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u Dissertation Summary U

Franca Karoline Olga HOFFMANN

Keller-Segel-Type Models and Kinetic Equations

for Interacting Particles: Long-Time Asymptotic Analysis

This thesis consists of three parts: The first and second parts focus on long-time asymptotics

of macroscopic and kinetic models respectively, while in the third part we connect these regimes

using different scaling approaches.

Keller–Segel-type aggregation-diffusion equations

We study a Keller–Segel-type model with non-linear power-law diffusion and non-local particle

interaction: Does the system admit equilibria? If yes, are they unique? Which solutions converge

to them? Can we determine an explicit rate of convergence? To answer these questions, we make

use of the special gradient flow structure of the equation and its associated free energy functional

for which the overall convexity properties are not known. Special cases of this family of models

have been investigated in previous works, and this part of the thesis represents a contribution to-

wards a complete characterisation of the asymptotic behaviour of solutions.

Hypocoercivity techniques for a fibre lay-down model

We show existence and uniqueness of a stationary state for a kinetic Fokker-Planck equationmod-

elling the fibre lay-down process in non-woven textile production. Further, we prove convergence

to equilibriumwith an explicit rate. This part of the thesis is an extension of previous work which

considered the case of a stationary conveyor belt. Adding the movement of the belt, the global

equilibrium state is not known explicitly and a more general hypocoercivity estimate is needed.

Although we focus here on a particular application, this approach can be used for any equation

with a similar structure as long as it can be understood as a certain perturbation of a system for

which the global Gibbs state is known.

Scaling approaches for collective animal behaviour models

We study the multi-scale aspects of self-organised biological aggregations using various scaling

techniques. Not many previous studies investigate how the dynamics of the initial models are

preserved via these scalings. Firstly, we consider two scaling approaches (parabolic and grazing

collision limits) that can be used to reduce a class of non-local kinetic 1D and 2Dmodels to simpler

models existing in the literature. Secondly, we investigate how some of the kinetic spatio-temporal

patterns are preserved via these scalings using asymptotic preserving numerical methods.
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u Preamble U

This thesis is centered around the analysis of non-linear partial differential equations arising nat-

urally frommodels in physics, mathematical biology, fluidmechanics, chemistry, engineering and

social science. Often, these models have hidden connections across applications, and the struc-

tural similarities in their dynamics allow us to apply the same mathematical techniques in very

different physical contexts. Non-linearities and long-range interactions in addition to local effects

pose analytical challenges that cannot be tackled with conventional PDE methods. This thesis

focuses on developing new mathematical tools to understand the behaviour of these models, in

particular their asymptotics.

The first chapter is an introduction, presenting themathematical context, motivations and nec-

essary tools for the chapters to follow. The introduction is structured by parts (Part I: Chapters 2-4,

Part II: Chapter 5, Part III: Chapter 6) and provides and overview of the results obtained in this

thesis. All following chapters each correspond to an article or book chapter.

List of works contained in this thesis:

• Chapter 2: article [63], in collaborationwith Vincent Calvez4 and JoséA. Carrillo1, published

in the special issue "Advances in Reaction-Cross-Diffusion Systems" of Nonlinear Analysis

TMA.

• Chapter 3: book chapter [64], in collaboration with Vincent Calvez4 and José A. Carrillo1,

to appear in “Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Di-

rections” as part of the C.I.M.E. Foundation Subseries “Lecture Notes in Mathematics” at

Springer.

• Chapter 4: article [90], in collaboration with José A. Carrillo1, Edoardo Mainini5 and Bruno

Volzone6, submitted for publication.

• Chapter 5: article [49], in collaboration with Emeric Bouin7 and Clément Mouhot3, accepted

for publication in SIAM Journal on Mathematical Analysis.

• Chapter 6: article [84], in collaborationwith José A. Carrillo1 and Raluca Eftimie8, published

in Kinetic and Related Models.
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Contents

How to read this thesis

Each chapter is written to be self-contained. The logical relations between the chapters are the

following: Chapter 3 builds on the results in Chapter 2. Chapter 4 is tackling similar questions to

Chapter 2, but in a different regime, and using different tools in some cases. For part I, an overview

of the different regimes and their definitions can be found in Chapter 1. Chapters 5 and 6 are each

fully self-contained. The logical order of reading this thesis would be the order it is presented, or

changing the order of any of the parts I-III. A short overview of conclusions and perspectives can

be found at the very end of the thesis.

In order to keep the notation simple, equations are numbered by section number in each chap-

ter. For example, when reading Section 3 of Chapter 4, the first equation in that section would be

numbered (3.1). Cross-references to equations in other chapters are explicitly mentioned. When

reading Chapter 2, the same equation would be referenced as “equation (3.1) in Chapter 4”. The

same holds true for (sub)sections, theorems, definitions, propositions, corollaries, lemmata and

remarks. Figures however are numbered per chapter, e.g. Figure 3.14 refers to the 14th figure in

Chapter 3. References are listed together for all chapters at the end of the thesis in a general bibli-

ography.

All historical footnotes about mathematicians are taken either from [174], or from wikipedia10.
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Most applied mathematicians spend their time developing, improving, analysing and testing

mathematical models – equations that describe a physical phenomenon – trying to make sense

of the (physical and/or mathematical) world. Of course, mathematical models will never be able

to capture the full reality and complexity of nature. Most of the models we currently use are

based on simplifying assumptions that are rarely satisfied in practice. This is not to say that sim-

plification renders a model less useful as a tool to understand the world. On the contrary, it is

this simplifying aspect that gives us powerful information about the dominant dynamics at play.

Good mathematical models find a reasonable trade-off between simplicity, complexity and math-

ematical difficulty. If a model is too simple, important physical features may be lost. If it is too

complex on the other hand, incorporating many details of the observed phenomena, we may not

be able to handle the analysis and so no useful information can be extracted from the model. It

is when we are able to successfully analyse a model that provides a reasonable approximation

to a complicated real world process that we can claim to have understood the dominant driving

principles – a powerful source of information for applications. In order to build the mathematical

tools and theories that allow us to handle the analysis of a particular equation, it is often useful to

start with amaster equation – the simplest model one can think of that is representative for a more

general class of models and still incorporates the common structural difficulties. One such master

equation for the class of models analysed in this thesis is the non-linear heat equation Btρ “ ∆ρm,

m ą 0 which appears in a number of applications across physics, chemistry, biology and engi-

neering (see Section 2.1 for more details). It extends the structural difficulty of another master

equation, the heat equation (m “ 1), by adding the non-linearity to the diffusion. Historically, it

has often been thanks to a representative master equation generating a rich mathematical theory

that more complex and therefore more realistic models could be tackled. What is so fascinating is

that models of similar mathematical form and difficulty can appear in the context of very differ-

ent applications. Understanding more about their general structure gives us new insights about

nature’s laws, allowing us to see the beautiful unifying patterns that surround us.
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This thesis is centered around the analysis of non-linear partial differential equations arising

naturally from models in physics, mathematical biology, fluid mechanics, chemistry, engineer-

ing and social science. Often, these models have hidden connections across applications, and the

structural similarities in their dynamics allow us to apply the same mathematical techniques in

very different physical contexts. Non-linearities and long-range interactions in addition to local

effects pose analytical challenges that cannot be tackled with conventional PDE methods. This

thesis focuses on developing new mathematical tools to understand the behaviour of these mod-

els, in particular their asymptotics.

