functionals involved can be summarised

as follows [234, 85]:

Theorem 4.1. Let N = 1. The functional H,,[p] is displacement-convex provided that m > 0. The

functional Wy p] is displacement-concave if k € (—1,1).

This means we have to deal with convex-concave compensations. On the other hand, regularity
of the transport map is a complicated matter. Here, as it was already done in [62], we will only use
the fact that 9" (a)da can be decomposed in an absolute continuous part ¥ .(a)da and a positive
singular measure [295, Chapter 4]. In one dimension, the transport map ¢’ is a non-decreasing
function, therefore it is differentiable a.e. and it has a countable number of jump singularities. The
singular part of the positive measure ¢”(a) da corresponds to having holes in the support of the

density p. For any measurable function U, bounded below such that U(0) = 0 we have [234]

JR U(p()) da — fR U ( p “&) W (a) da. (4.38)

The following Lemma proved in [62] will be used to estimate the interaction contribution in the

free energy.

Lemma 4.2. Let K : (0,0) — R be an increasing and strictly concave function. Then, for any a,be R

K <¢(b)_w(“)> > JllC (¥".([a,b].)) ds, (4.39)

b—a 0
where the convex combination of a and b is given by [a,b]s = (1 — s)a + sb. Equality is achieved in (4.39)

if and only if the distributional derivative of the transport map +)" is a constant function.

4.2 Functional inequality in one dimension

In what follows, we will make use of a characterisation of stationary states based on some integral
reformulation of the necessary condition stated in Proposition 3.4. This characterisation was also
the key idea in [62] and in Chapter 3 to analyse the asymptotic stability of steady states and the

functional inequalities behind.

Lemma 4.3 (Characterisation of stationary states). Let N = 1, x > Oand k € (—1,0). If m > m,

with m. = 1 — k, then any stationary state p € Y of system (1.1) can be written in the form
1
plp)™ = Xf f lal*p(p — sa)p(p — sa + q) dsdq . (4.40)
R JO
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4. DirrusioN-DOMINATED REGIME

The proof follows the same methodology as for the fair-competition regime (see Chapter 3
Lemma 2.8) and we omit it here. If m = m,, then it follows from Lemma 4.3 that any stationary

state p € ) satisfies F[p] = 0 by simple substitution.

Theorem 4.4. Let N =1, x > 0, k € (—1,0) and m > me. If (1.1) admits a stationary density p in ),
then

Flpl = Flpl. Voel
with equality if and only if p = p.
Proof. For a given stationary state p € ) and solution p € Y of (1.1), we denote by 7 the convex

function whose gradient pushes forward the measure p(a)da onto p(z)dxz: ¥'# (p(a)da) = p(z)dx.
Using (4.38), the functional F|p] rewrites as follows:

i1 () s
Y k
=3
Rx
1

%Z’(b) la — b[* (a)p(b) dadb
T m-1 fR (Vee(@) " pla)™ da

- H (@ ([a,0]))"a = bl* 5(a)p(b) dadb,

RxR

R

where (u([a,b])) = §; u([a,b],) ds and [a,b]; = (1 — s)a + bs for any a,b € Rand u : R — R,. By

Lemma 4.3, we can write for any a € R,

(V@) )™ = x | Ol b la = WA db,

and hence
7= x [[ g oty + £ Tt Ha = ot pta)p(s) doas.
RxR

Using the concavity of the power function (-)!~™ and and Lemma 4.2, we deduce

Fl = x [[ {0 i)™+ L ) o — 0 (a)ol0) dac.

(m
RxR

Applying characterisation (4.40) to the energy of the stationary state p, we obtain

Flp] = XRQ <(m1_ ot ;) la — b|*5(a)p(b) dadb .

Since

+r (4.41)
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for any real z > 0 and for m > m. = 1 — k, we conclude F[p] > F[p]. Equality in the convexity
inequality (4.39) arises if and only if the derivative of the transport map v is a constant function,
i.e. when p is a dilation of p. In agreement with this, equality in (4.41) is realised if and only if

z=1. ]

In fact, the result in Theorem 4.4 implies that all critical points of F in ) are global minimisers.

Further, we obtain the following uniqueness result:

Corollary 4.5 (Uniqueness). Let x > O0and k € (—1,0). If m¢ < m, then there exists at most one

stationary state in Y to equation (1.1). If m, < m < m™, then there exists a unique global minimiser for F

iny.

Proof. Assume there are two stationary states to equation (1.1), p1,p2 € ). Then Theorem 4.4
implies that F[p1] = F[p2], and so p1 = pa.
By Theorem 3.1, there exists a global minimiser of F in Y, which is a stationary state of equation

(1.1) if m. < m < m™ by Theorem 3.10, and so uniqueness follows. O

Theorem 4.4 and Corollary 4.5 complete the proof of the main result Theorem 1.2.

A Appendix: Properties of the Riesz potential

The estimates in Proposition 2.5 are mainly based on the fact that the Riesz potential of a radial
function can be expressed in terms of the hypergeometric function
1
Fla,b;¢;2) = r(b)?((z)_ 3 JO (1—zt)(1 — )01 dt,
which we define for z € (—1, 1), with the parameters a, b, c being positive. Notice that F'(a, b, ¢,0) =
1 and F is increasing with respect to z € (—1, 1). Moreover, if ¢ > 1,b > 1 and ¢ > a + b, the limit
as z 1 1is finite and it takes the value

L(e)'(c—a—10)

I'(c—a)l(c—1b)’ (A42)

see [214, §9.3]. We will also make use of some elementary relations. Let ¢ > a v b > 0, then there
holds
F(a,b;c;2) = (1 —2)" % F(c —a,c— b;c; 2), (A.43)

see [214, §9.5], and it is easily seen that

d ab
—F ceiz) = —F 1 1: 1:2).
- (a,b;c; z) . (a+1,b+ 1;¢+ 152)

Inserting (A.43) we find
d ab c—a—b—1
aF(a,b;c;z):?(l—z)‘ F(c—a,c—byc+ 1;2). (A.44)
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4. DirrusioN-DOMINATED REGIME

To simplify notation, let us define

L) (c—b !
H(a,b;c;z) = MF(Q, byc; z) = J (1—2t)7%(1 — ) o= gt . (A.45)
I'(c) 0
Proof of Proposition 2.5. For a given radial function p € ) we use polar coordinates, still denoting

by p the radial profile of p, and compute as in [269, Theorem 5], see also [10], [138] or [140, §1.3],

e K2 N -
|lz|® # p(z) = GN_lJ <f (|z]* + n* — 2|z|n cos 0) 2 sinN-2¢ d9> p(n)n™~tdn. (A.46)
0 0

Then we need to estimate the integral

T Tk’l9 r), <r,
Or(r,n) == on_1 J (r* +n*—2ry (:05(9))16/2 sin™ ~2(0) df = e(afr), (A.47)

0 Wkﬁk (T/n)a r<n,
with

Ig(s) :=on_1 J (14s*—2s (;05(9))k/2 sinV=2(0) db
0

k 4 S 0 k/2
2 o N—2
=on-1(1+5s) L (1—4(1+8)2 cos <2>) sin®™ ~4(0) d6 .

Using the change of variables ¢ = cos? (£), we get from the integral formulation (A.45),

N—2 k 1 S k/2 N-3 N=3

=N 250 1 (1+ s)]C H (a,b;c; 2) (A.48)
with
k N-t c=N-1, z = _ds .
(1+ )2

The function F'(a, b; ¢; ) is increasing in z and then for any =z € (0, 1) there holds

F(a,b;c;z) < lim F(a, b; ¢; 2). (A.49)

z11

Note thatc —a —b = (k+ N —1)/2 changes sign at k = 1 — N, and the estimate of ©;, depends on
thesignofc —a — b

’Case E>1-N ‘ The limit (A.49) is finite if ¢ — a — b > 0 and it is given by the expression
I(e)l'(c—a—"0)/[I'(c—a)l'(c—0b)], thanks to (A.42). Therefore we get from (A.47)-(A.48) and
(A.45)

Ok (|z],n) < C1(|z| +n)* < Cy|z|* ifl-N<k<0

with €y := 2V 205 _1T'(b)I'(c — a — b)/T'(c — a). Inserting this into (A.46) concludes the proof of
(i)
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Case k < 1—N‘Ifc—a—b<0weuse(A.43),

F(a,b;c;2) = (1 —2) % F(c —a,c— b;c; 2),

where now the right hand side, using (A.49) and (A.42), can be bounded from above by (1 —
2)¢72 T (e)T(a + b — ¢)/[T(a)L'(b)] for z € (0,1). This yields from (A.47)-(A.48) and (A.45) the
estimate

1—-k—N
Ok(|z],n) < Calz|* (W) ifk<1-N (A.50)

with CQ = 2N_2O'N,1F(C — b)l"(a +b— c)/I‘(a)

Casekz1fN‘Ifontheotherhandc—a—b=O,weuse(A.44)withc=2a=26=N—1,

integrating it and obtaining, since F' = 1 for z = 0,

dt,
0 1—t

N—-1(*F(c— —b; 1;t
F(a,b;c;2) =1+ J (c—ac—bet1;t)

4

and the latter right hand side is bounded above, thanks to (A.49) and (A.42), by

(N — DT(N) 1
T2+ 1/2)2 (1 = )

1
+4

for z € (0,1). This leads from (A.47)-(A.48) to the new estimate

Ok(|z],n) < Calz|* <1 +log (:i: fZ)) ifk=1-N, (A.51)

p— 2 —
with Cy s 282, P2 g {1, 00000 1

Now, if p is supported on a ball By, the radial representation (A.46) reduces to

R
2l % p(z) = f |zl myp(pn™ L dy, xRV, (A52)

If |z| > R, we have (|z| + n)(Jz| — n)~! < (|z| + R)(|z| — R)~! for any n € (0, R), therefore we can
put R in place of 7 in the right hand side of (A.50) and (A.51), insert into (A.52) and conclude. O
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Ein Tag mit dem Zigeunergelehrten

(One Day with the Gipsy Scholar)

Stockel tragend Gestalten hinken,
verwischte Schminken,

glitzernde Roben

mit Matsch betrogen,

verrutschte Fliegen,

oh wie die Bduche wiegen,

so voll mit Kamel am Stil,

oder auch mit Krokodil,

betrunken mit Gliick und Wunderlichkeit,

eine Nacht der Unvergesslichkeit.

Die Sonne geht tiber den Baumwipfeln auf,
unberiihrt nimmt der Tag seinen Lauf

als die Blitze des tiichtigen Hoffotografen

die singende Masse der Uberlebenden trafen.

Was kann es besseres geben
als nach einer St John’s May Ball Nacht
Herz und Geist zu beleben

inmitten reiner natiirlicher Pracht.

Ahoi Matrosen!

Wie die grofien
Seeentdecker,
Freiheitsschmecker,
Selbstentzwecker
stechen wir in Fluss.

Oh, Genuss!
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Alsbald die Tirme

von Cambridge entschwinden,
zwischen Wiesen und Weiden

wir uns befinden,
Vogel zwitschern, Reiher stacksen,
Libellen flattern, Rebhiithner gacksen,
lieblich leise die Wellen schlagen,

wie miihelos sie den Kutter tragen!

Drinnen hort man es rappern und klappern,
sausen und brausen,

denn bald gibt’s zu schmausen,

gebackene Bohnen, Schinken und Eier,

was fiir eine Friihstiicksfeier,

Orangensaft

gibt neue Kraft,

und das wichtigste, ich seh’

ist der gute englische Tee.

Fiir die Verdauungspause
geht’s auf’s Dach vom Hause.
Frohlich keck die Noten entschwinden

in den rauen Morgenwinden.



Die Schifffahrtsleute staunten sehr,
Wo kommen diese Kldange her?

Néher und ndher kommt unser Kahn
und als sie sah'n

erst die Flote,

dann die Trote,

und den fréhlichen Gesang,

der vom Deck des Kutters erklang,

da schmunzelten und lachten sie sehr,

und winkten und griifiten mehr und mehr.

Oh, Happy Day!
What can I say?
Das Zigeunerleben ist komplett

mit improvisiertem Jazzquartett.
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Nach einem May Ball, das muss sein,
die Seelen waschen wir uns rein.
Dafiir nehmen wir Station

um nach alter Tradition

Eiseskélte zu inhalieren

und die Cam zu schamponieren.
Stop!

Und Hop!

Die Geister erweckt geht’s weiter voran
auf der geschlungenen silbernen Bahn.
Jeder wird mal angeheuert.

Ach, so wird also ein Kahn gesteuert!
Gar nicht so hart.

Was fiir eine Fahrt!

Vollig auler Rand und Band,

gehen wir in Ely an Land.

Kapitédns Judge, wir danken sehr
fiir Haus und Schmaus und vieles mehr,
denn die beste Gliickseligkeit

ist voll genossene Lebenszeit.

for the Captains Judge (Junior and Senior)
by Franca Hoffmann
Kortrijk, 21. Juli 2014



CHAPTER 5

A fibre lay-down model

for non-woven textile production

This chapter follows in most parts the article “Exponential decay to equilibrium for a fibre lay-
down process on a moving conveyor belt” written in collaboration with Emeric Bouin! and Clé-

ment Mouhot?, and accepted for publication in SIAM Journal on Mathematical Analysis.

Chapter Summary

We show existence and uniqueness of a stationary state for a kinetic Fokker-Planck equa-
tion modelling the fibre lay-down process in the production of non-woven textiles. Following
a micro-macro decomposition, we use hypocoercivity techniques to show exponential conver-
gence to equilibrium with an explicit rate assuming the conveyor belt moves slow enough. This
chapter is an extension of [134], where the authors consider the case of a stationary conveyor
belt. Adding the movement of the belt, the global Gibbs state is not known explicitly. We thus
derive a more general hypocoercivity estimate from which existence, uniqueness and exponen-
tial convergence can be derived. To treat the same class of potentials as in [134] we make use of

an additional weight function following the Lyapunov functional approach in [206].

1CEREMADE - Université Paris-Dauphine, UMR CNRS 7534, Paris, France
2DPMMS, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK.
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When will it stop moving,
When will it stop changing,

Never,

For we are forever moving along.

Ileana N. Kraus-Nikitakis



1. Introduction

1 Introduction

The mathematical analysis of the fibre lay-down process in the production of non-woven textiles
has seen a lot of interest in recent years [230, 231, 172, 203, 205, 134, 206]. Non-woven materials
are produced in melt-spinning operations: hundreds of individual endless fibres are obtained by
continuous extrusion through nozzles of a melted polymer. The nozzles are densely and equidis-
tantly placed in a row at a spinning beam. The visco-elastic, slender and in-extensible fibres lay
down on a moving conveyor belt to form a web, where they solidify due to cooling air streams.
Before touching the conveyor belt, the fibres become entangled and form loops due to highly tur-
bulent air flow. In [230] a general mathematical model for the fibre dynamics is presented which
enables the full simulation of the process. Due to the huge amount of physical details, these simu-
lations of the fibre spinning and lay-down usually require an extremely large computational effort
and high memory storage, see [231]. Thus, a simplified two-dimensional stochastic model for the
fibre lay-down process, together with its kinetic limit, is introduced in [172]. Generalisations of
the two-dimensional stochastic model [172] to three dimensions have been developed by Klar et
al. in [203] and to any dimension d > 2 by Grothaus et al. in [177].

We now describe the model we are interested in, which comes from [172]. We track the position
z(t) € R? and the angle a(t) € S! of the fibre at the lay-down point where it touches the conveyor
belt. Interactions of neighbouring fibres are neglected. If z(t) is the lay-down point in the coordi-
nate system following the conveyor belt, then the tangent vector of the fibre is denoted by 7(«(t))
with 7(«) = (cos a, sin «). Since the extrusion of fibres happens at a constant speed, and the fibres
are in-extensible, the lay-down process can be assumed to happen at constant normalised speed
|6 (t)| = 1. If the conveyor belt moves with constant speed « in direction e; = (1, 0), then

dx
i T() + Rey.