The choice of title for this thesis and the sense in which it is to be understood deserve a few

explanatory words. First of all, the term interacting particles should be taken in a very broad inter-

pretation. Here, the ’particles’ can represent for example molecules of a gas, single-cell organisms

such as bacteria, stars in a galaxy, lay-down points of polymer fibres, insects, fish, birds, ungulates,

or even humans. Correspondingly, the interaction of particles with each other, or with their envi-

ronment, could be via molecular forces, chemical signals1, gravitational forces, an external force

describing the coiling properties of the polymer fibres, or - in the case of animals and humans -

visual, auditory or tactile signals. The type of interaction could be linear or non-linear, local or

non-local. Both linear local interactions (Chapter 5) and non-linear non-local interactions (Chap-

ters 2, 3, 4 and 6) are considered in this thesis.

Secondly, let me comment on what I mean by asymptotic analysis. Two types of asymptotics

have to be distinguished:

(1) the behaviour of solutions predicted by the model after a very long time tÑ8which we call

long-time asymptotic behaviour or ergodic properties (Chapters 2-5), and

(2) the limiting equations obtained by letting certain parameters of a model be either very big or

very small (Chapter 6).

As suggested by the title, the main focus lies in the long-time asymptotic analysis, but we also

consider limiting processes.

In case (1), we want to know whether solutions converge to an asymptotic profile and if yes,

in which sense and how fast. What do these asymptotic profiles look like? How many are there,

and what is their basin of attraction? The natural candidates amongst which to look for asymp-

totic profiles are the equilibrium states of the model under consideration. This means that the first

1The ability of certain types of bacteria to respond to chemical gradients is known as bacterial chemotaxis, see Section 1.
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logical step towards understanding the asymptotic behaviour of solutions is often to study the sta-

tionary problem instead, which is our focus in Chapters 2, 3 and 4. It is only in Chapters 3 and 5

that we actually study the evolution problemwith the aim of finding explicit rates of convergence.

Case (2) makes the connection between different observation scales, using a set of methods

called multiscale analysis or scaling process or limiting process. Let us take the example of a mono-

atomic gas. Using Newton’s2 laws, one can write down an equation for n interacting gas particles

located at positions X1ptq, . . . , Xnptq. This type of model is usually referred to as a particle-based

model, or Individual Based Model (IBM) in the case where the particles represent living organisms,

see Section 2.2.2. In practice however, it is often hopeless to attempt to describe the position and

velocity of every particle if the number of particles is large3. Using statistical ideas, we can instead

describe the evolution of the probability density fpt, x, vq of a certain particle to be at location x

and travelling with velocity v at time t. One example of such a model is the Boltzmann equation

modelling the particle distribution of a monoatomic rarefied gas, see Section 8. This level of de-

scription is called kinetic since the function f depends not only on space and time, but also on

velocities. There are several techniques that allow us to go from a particle description to a kinetic

description of the same evolution process, but this interesting and still developing mathematical

field is not the focus of this thesis4. We may also want to make a connection between different

kinetic descriptions, for example when the difference between velocities before and after a colli-

sion is small, known as grazing collisions, see Section 8.1. In Chapter 6, we use this idea applied

to animals turning only a small angle upon interactions with neighbours such as migratory birds

following favourable winds or magnetic fields.

In practise however, all that our typical observation can detect are changes in the macroscopic

state of the gas, described by quantities such as density, bulk velocity, temperature, stresses, and

heat flow, and these are related to some suitable averages of quantities depending on the kinetic

probability density. It is therefore desirable to be able to describe the dynamics at a macroscopic

scale, using for example a hydrodynamic scaling5. The idea is to rescale time and space by the

change of variables pt, x, vq ÞÑ pt{εγ , x{ε, vq for a small scaling parameter ε ! 1, together with

certain scaling assumptions specifying how the interaction term behaves in the limit ε Ñ 0. The

2Isaac Newton (1642-1727) was an English mathematician, astronomer, and physicist who is widely recognised as one
of the most influential scientists of all time and a key figure in the scientific revolution. His three laws of motion were first
published in PhilosophiæNaturalis Principia Mathematica in 1687. Beyond his work on the mathematical sciences, Newton
dedicated much of his time to the study of alchemy and biblical chronology. In a manuscript from 1704 he estimated that
the world would end no earlier than 2060.

3The number of air molecules at atmospheric pressure and at 0˝ C temperature is around 2.7 ˆ 1019 per cm3, a lot
more than what would be feasible to keep track of.

4Some of the more common regimes are low density limits, weak coupling limits ormean-field limits, see for example [259,
263], or Section 2.2.4 for the latter.

5For more details on the techniques involved, see Sections 6.2.3 and 8.
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two main scaling approaches are parabolic limits (γ “ 2) for which diffusive forces dominate, and

hyperbolic limits (γ “ 1), which are convective.

In terms of modelling perspective, Part I (Chapters 2-4) deals with a macroscopic model, Part

II (Chapter 5) is concernedwith a kinetic model, and Part III (Chapter 6) focuses on the connection

between different kinetic and macroscopic regimes using parabolic and grazing collision limits.

Finally, the term Keller–Segel-type models in the title of this thesis refers to models that are close

variations of what is known as the classical Keller–Segel model, which we describe in more detail

in the next section.

This introductory chapter is structured into 9 sections: Section 1 describes the classical Keller–

Segel model, and subsequent sections correspond to Part I (Sections 2-4), Part II (Sections 5-7) and

Part III (Sections 8-9) of this thesis. For each part, we explain the relevant mathematical tools,

introduce the models we are analysing in this thesis together with the most important notation,

give somemotivation and context of the problem, and last but not least, present a summary of the

results obtained and possible perspectives.
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1. Introduction

1 The Keller–Segel model

Figure 1.1: Fluorescently

labeled E. coli . Source:

Howard Berg’s website9.

Many bacteria, such as Escherichia coli, Rhodobacter sphaeroides and

Bacillus subtilus (see [149] for a complete list), are able to respond to

changes in the surrounding environment by a biased random walk.

This allows cells to interact with each other by secreting a chemi-

cal substance to attract cells around them. The directed movement

of cells and organisms in response to chemical gradients is called

chemotaxis. This occurs for instance during the starvation stage of

the slimemoldDyctiostelium discoideum. More generally, chemotaxis

is widely observed in various biological fields (morphogenesis, bac-

terial self-organisation and inflammatory processes among others).

The bacterium Escherischia coli is traditionally chosen for studying

bacterial chemotaxis as its biochemistry as well as the dynamics of

its movement are well understood.

Let us denote the density of bacteria and the chemoattractant concentration at position x P R2

and time t ě 0 by ρpt, xq and Spt, xq respectively. Assume that cells and chemoattractant diffuse

with diffusion coefficientsDρ andDS , and that the chemoattractant degrades with rate α ě 0 due

to chemical reactions whilst it is secreted by the bacteria at rate β ě 0. Then the evolution of ρ and

S can be modelled by the following system known as the Keller6–Segel7 model:
$

’

&

’

%

Btρ “ Dρ∆ρ´ χ∇ ¨ pρ∇Sq ,

BtS “ DS∆S ´ αS ` βρ .
(1.1)

Here, χ ą 0 denotes the effective bacterial chemotaxis speed and is assumed to be constant. His-

torically, the Keller–Segel model has been the principal approach to describe bacterial motion

[280, 256]. First introduced in 1970 in [196] to describe aggregation of slime mold amoebae, this

model has become one of the most widely studied models in mathematical biology. It is some-

times also referred to as the Patlak8–Keller–Segel model as the decoupled problem has already

been formulated in 1953 by Patlak [252]. A certain number of reaction-diffusion models have

been developed since, mostly inspired by the pioneering work of Keller and Segel. Even if these

models have helped to understand certain characteristics of bacterial chemotaxis, they also have

their limits from a modelling perspective, and we will comment on some of them in this thesis.

6Evelyn Fox Keller (born 1936) is an American physicist, author and feminist.
7Lee Aaron Segel (1932-2005) was an American mathematician known for his work in the spontaneous appearance of

order in convection, slime molds and chemotaxis.
8Clifford S. Patlak (1935-2014).
9www.rowland.harvard.edu/labs/bacteria/movies/index.php
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1. The Keller–Segel model

Figure 1.2: An E. coli swarm.