Note that the speed of the conveyor belt cannot exceed the lay-down speed: 0 < x < 1. The fibre
dynamics in the deposition region close to the conveyor belt are dominated by the turbulent air
flow. Applying this concept, the dynamics of the angle «(¢) can be described by a deterministic
force moving the lay-down point towards the equilibrium = = 0 and by a Brownian motion mod-

elling the effect of the turbulent air flow. We obtain the following stochastic differential equation

for the random variable X; = (7, ;) on R? x S!,

dzy = (7(on) + key) dt,
(1.1)

day = [-71 () VoV(xy)] dt + AdW,,

where W; denotes a one-dimensional Wiener process, A > 0 measures its strength relative to the

deterministic forcing, 7+ (a) = (—sina,cosa), and V : R? — R is an external potential carrying
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information on the coiling properties of the fibre. More precisely, since a curved fibre tends back
to its starting point, the change of the angle « is assumed to be proportional to 7+(a) - V.V (x).
It has been shown in [206] that under suitable assumptions on the external potential V, the fi-
bre lay down process (1.1) has a unique invariant distribution and is even geometrically ergodic
(see Remark 1.2). The stochastic approach yields exponential convergence in total variation norm,
however without explicit rate. We will show here that a stronger result can be obtained with a func-
tional analysis approach. Our argument uses crucially the construction of an additional weight
functional for the fibre lay-down process in the case of unbounded potential gradients inspired
by [206, Proposition 3.7].

The probability density function f (¢, z, ) corresponding to the stochastic process (1.1) is gov-
erned by the Fokker-Planck equation

Orf + (1 + K€1) Vof — 0o (15 VoV f) = Diaaf (1.2)

with diffusivity D = A?%/2. We state below assumptions on the external potential V' that will be
used regularly throughout the chapter:

(H1) Regularity and symmetry: V € C?(R?) and V is spherically symmetric outside some ball
B(0, Ry ).

(H2) Normalisation: g, e V@) dp = 1.

(H3) Spectral gap condition (Poincaré inequality): there exists a positive constant A such that
forany u € H'(e™Vdx) with (o, ue™Vdz = 0,
J Voul> eV dz > AJ- u?e”V du.
R2 R?
(H4) Pointwise reqularity condition on the potential: there exists ¢; > 0 such that for any z € R?,

the Hessian V2V of V (z) satisfies

VIV (@) < er(1 + [V V(@)]).

(H5) Behaviour at infinity:

VeV (@) | VIV(2)|
lim =0, lim L =0
o> V(2) o] -0 [V V()]

Remark 1.1. Assumptions (H2-3-4) are as stated in [134]. Assumption (H1) assumes regularity of the po-
tential that is stronger and included in that discussed in [134] since (H1) implies V € Wlif’o (R?). Assump-
tion (H5) is only necessary if the potential gradient |V, V| is unbounded. Both bounded and unbounded
potential gradients may appear depending on the physical context, and we will treat these two cases sepa-
rately where necessary. A typical example for an external potential satisfying assumptions (H1-2-3-4-5) is
given by

s/2

V(z) =K (1+|z]?) (1.3)
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for some constants K > 0 and s > 1 [135, 206]. The potential (1.3) satisfies (H3) since
llin‘lin (IV.V]? —2A,V) >0,
x| —00
see for instance [298, A.19. Some criteria for Poincaré inequalities, page 135]. The other assumptions are
trivially satisfied as can be checked by direct inspection. In this family of potentials, the gradient V,V is

bounded for s = 1 and unbounded for s > 1.

Remark 1.2. The proof of ergodicity in [206] assumes that the potential satisfies

Ve V()| VRV ()| .
lim ———~— =0, lim —%—= =0, lim |V,V(x)| =o00. 14
lej—co V(z) lej—c0 [V V (2)] |z\~oc| (@)l &

Under these assumptions, there exists an invariant distribution v to the fibre lay-down process (1.1), and

some constants C(xq) > 0, A > 0 such that
HPI(LOZO (Xt € ) - V”TV < C(mo)e_M s

where Py, «, is the law of X starting at Xo = (xo, o), and where |-||, denotes the total variation norm.
The stochastic Lyapunov technique applied in [206] however does not give any information on how the con-
stant C(x) depends on the initial position xo, or how the rate of convergence A depends on the conveyor
belt speed k, the potential V' and the noise strength A. This can be achieved using hypocoercivity technigues,
proving convergence in a weighted L?-norm, which is slightly stronger than the convergence in total vari-
ation norm shown in [206]. Conceptually, the conditions (1.4) ensure that the potential V' is driving the
process back inside a compact set where the noise can be controlled. Our framework (H1-2-3-4-5) is more
general than conditions (1.4) in some aspects (including bounded potential gradient) and more restrictive in
others (assuming a Poincaré inequality). The proof in [206] relies on the strong Feller property which can be
translated in some cases into a spectral gap; it also uses hypoellipticity to deduce the existence of a transition
density, and concludes via an explicit Lyapunov function arqument. With our framework (H1-2-3-4-5),
and adapting the Lyapunov function argument presented in [206] to control the effect of k0, , we derive an

explicit rate of convergence in terms of k, D and V.
To set up a functional framework, rewrite (1.2) as
of =Lef = (Q - T)f +Pef, (1.5)

where the collision operator Q := D0, acts as a multiplicator in the space variable z, P, is the

perturbation introduced by the moving belt with respect to [134]:
Pufi=—rer-Vaf,
and the transport operator T is given by
Tfi=7-Vaof —0a (75 V.V ).
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5. FIBRE LAY-DOWN MODEL

We consider solutions to (1.5) in the space L?(du,;) := L*(R? x S', du,) with measure

dx da
2r

dps(z, o) = (evm + (/{g(x,a))

We denote by (-, -), the corresponding scalar product and by | - |, the associated norm. Here,
¢ > 0is a free parameter to be chosen later. The construction of the weight g depends on the
boundedness of V,V. When it is bounded, no additional weight is needed to control the pertur-
bation, and so we simply set g = 0 in that case. When the gradient is unbounded, the weight is

constructed thanks to the following proposition:
Proposition 1.3. Assume that V satisfies (H1) and (H5) and that

lim |V,V|= +o0.

|| —00
If k < 1/3 holds true, then there exists a function g(x, «), a constant ¢ = ¢(k, D) > 0 and a finite radius

R = R(k,D,V) > 0 such that
Viz|> R, VaeS!, L.(g9)(r,a)<—c|V.V(2)g(r,a), (1.6)
where L, is defined by
L(h) == Dosoh + (T + ke1) - Voh — (11 Vi V) dah — (1 V, V) h. (1.7)
The weight g is of the form

o) = exp (Vo) + V.V @I () ) )

where the parameter 3 > 1 and the function T' € C' ([—1,1]), T' > 0 are determined along the proof and

only depend on k.

We show in Section 3 the existence of such a weight function g under appropriate conditions

following ideas from [206].

We denote C := C® (R? x S'), and define the orthogonal projection M on the set of local equi-
libria Ker Q

do
Mf:=| f 9
St ™
and the mass My of a given distribution f € L?(du,),

dzda
Mf ::f f B .
R2xS?! T

Integrating (1.2) over R? x S! shows that the mass of solutions of (1.2) is conserved over time,

and standard maximum principle arguments show that it remains non-negative for non-negative

initial data. The collision operator Q is symmetric and satisfies

VieC, (Qf fro=-D|df];<0,

226



1. Introduction

i.e. Q is dissipative in L?(duo). Further, we have TN f = e~V 7 - V,u; for f € C, with uy := eV Tf,
which implies MTI = 0 on C. Since the transport operator T is skew-symmetric with respect to
<. , .>O’

Lty o =<Qf, fro+ Pufi fo

for any f in C. In the case r = 0, if the entropy dissipation —(Q/f, f)o was coercive with respect
to the norm || - o, exponential decay to zero would follow as ¢t — co. However, such a coercivity
property cannot hold since Q vanishes on the set of local equilibria. Instead, Dolbeault et al. [135]
applied a strategy called hypocoercivity (as theorised in [298]) and developed by several groups in
the 2000s, see for instance [185, 178, 225, 129, 130]. The full hypocoercivity analysis of the long
time behaviour of solutions to this kinetic model in the case of a stationary conveyor belt, x = 0,
is completed in [134]. For technical applications in the production process of non-wovens, one is
interested in a model including the movement of the conveyor belt, and our aim is to extend the

results in [134] to small k > 0.

We follow the approach of hypocoercivity for linear kinetic equations conserving mass devel-
oped in [135], with several new difficulties. Considering the case x = 0, Q and T are closed op-
erators on L?(dyg) such that Q — T generates the Cy-semigroup ¢(@~1)* on L2(dsug). When x > 0,
we use the additional weight function g > 0 to control the perturbative term P, in the case of
unbounded potential gradients; and show the existence of a Cyp-semigroup for L, = Q — T + P,
(see Section 4.1). Unless otherwise specified, all computations are performed on the operator core
C, and can be extended to L?(dy,) by density arguments.

When x = 0, the hypocoercivity result in [135, 134] is based on: microscopic coercivity, which
assumes that the restriction of Q to (Ker Q)* is coercive, and macroscopic coercivity, which is a
spectral gap-like inequality for the operator obtained when taking a parabolic drift-diffusion limit,
in other words, the restriction of T to Ker Q is coercive. The two properties are satisfied in the case

of a stationary conveyor belt:
e The operator Q is symmetric and the Poincaré inequality on S?,
2
—J- |00 f|? do = —f (f—f fda> da,
implies that —(Qf, f = D |/(1 — M) f|2.

e The operator T is skew-symmetric and forany h € L?(duo) such thatu, = ¢ Nh € H(e=Vdz)
and {;, o hduo = 0, (H3) implies

1 A
TR = — e V|Vup)? dzda = — e™Vu?dedo = = thu
0 4 4 0-

T Jr2 xSt R2 xSt
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In the case x = 0, the unique global normalised equilibrium distribution F, = e~V lies in the
intersection of the null spaces of T and Q. When x > 0, Fj is not in the kernel of P,, and we are not
able to find the global Gibbs state of (1.5) explicitly. However, the hypocoercivity theory is based

on a priori estimates [135] that are, as we shall prove, to some extent stable under perturbation.

Our main result reads:

Theorem 1.4. Let fi, € L%*(dp.) and let (H1-2-3-4-5) hold. For 0 < k < 1 small enough (with a
quantitative estimate) and ¢ > 0 large enough (with a quantitative estimate), there exists a unique non-
negative stationary state F,, € L?(du,) with unit mass Mp, = 1. In addition, for any solution f of (1.2)
in L*(dp,,) with mass My and subject to the initial condition f(t = 0) = fin, we have

|f(t.) = MpFoll,, < Cllfin — MyE,, e, (1.8)

where the rate of convergence A, > 0 depends only on k, D and V', and the constant C > 0 depends only

onDand V.

In the case of a stationary conveyor belt x = 0 considered in [134], the stationary state is char-
acterised by the eigenpair (Ao, Fy) with Ag = 0, Fy = e~", and so Ker Ly = (Fp). This means that
there is an isolated eigenvalue Ag = 0 and a spectral gap of size at least [—\¢, 0] with the rest of
the spectrum X(Lo) to the left of —)\ in the complex plane. Adding the movement of the conveyor
belt, Theorem 1.4 shows that KerL,, = (F}) and the exponential decay to equilibrium with rate
A corresponds to a spectral gap of size at least [\, 0]. Further, it allows to recover an explicit
expression for the rate of convergence ) for x = 0 (see Step 5 in Section 2.1). In general, we are not
able to compute the stationary state F), for x > 0 explicitly, but F, converges to Fy = e~V weakly
as k — 0 (see Remark 4.2). Let us finally emphasize that a specific contribution of this work is to
introduce two (and not one as in [135, 134]) modifications of the entropy: 1) we first modify the
space itself with the coercivity weight g, then 2) we change the norm with an auxiliary operator

following the hypocoercivity approach.

The rest of the chapter deals with the case x > 0 and is organised as follows. In Section 2,
we prove the main hypocoercivity estimate. This allows us to establish the existence of solutions
to (1.2) using semigroup theory and to deduce the existence and uniqueness of a steady state in
Section 4 by a contraction argument. In Section 3, we give a detailed definition of the weight

function g that is needed for the hypocoercivity estimate in Section 2.
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2. Hypocoercivity estimate

2 Hypocoercivity estimate
Following [135] we introduce the auxiliary operator
A= (1+ (T)*(TN)~H(Tm*,
and a modified entropy, i.e. a hypocoercivity functional G on L?(du,,):
GI7] = 5712 +e1CAf oo, T e L2 (d)

for some suitably chosen ¢; € (0,1) to be determined later. It follows from [135] that [{Af, f)o| <

I£13- Also, | £ < ||| by construction of u,, and hence G[-] is norm-equivalent to | - [2:

vieran). (57 I < 6l < (F57) Iz, 29)

In this section, we prove the following hypocoercivity estimate:
Proposition 2.1. Assume that hypothesis (H1-2-3-4-5) hold and that 0 < x < 1 is small enough (with a
quantitative estimate). Let fin, € L?(du,) and f = f(t,z, ) be a solution of (1.2) in L?(dpu.) subject to
the initial condition f(t = 0) = fin. Then f satisfies the following Gronwall type estimate:

d

SGLA(E )] < —mGLA(E )] + a0 (2.10)

where v > 0,v2 > 0 are explicit constants only depending on x, D and V.

Note that the estimate (2.10) is stronger than what is required for the uniqueness of a global
Gibbs state, and represents an extension of the estimate given in [134]. When applied to the differ-
ence of two solutions with the same mass, (2.10) gives an estimate on the exponential decay rate

towards equilibrium.

2.1 Proof of Proposition 2.1

Differentiate in time G[f] to get

%G[f] = Do[/] + Da[f] + Da[f] + Ds[f].

where the entropy dissipation functionals Dy, D1, D2 and D3 are given by

Dolf] :={Qf, f)o — er (AT, N f)g —er CAT(1 = M) f,T1f),
+er (TAS, (L= f) + e <AQS, NS,

D1[f]:= 1 (AP f,Mf) + er (PEAS, TS

Dalf]:=Puts o s

dx da
Duff] = | | Llhfe S5
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Note that the term (LAf, ), vanishes since it has been shown in [135] that A = A and hence
Af € Ker Q. Further, (Tf, f) = 0 since T is skew-symmetric. We estimate the entropy dissipation
of the case k = 0 as in [134]:

# Step 1: Estimation of Dy[f].

We will show the boundedness of Dy, which is in fact the dissipation functional for a stationary

conveyor belt. We thus recall without proof in the following lemma some results from [134].

Lemma 2.2 (Dolbeault et al. [134]). The following estimates hold:

Qf. o< =10=Mflg,  IATA=Mfle < Cv (1 =M flo ,
D
IAQfllo < 5 1A =M fllg . [TAflp < I =Ml -
In order to control the contribution (ATIf, M), in Dy, we note that

ATI = (1 + (TAY*TM)™" (TN)*TN

shares its spectral decomposition with (TM)*TI, and by macroscopic coercivity
_yy2 A RN
(T*TAS, o= [TAF = [TN( = Mpe")]g = 5 [N = Mpe™¥)], -

Hence,

AJ2

AT o>

RYNT
[N = Mpe=")]; -
Now, recalling Lemma 2.2 and using |1(f — Mfe_V)Hi = |nf)2 - M3, we estimate

Do[f] <(e1 = D) (1 = MFI§ + ez [(1 = M1y INFlo = =192 (INSI5 = 243)

with Ay := Cy + D/2 > Oand 7, := 12425 > 0.

# Step 2: Estimation of D[ f].

We now turn to the entropy dissipation functional D;, which we will estimate using elliptic
regularity. Instead of bounding AP,., we apply an elliptic regularity strategy to its adjoint, as for
AT(1—N)in[134]. Let f € L%(duo) and define b := (1 + (TM)*TMN) ™" f so that u;, = eV MNh satisfies

Nf=e Vu, +0T*T (e_vuh) =e Vu, — %Vm . (e_VVmuh) )
We have used here the fact that in the space L?(duy):
T:T-Vw—(?a[(rl-vw‘/)] ,
T* = —7-Vot (5 VoV) 0o — (1- Vo V).
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Then
A¥f=TNh=eV71-Voun,

and since the adjoint for (-, -)¢ of the perturbation operator P, is given by
Pf=—-P.—P.V,

it follows that

2
I(AP)* fllo = |7 Va(er - Voup)e VHO
K2 . 2
=3 e |-V (er - Vaup) | duo
R2 xSt
2
= — e_V|V$ (e1 - Vaup) \2 dz
2 Jpe

KQ 2
< 7 ||viuh“L2(e*V dz)

:‘{2 2 2
<crngl;

where in the last inequality we have used an elliptic regularity estimate. This estimate turns out
to be a particular case of [134, Proposition 5 and Sections 2-3], where the positive constant Cy is

the same as in Lemma 2.2 reproduced from [134]. This concludes the boundedness of AP,,,

IAPflly < ’i Nflly < ’i (2.11)

| 1£1o -
v vz /1o
Using a similar approach for the operator P} A, we rewrite its adjoint as
A*P,.f =TNh,
where we define  := (1 + (TN)*TMN)~!P, f for a given f € L?(duy), or equivalently
1
e Vuj, — 7 Ve (e7VVauz) = MNP, f =P.Nf.
Multiplying by u;, and integrating over R?, we have
2 1 2
H“EHB(@—V de) T B} Hvrull”m(efv de) = —F e e1 - Vg (Mf)uj, dz
= /{f (Nf)er - Vyuy dz
RQ

<K
RQ

<K HVIUBHLE(er dz) anHO

Vg:u;lefv/?‘ ‘I'Ifev/2‘ dz

1 2 2
ST ”vruﬁ”p(e—v de) T K’ Inflo -
This inequality isa H'(e~" dz) — H~!(e™" du) elliptic regularity result. Hence,
2 2 1 2 2
[A*Pwfllo = [TAALG = 5 IVatis e o-v ary < 267 015
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and so we conclude

IPEAf]y < V26 (1 =T flly < V26| f], - (2.12)

Combining (2.11) and (2.12), the entropy dissipation functional D, is bounded by

v

Dl[f] < K€ (\/5

+¢Q|ﬂ§—%ﬂlﬂ&

where we defined Ay := 3 (% + \/5)

# Step 3: Estimation of D[ f].

Using integration by parts, we have

_k - 5 v dzda
Cufbo=% | | (e Vv e

The estimation of this term goes differently depending on the boundedness of V, V.

If V.V is bounded, we write

K K
Ds[f] < KPxf, Fol < 5IVaVIel£15 = SIVaV Il fI7,

where we have used | f|. = || f]o, since g = 0.

Assume now that |V, V| — o as || — o0. Thanks to the choice of g, we have the estimate

K dx da K dx da
Do[f] < [{Px <= e —— < = f 2 2.1
AN <Pt i<y [ vvipr SR <ta | petE @)
with
C3 := sup (\VIV|eVg_1) ,
zeR2
which is finite by (H5).

# Step 4: Estimation of Ds[f].

We start by recalling that this estimate is only relevant when V.V is unbounded. Indeed, in

the opposite case, D3| f] = 0 since g = 0 by definition. By the identity

1
f Lo(f)fgdeda = ,J L.(9)f?dzda — D |00 f|” gdzda
R2 xSt 2 R2xS? R2 xSt
with £, as defined in (1.7), we have
1 dz da
nal <ne (5[ et ). @14)
R2 xSt m
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Proposition 1.3 allows us to control the g-weighted L?-norm outside some fixed ball. More pre-

cisely, take R > 0 in (1.6) large enough s.t. |V, V| > 1 for all |x| > R, then
dz da
[ o
R2 xSt ™

dzda dzda
<[] e@rSee] [ waireS
st Jjz|<R m st Jjz|>R m

<J f ((Lalg) +cg)e™™) erV@fcj f2g 2o
St J|z|<R R2 xSt

2T 21

dz do

<GiRI-c| e, @.15)

R2x
where Cy(R) := sup|,<g (|Lx(9) + cgle™").

Remark 2.3. Observe here that one could take advantage of the growth of V.V by playing with the cut-
off parameter R and keeping track of min , > |V, V| in the negative term. It could lead to more optimal

constants but we chose instead to vary the parameter  in front of the coercivity weight g in the measure i,

for simplicity.

# Step 5: Putting the four previous steps together.

Combine the previous steps into

Dolf] + D1lf] <(e1 = D) (1 = M3 +e1ka (1 = M)l 1N lo
—eva (N1 - MF) + 260 13
= (D=1 = 260) (1 = W13 + e1da (1 = Mo NSl
~

e1y2 — 26M1) [NF]3 + e172 M7

€1 20
<= (D-ar-2en - 220 0 - g

51)\2
2b

— <51’)/2 - 2&)\1 — > ”rlng + 61’}/2MJ%

< = 26(R)|fIE + e1v2 M7,

by Young’s inequality with the choice b = \3/72, and where we used the fact that (1 — M) f||2 +
INf2 = | f|3. Here, £(k) is explicit, and given by

1 . A2 €
£(k) :=2m1n{D51 <1+ 2722> : 1;2} — K\

D3
= — /43)\1
2(73 + 272+ A3) ’

since the minimum in the first term is realised when the two arguments are equal, fixing ¢; =

2D,/ (¥4 + 272 + A3). Note that this choice of ¢ satisfies ¢ < D and &; < 1. Choosing x small
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enough ensures £(x) > 0. From this analysis we conclude

Dol f] + D1[f] < =26(k)| £[§ + e172M7F . (2.16)

Let us now add the control of Dy + D3. If V.V is bounded, g = 0 and D3 = 0:

d

6L

Do[f] + D1[f] + D2[f]

1
= (46(k) = KIVa Vo) SIF17 + e172MF

N

< —mG[f] + er2 M7

by the norm equivalence (2.9). Here, we defined

_ A6 — A VeV

0.
1+e

M1

When V,V is unbounded, (2.13)-(2.14)-(2.15)-(2.16) imply

%G[f] =Dg[f] + D1[f] + D2[f] + D3[f]

K dz da
<2 +eraMf + 56 [ P
R2xS1 ™
K¢ 2 5 dzda

e G =
__1 _ 9 KC [ % 5 drdo 9
- - S )~ mecum I -5 (= D) [ et s e

L & 2 2
< — g min{46(6) = RCCa(R).c = 2 113 + 100}

<= Gf] + e1e M}

again by norm equivalence (2.9), and where we defined

M= g _:51 min {4§(H) — k(Cy(R),c— C;’} >0.
This requires ¢ > 0 to be large enough, and the upper bound for x should be chosen accordingly:
(>g, 4¢(k) — k(Cy(R) > 0.

c
In order to maximise the rate of convergence to equilibrium given x, D and V, one can optimise

~1 over ¢ whilst respecting the above constraints.

Remark 2.4. The condition v, > 0 translates into an explicit upper bound on r. More precisely, we require
&(k) > Kku/4 where u := ||V, V || in the case of a bounded potential gradient, and v := (C4(R) otherwise.
This condition is satisfied for small enough k:

€172 2D’Y§
0<k< =
T ) (@ T w)(E + 272 + AD)

which also implies (k) > 0. Recall that Proposition 1.3 requires k < 1/3 in the case of unbounded potential

gradients. These conditions provide a range of « for which Proposition 2.1 holds.
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3 The coercivity weight g

In this section, we define the function ¢ in such a way that it allows us to control the loss of weight
in the perturbation operator P,,. When V.V is bounded, we do not need any extra weight since
then we may control the perturbation thanks to the stationary weight ", and so we set g = 0 in
that case. When it is not, Proposition 1.3 provides a suitable weight function g by constructive

methods.

3.1 Proof of Proposition 1.3

The proof is strongly inspired from [206], however our weight is different since we work in an
L?-framework rather than in an L! one. Assuming V.V is unbounded, we seek a weight g of the
form
V.V (z)
g(z,a) = exp | BV (x) + |V V (z)|T (T(a )) ,

(#.0) = exp (8 (@) 4 V.V @I (7(0) - 2
where the parameter 3 > 1 and the function ' € C* ([—1,1]), I' > 0 are to be determined. We
define

. V. V(x) . V. V(x)
Y(z,a) :=71(a)- NV @) Yi(z,a) =11 (a)- V@)

and split the proof into four steps: 1) we rewrite statement (1.6) using the explicit expression
of the weight g, 2) we simplify the obtained expression using assumption (H5), 3) we prove the
equivalent statement obtained in Step 2 by defining a suitable choice of I'(-) and 3, and 4) we
demonstrate that it is indeed possible to choose suitable parameters for the calculations in Step 3

to hold, fixing explicit expressions where possible.
# Step 1: Rewriting the weight estimate (1.6).

Applying the operator £,; defined in (1.7) to g, we can compute explicitly

L(9)

=D (|V4V[0aal (V) + [V V[*|0.T(Y)[?)

+ (7(@) + Key) - (BVLV + V. (VL VIT(Y)))
— [V VY 1o,0(Y) — |V, VY.

Since
0 =YIT'(Y) and daal = 0y (YII'(Y)) = —YT'(Y) + [YPT7(Y),
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we get

L.(g)

=D (|V.V| (-YT'(Y) + [V PT(V) + [V VYR (0())?)
+ (1(a) + Ker) - (BVLV + Vo (V. VID(Y)))
— Vo VEY P (Y) = [V VY

=(B—1—DI'(Y)|V.V|Y + kBer - ViV + (1(@) + ke1) - V. ([VLV[T(Y))
+ VP (DIVL VDY) + V.V E [ D () = T(v)]) -

In order to see which I to choose, let us divide by |V, V| and denote the diffusion and transport

part by
Ve (V.VIE() A
VeV VoV

Now, we can rewrite the statement of Proposition 1.3: we seek a positive constant ¢ > 0 and a

diff(z, ) := (7() + key) - tran(z) :=

radius R > 0 such that for any a € S! and |z| > R,

(8—1-=DT(Y))Y + sptran(z) + diff(z, o)

VAR (DE () + VLV [D (M) = (V) ]) < —e.
To achieve this bound, note that |Y| < 1 and |tran| < 1 for all (z, o) € R? x S.
# Step 2: Simplifying the weight estimate.

Further, the diffusion term diff(-) can be made arbitrarily small outside a sufficiently large ball.
Indeed,

diff(z, ) = (7 + Kkey1) - [I" (Y)V,Y + T (Y) W] :

V2V
and both |V, Y| and |V, (|V,V])|/|V.V| converge to zero as |z| — oo by assumption (H5), and I'
is bounded. In other words, using the fact that the potential gradient is unbounded, it remains to

show that we can find constants v > k8 > 0 and a radius r; > 0 such that
Vjz| >, (8—1—DIM)Y +|v)? (DF” VLV [D () - F’D <—v. (317

Then we can choose ry > 0 such that

Y — KB
2 bl

|z >ry = VaeS' diff(z,a)<

and we conclude for the statement of Proposition 1.3 with R := max{ry,r;} and ¢ := (y —xf3)/2 >

0.
# Step 3: Proof of the weight estimate.

Proving (3.17) can be done by an explicit construction. We define I'" € C°([—1, 1]) piecewise,
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'(y)
y
5t ifY > €0, 11
D
F/ Y _ 6+_67 _ . ——(5+ E——
( )_ T(Y-‘rﬁ(])-ﬁ*é lf|Y|<E(], /
o~ if Y < —¢p, /
45~
| ! -
T T
-1 g, L o+l Y

Figure 5.1: Derivative of I

where 0 < 6~ < 6t < 1/D and ¢ € (0, 1) are to be determined. With this choice of IV, we can
ensure that I' is strictly positive in the interval [—1, 1]. Now, let us show that there exist suitable
choices of v and 5 for the bound (3.17) to hold. More precisely, we choose a suitable 3 such that
(B-1)/De (67,6")and 0 < v < 7, defining v := ¢ (1 + D6" — ) and ¥ := ¢ (8 — 1 — Dd™).

We split our analysis into cases:
e Assume Y > gp. Then the LHS of (3.17) can be bounded as follows:

(B—1—=D5M)Y +6% (D5t —1) |V, V|[YH2 < (B—1—Dé")eg = —7.

e Assume Y < —gg. Then the LHS of (3.17) can be bounded as follows:

(B—=1=D57)Y +6 (D5~ —1) |V, V|[YH2 < —(B—1—Dé )eg = —7.

e Assume |Y| < &¢. Since 1 = |Y|2 + [V 1|2, we have |[Y*|? > 1 — 2. Further, setting

ot -5 6T 46

h=aY +be(6,67), a:= , b: 5
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we have I" = hand Dh? — h < D6 (67 — 1/D). Now, using the fact that the potential

gradient is unbounded, we can find a radius r; > 0 large enough such that for all |z| > ry,

DGt -5y (1 25
2O 0 ) ps (= -5t ) [V < -
2, (57 maVi< o

Putting these estimates together, we obtain for |z| > 71:
D6t —6-
(B—1—Dh)Y +|Y*]? ((26) +|V.V|[Dh?* — h])
0

< (B—1— Db )eo + Y42 (D“Q‘“ V.V [Dé— (5+ - ;)D

<A+ (1—gd) (D(‘S;a;‘s_) + |V, V] [D(S‘ <5+ — ;)D < 7.
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5. FIBRE LAY-DOWN MODEL

# Step 4: Choice of parameters.

We now come back to the choice of 67,6, &g, 3 such that k3 < vand 0 < v < 7 hold true.

More precisely, these two constraints translate into the following bound on £:

1+D<5+'2“5_><5<< 0 )(1+D5+). (3.18)

K+ €g

It is easy to see that this bound also implies 1 + D6~ < 8 < 1+ D¢ as required. However, for

this to be possible we need to choose ¢ such that LHS < RHS, in other words,

2+ DT +67)
K (D(a+—5—)) <eg. (3.19)

Since ¢ has to be less than 1 and D(6 —67)/(2+ D (6" + 67)) < 1/3, this bound is only possible
if k € (0,1/3); then it remains to choose 0 < §~ < §t < 1/D such that

D (6t —067) 1
—_— = 3.20
<2+D(5++6)€(0’3> (3.20)
To satisfy all these constraints, we make the choice of parameters (for x < 1/3):

3(1+ k) P (1-3k)

+ . —
o 4D ’ 4D

Then (3.20) holds true, and we can fix ¢y € (0, 1) to satisfy (3.19):
1 1+ 2+ D +67)\) _1/1+9
0Ty "\"D@Er—o) “2\1+3k/)
Finally, we choose § satisfying (3.18) as follows:

[1 +D (§+ o ) + (Hioao) (1 +D<S+)]
n

(1+9:)(7 + 3K) c(1,2).
8(6;@2 + 11k + 1)

1
T2
3

T4

4 Existence and uniqueness of a steady state

4.1 Existence of a Cyp-semigroup

Proving existence of solutions to the perturbed equation (1.2) relies on the a priori estimates from

Section 2:

Theorem 4.1. The linear operator L, : D(L,.) — L*(du,,) defined in (1.5) is the infinitesimal generator
of a Co-semigroup (St)=0 on L2 (dpy).

Proof. Let us denote by L¥ the adjoint of L, in L?(du). Both domains D (L,) and D (L#) contain

the core C and are dense. The operator L, is closable in L?(dyu,). To see this, take a sequence
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4. Existence and uniqueness of a steady state

(fn)nen € D(Ly) converging to zero in L?(dp,) such that the sequence (L fr)nen converges to

some limit h € L?(dyp,.). Then for any test function ¢ € C,

(o, Lfny, ={Lip, fuy, =0 asn—o.