Source: Howard Berg’s website10.

The reason why the Keller–Segel model (1.1) has received

so much attention in the mathematical community over the

last decades, see [196, 197, 243, 194, 159, 136, 41, 256], is a pe-

culiar phenomenon: the fact that themass of bacteria appears

as a critical parameter. More precisely, let us consider (1.1)

when the chemoattractant is in quasi-equilibrium (BtS “ 0),

and when the time scale of observation is a lot smaller then

the speed at which S degrades (α “ 0). The first assumption

represents the hypothesis that Btρ is very big in comparison to

BtS and is a realistic approximation for example for very big

cells which have a considerably lower displacement speed. For simplicity, let us further assume

that Dρ “ DS “ χS “ β “ 1. Under these assumptions, the second equation in (1.1) reduces to

∆S “ ´ρ. This Poisson equation can be solved explicitly for S in terms of ρ using the fundamen-

tal solution of the Laplacian, and substituting into the evolution equation for ρ, we obtain in two

space dimensions

Btρ “ ∆ρ` 1
2π ∇ ¨ pρ∇ log |x| ˚ ρq . (1.2)

For sufficiently smooth weak solutions ρptq P L1pR2q with massM “
ş

ρ dx, we can calculate the

dissipation of the second moment explicitly using integration by parts:

d

dt

ż

R2
|x|2ρpt, xq dx “

ż

R2
|x|2

ˆ

∆ρ` 1
2π∇ ¨ pρ∇ log |x| ˚ ρq

˙

dx

“ 4
ż

R2
ρ dx´

1
2π

ż

R2
2x ¨

ˆ

ρpxq

ż

R2

px´ yq

|x´ y|2
ρpyq dy

˙

dx

“ 4M ´
1

2π

ż

R2
x ¨

ˆ

ρpxq

ż

R2

px´ yq

|x´ y|2
ρpyq dy

˙

dx

´
1

2π

ż

R2
y ¨

ˆ

ρpyq

ż

R2

py ´ xq

|y ´ x|2
ρpxq dx

˙

dy

“ 4M ´
1

2π

ĳ

R2ˆR2

px´ yq ¨ px´ yq

|x´ y|2
ρpxqρpyq dxdy

“
M

2π p8π ´Mq .

This calculation shows how the critical massMc “ 8π emerges from the structure of the equa-

tion and as a result, solutions are subject to a remarkable dichotomy: they exist globally in time if

M ă 8π (diffusion overcomes self-attraction), whereas blow-up occurs in finite timewhenM ą 8π

(self-attraction overwhelms diffusion). This transition has been first formulated in [113]. Math-

ematical contributions are [194] for the existence part, [242] for the radial case, and [136, 41] in

the full space. The critical case M “ 8π was analysed further in [40, 37, 75] in terms of stability

of stationary states. In the sub-critical case M ă 8π, it has been shown that solutions decay to
10www.rowland.harvard.edu/labs/bacteria/projects/swarming.php
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1. Introduction

self-similarity solutions exponentially fast in suitable rescaled variables [70, 71, 148]. In the super-

critical caseM ą 8π, solutions blow-up in finite time with by now well studied blow-up profiles

for close enough to critical mass, see [187, 260, 168]. In part I of this thesis, we are generalising the

techniques developed in [62]where the authors show convergence to self-similarity inWasserstein

distance for (1.2) in the radial sub-critical caseM ă 8π.

2 Part I: Keller–Segel-type aggregation-diffusion equations

In the first andmain part of this thesis, we are studying the behaviour of a family of partial differen-

tial equations of Keller-Segel-type modelling self-attracting diffusive particles at the macroscopic

scale,

Btρ “
1
N

∆ρm ` 2χ∇ ¨ pρ∇pW ˚ ρqq , t ą 0 , x P RN . (2.3)

Here, the diffusion is non-linear if m ‰ 1, and the non-local interaction between particles is gov-

erned by the interaction potentialW withW : RN Ñ R,W P C1 `RNzt0u
˘

andW p´xq “W pxq. The

parameter χ ą 0 is measuring the interaction strength of the interaction term in relation to the diffu-

sive term. Equation (2.3) exhibits three conservation laws: conservation of positivity, conservation

of mass, and invariance by translation. We can therefore assume for convenience

ρpt “ 0, xq “ ρ0pxq ě 0 ,
ż

RN
ρ0pxq dx “ 1 ,

ż

RN
xρ0pxq dx “ 0 . (2.4)

The parameter χ ą 0 scales with the mass of solutions ρ, and therefore, in the case where the

behaviour of solutions depends on the choice of initial mass, this criticality is transferred to the

parameter χ when fixing the mass. Let us point out that Part I does not address the questions of

regularity, existence, or uniqueness of solutions to equation (2.3), assuming solutions are ’nice’

enough in space and time for our analysis to hold.

We will now give some intuition to explain the type of behaviour that can be modelled using

equation (2.3). Conceptually, the PDE (2.3) corresponds to the assumption that two main forces

determine a particle’s motion at the microscopic level: local non-linear diffusion on the one hand,

and non-local attraction on the other hand. Diffusion can be understood as a repulsive force be-

tween particles, whereas the interaction between particles is assumed to be represented by an

attractive potential, W . Here, attractive and repulsive forces compete, generating complex be-

hviour of solutions, depending on the diffusion power m, the choice of interaction potential W ,

the interaction strength χ ą 0 and the dimensionality N .

The reason why models of the form (2.3) have attracted so much attention in recent years is not

only their richmathematical structure, but also their applicability to awide range of physical prob-

lems ranging from collective behaviour of self-interacting individuals such as bacterial chemo-
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2. Part I: Keller–Segel-type aggregation-diffusion equations

taxis [39, 196, 252], astrophysics [108, 271, 105, 107, 106] and mean-field games [38] to phase tran-

sitions [285] and opinion dynamics [164, 165].

Before diving into the analysis of (2.3), let us investigate the dynamics of attractive and repul-

sive forces separately.

2.1 Non-linear diffusion

Assuming χ “ 0, one can interpret equation (2.3) as a non-linear heat equation, where the diffu-

sion coefficient varies with the density of particles,

Btρ “
1
N

∆ρm “ ∇ ¨ pDpρq∇ρq , Dpρq :“ m

N
ρm´1 , m ą 0 . (2.5)

As above, we assume that the initial data satisfies (2.4). Diffusion can be understood as a repulsive

force since ’nice’ enough solutions ρ of (2.5) satisfy

d

dt

ż

RN
|x|2ρpt, xq dx “ 2

ż

RN
ρmpt, xq dx .

It follows that if ρpt, ¨q P L1
`pRN q X LmpRN q for any t ą 0, then the second moment of ρ increases

with time, that is, the solution is spreading out. The resulting effect is that particles get repulsed

away from each other.

Equation (2.5) is one of the simplest examples of a non-linear evolution equation of parabolic

type. It appears in a natural way in a number of applications across physics, chemistry, biology

and engineering. The common idea is that in many diffusion processes the diffusion coefficient

depends on the unknown quantities (concentration, density, temperature, etc.) of the diffusion

model.

For any diffusion exponentm ą 0, a unique mild solution exists for any initial data ρ0 P L
1pRN q,

it depends continuously on the initial data, and further, the concepts of mild, weak and strong

solution are equivalent [287, 25, 286]. Thanks to the form of the diffusion coefficient Dpρq, the

overall behaviour of solutions can be split into three cases:

• m ą 1: Diffusion is slow in areas with few particles. This case is known as the porous

medium equation (PME), or slow diffusion equation. The PME owes its name to the mod-

eling of the flow of an isentropic gas through a porous medium [216, 241]. It was introduced

for the study of groundwater infiltration [51], and is used in high-temperature physics, e.g.

in the context of heat radiation in plasmas [303]. Other applications have been proposed in

mathematical biology, spread of viscous fluids, boundary layer theory, see [289, 287, 7, 286,

161] and the references therein.
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• m “ 1: Diffusion is linear, and we obtain the well-known heat equation (HE) [156].