Since the left-hand side converges to <<p, h>n for all ¢ € C, we conclude h = 0 a.e., and so L, is
closable. Similarly, L* is closable. We denote by L, and L* some closed extensions of L, and L*,
respectively. Lumer-Phillips Theorem in the form [254, Corollary 4.4] states that an operator L
generates a Co-semigroup if L is closed and both L and L* are dissipative. Since the core C is dense
in both D(Q,) and D(Q*), which in turn are both dense in L?(dp,), then for any constant C' > 0,
L. — Cld is dissipative if and only if L* — CId is dissipative. Therefore, it remains to show that
I:K — Clld is dissipative for some C' > 0. Since the restriction of I:,{ to C is L, it is enough to prove
that L,, — Cld is dissipative on C for some constant C' > 0. The estimates in Section 2 show that

there exists C' > 0 s.t.

vrec,  (Luf, f),. <C|fl?

for some explicit constant C' > 0, which concludes the proof. O

4.2 Proof of Theorem 1.4

Proposition 2.1 is the key ingredient to deduce existence of a unique steady state. The set
B:= {feLQ(d,uK) L G[f] < % F=0, M; _1}

1
is convex and bounded in L?(d,) by the norm equivalence (2.9). By Theorem 4.1, the operator L,
generates a Co-semigroup (St )¢=0. Then let us show that B is invariant under the action of (S;);>o.
Integrating in time the hypocoercivity estimate (2.10) in Proposition 2.1 for any fi, € L?(du,) with
mass 1, we obtain the bound

GLA(D] < GlfinJe !+ 22 (1 =)

1

and thus

Vt>0,  G[f(t)] < max {G[fm], 3?} :

Since in addition, (S;)¢>¢ conserves mass and positivity, we conclude S;(58) < B for all times.
Integrate again the hypocoercivity estimate (2.10) in Proposition 2.1, now for the difference of

two solutions with same mass, to get
G[Sif — Sih] < e”"™G[f — h]

forany ¢t > 0 and f, h € B. It follows by Banach’s fixed-point theorem that there exists a unique

ut € B such that S;(u') = u foreach t > 0. Let t,, := 27", n € N, and u,, := u". Then Sy—n (u,) =
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5. FIBRE LAY-DOWN MODEL

Uy, and by repeatedly applying the semigroup property,
VkeN,Vm<neN, Sp-m(u,)=1u,. (4.21)

Let us prove that B is weakly compact in L?(dsu,,). Consider a sequence (f,,)nen € B. It has a
cluster point f for the weak convergence since B is bounded in L?(du,), and the corresponding

subsequence is still denoted f,, for simplicity. By lower semi-continuity of the equivalent norm G:

Glf] < liminf G[fn] <2/ -

Further, since f,, > 0 for all n € N, it follows that f > 0 (the set of non-negative functions is a
strongly closed convex set, hence weakly closed). It remains to show that the limit f has mass 1 by
preventing loss of mass at infinity. Use Cauchy-Schwarz’s inequality and the norm equivalence

(29)togetforr >0

ool (L L) (], L5
+ K¢ (Lm Ll fﬁgdgia> (Lm Ll g dgia>
< Ifal? ( | - [ d:;ia>
()l L)

This shows that

Mnf,d
/2
4 V2 1/2 _y deda '
s (((1—51)(14‘%)) <71>> (waLle 2m 0 s,

since SR2 sl efv% = 1. Together with My, = 1 for all n € N, it follows that M; = 1. Hence

f € B. The weak compactness of B implies the existence of a subsequence u,,; of u,, and a function
u € Bsuch that u,,, converges weakly to w in L?(dp,). Letting n; — oo in (4.21) implies that (since

St is a continuous operator)
VmEN,VkEI\L SkQ—WL(U):u.

Finally the density of the dyadic rationals {k2~™ : k € N, m € N} in (0, +0) and continuity of S, (u)
in t for all v € B imply that
Vt=0, Si(u)=u.

This shows the existence and uniqueness of a global stationary state F,, := u € B.
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4. Existence and uniqueness of a steady state

To complete the proof of Theorem 1.4, we apply the hypocoercivity estimate Proposition 2.1 to
the difference between a solution f € L?(du,) and the unique stationary state of the same mass,
M F,, to show exponential convergence to equilibrium in | - ||;: first of all, we deduce from the

contraction estimate (2.10) that
G[f(t) - MfFH] < G[fin - MfFK] e_’“t )

which allows then to estimate the difference to equilibrium in the L?(dyu,)-norm. Indeed, by norm
equivalence, we obtain

1+€1

t)— M E > < —1L
If(t) — My Fyl, T,

| fin = My F[Z e
Hence, we obtain (1.8) with rate of convergence A, := 71 /2.

Remark 4.2. From our previous estimates, we have that G(F},) is uniformly bounded in « for x sufficiently
small. As a consequence, (F);) .o is a relatively weakly compact family in L?(du,), and by uniqueness of
the stationary state in the case k = 0, we deduce that F,, — Fy as & — 0. It could also be proved with

further work that the optimal (spectral gap) relaxation rate is continuous as x — 0.
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Part 111

Scaling Approaches for Social Dynamics
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Thinking Fluids

Do you remember the last time you saw birds in the sky?
Thousands of birds, moving in coordinated patterns?
Often, each bird can only see the birds right next to it,
and yet they manage to create an emerging collective behaviour.
How do they do it?
What if we consider that each bird is reacting according to 3 simple rules:
1. Repulsion — they don’t want to be too close to each other,
2. Attraction — they don’t want to loose the group,
3. Alignment — they want to go in the same direction as their neighbours.
If we put these 3 simple rules into a mathematical model,

we can recreate the same patterns that we observe in nature.

Now, why should we care about birds?
In fact, what matters is
how we can predict the behaviour of a large group of individuals
by knowing only how each one of them reacts to its neighbours.
Imagine zooming out and looking at many many birds from far away,
it looks like a continuous fluid.
Mathematically,
this can be described by a partial differential equation,
or PDE.
PDEs encode the physical laws about how a quantity changes with
time, position and velocity.
Often, these models are so complicated,
that there is no hope of finding explicit solutions.
However, sometimes,
we are able to read the important properties from the model itself.
My research is about proving these properties
and trying to explain the longterm behaviour of solutions
without knowing these solutions explicitly.
The exact same PDE that models the behaviour of birds
can also model many other organisms

from schools of fish, to colonies of bacteria.
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But what about us humans?
You would think that
human communication is far too complicated
to be reduced into function,
right?
Well, actually, in certain situations,
people react instinctively,
and we can use the same type of PDE
to model the motion of pedestrian crowds.
A famous example of dangerous overcrowding
is the Jamarat Bridge in Saudi-Arabia,
where hundreds died during pilgramage.
We can model these disasters
by treating the crowd as a THINKING FLUID,
just like birds, fish or bacteria.
This will allow us to make predictions for panic situations
such as earthquakes and fire escapes,
and hopefully it will help us

to prevent crowd disasters in the future.

What is so fascinating
is that all these different applications
are just special cases of the same class of PDEs.
If we understand more about the general structure of these models,

we will have added a timeless piece of wisdom

to our understanding of the world.

Text for 3-Minute-Thesis Competition
by Franca Hoffmann

Imperial College London, April 2016
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CHAPTER 6

Non-local models for

self-organised animal aggregation

This chapter follows in most parts the article “Non-local kinetic and macroscopic models for self-
organised animal aggregations” written in collaboration with José A. Carrillo! and Raluca Ef-
timie?, and published in Kinetic and Related Models 8 (2015), no. 3, 413 - 441. Section 2.2 was
contributed by Raluca Eftimie and Section 3.2 was contributed by José A. Carrillo. Some of the
results presented in this chapter were already part of my master thesis, namely: (1) a special case
of the parabolic scaling for the kinetic 1D model (2.1) under assumption (2.14) with A\; = 0 (Re-
mark 2.2), (2) the parabolic drift-diffusion limit of the 2D kinetic model (3.18) with A; = 0 (Section
3.1), and (3) a theoretical development of the AP scheme (Section 4) for the 1D kinetic model (2.1)
under scaling assumption (2.14) with A\; = 0. These parts have been included here to allow for a

comprehensive and self-contained presentation of the chapter.

Chapter Summary

The last two decades have seen a surge in kinetic and macroscopic models derived to inves-
tigate the multi-scale aspects of self-organised biological aggregations. Because the individual-
level details incorporated into the kinetic models (e.g., individual speeds and turning rates)
make them somewhat difficult to investigate, one is interested in transforming these models
into simpler macroscopic models, by using various scaling techniques that are imposed by the
biological context. However, not many studies investigate how the dynamics of the initial mod-
els are preserved via these scalings. Here, we consider two scaling approaches (parabolic and
grazing collision limits) that can be used to reduce a class of non-local 1D and 2D models for
biological aggregations to simpler models existent in the literature. Then, we investigate how

some of the spatio-temporal patterns exhibited by the original kinetic models are preserved via

Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
2Division of Mathematics, University of Dundee, Dundee, UK.
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6. SELF-ORGANISED ANIMAL AGGREGATION

these scalings. To this end, we focus on the parabolic scaling for non-local 1D models and apply
asymptotic preserving numerical methods, which allow us to analyse changes in the patterns as
the scaling coefficient € is varied from € = 1 (for 1D transport models) to € = 0 (for 1D parabolic
models). We show that some patterns (describing stationary aggregations) are preserved in the
limit e — 0, while other patterns (describing moving aggregations) are lost. To understand the

loss of these patterns, we construct bifurcation diagrams.

Chapter Content
1 Introduction . . . . . . ... 249
2 Descriptionof IDmodels . . . . ... ... . L L L o 251
2.1 Parabolic limit for non-linear interactions . . . . . .. ... .. ... ... 255
2.2 The preservation of steady states and their stabilityase — 0 . . .. .. 257
3 Descriptionof 2Dmodels . . . . ... ... ... L L 260
3.1 Parabolic drift-diffusion limit . . . . ... ... ... ... ... ... 263
3.2 Grazing collisionlimit . . . . ... ... ... ... .. .. 0L 267
4 Asymptotic preserving methods for IDmodels . . . . .. ... .. ... ... .. 270
4.1 Oddandevenparity . . ... ... ... ... ... . ........... 270
4.2 Operator splitting . . . . .. ... .. .. ... ... ... ... .. ..., 271
4.3 Alternated upwind discretisation . . . . .. ... ... ... ... 271
44 Simulationresults . . . . .. ... L oo L 272
5 Summary and discussion . . ... ... L L Lo 274

Milima haikutani,

lakini binadamu hukutana.

Mountains don’t meet,

but human beings do®.

Kiswahili Proverb

Do not say that you will never meet somebody.
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1. Introduction

1 Introduction

Over the past 10-20 years a multitude of kinetic and macroscopic models have been introduced
to investigate the formation and movement of various biological aggregations: from cells [22, 5]
and bacteria [257] to flocks of birds, schools of fish and even human aggregations (see, for exam-
ple, [290, 83, 251, 86, 124, 27, 112] and the references therein). The use of kinetic or macroscopic
approaches is generally dictated by the problem under investigation: (i) kinetic (transport) mod-
els focus on changes in the density distribution of individuals that have a certain spatial position,
speed and movement direction (or are in some activity state [24]); (ii) macroscopic models focus

on changes in the averaged total density of individuals [87, 144].

Generally, these kinetic and macroscopic models assume that individuals, particles, or cells
can organise themselves in the absence of a leader. The factors that lead to the formation of self-
organised aggregations are the interactions among individuals as a result of various social forces:
repulsion from nearby neighbours, attraction to far-away neighbours (or to roosting areas [93])
and alignment/orientation with neighbours positioned at intermediate distances. These interac-
tion forces are usually assumed to act on different spatial ranges, depending on the communica-
tion mechanisms used by individuals; e.g., via acoustic long-range signals, or via chemical/visual
short-range signals. The non-locality of the attractive and alignment/orientation interactions is
supported by radar tracking observations of flocks of migratory birds, which can move with the
same speed and in the same direction despite the fact that individuals are 200-300 meters apart
from each other [209]. For the repulsive forces some models consider non-local effects gener-
ated by decaying interactions with neighbours positioned further and further away [146], while
other models consider only local effects [282]. In the case of continuous mesoscopic and macro-
scopic models, the non-local interactions are modelled by interaction kernels (see Figure 6.1 for
2D and 1D kernels). The most common choices for these kernels are Morse potential-type ker-

nels [87, 83, 86, 91] (see Figure 6.1(b)) and Gaussian kernels [147, 146, 144, 237] (see Figure 6.1(c)).

Due to their complex structure, kinetic models are difficult to investigate. Although progress
has been made in recent years, mainly regarding the existence and stability of various types of
solutions and the analytic asymptotic methods that allow transitions from kinetic (mesoscopic) to
macroscopic models (see, for example, [189, 190, 23, 83, 59, 124, 123, 42, 28, 179] and the references
therein), it is still difficult to study analytically and numerically the spatial and spatio-temporal
aggregation patterns exhibited by the kinetic models. For example, there are very few studies that
investigate the types of spatio-temporal patterns obtained with 2D and 3D kinetic models (see the
review in [144]). Moreover, the presence of non-local interaction terms increases the complexity

of the models, leading to a larger variety of patterns that are more difficult to analyse. While

249



6. SELF-ORGANISED ANIMAL AGGREGATION

numerical and analytical studies have been conducted to investigate the patterns in 1D non-local

models [146, 145, 56], such an investigation is still difficult in the 2D non-local case (see [153]).

B repulsion range (r) EEM alignment range (al) attraction range (a)
2 i
31 = 1
N
(b) (© "
1.5 | |l
2] i
1!
)|
)|
1’ | |
0.5 ;o
S
o N A
6 42 0-2-4-6 ol e 04— X
0 1 2 3 4 5 0 0.5 1 1.5 2
Y X X

Figure 6.1: 2D and 1D spatial kernels for social interactions. (a) 2D: Attractive (K,), repulsive (K,) and alignment

(K 41) kernels described by equation (3.21); (b) 1D: Morse-type kernels: K o(x) = e~1zl/sr.a_ (¢) 1D: Translated Gaussian
kernels K; as defined in (2.3) with j = r, al, a.

The first goal of this chapter is to start with a class of 1D and 2D non-local kinetic models for
self-organised aggregations that incorporate all three social interactions, and to show, through
different parabolic scaling approaches, that these models can be reduced to known non-local
parabolic models for swarming; see Figure 6.2 for a diagram illustrating this approach. For the 1D
case, similar analytical scalings have been done in the context of bacterial chemotaxis [265] and
for the kinetic model (2.1) for individuals moving along a line [143].

The next aim is to investigate the numerical preservation of patterns between the mesoscopic
and macroscopic scales. We use asymptotic preserving numerical methods [201, 202, 88, 102], to
obtain a better understanding of what happens with the 1D patterns via the parabolic scaling.
With the help of these methods, we investigate numerically the preservation of stationary ag-
gregations (that arise via steady-state bifurcations) and moving aggregations (that arise via Hopf
bifurcations), as the scaling parameter ¢ is varied from large positive values (¢ = 1) corresponding
to the kinetic models to zero values corresponding to the limiting parabolic models. To visualise
the transitions between different patterns as ¢ — 0, we construct bifurcation diagrams for the am-
plitude of the solutions. For the 2D kinetic models, we focus on two analytical scalings that lead
to two different non-local parabolic models. Our final target is to show that by considering such
scaling approaches, we may lose certain aspects of the model dynamics - as emphasised by the
numerical simulations in the 1D case.

The chapter is structured as follows. Section 2 contains a detailed description of the 1D non-

local models for animal aggregations, followed by the parabolic scaling of these models. We also
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2. Description of 1D models

1D 2—speed 1D Fokker—Plank

hyperbolic '
model (in space) model

)
2D Fokker—Plank

(in space) model

2D kinetic

model

)
2D Fokker—Plank

(in orientation)

model

Figure 6.2: Schematic diagram of the scaling and reductionist approaches taken here.

investigate analytically the steady states of the kinetic and corresponding parabolic models. Sec-
tion 3 contains a description of the 2D non-local models, followed by a parabolic limit and a “graz-
ing collision” limit, which lead to different types of macroscopic models of parabolic type. Section
4 focuses on asymptotic preserving methods for 1D models, and shows the spatial and spatio-
temporal patterns obtained with the parabolic and kinetic models, for some specific parameter
values. Here, we come back to the steady states of the 1D kinetic and parabolic models, and inves-

tigate them numerically. We conclude in Section 5 with a summary and discussion of the results.

2 Description of 1D models

The following one-dimensional model was introduced in [147, 146] to describe the movement of
the densities of left-moving (v ™) and right-moving (u*) individuals that interact with conspecifics

via social interactions:

out out L Clpa

pn + Eraiaial AT u7 ]+ u” A7 [u™,u™], (2.1a)

Ou”  OUT b T A=t -

% Ty T A ut,u™ ] —u A [ut,u], (2.1b)
ut(x,0) = u (2). (2.10)

Here 7 is the constant speed and A% is the rate at which right-moving individuals turn left. Sim-
ilarly A~ is the rate at which left-moving individuals turn right. To model the turning rates, we
recall the observation made by Lotka [227]: “the type of motion presented by living organisms [...]
can be regarded as containing both a systematically directed and also a random component”. Since

the rates A* are related to the probability of turning (see the derivation of model (2.1) in [144]),
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6. SELF-ORGANISED ANIMAL AGGREGATION

they are positive functions defined as:

Mut,u™] =X+ Aef(ynut, u]) + Asf(yplut,u]) (2.2)

=A1+ 2 (S unlut u)) + flyblut D)),

where we denote by u = u™ + u~ the total population density and all other terms will be defined

below. In this chapter, we generalise the turning rates in [147, 146, 144] and assume that:
¢ individuals can turn randomly at a constant rate approximated by \; [147];

e individuals can turn randomly in response to the perception of individuals inside any of
the repulsive/attractive /alignment ranges (and independent of the movement direction of
their neighbours). These non-directed interactions with neighbours are described by the term

yn[ut, u™] with turning rate \o;

¢ individuals can turn in response to interactions with neighbours positioned within the re-
pulsive (r), attractive (a) and alignment (al) zones, respectively (see Figure 6.1(a)) [147]. This
turning is directed towards or away from neighbours, depending on the type of interaction (at-
tractive or repulsive). For alignment interactions, individuals turn to move in the same di-
rection as their neighbours. The non-local directed interactions with neighbours are described

by terms y3[u*, u~] with turning rate ).