• 0 ă m ă 1: Diffusion is fast in areas with few particles. This case is known as the fast

diffusion equation (FDE). The FDE appears in plasma physics (m “ 1{2 is known as the

Okuda-Dawson law [246]), and when modelling the diffusion of impurities in silicon [200].

The FDE has also an important application in geometry known as the Yamabe flow (m “

pN ´ 2q{pN ` 2q, N ě 3) [215, 288].

Note that problems may arise when diffusion is ’too fast’, i.e. when the diffusion coefficient

m is very small. It is established in [186] that the range of mass conservation for the FDE is

m˚ ă m ă 1 with

m˚ ă m ă 1 , m˚ :“

$

’

&

’

%

0 , ifN “ 1, 2 ,

1´ 2{N , ifN ě 3 .

This is exactly the range for which integrable solutions to (2.5) exist. Within this range,

the flow associated to the fast diffusion equation is in many ways even better than the flow

associated to the heat equation; see [48] and the references therein. If m˚ ă m ă 1, the

solutions of (2.5) with positive integrable initial data are C8 and strictly positive everywhere

instantaneously, just as for the heat flow.

Equation (2.5) gives rise to a rich mathematical theory with fundamental differences in behaviour

depending on these three different regimes for the diffusion exponent m ą 0. We will see later

that some of these behaviour carry over to our aggregation-diffusion equation (2.3). This illus-

trates how the non-linear heat equation serves as an important representative for a more general

class of non-linear, formally parabolic equations that appear across the pure and applied sciences,

and it has been at the heart of the development of new analytical tools that can be adapted to a

range of more complicatedmodels. Wewill therefore give a short overview of themain properties

of the non-linear heat equation (2.5) that are relevant in the context of this thesis. For a more de-

tailed study dealing with the problems of existence, uniqueness, stability, regularity, dynamical

properties and asymptotic behaviour, we refer the reader to [289] (m ą 1), [300] (m “ 1), [287]

(0 ă m ă 1), and the references therein.

2.1.1 Source solutions

A classical problem in the thermal propagation theory is to describe the evolution of a heat dis-

tribution after a point source release. In mathematical terms, we want to find a solution Φmpt, xq

to (2.5) with initial data given by a Dirac Delta, ρ0pxq “ δpxq. In case of the heat equation (m “ 1),

this fundamental solution is well-known and is given by the heat kernel

Φ1pt, xq “ p4πtq´
N
2 exp

ˆ

´
|x|2

4t

˙

.
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2. Part I: Keller–Segel-type aggregation-diffusion equations

It is especially useful to have source solutions given in explicit form, as they often serve as a repre-

sentative example for the typical or peculiar behaviour of solutions. Further, for linear equations,

they allow us to obtain the general solution by applying a convolution, ρ “ Φ1 ˚ ρ0. Such an ap-

proach is useless in the non-linear setting, and so one needs different methods. In case of the PME

(m ą 1), source solutions are given by

Φmpt, xq “ t´αFm

´

xt´α{N
¯

, Fmpξq :“
`

β
`

|ξ0|
2 ´ |ξ|2

˘˘
1

m´1
`

, m ą 1 , (2.6)

for any ξ0 P RN , ξ0 ‰ 0, where we define the positive part as psq` :“ maxts, 0u and where

α :“ N

Npm´ 1q ` 2 , β :“ αpm´ 1q
2Nm . (2.7)

SolutionsΦm depend continuously onm and converge pointwise to the heat kernel asmÑ 1. This

class of special solutions was first obtained by Zel’dovich and Kompaneets [304] around 1950, and

then studied inmore detail by Barenblatt [14] andPattle [253]. They arewidely known asBarenblatt

solutions (or, for a more complete reference, as ZKB solutions or Barenblatt-Pattle solutions). For

more details on (2.6) and their derivation, see [289] and the references therein.

In fact, the same source solution (2.6) also exists for the FDE in the regimem ă 1 as long as α ą 0,

that is,m ą m˚. The solution Φm is then given by the same type of expression,

Φmpt, xq “ t´αGm

´

xt´α{N
¯

, Gmpξq :“
`

C ` β̄|ξ|2
˘´ 1

1´m , m˚ ă m ă 1 , (2.8)

where β̄ :“ ´β “ αp1´mq{p2Nmq, and C “ CpN,mq ą 0 is a normalising constant fixed by the

mass. Therefore, we obtain for the source solution of the FDE form˚ ă m ă 1:

Φmpt, xq1´m “
t

Ct2α{N ` β̄|x|2
.

In this sense, the Barenblatt self-similar solutions for m ‰ 1, m ą m˚ are natural generalisations

of the fundamental solutions of the heat equation.

2.1.2 Support and Tails

The main difference between the source-type solution profiles in the different ranges is probably

the shape at infinity, which reflects the propagation form. If m ą 1, the profile Fm is compactly

supported, supp pFmq “ Bp0, |ξ0|q, and it follows that the Barenblatt solution Φm has compact

support in space for every fixed time t ą 0. More precisely, the free boundary is the surface given

by the equation

t “

ˆ

|x|

|ξ0|

˙Npm´1q`2
,

and so the size of the support supp pΦmq growswith a precise finite speed (see Figure 1.3(a)). This

is to be compared with the properties of the heat kernel Φ1 in the casem “ 1, which is supported
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on the whole space at all times with exponential tails at infinity (see Figure 1.3(b)).

In the case of the FDE,m˚ ă m ă 1, however, source solutions are supported on the whole space

and have so-called fat tails, or overpopulated tails,

Φmpt, xq «
`

t{β̄
˘

1
1´m |x|´

2
1´m , |x| Ñ 8 ,

(see Figure 1.3(c)). Moreover, for non-negative initial data ρ0 of unit mass satisfying

sup
|x|ąR

ρ0pxq|x|
2{p1´mq ă 8 (2.9)

for someR ą 0, whichmeans that ρ0 is decaying at infinity at least as fast as the Barenblatt solution

Φm, the solution ρpt, xq of (2.5) with initial data ρ0 satisfies the following remarkable bounds [74]:

For any T ą 0, there exists a constant C “ CpT q ą 0 such that

1
C
ď
ρpt, xq

Gmpxq
ď C , @t ě T , x P RN ,

where Gm is the Barenblatt profile defined in (2.8). This shows ’how fast’ fast diffusion really is:

It spreads mass out to infinity to instantly produce fat tails.

We conclude that the Barenblatt solutionswith profiles given in Figures 1.3(a) (free boundary) and

1.3(c) (polynomial decay) are natural non-linear generalisations of the Gaussian profile in Figure

1.3(b) (Gaussian decay).

(a) (b) (c)

Figure 1.3: Source solutions Φmpt, xq for (a) PME (m ą 1), (b) HE (m “ 1) and (c) FDE (m˚ ă
m ă 1) at times t “ 0.5, 1, 1.5, 2 for PME and HE, and at times t “ 1.15, 1.25, 1.4, 1.6 for FDE. The
Barenblatt solution (a) is compactly supported at each fixed t ą 0, but has a free boundary with
the support growing over time. The heat kernel (b) is supported on the whole space and its tails
decay exponentially. The source solution (c) is also supported on the whole space, but has fat tails
(polynomial decay). Source: [289]
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2. Part I: Keller–Segel-type aggregation-diffusion equations

2.1.3 Self-Similarity and Asymptotic Behaviour

The Barenblatt solutions can be derived using the self-similar structure of (2.5). We say that ρpt, xq

satisfying (2.5) is a self-similar solution to the non-linear heat equation if the rescaled function

ρλpt, xq “ λNρpλN{αt, λxq

is also a solution of the same equation for all λ ą 0 with α as given in (2.7). It is easy to see that

Φm is indeed a self-similar solution to (2.5) for allm ą m˚. For a detailed study of self-similarity

(also known as Renormalization Group in theoretical physics), we refer to the classical books by G.