If A3 # 0, we denote by \J the quotient of the turning rates \2/)3. This choice of notation is
motivated by the corresponding 2D model (Section 3). The connection between the 1D model (2.1)
and the 2D model (3.18) will be made clearer in Remarks 3.1, 3.2, 3.3 and 3.4. The turning function
f(-) is a non-negative, increasing, bounded functional of the interactions with neighbours. An
example of such functionis f(Y) = 0.5+ 0.5 tanh(Y — yo) (see [146]), where yo is chosen such that
when Y = 0 (i.e., no neighbours around), then f(0) ~ 0 and the turning is mainly random.

To model the long-distance social interactions that lead to turning behaviours, we define the
interaction kernels in 1D, see Figure 6.1, as decreasing functions of the distance between the ref-

erence position z (of the population density) and the mid of the interaction ranges s;, j = r,al, q,

Kj(z) = ———e(@75)"/2m]), 2.3)

for z > 0 and zero otherwise, with j = r, al, a denoting short-range repulsion (X), medium-range
alignment (K;) and long-range attraction (k) interaction kernels. Here, m; = s;/8 controls the
width of the interaction range j.

For the non-directed density-dependent turning we define the turning kernel, KV (z) = K (z)+

KN(—x) withKY = ¢, K, + quKa + qu K, Obtained by superimposing the kernels K, j = r, al, a.
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2. Description of 1D models

Here ¢;, qu and ¢, represent the magnitudes of the repulsive, alignment and attractive social in-
teractions. Note that in [146], A = 0 and the density-dependent non-directed turning term does
not exist. However, in 2D, this term appears naturally when we incorporate random turning be-

haviour (as discussed in Section 3). With these notations we may define
yn[u] = KN «u, with u=u" +u",

for the non-directed turning mechanisms. We assume here that individuals turn randomly when-
ever they perceive other neighbours around (within the repulsive, alignment and attractive ranges).

For the directed density-dependent turning, we define
yplu®,u™] =y [u u7] =y [u® um] 4y [u® w7 (2.4)

Here, yjir [ut,u™], j = r,al,a, describe the directed turning in response to neighbours within the
repulsive (r), alignment (al) and attractive (a) social ranges (as in [147]). As we will explain shortly,
the direction of the turning will be given by incorporating movement direction towards or away
conspecifics. For this reason, y+ and yF enter equation (2.4) with opposite signs.

The density-dependent turnings depend greatly on how individuals communicate with each
other, namely whether they can emit (perceive) signals to (from) all or some of their neighbours.
Two particular situations, described by models called M2 and M4 as in [146] (see Figure 6.3) are

considered:

* Model M2: Individuals communicate via omni-directional communication signals, and thus
they can perceive all their neighbours positioned around them within all social interaction
ranges. For instance, the majority of mammals communicate via a combination of visual,
chemical and auditory signals, which allows them to receive/send information from/to all
their neighbours. With this assumption (see Figure 6.3(a)), the terms yfmal are defined as

follows:

y}:a[qu, uT] = qnaL Kyo(s)(u(z + s) — u(z F s))ds, (2.5a)

—+l
8
+
»
~—
_l’_
<
+
—~
8
H
N

YL uT] = qa f ) Ka(s)(u (2.5b)
0

Here, ¢; describe the magnitudes of the social interactions associated to the interaction ker-
nels defined in (2.3). To understand the effect of these terms on the turning rates, let us focus
on y;, for example. If u(x + s) > u(x — s), then y;" enters \™ with positive sign, suggest-

ing a higher likelihood of turning, to avoid collision with neighbours ahead at = + s. If, on
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6. SELF-ORGANISED ANIMAL AGGREGATION

the other hand, u(z + s) < u(z — s), then y," enters A\* with a negative sign, suggesting a
lower likelihood of turning. In this case, the individuals at z will keep moving in the same
direction, to avoid collision with neighbours behind at  — s. Note that the directionality
of neighbours influences only the alignment interactions (the attractive and repulsive inter-
actions being defined in terms of the total density u). Also, for this particular model, the

random density-dependent terms are given by
0
yn[u] = f KN(S)(u(x + 8) + u(z — s))ds. (2.6)
0

* Model M4: Individuals communicate via unidirectional communication signals, and thus
they can perceive only those neighbours moving towards them. For example, birds commu-
nicate via directional sound signals, and to ensure an effective transmission of their signals
they orient themselves towards their targeted receivers [52]. With this assumption (see Fig-

ure 6.3(b)), the terms yf’a,al are defined as follows:

o0
y:fa"al [ut,u™] = ¢raa f K, o.01(8) (u*(x +5)—ut(zF s))ds (2.7)
0

Here, the directionality of neighbours influences all three social interactions. Moreover, for

this model, the random density-dependent terms are given by
0
yn[ut,u] = J KV (s) (u™(z +s) +ut(z — s))ds. (2.8)
0

In this equation, we assume that individuals turn randomly in response to v~ and u* in-
dividuals (i.e., in (2.8) we add all perceived individuals; this is in contrast to equation (2.7),
where we subtract individuals positioned ahead from individuals positioned behind, to im-
pose directionality in the turning behaviour). Note that in (2.8), yn does not depend any-
more onu = ut + u~ (as in (2.6)), since the individuals at z cannot perceive all their neigh-

bours at z + s.

We focus on these two particular models because: (i) the model (2.1)+(2.2)+(2.5)+(2.6) assum-
ing A1 = 0 has been generalised to 2D; (ii) the model (2.1)+(2.2)+(2.7)+(2.8) assuming A, = 0 has
been investigated analytically and numerically, and showed that it can exhibit Hopf bifurcations
(even when ¢,; = 0), which give rise to spatio-temporal patterns such as rotating waves and mod-
ulated rotating waves [56]. In contrast, model (2.1)+(2.2)+(2.5)+(2.6) with A, = 0 does not seem to
exhibit rotating waves when ¢,; = 0, see [146].

To complete the description of the model, we need to specify the domain size and the boundary
conditions. Throughout most of this chapter, we will consider an infinite domain. However, for
the purpose of numerical simulations, in Sections 2.2 and 4 we will consider a finite domain of

length L (i.e., [0, L]) with periodic boundary conditions: u*(L,t) = u™(0,t), w(0,t) = u™(L,t).
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(a) model M2: . (b) model M4:
u U ‘
*~—— *~—t
at 7 ut ut at L
o o —o o o *~—t
1 1 1 1 1 1
X—=S X X+s X—=S X X+
u U
it 0 ut it u. u
e e g - *~—
1 1 1 1 1 1
X=5 X X+s X=S5 X X+S

Figure 6.3: Diagram describing the mechanisms through which a reference individual positioned at z (right-moving —
top; left-moving — bottom) perceives its neighbours positioned at « — s and « + s. The reference individual can perceive
(a) all its neighbours (model M2 in [146]); (b) only its neighbours moving towards it (model M4 in [146]).

This assumption will also require wrap-around conditions for the kernels describing the non-local
social interactions, see Section 4. For large L, this assumption approximates the dynamics on an
infinite domain.

In the following, we show how this hyperbolic 2-velocity model can be reduced to a parabolic
equation by considering suitable scalings, which depend on the biological assumptions. Of course,
to be useful in practice, these parameters have to be calibrated and adapted to particular species as
in [183, 188]. The scaling arguments are classically obtained by writing a dimensionless formula-
tion of the problem. We refer to [265] in bacterial chemotaxis and [6] in semiconductor modelling
for a detailed description. After this dimensionless rescaling, we typically end up with two dif-
ferent time scales whose balance determines our small parameter: the drift time and the diffusion
time.

We start in Subsection 2.1 with a parabolic scaling, which describes the situation where the
drift time of a population is much smaller than its diffusion time. To this end, we discuss two
separate cases (i.e., social interactions described by non-linear or linear functions f(y) in (2.2)),

which lead to two different parabolic equations.

2.1 Parabolic limit for non-linear interactions

Next, we focus only on model M2 (i.e., equations (2.1)+(2.2)+(2.5)+(2.6)), since the results for model
M4 are similar. The scaling argument applied in [189] transforms the hyperbolic system (2.1) into
a parabolic equation. One can scale the space and time variables (z = 2* /¢, t = t*/e?, withe « 1),

or can scale the speed () and the turning rates (A\1,2,3). In both cases, we consider the rescaled
interaction kernels K7 (z*) = 1K 7(%) in the expressions for y;-i, j = ryal,a. Here, we scale the

time and space variables to be consistent with the approach in Section 3.1. As mentioned above,
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6. SELF-ORGANISED ANIMAL AGGREGATION

the scaling parameter ¢ depends on the biological problem modelled. For example, in [189] the
authors connect ¢ to the ratio of the drift (74,5:) and diffusion (74;5) times observed in bacteria
such as E. coli, where 74,4 ~ 100 seconds and 74;¢5 ~ 10* seconds, and thus ¢ ~ O(1072).
Similar scaling arguments are used in [265, Appendix] to analyse the ability of parabolic scalings
to describe travelling pulses.

To perform the scaling, let us re-write model (2.1) in terms of the total density u(z,t) and the

flux v(z,t) = y(u™ (z,t) — u™ (x,t)) of individuals (see also [189, 192]):

ou ov
277 _— =
Sy + S 0, (2.9a)
50V 50U _ + n _
e + ey i Yu(A [u,v] = A [u,v]) — v(A* [, v] + A7 [u,0]), (2.9b)

with initial conditions u(x,0) = wo(z), v(z,0) = vo(x). For clarity, here we dropped the * from
the rescaled space (z*) and time (¢*) variables. In addition, we assume that individuals have a

reduced perception of the surrounding neighbours for small values of ¢, [143]:

fe (bt o) = e (sl [, o). £ (wlad) = < (uwlud). (2.10)
where f enters the turning functions A% (2.2):
NLIHATT = 2x+ 2 ef(unl]) + s (FBLD + FWplD),

NTI=T = dee(FplD) - FhlD)-

By eliminating v = £ { 2% from equations (2.9), and taking the limit ¢ — 0, we obtain the followin
y g T Ot q g g

parabolic equation

u 2 U
o a () = 3 (sl ~ fB L)) 1)

We note here that the non-local terms f(y7[u]) now depend only on the repulsive and attractive
interactions. The reason for this is that the alignment interactions are defined in terms of u* =

(u £ %v)/Q = 0.5(u + % §__e%0u/ot). Ase — 0, the u terms in (2.5) cancel out, and the integrals

x/e
approach zero. Equation (2.11) can be re-written as
ou 0 ou 0

with diffusion rate Dy = 7%/(2)1) and drift rate Sop = A37/(2A1). The velocity V (u) depends on the
communication mechanism incorporated. For example, for model M2 we have y5[u] = £ K = u,

and so the velocity is given by

where we define
Ksu=K"su—K %u, Ri*u=f K(s)u(z % s)ds,

K = ¢ K, — qu.K,. (2.13)
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2. Description of 1D models

For model M4, we have yi[u] = £0.5K #u, and so the velocity is quite similar: V[u] = f(—0.5K =
u) — f(0.5K * u), the factor 0.5 appearing from u* = 0.5(u + ~v).

Remark 2.1. We observe that the random density-dependent turning f(yn|[u]) does not appear in this

parabolic limit. This is the result of the scaling assumptions (2.10).

Remark 2.2. Here, the turning functions f(-) were chosen to be bounded, since individuals cannot turn
infinitely fast when subject to very strong interactions with neighbours [146, 145]. However, for simplicity,
many models consider linear functions: f(z) = z (see, for example, [237, 239, 153]). The choice of having
bounded or non-bounded turning functions f(-) has further implications on the models. In particular, for
linear functions, the arqument yi = yF — yF + y& can be either positive or negative (depending on
the magnitudes of the social interactions), with yf, = —yp,. For very small constant and non-directional
turning rates (A1, A2 ~ 0), this can lead to A\ < 0 and A\~ > 0, or vice versa. Now the u™ AT terms add to
the u= A~ terms, causing both ut and u~ populations to decide very fast to move in the same direction (in
fact, one of the populations is reinforced to keep its moving direction). This is different from the case with
bounded turning functions, where if y5, = —yp « 0, then 0 < AT ~ A + Aof (yw[ut,u™]) < A™. Soif
A, A2 &~ 0, then u™ AT ~ 0 and hence population ™ is not reinforced to keep its movement direction.

Because the 2D kinetic model that we will investigate in Section 3 assumes f to be a linear function, with a
very weak directed turning behaviour (e)\3), we now consider the case f(yn|[u]) = yn[u] = K~ * u and

f(y5[u]) = ey [u], and so the turning rates can be written as
MuTu™] =M + X KN su+ e \gyh[ul . (2.14)

By taking the limit ¢ — 0 in (2.9), we obtain the following parabolic equation with density-dependent

coefficients:
0 0 0 0
W (D[“]aD — 2 (STulu(pu] ~ y[u) ). (2.15a)
— ’72 _ )\3’7
Dlu] = S0 T KN 1) and S[u] = SO0 T K ) (2.15b)

This expression is similar to the asymptotic parabolic equation (3.30) for the 2D model. We will return to

this aspect in Section 3.1.

2.2 The preservation of steady states and their stability ase — 0

The spatially homogeneous steady states describe the situation where individuals are evenly spread
over the whole domain. In the following we investigate how these steady states and their linear
stability are preserved in the parabolic limit. To this end, we focus on the more general case of
non-linear social interactions (the case with linear interactions is similar). For simplicity we as-

sume here that Ay = 0 and ¢,; = 0. To calculate these spatially homogeneous states we need to
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6. SELF-ORGANISED ANIMAL AGGREGATION

define A = Sé (ut + u™) dz the total population density. For simplicity, throughout this section

we assume that A = 2; similar results can be obtained for different values of A.
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qr-qa
————————
w1 = - |02 - -
<«
e=0.02 —
0.5]

0 20 40 60 80 100
qr-qa

Reo) SL e09 o095 02
Imog) v v e ¢
- 0.21
(b) 021w =Ar2 £ k=1L ©
0.1 o
- g
1 OA‘\e/' ° 0
\
-0.11 !
oo L Ny
o 1 2 3 4 5 ’

Figure 6.4: (a) Spatially homogeneous steady states u™* for model (2.9) with communication signals
(2.7) and (2.8) (communication mechanism M4), for different values of €. The small inset figure
shows the 5 possible steady states occurring fore = 1and ¢, —q, € (2, 3.7) (see the black continuous
curve); (b) Dispersion relation o (k;) for M4 (given by (2.16)), showing the stability of the spatially
homogeneous steady state u* = A/2, for different values of ¢; (c) Dispersion relation o(k;) for
M2, for the stability of the spatially homogeneous steady state u* = A/2, for different values of
e. The continuous curves describe Re o(k;), while the dotted curves describe Im o (k). The small
diamond-shaped points show the discrete wavenumbers k;,j = 1,...,7, with k; = 27j/L (and
thus k; € (0,5) for j = 1,..,7and L = 10). The parameter values are: (b) g, = 1.545, ¢, = 2.779;
(€) go = 1.5, ¢ = 0.93. The rest of parameters are: ¢,; = 0, A\; = 0.2, \2 =0, A3 =09, A = 2.