Barenblatt, [16, 15]. For a detailed derivation of (2.6) using self-similarity, see [289].

In the case of the non-linear heat equation, there is a change of variables afterwhich self-similar

solutions to (2.5) become stationary solutions. More precisely, assume ρpt, xq is any solution to

(2.5), and let

upτ, yq “ eNτρ
´ α

N
eNτ{α, eτy

¯

with α given by (2.7). Then u satisfies the non-linear Fokker–Planck equation

Bτu “
1
N

∆yu
m `∇y ¨ pyuq , m ą 0 . (2.10)

In Chapters 2 and 3, we use a similar scaling to find a suitable change of variables for the full

aggregation-diffusion equation (2.3) that turns self-similar solutions into stationary states by adding

a confinement term ∇y ¨ pyuq, see Section 3.3.1.

In the case of linear diffusion,m “ 1, we can perform explicit estimates on the heat kernel Φ1

to get an idea of the asymptotic behaviour of solutions. Indeed, taking ρpt, xq to be a solution of

HE with initial data ρ0 P L
1
`pRN q, then

||ρpt, ¨q ´ Φ1pt, ¨q||1 ď Ct´1{2

for a positive constant C ą 0 depending on the dimension only. This means that at large times, all

solutions behave like the heat kernel, at least for the shape of the tails. For convergence to Φ1 in

various norms using entropy production methods, see [283]. Analogously, the Barenblatt profiles

(2.6) form ą 1 and (2.8) form˚ ă m ă 1 are playing a key role in understanding the asymptotics

of PME and FDE. For example, it is well-known that

lim
tÑ8

||ρptq ´Gm||1 “ 0 , m˚ ă m ă 1 , (2.11)

lim
tÑ8

||ρptq ´ Fm||1 “ 0 , m ą 1 , (2.12)

with rate t´α{N in the case of the PME. For the best known rates of convergence for the FDE,

see [35]. If 0 ă m ă m˚ and N ě 3 such as for the Yamabe flow, then solutions to the FDE with
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1. Introduction

initial data ρ0 P L
1
`pRN q X LppRN q, p ą 1´m

2N , exist for sufficiently small t ą 0, but go extinct at a

given finite time T ą 0, and in the radial case, their asymptotic behaviour as t Ñ T is described

by a uniquely determined self-similar solution [160, 255, 25]. For a detailed asymptotic analysis in

the casesm ą 1 andm ă 1 and limitations, see [289, 287].

2.2 Non-local interaction

If we neglect the diffusive term in (2.3), the behaviour of particles is solely governed by non-local

interaction,

Btρ “ ∇ ¨ pρ∇pW ˚ ρqq , t ą 0 , x P RN (2.13)

with initial condition ρpt “ 0q “ ρ0. The aggregation equation (2.13) is at the core of many

applications ranging from mathematical biology to granular media and economics, see [282, 237,

191, 284, 38, 154, 155] and the references therein. It can also be obtained as dissipative limits of

hydrodynamic equations for collective behaviour [211]. But most importantly, equation (2.13) can

be interpreted as the continuum description of an underlying particle model, a prototype example

of so-called Individual Based Models (IBMs), see [80] and the references therein. In other words, if

we consider n particles with equal masses 1{n located at positions X1, . . . , Xn P RN evolving

in time according to the interaction potential W , then the distribution of particles ρpt, xq solving

(2.13) approximates this evolution as the number of particles n tends to infinity.

2.2.1 Assumptions on the interaction potential

The interaction potentialW models the social behaviour of agents, and so ∇W px´ yq is the force

that a unit-mass particle at x exerts on a unit-mass particle at y. We say thatW is attractive atx P RN

if ∇W pxq ¨ x ě 0, and it is repulsive if ∇W pxq ¨ x ď 0. Often, it is assumed that particles attract

each other when they are far apart, and repulse each other when they are close; this reproduces

the ’social’, or natural, behaviour of the agents that are usually considered in applications. Some

typical choices of potentials that have been studied in the literature are

1. Power-law potentials, see [10, 11, 29, 72, 81, 82, 83, 114, 139] and the references therein:

W pxq “
|x|a

a
´
|x|b

b
, b ă a ,

with the convention |x|0

0 “ log |x|. Because of the simpler topology, the one-dimensional

case is in general better understood, see [151, 152, 79] and the references therein.

2. Morse potentials, see [139, 91, 95] and the references therein:

W pxq “ ´CAe
´|x|{lA ` CRe

´|x|{lR ,
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2. Part I: Keller–Segel-type aggregation-diffusion equations

whereCA,CR and lA, lR are the strengths and the typical lengths of attraction and repulsion

respectively. Biologically reasonable conditions are CR{CA ą 1 and lR{lA ă 1.

Most potentials that are relevant for applications have a singularity of some kind at the origin.

See [87, 95, 207] for other choices of interaction potentials and a deeper discussion on the issue of

biological/physical relevance.

Choosing the Dirac Delta measure as interaction potential, W pxq “ δpxq, we recover the porous

medium equation (2.5) withm “ 2 as in [282].

2.2.2 Discrete aggregation equations

IBMs arise in a wide range of contexts, from swarming behaviour of animals (insects, fish, birds,

...) and collective behaviour of bacteria to the movement of robots in control engineering. They

are often inspired from statistical physics and are usually formed by a set of Newton-type equa-

tions (2nd order models), or by kinematic equations where inertia terms are neglected (1st order

models). We will here focus on a very simple 1st order discrete aggregation equation derived in a

phenomenological manner [238, 237, 250, 281, 282, 146]. Let us consider n particles with positions

X1, . . . , Xn P RN and equal masses 1{n, interacting via the potentialW , evolving according to the

following first-order discrete aggregation equation:

9Xiptq “ ´
1
n

n
ÿ

j“1,
j‰i

∇W pXiptq ´Xjptqq , i P t1, . . . , nu , t P p0, T q . (2.14)

This model formally comes from applying Newton’s second lawwith friction and neglecting iner-

tia, which, in other words, means assuming that individuals can adjust to the velocity field instan-

taneously, an approximation valid when their speed is not too large, see [237, 139]. The scaling

constant 1{n in front of the interaction potential ensures that the effect of the potential per par-

ticle diminishes while the associated energy is of constant order as the number of particles goes

to infinity. Another reason to study the first order model (2.14) is that its stationary states have

the same shape in space as flocking solutions of the second order discrete aggregation equation

(see [95, 87] and the references therein)

:Xiptq “

ˆ

a´ b
ˇ

ˇ

ˇ

9Xiptq
ˇ

ˇ

ˇ

2
˙

9Xiptq ´
1
n

n
ÿ

j“1,
j‰i

∇W pXiptq ´Xjptqq , (2.15)

where a, b ě 0 are friction parameters. Further, the stability of stationary states for (2.14) and (2.15)

are related [91]. Here, we have an additional term producing a balance between self-propulsion

and friction imposing an asymptotic speed for the particles (if other effects are ignored), given by
a

a{b.

Understanding the shape of stationary states for equations (2.14) and (2.15) when the number n
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of particles is very large is of interest in statistical mechanics [267, 279], with direct implications

in material science [166, 228, 229].

2.2.3 Existence and uniqueness of solutions

For the local well-posedness of solutions to equation (2.13), we refer to [30, 28, 31, 213, 80]. In par-

ticular, unique solutions for the system (2.13) were obtained in [31, Theorem 1.1]: if the initial da-

tum ρ0 P L
ppRN q is a probabilitymeasurewith bounded secondmoment, and if∇W P W1,p1pRN q,

then there exists T ą 0 and a unique solution ρ ě 0 to (2.13) satisfying

ρ P C
`

r0, T s,
`

L1 X Lp
˘

pRN q
˘

X C1 `r0, T s,W´1,ppRN q
˘

.

Existence and uniqueness at the particle level is a bit more tricky. If the potentialW has no singu-

larity at the origin, then existence of solutions to the particle system (2.14) is guaranteed thanks to

the Cauchy11-Peano12-Arzelà13 theorem. However, if one collision occurs, then uniqueness may

be lost. Under suitable assumptions on the initial data Xnp0q, one can ensure that there exists a

time T ą 0 before which no collisions between particles occur [80].

2.2.4 Mean-field limit

Studying IBMs when the number of individuals becomes large is challenging, and it is then often

easier to pass to a continuous description of the system. This means going from particle descrip-

tions to kinetic or macroscopic descriptions where the unknown is the particle density distribu-

tion. Given a solution Xnptq :“ pX1ptq, . . . , Xnptqq to the discrete 1st order aggregation equation

(2.14), we define the empirical measure associated with Xnptq as

µXnptqpxq :“ 1
n

n
ÿ

i“1
δXiptqpxq x P RN , t P r0, T q .

As long as two particles (or more) do not collide, and if we set ∇W p0q “ 0, then the empirical

measure µXnptq satisfies (2.13) in the sense of distributions. The empirical measure is the critical

tool that allows to make a connection between (2.13) and (2.14).

Under suitable regularity assumptions on the initial data ρ0 and the interaction potential W , we

say that the IBM (2.14) converges to the equation (2.13) in the mean-field sense if the following

statement holds true [80, 31, 213]: if Xnptq :“ pX1ptq, . . . , Xnptqq is a solution to (2.14), and if

µXnp0q á ρ0

11Baron Augustin-Louis Cauchy (1789 - 1857) was a French mathematician who made pioneering contributions to
analysis. More concepts and theorems have been named after Cauchy than after any other mathematician.

12Guiseppe Peano (1858-1932) was an Italian mathematician. Peano was an accessible man, and the way he mingled
with students was regarded as ’scandalous’ in Turin, where he spent most of his career. He was a socialist in politics, and
a tolerant universalist in all matters of life and culture.

13Cesare Arzelà (1847-1912) was an Italian mathematician, recognised for his contributions in the theory of functions.
Arzelà came from a poor household and could therefore not start his study until the age of 24.
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2. Part I: Keller–Segel-type aggregation-diffusion equations

in the weak-˚ sense as nÑ8, then

µXnptq á ρptq , @t P r0, T q ,

where ρptq is a solution to (2.13) with initial data ρpt “ 0q “ ρ0. We will not go into the details of

the rigorous proof for this statement, but the fact that equation (2.13) is the good choice of model

to represent the many-particle limit of (2.14) can also be understood on a more intuitive level as

follows: Assume that, instead of a finite number of particles, wewant tomodel the particle density

ρpx, tq. Then, according to (2.14), particles located at x at time tmove with velocity

v̄pt, xq “ ´

ż

RN
∇W px´ yq ρpt, yqdy “ ´∇W ˚ ρ .

This leads to the conservation law Btρ`∇ ¨ pρv̄q “ 0, which is (2.13).

The regularity of the interaction potentialW is key for the type of convergence result that can

be obtained when going from (2.14) to (2.13). The classical Dobrushin strategy [131] for mean-

field limits applies to (2.13) only for C2pRN q smooth potentialsW with at most quadratic growth

at infinity [170]. In [80], the authors extended this result to more singular potentials.

In practise, one is interested in finding particle approximations Xnp0q to probability distribu-

tions ρ0 such that the corresponding empirical measure converges to that distribution in a desired

topology and satisfies certain constraints. This is an interesting and challenging mathematical

problem that has received a lot of attention in recent years, see for example [235, 50, 204, 176] and

the references therein.

2.3 Attraction vs repulsion

If the repulsion strength is very large at the origin, one can model repulsive effects by (non-linear)

diffusion while attraction is considered via non-local long-range forces [240, 282]. The main goal

of Part I is to understand better the behaviour of solutions when both non-linear diffusion and

non-local interactions are at play. The natural question that arises when combining aggregation

and diffusion terms is: which of the two forces wins, attraction or repulsion, and in which math-

ematical sense?

We will investigate this interplay for equation (2.3) with a rather simple yet challenging choice of

potential giving rise to a rich set of behaviour patterns:

Wkpxq “

$

’

&

’

%

|x|k

k
, if k P p´N,Nqzt0u

log |x| , if k “ 0
. (2.16)
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The conditions on k imply that the kernel Wk is locally integrable in RN . We need to make sure

that the aggregation term in (2.3) makes sense with this choice of potential. Let us define the

mean-field potential by Skpxq :“ Wkpxq ˚ ρpxq. For k ą 1´N , the gradient ∇Sk :“ ∇ pWk ˚ ρq is

well defined. For ´N ă k ď 1´N however, it becomes a singular integral, and we thus define it

via a Cauchy principal value,

∇Skpxq “ lim
εÑ0

ż

Bcpx,εq

|x´ y|k´2px´ yqρpyq dy

“

ż

RN
|x´ y|k´2px´ yq pρpyq ´ ρpxqq dy ,

where Bcpx, εq :“ RNzBpx, εq is the complement of the ball of radius ε ą 0 centered at x P RN .

Hence, the mean-field potential gradient in equation (2.3) is given by

∇Skpxq :“

$

’

’

&

’

’

%

∇Wk ˚ ρ , if k ą 1´N ,

ż

RN
∇Wkpx´ yq pρpyq ´ ρpxqq dy , if ´N ă k ď 1´N .

(2.17)

For k P p´N, 0q,Wk is also known as the Riesz14 potential, and writing k “ 2s´N with s P
`

0, N2
˘

,

the convolution term Sk is governed by a fractional diffusion process,

cN,sp´∆qsSk “ ρ , cN,s “ p2s´Nq
Γ
`

N
2 ´ 2s

˘

πN{24sΓpsq
“

kΓ
`

´k ´ N
2
˘

πN{22k`NΓ
`

k`N
2

˘ .

In terms of regularity, this means that Sk P W2s,p
loc pRN q if ρ P L1pRN q X LppRN q, 1 ă p ă 8.

2.3.1 Energy functional and convexity properties

We make use of the special structure of equation (2.3), and its connection to the following free

energy functional:

Fm,krρs “
ż

RN
Um pρpxqq dx` χ

ĳ

RNˆRN

Wkpx´ yqρpxqρpyq dxdy (2.18)

with

Umpρq “

$

’

’

&

’

’

%

1
Npm´ 1qρ

m , if m ‰ 1

1
N
ρ log ρ , if m “ 1

.

To simplify notation, we sometimes write

Fm,krρs :“ Umrρs ` χWkrρs ,

denoting by Um and Wk the repulsive and attractive contributions respectively. For Fm,k to be

finite, we require ρ P L1pRN q X LmpRN q, and additionally |x|kρ P L1pRN q in the case k ą 0. Note

14Frigyes (Frédéric) Riesz (1880-1956) was a Hungarian mathematician who made fundamental contributions to func-
tional analysis. He had an uncommonmethod of giving lectures: a docent reading passages fromRiesz’s handbook and an
assistant inscribing the appropriate equations on the blackboard, while Riesz himself stood aside, nodding occasionally.
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2. Part I: Keller–Segel-type aggregation-diffusion equations

thatFm,k is invariant by translation, andwe assume as for the aggregation-diffusion equation (2.3)

that ρ ě 0,
ş

ρ dx “ 1 and
ş

xρ dx “ 0.