Figure 6.4(a) shows the number and magnitude of the steady states u* displayed by (2.9)-(2.10)
with communication mechanism M4, for different values of ¢, as one varies the difference in the
magnitude of the repulsive and attractive social interactions, ¢, — g,. For medium ¢, the model can
display up to 5 different steady states: one “unpolarised” state (u*,u™) = (u*,u*) = (A4/2, A/2)
(where half of the individuals are facing left and half are facing right), and two or four ”"polarised”

states (u*, A — u*), (A — u*,u*) characterised by u* < A/2 or u* > A/2. Two of these "polarised”
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2. Description of 1D models

states exist only in a very narrow parameter range: e.g., for ¢ = 1, they exist when ¢, — ¢, € (2, 3.7).
The other two “polarised” states exist for any ¢, — g, > 2. For a calculation of the threshold values
of ¢ — g, that ensure the existence of 3 or 5 steady states see [147]. As ¢ decreases, the magnitude
of the polarised states decreases (i.e., the differences between the number of individuals facing
right and those facing left are decreasing). Moreover, for small ¢, these polarised states appear
only when repulsion becomes much stronger than attraction (i.e., ¢ — ¢, » 10). Whene = 0
there is only one steady state u* = A/2. Since this state exists for all ¢ > 0, from now on we will
focus our attention only on this state. Note that for ¢,; = 0 and for the communication mechanism
M2 (not shown here), the non-local attractive-repulsive terms vanish, and there is only one steady
state, u* = A/2 = 1, which does not depend on «.

Models (2.1) and (2.9) do exhibit a large variety of local bifurcations: codimension-1 Steady-
state and Hopf bifurcations [145] as well as codimension-2 Hopf/Hopf, Hopf/Steady-state and
Steady-state /Steady-state bifurcations [56]. Next we focus on the parameter region where two
such bifurcations can occur. We choose a Hopf/steady-state bifurcation for M4 (Figure 6.4(b))
and a steady-state bifurcation for M2 (Figure 6.4(c)), and investigate what happens when ¢ — 0.
To identify the parameter regions where these bifurcations occur, we consider a finite domain of
length L, and investigate the growth of small perturbations of spatially homogeneous solutions.
We assume utocu® + ayexp(ot +ikjx), with k; = 27j/L, j € N*, the discrete wave-numbers, and
lat| « 1. We substitute these solutions into the linearised system (2.9), and by imposing that the
determinant of this system is zero, we obtain the following dispersion relation, which connects o

(the growth/decay of the perturbations) with the wave-numbers k;:
e?0% + 0(2L5 — RsRe(K™)) +7%k? — vk; RoyIm(K™T) = 0, (2.16)

where LS = \; +eX3£(0), R5 = 2eu* A3 f'(0), and K+ = Re(K*) +iIm(K*) the Fourier transforms
of K % u described in equations (2.13). Note that the wave numbers k; that become unstable (i.e.,
for which Re(o(k;)) > 0) determine, at least for a short time, the number of “peaks” j that emerge
in the spatial distribution of the density.

Figure 6.4(b) shows the stability of the spatially homogeneous steady state u* = A/2 for model
M4 as given by the dispersion relation (2.16). Even if the wave-numbers k; are discrete (see the
diamond-shaped points on the x-axis of Figure 6.4(b)), we plot o(k;), j > 0 as a continuous func-
tion of k; for clarity. To discuss what happens with a Hopf bifurcation as ¢ — 0, we focus in
Figure 6.4(b) on a parameter space where such a bifurcation occurs (i.e., where Re(c(k;)) = 0
in (2.16)): q, = 1.545, ¢, = 2.779, A1 = 0.2, Ay = 0, A3 = 0.9 and ¢ = 1 (see also [57]). For
these parameter values, three modes become unstable at the same time: a steady-state mode &
(Im(o (k1)) = 0; associated with stationary patterns with 1 peak) and two Hopf modes k4 and ks
(Im(o(ka5)) > 0; associated with travelling patterns with 4 or 5 peaks). As ¢ — 0, the steady-state
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6. SELF-ORGANISED ANIMAL AGGREGATION

mode persists while the Hopf modes disappear (i.e., 0 < Re(o (k1)) « 1 and Re(o(ks5)) < 0; see
Figure 6.4(b).) This can be observed also from equation (2.16): as ¢ — 0, we have ¢ € R. A similar
investigation of the local stability of the spatially homogeneous steady states associated with the
non-local parabolic equation (2.12) shows that this equation cannot have complex eigenvalues (i.e.,
Im(o(k;)) = 0 for all j > 0), and thus cannot exhibit local Hopf bifurcations [58].

Figure 6.4(c) shows the stability of the spatially homogeneous steady state u* = A/2, for model
M2, as given by the dispersion relation o (k;):

20 + 0(2L5) + 7v*k} — 2vk; RoIm(K ™) = 0. (2.17)

For g, = 1.5, ¢ = 093, A1 = 0.2, A = 0, A3 = 0.9 and ¢ = 1, model M2 exhibits a steady-
state bifurcation, i.e., Re(c(k;)) = Im(o(k;)) = 01in (2.17). In particular, two steady-state modes
are unstable at the same time: k; and k2 (both associated with stationary patterns). Ase — 0,
the two modes remain unstable. Hence, we expect that the spatial patterns generated by these
modes will persist as ¢ — 0. We will return to this aspect in Section 4.4, when we will investigate
numerically the mechanisms that lead to the disappearance of the Hopf modes and the persistence

of the steady-state modes, as ¢ — 0.

3 Description of 2D models

The 2D equivalent of model M2

b:(_X‘¢) “:\ﬁ(x+s, 0)
: X X+$
—e '

Figure 6.5: Caricature description of the M2 mechanism in 2D (where individuals can perceive
all their neighbours within a certain interaction range). We assume that a reference individual
is positioned at x = (z,y) and moves in direction ¢. Its neighbours are at various spatial posi-
tions x + s within a certain interaction range (e.g., alignment range). The interaction ranges are
described by the 2D kernels (3.21); see also Figure 6.1(a).
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3. Description of 2D models

An attempt to generalise a specific case of the 1D model (2.1)-(2.2)-(2.5)-(2.6) to two dimensions
was made by Fetecau [153]. The Boltzman-type model described in [153] incorporates the non-

local social interactions in the re-orientation terms:

T

+ Y€ - vxu = 7>\(X7 ¢)U + J T(X7 ¢/7 QZ/))U(X, QSI, t)d¢l (318)

—T

u

ot
Here, u(x, ¢,t) is the total population density of individuals located at x = (x,y), moving at a
constant speed v > 0 in direction ¢. The term e, = (cos(¢),sin(¢)) gives the movement direction
of individuals. The re-orientation terms, A(x, ¢) and T'(x, ¢', ¢) depend on the non-local interac-
tions with neighbours, which can be positioned in the repulsive, attractive, and alignment ranges
depicted in Fig. 6.1(a). Thus, these terms have three components each, corresponding to the three

social interactions:

T(x,¢',¢) = Tu(x,¢',¢) + Tu(x.¢',¢) + Tr(x, ¢', ).

In contrast to the model in [153], here we assume that the re-orientation terms

T

M, ¢) = f Ty(x, ', 6)dd, j = raal

—T

have both a constant and a density-dependent component:

Tau(x,¢',¢) = %Jr (3.19a)

)‘3 qal J\ fRQ Kgl(x - S)Kgl(oa ¢/)(JJ@[(¢/ - ¢7 ¢/ - Q)U(S, 97 t)d8d07

Tra(x, ¢, ) = 12y (3.19b)

T oom
A3 Qr.a J J Kﬁa(x —8)K; . (8,%, 0" )wra(¢ — ¢, ¢" —P)u(s, 0,t)dsdh.
—T RQ
Therefore, the turning rate A(x, ¢) = Agi(X, @) + A\a(X, @) + A\.(x, ¢) is defined by
A=\ + A\ [u(x, 0)], (3.20)

with A\; = 7, + a1 + 1, and with A[u(x, ¢)] being given as the integral over ¢’ € [—m, 7] of the sum

of non-local terms in (3.19) with ¢ and ¢’ interchanged.

Remark 3.1. By defining the constant basic turning rate to be \y = 1, + a1 + 1a, We generalised the model
in [153] (where Ay = 0). Note that the turning rates here are linear functions of the non-local interactions
with neighbours. This is in contrast to the more general non-linear turning function f we considered in
Section 2.1 for the 1D hyperbolic model. In what follows, we are interested in non-constant turning rates

Aj(x,9¢"), 7 = r,a,al, and so we will henceforth assume Az # 0.

Asin[153], Aj, j =, a, al, are defined in terms of both distance kernels and orientation kernels.

The 2D distance kernels K¢, j = 7, a, al are given by

1
Ki(x) = Afe—wx“ytdﬂ/m? . j=raal, (3.21)
J
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where constants A; are chosen such that the kernels integrate to one. The orientation kernels
K¢ measure the likelihood of turning in response to the movement direction of neighbours (for

alignment interactions) or in response to the position of neighbours (for repulsive and attractive

interactions):
1
gl(97¢) = %(1_COS(¢_9))>
Kos.%,0) = 5-(1+cos(d ),
Ki(s.%,6) = 5-(1—cos(op— ),

where 1) is the angle between the positive z-axis and the relative location s — x of the neighbours
at s with respect to the reference individual at x. Finally, w describes the tendency to turn from

direction ¢’ to direction ¢, as a result of interactions with individuals moving in direction 6:
w(¢' —¢,¢' —0) =g(¢ —d— R(¢' —90)),

for some suitable choice of g. Note that in the case A\; = 0, the function w describes the probability
of re-orientation in the sense discussed in [167] and thus we require §w(¢' — ¢, ¢’ — ) d¢ = 1. For
example, g could be a periodic function that integrates to one:

Z e~ () , e (—m,m),

9(0) = ﬁ
z€Z

with o a parameter measuring the uncertainty of turning (with small ¢ leading to exact turn-
ing) [153, 167]. Another typical choice could be the von Mises distribution, as in Vicsek-type mod-
els [120].

On the other hand, when A\; > 0, then g can be interpreted as a small re-orientation perturbation
from the random turning behaviour and so w satisfies {w(¢' — ¢, ¢’ — ) dp = 0 and therefore g is

required to be odd.

Remark 3.2. Fetecau [153] showed that by imposing the turning angle to have only two possible values
¢ = +m, the 2D model (3.18) can be reduced to the 1D model (2.1) for a specific choice of turning rates
AE[ut, u™]. More precisely, considering the more general turning operators (3.19a) and (3.19b), we recover
(2.2) with A1, A3 = 0, Ao = 0 for a linear turning function f(z) = z, and with the communication

mechanism
1 © _
y% [U+, u_] = EQGZJ K (-77 - S) (U+ (S, t)) ds
—

+ %Qa jio Koz —s) (ut(s,t) + u(s,1)) ds

+ %qrf K (z—s) (u(s,t) + u(s,t)) ds..
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This is a similar turning behaviour to model M2 in [146], since individuals receive and emit omni-directional
communication signals, but with the function f linear. Moreover, as we will show in the next section,
even if the 2D model (3.18) can be reduced to a special case of the 1D model (2.1) without Ay in (2.2),
the parabolic scaling of the 2D model reduces to a special case of the parabolic scaling of the 1D model,
which includes a Ay term for non-directed turning. As we will see shortly, this 2D parabolic scaling leads
to the natural appearance of a non-directed interaction contribution, suggesting that there are more subtle

differences between the 1D and 2D models.

The diffusion limit (i.e., z = z*/e, t = t*/¢?) of a transport model similar to (3.18), but with
constant turning rates A was discussed in [189, 190]. In the following we consider the parabolic

limit for model (3.18) with density-dependent turning rates.

3.1 Parabolic drift-diffusion limit

We focus on the case where individuals are only influenced slightly by the presence of neighbours,
i.e., the turning mechanism can be assumed to be a small perturbation of a uniform turning prob-
ability. In this case, we will show that the Boltzmann-type equation (3.18) can be reduced to a
drift-diffusion equation in the macroscopic regime.

We consider the scaling t = t*/e%, x = x* /¢, where ¢ « 1 is a small parameter. Since the veloc-
ity in the new variables is of order 1/¢, then we make the scaling assumption that an individual’s

turning behaviour is only influenced slightly by the presence of neighbours:

A A
Tlul(x, @', 6) = 5=+ 52 K% p(x,t) + € X3 Blul (x,¢', ). (3.22)

with p(x,t) = {"_u(x, ¢,t) dp, and where we define
K(x) := qu K (%) + ¢a K (%) + ¢, K} (%)

to be the social distance kernel. As we have done in the 1D case, we have separated the non-directed
and directed turning rates.

If A3 # 0, we factorise again the turning rate A3 corresponding to the directed interactions
and write A\ = \y/\3 the quotient of turning rates. With this notation, A[u(x, ¢)] in (3.20) can be

written as

/_\[u(x, )] = Ay K% s u(x,¢,t)+¢ yp [u(x, ¢, t)], (3.23)

with yp[u] = { Blu](x, ¢, ¢)d¢’. Note that the turning rate A given by (3.20)-(3.23) corresponds to
the 1D turning rates (2.14) with this specific choice of yp[u]. The scaling assumption (3.22) can be

derived by introducing reduced perception of directionality of neighbours into the re-orientation

263



6. SELF-ORGANISED ANIMAL AGGREGATION

function w and into the orientation kernels K jq,
9;(0) = Xy +€G;(9),
1
al(0,0) = 5 (1 —c cos(¢—0))
s
1
K:(S,X,(b) = g (1 +e€ COS(d)_w)) )
1
Kg(S,X,¢) = 27 (1 — € Cos (¢ - w)) )
T
where G;(¥), j = r, a, al are signal response functions to be chosen according to the biological con-
text. Substituting these expressions into the re-orientation terms (3.19), we define Ay = 7g;+ 7.+,
and we obtain (3.22) with a precise expression for the social response function Blu].
If Ay = 0, we further have Ay = A3/27 and S:r Gj(¢' —¢— R(¢ —0))do = 0,5 = r,a,al as
the probability to turn to any new angle is 1. In addition, we want the turning function R(+) to
be close to an unbiased turning mechanism. This can be expressed by taking R(J) = €9, which

indeed corresponds to weak interaction between individuals, [167]. We obtain Blu] = Bgy[u] +
B,[u] + B,[u] with

Balul(¢', ¢) = qalGal(¢ ) Ky = p(x,t) (3.24)
_7(1alJ K¢ x—s)fr cos (¢' — 0) u(s,0,t)dods,

—T

[ ](¢ d)) QTa r,a ¢ ¢) *p(x t) (325)
J- (x —s)cos (¢' — ) p(s,t)ds.

Remark 3.3. Note that in 2D, A3 is introduced as the relative strength of non-directed and directed turning
kernels. This is part of the scaling assumption in 2D, whereas in 1D, we introduced it as part of the model
(2.1)-(2.2) before rescaling. Note that \ = 1/2 in Fetecau’s model where no distinction is made between

directed and non-directed turning.

Let us introduce

d (% _1 d i % 4/ _i ﬁ /
K*(X)—EK( >7 B*(X,¢7¢)_27TB<8’¢’¢>.

3

Simplifying the notation by dropping *, system (3.18) writes in the new variables as

1
e20u+eves Vyu = o (A1 + A2 K9 p) (p — 2mu) (3.26)

+eX32m f_ B(x, ¢, ¢)u(x, ¢, t)de’

X2 u(x, 1) f, B(x,¢,¢)d¢’ .

Using a Hilbert expansion approach, u = ug + eu; + £?us + ..., and defining the macroscopic

densities p; = S:T u; d¢ for i € Ny, we obtain at leading oder a relaxation towards a uniform
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3. Description of 2D models

angular distribution at each position:

UO(Xa qbvt) = pO(Xa t)F(¢)7 (327)
1
F(¢) = %lqﬁe(—ﬂ',ﬂ']'

Integrating (3.26) with respect to the direction of motion ¢, we obtain the continuity equation

Otpo + v J €y - Vxuide = 0. (3.28)
Comparing orders of € and using (3.27), we can derive an expression for u; in terms of wy, po, p1,
1 ey - Vxug
Uy =— — -z - -
! 27Tp1 ’y)\1+)\2Kd*pO
A3 g
—_— B ' ¢) — B ) de'.
v | Bl 6.0) - Bll(x.0.6) a0

Substituting into (3.28), we arrive at a macroscopic drift-diffusion equation of the form

dtpo = Vx . (D[po] Vxpo — poklpo]) ,

where the macroscopic diffusion coefficient D[pg] = v2/(2(A\1 + A2 K% * py)) and the social flux

)\ T " / /
k[po] = #fzd*po LW Lﬂ (eg —eg) Blpo](x, ¢, ¢)d¢'de (3.29)

are both described in terms of microscopic quantities. In the context of collective behaviour of

animal groups, we make two further assumptions:

(i) Individuals can process information in a similar manner for all three types of social interac-
tions:

Ga(9) = Go(9) = Ga(¥) = G(Y) V0.