One of themain goals in Part I is making the connection betweenminimisers of the free energy

functional (2.18) and stationary states of equation (2.3). Thanks to this connection, it is possible to

show existence and uniqueness of stationary states to (2.3) by studying the existence and unique-

ness of minimisers to the free energy functional Fm,k. This is where the notion of convexity be-

comes important. In simple terms, if a real valued function f : RN Ñ R is strictly convex, then

existence of a minimiser for f implies that it must be unique. McCann [234] discovered that there

is a similar underlying convexity structure for functionals defined on absolutely continuous Borel

measures, E : PacpRN q Ñ R, using an interpolation between Borel measures following the line of

optimal transportation [295]. Moreover, he used the powerful toolbox of Euclidean optimal trans-

portation to analyse functionals like (2.18) in the case m ě 0 and for a convex interaction kernel

Wk. Here, we deal with concave homogeneous interaction kernels Wk given by (2.16) for which

McCann’s results [234] do not apply.

We begin by introducing some tools from optimal transport. Let ρ̃ and ρ be two probability

densities. According to [53, 233], there exists a convex function ψ whose gradient pushes forward

the measure ρ̃paqda onto ρpxqdx: ∇ψ# pρ̃paqdaq “ ρpxqdx. In other words, for any test function

ϕ P CbpRN q, the following identity holds true
ż

RN
ϕp∇ψpaqqρ̃paq da “

ż

RN
ϕpxqρpxq dx .

The convex map ϕ is known as Brenier’s map , it is unique a.e. with respect to ρ and gives a way

of interpolating measures. The interpolating curve ρs, s P r0, 1s, with ρ0 “ ρ and ρ1 “ ρ̃ can be

defined as ρspxq dx “ ps∇ψ`p1´sqIdN qpxq#ρpxq dxwhere IdN stands for the identity map inRN .

In fact, this interpolating curve is the minimal geodesic joining the measures ρpxqdx and ρ̃pxqdx.

The notion of convexity associated to these interpolating curves is nothing else than convexity

along geodesics, introduced and called displacement convexity in [234]. Let us denote by PacpRN q

the set of absolutely continuous probability measures on RN .

Definition 2.1 (Displacement convexity). A functional E : PacpRN q Ñ R is (strictly) displacement

convex if

s ÞÑ E rpp1´ sqIdN ` s∇ψq#µs

is (strictly) convex on r0, 1s for any µ, ν P Pac, and where ψ is the corresponding Brenier map ν “ ∇ψ#µ.

The reason why we are interested in the displacement convexity properties of Fm,k is the fol-

lowing key result from [234]:
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Theorem 2.2 (McCann, 1997). If E : PacpRN q Ñ R is strictly displacement convex, then it has at most

one minimiser up to translation.

In other words, one recovers the property that existence of a minimiser implies uniqueness. In

our case however, Fm,k is not necessarily displacement convex. The convexity of the functionals

Um and Wk can be summarised as follows [234, 85, 98]:

Theorem 2.3. The functional Umrρs is displacement-convex provided thatm ě 1´ 1{N . The functional

Wkrρs in one dimension is displacement-concave if k P p´1, 1q and displacement-convex for k ě 1 in any

dimension.

Therefore, the overall displacement-concavity/convexity of the energy functional Fm,k is not

known since:

• ifN “ 1, then Umrρs is displacement-convex for anym ě 0 and Wkrρs displacement-concave

since k P p´1, 1q;

• if N ą 1 and k P p1, Nq, then Wkrρs is displacement-convex, but we have no information

about the displacement-convexity of Umrρs;

• ifN ą 1 and k P p´N, 1q, then we have no information about the displacement-convexity of

Wkrρs.

We already observe that at least in one dimension we are dealing with the compensation between

the displacement-convexity of the internal energy Umrρs and the displacement-concavity of the

interaction energy Wkrρs. In Chapter 3, we will show that in certain cases, existence of a critical

point for Fm,k implies its uniqueness (up to translations and dilations) in the one dimensional

setting. Our main statement is that the functional (2.18) – the sum of a convex and a concave

functional – behaves almost like a convex functional when attractive and repulsive forces are in

balance. The bad functional contribution is somehow absorbed by the convex part for certain

homogeneity relations and parameters χ.

2.3.2 Gradient flow structure

The strong connection between the functional Fm,k and the PDE (2.3) is due to the fact that the

functional Fm,k is non-increasing along the trajectories of the system as it satisfies at least formally

d

dt
Fm,krρptqs “ ´

ż

RN
ρpt, xq

ˇ

ˇ

ˇ

ˇ

∇
ˆ

m

Npm´ 1qρpt, xq
m´1 ` 2χWkpxq ˚ ρpt, xq

˙
ˇ

ˇ

ˇ

ˇ

2
dx .

Furthermore, the system (2.3) is the formal gradient flow of the free energy functional (2.18) when

the space of probability measures is endowed with the Euclidean Wasserstein metric W.
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2. Part I: Keller–Segel-type aggregation-diffusion equations

Definition 2.4. The EuclideanWassersteinmetricW between two probabilitymeasures ρ1 and ρ2 is defined

as

W pρ1, ρ2q :“
ˆ

inf
γPΓpρ1,ρ2q

ż

RNˆRN
|x´ y|2 dγpx, yq

˙1{2
,

where the set of couplings Γpρ1, ρ2q denotes the collection of all measures on RN ˆ RN with marginals ρ1

and ρ2 on the first and second variable respectively.

In other words, the family of PDEs (2.3) can be written as

Btρptq “ ∇ ¨ pρptq∇Tm,krρptqsq , (2.19)

where Tm,krρs denotes the first variation of the energy functional in the set of probability densities:

Tm,krρspxq :“ δFm,k
δρ

rρspxq “
m

Npm´ 1qρ
m´1pxq ` 2χWkpxq ˚ ρpxq . (2.20)

The first variation can be found through explicit calculation using the identity

lim
εÑ0

ˆ

Fm,krρ` εϕs ´ Fm,krρs
ε

˙

“

ż

RN
Tm,krρspxqϕpxq dx , @ϕ P C8c pRN q .

The illuminating statement that systems of the type (2.3) can be written as the formal gradient

flow of a corresponding energy functional has been clarified in the seminal paper by Otto [248]

for the porousmedium equation (2.5), and generalised to a large family of equations subsequently

in [96, 3, 97], we refer to the books by Villani [295] and Ambrosio, Gigli and Savaré [3] for a com-

prehensive presentation of this theory of gradient flows inWasserstein metric spaces, particularly

in the convex case. Let us mention that such a gradient flow can be constructed as the limit of

discrete in time steepest descent schemes,

ρpt`∆tq “ argmin
ν

"

Fm,kpνq `
1

2∆tWpρptq, νq
2
*

.

Performing gradient flows of a convex functional is a natural task, and suitable estimates from

below on the right notion of Hessian of Fm,k translate into a rate of convergence towards equilib-

rium for the PDE [295, 96, 97, 3]. However, performing gradient flows of non-convex functionals

is much more delicate, and one has to seek compensations. Such compensations do exist in our

case, and we will observe them first of all at the level of existence of minimisers for the free energy

functional Fm,k and stationary states of the family of PDEs (1.2) in particular regimes (see Chap-

ter 2), and secondly via convergence in Wasserstein distance towards equilibrium under suitable

assumptions (see Chapter 3). It is of course extremely important to understand how the convex

and the concave contributions are entangled.
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3 Part I: Results

3.1 The different regimes

It is important to note that this thesis is not concernedwith the evolution problemof equations (2.3)

and (3.29), and in all three chapters of part I, the questions of regularity/existence/uniqueness of

solutions are not addressed, assuming solutions are ’nice’ enough in space and time for our anal-

ysis to hold (for more details on regularity assumptions, see Chapter 3 Section 4). Whilst the

required regularity may be a strong assumption to make, the necessary properties can often be

obtained by regularisation, see [248, 92].