(ii) Individuals have symmetric perception, in other words, they can process information equally

well from left and right. Then the turning probability function w is bisymmetric,

w(io@ 7ﬂ) = w(a7 B) )
which implies symmetry of the signal response function G.

Under these assumptions, the first term of the social response functions B;[u] in (3.24) and (3.25)
cancels when substituted into the social flux (3.29). The second term contains the factor A which
cancels with A3 in (3.29), leaving us with a factor of A, in the social flux. Using (3.27), we can

simplify the social flux even further and obtain the drift-diffusion equation

dtp = Vx. (Do[p]Vxp) — Vx. (pk[p]), (3.30a)

2
Dolp] = 30 T ;2 KTsp)’ (3.30b)
k[p](x, 1) = #”;dp <qr Ki(x) ﬁ — ga K2(x) i) “p. (3.300)
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6. SELF-ORGANISED ANIMAL AGGREGATION

For notational convenience, we dropped the zero in pg. Note that this equation is similar to the

1D drift-diffusion equation (2.15) obtained via the parabolic limit for linear social interactions.

Remark 3.4. Integrating the 2D scaling assumption (3.22), we have
NG, ) = M X K plo, ) + £ ha [ Blul(x, ¢/, 6)do.

which is a particular case of the 1D scaling assumption (2.14). More precisely, the 2D turning rate A\(x, ¢')
corresponds to (2.2) on the projected velocity set {0, 7}, with a linear turning function f(z) = z and with

the non-directed and directed communication mechanisms given by

yN[u] =K%« p(X, t)v

yj—g [u,u"] =w[(d * p(x, 1) (3.31)

F )\gf qu K2 (x —s) (uh(s1,t) —u (s1,1)) dsy
R
1

2 (ki) - kix - 9) pls.tds:
—0o0

o]
+ )\gj (qTKf(x —s) — anff(x — s)) p(s,t)dsy,

1
where x = (21,0), p(x,t) = ut(z1,t) + v (21,t) = u(x1,t), and where we used assumptions (i) and
(ii). Hence, model (2.1)-(2.14) with communication mechanism (3.31) corresponds exactly to the 2D non-
local kinetic model (3.18)-(3.22)-(3.24)-(3.25). This means, for instance, that the macroscopic 2D model
(3.30) reduces to the heat equation for Ay = 0, which is not the case in the parabolic limit (2.15) of the
corresponding 1D hyperbolic model (2.1) with the turning rates given by (2.2). In fact, our 2D scaling
assumption g;(9) = ANy + eG;(9), j = al,r,a, introduces the relative strength of directed and non-
directed turning kernels into the expression of the social response function Blu], which is responsible for

the appearance of a factor \q in the drift of the macroscopic 2D model (3.30).

Remark 3.5. For some particular choices of distance kernels, the limiting parabolic model (3.30) can be
reduced to well known equations. Let us assume, for example, that the distance kernels are constant on the
whole domain,

Kix)=1, j=ala,r. (3.32)

This assumption corresponds to a setting in which individuals interact equally well with all other individuals
present in the entire domain. This is true locally for example if we have many individuals packed in little

space. Under assumption (3.32) together with A1 = 0, model (3.30) simplifies to

C
op=—-2Ap+C1 V. (pf ewp(s)ds> ,
Ao R2

where
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3. Description of 2D models

and Cy, Cy are constants depending only on v, qai, qa, - and the total mass § pdx. If g, = g, then the
attraction and repulsion forces cancel out (Cy = 0) and we obtain the heat equation. Let us henceforth

assume q, # qr. Furthermore, we can write the social flux as
kip] = VW % p, (3.33)

where the interaction potential W : R?* — R is given by W (x) = Ci|x|. In fact, for the more general
distance kernels (3.21) the social flux can also be written in the form (3.33), with the interaction potential
W behaving like |x| close to zero and decaying exponentially fast as |x| — oo (e.g. Morse potentials).

Therefore, we recover the diffusive aggregation equation
odp=A8p+V.(p (VW =p)), (3.34)

which models the behaviour of particles interacting through a pairwise potential while diffusing with Brow-
nian motion. This type of equation has received a lot of attention in recent years because of its ubiquity in
modelling aggregation processes, such as collective behaviour of animals [237, 240, 28, 114] and bacterial
chemotaxis [41] (see also the references therein). In fact, model (3.34) is part of the family of aggregation-
diffusion equations presented in Part 1. Here, we have linear diffusion m = 1 and a non-singular interaction
kernel with power k = 1 (using the notation of Part I). This means (3.34) falls into the diffusion-dominated
regime discussed in Chapter 4, see Definition 3.1 in Chapter 1.

3.2 Grazing collision limit

In the following, we consider another type of scaling that leads to parabolic equations, by focusing
on the case where individuals turn only a small angle upon interactions with neighbours. This
is biologically realistic as, for example, many migratory birds follow favourable winds or mag-
netic fields [244] and social interactions with neighbours might not have a considerable impact on
directional changes of individuals. The so-called grazing collisions, i.e. collisions with small de-
viation, correspond to this assumption. In this case, we show that the Boltzmann-type equation
(3.18) can be reduced to a Fokker—Planck equation with non-local advective and diffusive terms
in the orientation space.

For simplicity, the 2D kinetic model (3.18) can be re-written as

0
(71; +vepVaeu = —Q [u] + QT [u, u]

with

Q_[u] = Qr_ [u] + Q; [u] + Q;l [u]v Q+ [uvu] = Q:— [u’u] + Q;r [uvu] + Q;rl [uau] )

—T
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6. SELF-ORGANISED ANIMAL AGGREGATION

Let us focus for now only on the alignment interactions, the analysis of attraction and repulsion in-
teractions is similar. The grazing collision assumption suggests that we can rescale the probability

of re-orientation as follows:

—¢ — -6
W (6= o0 —0) = Tg. (TR
Here, the parameter ¢ is related to the small re-orientation angle following interactions with neigh-
bours moving in direction 6. If we denote by ¢ = ¢ — ¢ — eR(¢ — 6), then since w, integrates to
1, we obtain:

m T+¢—R(¢—0) m

1= [ wao-d.6-0as - | 0.0 = [ g(9)as.

- —m+¢—R(¢—0) -

by periodicity of g..
Generally, when an interaction kernel in the Boltzmann equation presents a singularity point,

the troubles are avoided by considering a weak formulation of the Boltzmann operator [173, 87].

Expanding Qui[u] := —Q[u] + Q7 [u, u], we obtain for all ¢y € C* ([, ]),
" Qulutvto)s = | (ptet) —ule0.0)) vicds
Lr f_ﬂ | stakcta = K0, 0)ute. 6. Duls.0,1)
| wito - ¢ 0= 0ute) - wio)asasasao. (336)

By substituting ¢’ = ¢ — e —eR(¢ — 0) into the ¥(¢’) term in (3.36), and then expanding in Taylor

series about ¢ we obtain:

f_ Wi (@ — &', 6— )| (&) - v(9) |do’ ~

T oY 20%
[ 0 (~8-crio-n T + S (3 Rio-0)*Z5]as.
Equation (3.36) can thus be approximated by
" 1
" Quldv@io = [ (oot - uwonn)) wio)do
T 0
f 25 w0 0Ca . 0l we)ds
I 62
| Salues.0Dulw e o

with the definitions

Celu, z, @) ::J J Mg K& (x — 5)K,(6, 9)AZ, (¢ — O)u(s, 0, t)dAds,
_x JR2
Difua,li= || NaaaKei(e = 9)K8(6.0)Biu(6 — O)u(s. 0, 1)d8ds.
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where
A6 = 0) = — (M (€) + Mo(©)R(6 — 0))
B0~ 0) =5, (Mo(e) + 201 ()R(6 — ) + My(c)R(6 — 0)?).
and M, () := {"_fB"g-(8)dB, n = 0,1,2, denote the moment generating functions of g.(8). Ina

similar manner we can approximate the attractive and repulsive non-local terms:
us us 1
[ @ualitvterao = [ (ot - ute0.0)) wioras

Jim%(( 6005 ol 6] (9)do

.+J; agz (1,0, 0D% o, 6] Ju(9)ds

where
Coalucd) = [ [ Natahalo = K2, (512, 0)45 (5., 0)uls 0, )t
JJu,,6] jﬂggwm o= 5K (52, 0) B (5, ) u(s, 0, ).
4 (5,2,0) = — <M ()Mo()R(D — 1)),

&2
a(5,2,0) =5 [ Ma(e) + 2M1 () R(6 — ) + Mo() R(6 — )2 |

Therefore, the kinetic model (3.18) in the strong formulation can be approximated (when individ-

uals turn only by a small angle upon interactions with their neighbours) by the following Fokker—

Planck model that contains all three social interactions:
ou + Va A L t) — u( t (3.37)
825 Ve - U= %p(% ) U $7¢7 ) .
+ %[ —uC®u,z, ¢] + ;)(uDe[u,x,¢])] ,
with Ay = 14 + 141 + 7, and

CE[U,.’,U,d)] = Zl[u,x,qﬁ]+C’§[u,z,¢]+0§[u,z,¢],

Df[u,z,¢] = Dj[u,z, ] + Di[u, z, ] + D [u, z, P].

While non-local 2D Fokker-Planck models have been introduced in the past years in connection
with self-organised aggregations, the majority of these models consider local diffusion [123, 12]. If
we neglect the €2 terms (i.e., B¢ ~ 0) and assume \; = 0, equation (3.37) reduces to a Vlasov-type
flocking equation:

ou
at + vep - Vyu + %[qu[u x qb]]

These type of models have been previously derived from individual-based models (Vicsek or

Cucker-Smale models) with or without noise [123, 179, 87].
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6. SELF-ORGANISED ANIMAL AGGREGATION

4 Asymptotic preserving methods for 1D models

The kind of diffusion asymptotics we employed in the previous sections have been numerically
investigated in [88] using so-called asymptotic preserving (AP) schemes. The AP methods, which
improve the scheme already proposed in [169], are a fully explicit variation of the methods in-
troduced in [201, 202]. They are a powerful tool to investigate how patterns are preserved in the
parabolic limit by providing numerical schemes for all intermediate models of a scaling process
given some scaling parameter ¢ > 0, and naturally produce a suitable numerical method for the
limiting model as ¢ — 0. Here, we apply these schemes only to the 1D models introduced in
Section 2, since the numerics become much more complex in two dimensions. Taking advan-
tage of our understanding of the limit process, we base our scheme on a splitting strategy with
a convective-like step involving the transport part of the operator and an explicitly solvable ODE

step containing stiff sources (see Section 4.2).

4.1 Odd and even parity
We consider the 1D kinetic model (2.1) written as an odd-even decomposition,
Or +70,5 =0,
Ouf + 0 = =2XF[r,)(r + 5) + 227 [r,4](r — ),
with the equilibrium part (macro part/even part) r and the non-equilibrium part (micro part/odd
part) j given by

r(z,t) = % (u+(x,t) + uf(z,t)) , Jlz,t) = % (u+(x,t) — uf(x,t)) )

Under scaling assumption (2.10) for (2.2), this model reads in the new variables z = i /e, t = {/e?
as follows:

£0;7 + 0z =0

€05) +v0:7 = FAs(f[5 ] — 7))

— 2T (@M + Ao (Y #7) + (15T + J157D) |

where KV (i) = LKV (Z). Rearranging the terms and dropping ”~" for notational convenience,

e

we obtain for r and J := 1 j:
Oyr + ¥0,J =0
1 1
Ord +70ar = ZrAs(fly] = fly™ D) + <1 - 52> Y0ur (4.38)

—ain (21 +dedof (KN wr) +eXs(fly™] + fly7)) -

270



4. Asymptotic preserving methods for 1D models

4.2 Operator splitting

We can now employ an operator splitting method on (4.38), separating the stiff source part, which
can be treated by an implicit Euler method, and the transport part, which we can solve by an

explicit method such as upwinding:
1. Stiff source part:

6757" =0,
o :éms(f[y‘] —fly* D + (1 - ;) V0ur (4.39)

—E%J 2\ +4edof (KV wr) +eXa(fly*]+ flv7]) -

2. Transport part:

O + vy 0pJ =0, (4.40)

O J +v0,r=0.

It can easily be verified that, in the limit ¢ — 0, we recover indeed the macroscopic model (2.11)

for u = 2r.

4.3 Alternated upwind discretisation

In the following, we are interested in the numerical implementation of model (2.1) with the turn-
ing rates (2.2) depending on a non-linear turning function f without a non-directed density-
dependent turning term (i.e. A2 = 0). As shown in Section 2.1, in this case, the parabolic limit

yields the drift-diffusion equation (2.11)
atu = DOawwu - SOaw (U(f_[u] - f+ [U])) )

with Dy = 72/(2\1) and Sy = A37/(2\1). Note the shorthand f*[u] = f(y5[u]). We propose
an alternated upwind discretisation with the even part r evaluated at full grid points z; = i Az,
and the odd part J evaluated at half grid points z;, 1 = (i + 1) Az. First, we discretise the stiff
source part (4.39) using an implicit Euler discretisation and respecting the direction of the drift.

We obtain an explicit expression for J*,

. E2Jl.”+% +yRE (2 -1) (r1y — 1)

R R I W SUS W g aa TR

NAE((F ] = FE Dy i+ (I = £y i)
€2 + 2M AL + eXsAL(fH[r] + f~[r]), ’

1
’L+§

+
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6. SELF-ORGANISED ANIMAL AGGREGATION

with r* = r™. Here, " and J" are the numerical solutions of r and J at time ¢,, = nAt. We use
the =-notation for half steps in time. Since J is evaluated at half grid point, the discretisation of
the transport part (4.40) can be chosen independently of the sign of the drift,

1 n+1 1
E(Ti —Tf)+ﬂ(7*+%—Jz*_%):O,

1 n+1 * 1 * *
E(Ji_,_%*Ji+%)+ﬂ(’f’i+1*7’i)=0.

Taking the limit & — 0 in the expression for J* , and substituting into the first equation of the

2
transport part, we obtain the following discretisation of the one-dimensional macroscopic model

(2.11):

“?H —ui Do o) n
At (Az)? (af(w)“ )
S,
() = £ e B = D)

= (w0 (B = Py~ B = 1B

2
Here, 8;01) u™ denotes the standard central difference discretisations. This illustrates how the choice
of discretisation for (4.39) directly induces a discretisation of model (2.11). We will now use this

scheme to investigate how some of the patterns observed in model (2.1)-(2.2) change as € — 0.

Remark 4.1. The stability restriction for the proposed AP scheme is less clear. We can expect that the time
steps size At needs to be sufficiently small, with an upper stability bound depending on the space step size

Az, the diffusion coefficient Dy, and the social interaction kernels via the terms K~ x u and f*[u].

4.4 Simulation results

In Section 2.2 we have seen that for model M4, the two Hopf bifurcations that occurred for the k4
and ks modes have disappeared as € — 0. In this Section, we start with a rotating wave pattern
(i.e., travelling pulses) that arises at ¢ = 1 through a Hopf bifurcation (i.e., for the same parameter
values as in Figure 6.4: ¢, = 1.545, ¢, = 2.779, \; = 0.2, A\ = 0, A3 = 0.9, v = 0.1, A = 2). Then,
we investigate numerically what happens with this pattern as € — 0. The initial conditions for the
simulations are random perturbations of maximum amplitude 0.2 of the spatially homogeneous
steady state u* = A/2 = 1. We start with ¢ = 1, and run the numerical simulations up to ¢ = 1000.
Then we decrease ¢, and choose the new initial condition to be the final solution obtained with
the previous ¢ value.

Figure 6.6(a) shows the amplitude of the patterns obtained when ¢ € [0, 1], for the particular pa-
rameter values mentioned before. Since some of these amplitudes show time-oscillations between
different values, we graph their maximum and minimum values for each . As we decrease ¢ from

1.0 towards 0.64 (region III), the amplitude undergoes some very small temporal oscillations (see
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Figure 6.6: The amplitude and density profile of the patterns obtained for ¢, = 1.545, ¢, = 2.779,
gai = 0, A1 = 0.2, Ao = 0, A3 = 0.9 with model M4, as ¢ is decreased from 1.0 to 0.0. (a) Bifurcation
diagram for the amplitude of the patterns as a function of €. For € < 0.32 (region I), the amplitude
is constant. For ¢ € (0.32,0.64) (region II) the amplitude oscillates between two different values.
For € > 0.64 (region III) there are some very small oscillations in the amplitude, however due to
the scale of the plot these oscillations are almost unobservable. (b) Amplitude of the patterns for
€ € [0,0.6] and for t € (0, 50). We show here max,¢[o, ju(, t) —minge[o, pju(z, t), withu = u™ +u~.
(c) Amplitude of the patterns for ¢ € [0.7,1.0] and for ¢ € (0, 50).
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also panel (c)), corresponding to the rotating wave patterns (with a small time-modulation) shown
in Figure 6.7(c). For ¢ € (0.32,0.64) (region II), the amplitude oscillates between two large values.
This corresponds to the ”inside-group” zigzagging behaviour shown in Figure 6.7(b) near = = 6,
where the group as a whole does not move in space but individuals inside the group move be-
tween the left and right edges of the group. We also note a period-doubling bifurcation ate = 0.61
(region I, Figure 6.6(a); see the two dots that appear between the main branches), which leads to
a slight decrease in the amplitude. Finally, as ¢ is decreased below 0.32 (region I), the movement
inside the group is lost and the pattern is described by stationary pulses with fixed amplitude (see
Figure 6.6(a) and Figure 6.7(a)). Figures 6.6(b),(c) show the time-variation of the amplitudes of the
spatial and spatio-temporal patterns obtained for € € [0, 1]. Figures 6.7(a’)-(c’) show the density
profiles of the patterns observed in regions I-III

Because the macro-scale models (¢ = 0) seem to exhibit stationary pulses (as shown in Figure
6.7(a)), we now start with these stationary pulses (for ¢ = 1) and investigate whether they change in
any way as ¢ — 0. We focus here on model M2 (see Figure 6.3). Figure 6.8 shows the amplitude of
the stationary pulses obtained with model M2 in a particular parameter region (g, = 2.2, ¢, = 0.93,
gal = 0; see also Figure 6.4), as we decrease the scaling parameter €. We observe that in this case,

the scaling does not affect the patterns or their amplitudes.

Remark 4.2. Note that the rotating wave pattern shown in Figure 6.7(c) for ¢ = 1 is obtained near a
Hopf/steady-state bifurcation (with ks the Hopf wavenumber), and hence the 5 rotating peaks that form this
pattern. Howevet, as € — 0, the wavenumber ks seems to become unstable (hence the 3 peaks for the patterns
shown in Figure 6.7(a),(b)), even if the dispersion relation shown in Figure 6.4(b) suggests that ks should
be stable.

5 Summary and discussion

In this chapter, we investigated the connections between a class of 1D and 2D non-local kinetic
models and their limit macroscopic models for self-organised biological aggregations. The non-
locality of these models was the result of the assumptions that individuals can interact with neigh-
bours positioned further away, but still within their perception range. To simplify the kinetic mod-
els that incorporate microscopic-level interactions (such as individuals’ speed and turning rates),
we focused on two types of scalings, namely a parabolic and a grazing collision limit, which lead to
parabolic models described in terms of average speed and average turning behaviour. We showed
that while for the kinetic models the non-local interactions influence the turning rates (i.e., indi-
viduals turn to approach their neighbours, to move away from them or to align with them), for

the limit parabolic models the non-local interactions influence the dispersion and the drift of the
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Figure 6.7: The spatial and spatio-temporal patterns obtained with model M4, for ¢, = 1.545,
gr = 2.779, qa = 0, Ay = 0.2, A2 = 0, A3 = 0.9, as ¢ is decreased from 1 to 0, using model M4.
(a) Stationary pulse patterns observed in region I: ¢ < 0.32; (b) “Inside-group” zigzag patterns
observed in region II: ¢ € (0.32,0.64); (c) Rotating wave (travelling pulse) patterns observed in
region III: € > 0.64. Panels (a’)-(c’) show the density profiles corresponding to patterns in panels
(a)-(c), at time ¢ = 1000.
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Figure 6.8: The amplitude and density of the patterns obtained for model M2 with ¢, = 2.2,
gr =0.93,¢a1 = 0, A1 = 0.2, A2 = 0, A3 = 0.9, as ¢ is decreased from 1 to 0. (a) Bifurcation diagram
for the amplitude of the patterns as a function of . (b) Density profile for the stationary patterns.
(c) Time-space plot of the density.

aggregations. In particular, we showed that the assumption that individuals can turn randomly
following the non-directional perception of neighbours around them leads, in the macroscopic
scaling, to density-dependent diffusion. Moreover, this diffusion decreased with the increase in
the population density. Biologically, this means that larger animal groups are less likely to spread
out. This phenomenon has been observed for various species. For example, studies have shown
that aggregations of locusts [55] or ants [21] can persist only if the number of individuals is above
a certain threshold.

The introduction in (2.2) of the term yx describing random non-directional turning (which
generalised the turning rates in [147]) was required by the comparison of the parabolic limit mod-
els in 1D and 2D. In particular, the 2D parabolic limit lead to the natural appearance of this term,
which is absent from the 1D parabolic model. Therefore, to obtain similar parabolic models in 1D
and 2D, we had to explicitly add yy in equation (2.2). This suggests that even if the 2D model
(3.18) can be reduced to a special case of the 1D model (2.1) (as shown in [153]) there are more
subtle differences between these non-local 1D and 2D models. These differences can impact the
types of patterns displayed by the 2D models — an aspect that would be interesting to study in the
future.

Next, we investigated how two types of patterns (i.e., travelling and stationary aggregations)
displayed by the 1D kinetic models, were preserved in the limit to macroscopic parabolic models.
To this end, we first investigated the local stability of spatially homogeneous patterns characterised
by individuals spread evenly over the domain, and showed that local Hopf bifurcations are lost
in the parabolic limit. These Hopf bifurcations give rise to travelling aggregations (i.e., rotating
waves). We then tested this observation numerically, with the help of asymptotic preserving meth-
ods. We started with a rotating wave pattern obtained near a Hopf/Steady-state bifurcation for

¢ = 1 (1D kinetic model; see Figure 6.7(c)), and studied numerically how does this pattern change
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when e — 0 (1D parabolic model; see Figure 6.7(a)). By graphing in Figure 6.6(a) the amplitude of
the resulting patterns as the scaling parameter ¢ is decreased from ¢ = 1 to ¢ = 0, we showed that
there were two major transitions. The first transition occurred around € = 0.64, when the travel-
ling (rotating) groups stopped moving. We note, however, that while the group as a whole was
stationary, the individuals inside the group were still moving between the left- and right-edges
of the group, leading to an “inside-group” zigzagging behaviour. The second transition occurred
around ¢ = 0.32, when the individuals inside the groups stopped moving, leading to stationary
pulses.

We emphasise here that this study is one of the first in the literature to investigate numerically
the transitions between different aggregation patterns, as a scaling parameter ¢ is varied from val-
ues corresponding to mesoscale dynamics (¢ = 1) to values corresponding to macroscale dynamics
(¢ = 0). Understanding these transitions is important when investigating biological phenomena
that occur on multiple scales, since it allows us to make decisions regarding the models that are
most suitable to reproduce the observed dynamics.

In this study we investigated the preservation of patterns via the 1D parabolic limit, but sim-
ilar investigations could be performed for the grazing collision limit. Moreover, as shown previ-
ously [146], model (2.1) can display many more types of complex spatio-temporal patterns than
the two types of patterns investigated here. We focused on travelling and stationary aggregations
since our aim here was not to investigate how all possible patterns are preserved by all these dif-
ferent scaling approaches. Rather, it was to show that by taking these asymptotic limits, some
patterns could be lost. Therefore, even if the macroscopic models are simpler to investigate, they
might not exhibit the same patterns as the kinetic models. Our analysis aimed at highlighting the
usefulness of asymptotic preserving numerical methods to understand the bifurcation of the so-
lutions as one investigates the transition from mesoscopic-level to macroscopic-level aggregation

dynamics.
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Adding to the conclusions drawn in each of the previous chapters, let me comment on the main
goals, challenges and results of this thesis, as well as interesting questions and perspectives mov-

ing forward.

When tackling the question of long-time asymptotics in Parts I and II, the main challenges we
encounter are structural, and the main goal of this thesis is to develop new methods and analyt-
ical tools that allow to overcome these challenges. The motivation of our approach is not only to
tackle the models considered here, but to derive ideas that can then be applied to different prob-
lems with similar structural challenges.

More precisely, in Part I, the main structural challenge is the interplay between non-linear diffu-
sion and non-local interaction creating a rich set of possible behaviour of solutions. The main goal
is to obtain a complete characterisation for the asymptotic behaviour of solutions in all possible
parameter regimes. This thesis represents a step towards that goal. However, here, we mainly
focus on the fair-competition regime and make some investigations in the diffusion-dominated
regime. In short, for the fair-competition regime, we see that the behaviour of solutions is very
different depending on the sign of k. If k¥ < 0 (hence m > 1) we observe a dichotomy similar to the
critical mass phenomenon of the classical Keller-Segel model, whereas for £ > 0 (hence m < 1), no
such criticality exists. For both the fair-competition regime and the diffusion-dominated regime,
this family of models has not been analysed for the case of smooth potentials k& > 0 despite the
fact that there are interesting applications for this class of potentials.

To obtain the results presented in Part I, we made use of the special gradient flow structure of the
equation, as well as related functional inequalities by making the connection between stationary
states of the equation and global minimisers of the associated free energy functional. Further, in
one dimension, we used tools from optimal transportation to derive suitable functional inequali-

ties and obtain formally convergence to equilibrium in Wasserstein-2 distance.
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Moving forward, I would like to contribute to a more general understanding of the behaviour
of solutions for this class of models, and the methods and tools developed in this thesis are the
necessary ground work to do that. In particular, the natural candidates amongst which to look
for asymptotic profiles are the equilibrium states of the system, and the first logical step towards
understanding the asymptotic behaviour of solutions is therefore to study the stationary problem
instead, which is our focus in Chapters 2, 3 and 4. Thanks to the analysis of the stationary problem
for the fair-competition regime and certain cases of the diffusion-dominated regime presented in
Part I, we are now able to advance a more rigorous analysis of the dynamical problem including
the time evolution of solutions.

Moreover, looking at the results we obtain, the question of the convexity properties of the energy
functionals Fj, and Fj, resc arises. In fact, our analysis indicates that the behaviour of F, or Fj, resc
is that of convex functionals in certain regimes in the sense that existence of a global minimiser
implies its uniqueness (here only proven in one dimension). However, the overall convexity prop-
erties of Fj, and Fj, resc are not known and there is certainly a bigger picture to be understood
there.

Finally, another important direction of future research is of course to investigate the parameter
regimes not considered in this thesis, such as the diffusion-dominated regime for £ > 0 and the

aggregation-dominated regime.

Part Il is concerned with a different application and a different equation, however, the question
we seek to answer is the same: What is the asymptotic behaviour of solutions? The main goal is the
development of a suitable method to show convergence to equilibrium for certain types of kinetic
equations where the equilibrium state is not known a priori. We develop such a method in the con-
text of a specific industrial application: modelling part of the production process of non-woven
textiles. In the case of a stationary conveyor belt k = 0, a hypocoercivity strategy has recently
been applied successfully to this kinetic fibre lay-down model to show exponential convergence
to equilibrium. In this case, the equilibrium distribution is known explicitly and the collision and
transport parts of the operator satisfy the necessary assumptions in an L?-framework. Adding the
movement of the belt however, we encounter two new structural challenges. First of all, we do not
know the equilibrium distribution a priori which is usually the case when applying a hypocoerciv-
ity method. Secondly, as the perturbation of the moving belt only acts in one direction, it breaks
the symmetry of the problem. As a result, even if the existence of an equilibrium F};, x > 0, could
be guaranteed a priori, the collision and transport parts of the operator would not satisfy the good
assumptions in L?(F_ ! dzda), and so the standard hypocoercivity strategy cannot be applied.
The good news however is that hypocoercivity as a method is based on a priori estimates and is

therefore stable under perturbation. Our approach here is therefore to treat the system as a small
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perturbation of the case x = 0. In order to control the perturbative term, we introduce not one,
but two modifications of the ‘natural” entropy: 1) we first modify the space itself with a well-chosen
coercivity weight, then 2) we change the norm with an auxiliary operator following the standard
hypocoercivity approach, recovering the missing decay in the space variable. Further, in order to
overcome the structural difficulty of the hypocoercivity theory when the equilibrium distribution
is not known a priori, we derive a stronger hypocoercivity estimate for the generalised entropy
dissipation which holds on any solution and involving an additional mass term, instead of an
estimate on fluctuations around the equilibrium only. This hypocoercivity estimate is the key in-
gredient from which existence and uniqueness of a stationary state can be derived. Applied to
the difference between this stationary state and a solution of the same mass, it allows to deduce
exponential decay to equilibrium with an explicit rate.

There are several ways in which one could seek to improve the results in Part II. For example, one
could try to push the convergence result to larger values of « using bifurcation techniques. More
precisely, for a path p : k — F}, mapping « to the unique stationary state F};, our results in Part
IT ensure that p is defined on a small interval [0, ko) for some 0 < k¢ « 1. It may be possible to
extend this interval by showing that the implicit equation P(x, F,) = 0 defining the stationary
state F), is non-degenerate, i.e. that 02 P(k, F,;) # 0.

Another future avenue would be to apply the techniques developed here to other models where

the global equilibrium is not known a priori.

Finally, Part III is centred around the idea of understanding the relationship between different
kinetic and macroscopic models for collective animal behaviour using multiscale analysis. Animal
groups are able to form beautiful patterns in the absence of a leader. We want to understand how
these patterns arrise and which are the driving factors behind the dynamics. In particular, the
goal of Part IIl is to understand how the different patterns are affected by the choice of modelling
scale. Understanding the transitions is important when investigating biological phenomena that
occur on multiple scales since it allows us to make decisions regarding the choice of models that
are most suitable to reproduce the observed dynamics. To achieve this, we use both analytical and
numerical tools.

Firstly, we develop a common framework for a class of collective animal behaviour models, making
the connection between non-local kinetic 1D and 2D models with the corresponding macroscopic
models via parabolic and grazing collision limits. We observe that if we allow individuals to turn
randomly following the non-directional perception of neighbours produces a density-dependent
diffusion in the 1D and 2D parabolic limit. This diffusion decreases with increasing population
density, a phenomenon which makes biological sense since larger groups are less likely to spread

out. Taking a grazing collision limit in 2D, we obtain a Fokker-Planck equation with non-local
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advective and diffusive terms in orientation space, whereas the majority of non-local 2D Fokker-
Planck models concerned with self-organised aggregations consider local diffusion only. A fur-
ther simplification of the limiting equation reduces it to a Vlasov-type flocking equation, a class
of models that have previously been derived from individual-based models directly (Vicsek or
Cucker-Smale models). The analysis of this limiting equation would be another interesting av-
enue for further research.

Secondly, we investigate how some of the kinetic spatio-temporal patterns are preserved via these
scalings using asymptotic preserving numerical methods. We observe that certain patterns such
as stationary aggregations are preserved, while others, e.g. moving aggregations, are lost. There-
fore, even if the macroscopic models are simpler to investigate, they might not exhibit the same
patterns as the kinetic models. This is an important information for choosing a modelling scale
that is well adapted to the dynamics one would like to capture. It also serves to demonstrate the
usefulness of AP schemes in understanding the bifurcation of solutions as ¢ — 0 as they are able
to simulate the models on all the intermediate scales as well using one single scheme. AP schemes
have only recently been applied to investigate multiscale aspects of biological aggregations and

they provide a useful tool for further analysis of pattern formations on different scales.

The process of writing this thesis made me realise that what I am interested in are research
questions leading to the development of new methods and tools and that allow for a better under-
standing of the bigger picture around a certain problem. It is exciting how mathematical ideas can
draw connections between very different subject areas and can therefore contribute to advances

across disciplines.
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