It is worth noting that the functional Fm,krρs possesses remarkable homogeneity properties.

Indeed, the mass-preserving dilation ρλpxq :“ λNρpλxq transforms the functionals as follows:

Um rρλs “

$

’

&

’

%

λNpm´1qUmrρs , if m ‰ 1 ,

Umrρs ` log λ , if m “ 1 ,

and,

Wk rρλs “

$

’

&

’

%

λ´kWkrρs , if k ‰ 0 ,

Wkrρs ´ log λ , if k “ 0 .

In other words, ifm ‰ 1 and k ‰ 0, then

Fm,krρλs “ λNpm´1qUmrρs ` λ´kχWkrρs .

Observe that ρλ Ñ δ in the limit λÑ8. A natural question arises: which of the two contributions

dominates, repulsive or attractive forces?

This motivates the following classification:
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3. Part I: Results

Definition 3.1 (Three different regimes).

Npm´ 1q ` k “ 0 This is the fair-competition regime, where homogeneities of the two competing con-

tributions exactly balance. If k ă 0, or equivalentlym ą 1, then we will have a dichotomy according

to χ (see Definition 3.7). Some variants of the HLS inequalities are very related to this dichotomy (see

Section 3.2). This was already proven in [136, 41, 71, 148] for the Keller–Segel case withN “ 2, and

in [39] for the Keller–Segel case with N ě 3. If k ą 0, that ism ă 1, no critical χ exists as we prove

in Chapter 2 Section 4.

Npm´ 1q ` k ą 0 This is the diffusion-dominated regime. Diffusion is strong, and is expected to over-

come aggregation, whatever χ ą 0 is. This domination effect means that solutions exist globally in

time and are bounded uniformly in time [61, 277, 276]. Stationary states were found by minimisa-

tion of the free energy functional in two and three dimensions [273, 78, 99] in the case of attractive

Newtonian potentials. Stationary states are radially symmetric if 2´N ď k ă 0 as proven in [89].

Moreover, in the particular case of N “ 2, k “ 0, and m ą 1 it has been proved in [89] that the

asymptotic behaviour is given by compactly supported stationary solutions independently of χ.

Npm´ 1q ` k ă 0 This is the attraction-dominated regime. This regime is less understood. Self-

attraction is strong, and can overcome the regularising effect of diffusion whatever χ ą 0 is, but

there also exist global in time regular solutions under some smallness assumptions, see [118, 275,

278, 109, 32, 110, 224, 65]. However, there is no complete criteria in the literature up to date distin-

guishing between the two behaviours. Most of the results known today deal with attractive Newtonian

interactions, that is k “ 2 ´N , in dimension N ě 3. For a study with linear diffusion m “ 1 and

k ă 0 in one dimension, see [65]. For the Newtonian case, global existence vs blow-up of weak solu-

tions has been investigated for the diffusion coefficients m “ 1 [118], 1 ă m ď 2 ´ 2
N [275, 278],

m “ 2N
N`2 [109], 2N

N`2 ă m ă 2 ´ 2
N [110, 224] and for the whole range 0 ă m ď 2 ´ 2

N [32].

It was shown in [118] for linear diffusion m “ 1 that global in time weak solutions exist for initial

data with small enough LN{2-norm, whereas there are no global smooth solutions with fast decay if

the second moment of the initial data is dominated by a power of the mass (with these two conditions

being incompatible). For diffusion coefficientm “ 2N
N`2 making the free energy functional conformal

invariant, there exists a family of stationary solutions characterising the transition between blow-up

and global existence of radially symmetric weak solutions [109]. The case 2N
N`2 ă m ă 2 ´ 2

N has

been studied in [110], where the authors suggest that the initial mass may not be an important quan-

tity to classify existence vs blow-up of solutions with the behaviour depending on the free energy, the

L2N{pN`2q-norm and the second moment of the initial data. In [224], the authors proved a uniform

L8-bound for weak solutions in the range where these stationary solutions exist given the initial data

is uniformly bounded. As a consequence, uniqueness of weak solutions follows. We refer to [20] for a

discussion with more general interaction potentials in the aggregation-dominated regime.
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diffusion-dominated regime
attraction-dominated regime

porous

medium
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fast

diffusion
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Wk singular Wk non-singular
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∇Wk R L
1
locpRN q

k

m

W2´N “ Newtonian potential

fair-competition regimemc “ 1´ k{N

1

0

2

m˚ “ 1´ 2{N

m˚˚ “ 2N
2N`k

m˚ “ 2´k´N
1´k´N

Figure 1.4: Overview of the parameter space pk,mq for N ě 3: fair-competition regime (m “ mc,

red line), diffusion-dominated regime (m ą mc, yellow region) and attraction-dominated regime

(m ă mc, blue region). For m “ mc, attractive and repulsive forces are in balance (i.e., in fair

competition). In the fast diffusion fair-competition regime (m “ mc ă 1), self-similar profiles to

equation (3.29) can only exist if diffusion is not ’too fast’ with restriction m ą m˚, see Chapter

2 Remark 4.6. Note that m˚ “ 0 for N “ 1, 2. For m “ m˚˚ in the aggregation-dominated

regime, the free energy functional Fm,k is conformal invariant, see Chapter 3 Section 6.2. For

mc ă m ă m˚ in the diffusion-dominated regime, global minimisers of Fm,k are stationary states

of (2.3), see Chapter 4 Theorem 1.1, a result which we are not able to show for m ą m˚ (striped

region).
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A word of caution is in place as to how the names of these three regimes are to be understood. We

introduced this terminology referring to the behaviour of the system with respect to blow-up and

so they describe the dominant behaviour that is to be expected when measures concentrate onto

a Dirac Delta. In light of these three regimes, we define the critical diffusion exponent as

mc :“ 1´ k

N
.

Chapters 2 and 3 concentrate on the fair-competition regimem “ mc, whereas Chapter 4 focuses

on the diffusion-dominated regimem ą mc.

The family of non-local problems (2.3) has been intensively studied in various contexts arising

in physics and biology. The two-dimensional logarithmic case pm “ 1, k “ 0q is the so-called

Keller–Segel system in its simplest formulation [196, 197, 243, 194, 136, 41, 256], see Section 1. The

two- and three-dimensional configurations with Newtonian interaction pm “ 1, k “ 2 ´ Nq are

the so-called Smoluchowski-Poisson system arising in gravitational physics [105, 107, 106]. It de-

scribes macroscopically a density of particles subject to a self-sustained gravitational field.

Substituting linear diffusion by non-linear diffusion with m ą 1 in two dimensions and higher

is a way of regularising the Keller–Segel model as proved in [61, 277] where it is shown that so-

lutions exist globally in time regardless of the value of the parameter χ ą 0. It corresponds to

the diffusion-dominated case in two dimensions for which the existence of compactly supported

stationary states and global minimisers of the free energy has only been obtained quite recently

in [89]. The fair-competition case for Newtonian interaction k “ 2 ´ N was first clarified in [39],

see also [276], where the authors find that there is a similar dichotomy to the two-dimensional

classical Keller–Segel case pN “ 2,m “ 1, k “ 0q, choosing the non-local term as the Newtonian

potential, pN ě 3,m “ 2´2{N, k “ 2´Nq. The main difference is that the stationary states found

for the critical case are compactly supported. We will see that such dichotomy also happens for

k ă 0 in our case while for k ą 0 the system behaves totally differently.

3.2 Variations of HLS inequalities

A key ingredient for the analysis in the case k ă 0 are certain functional inequalities which are

variants of the Hardy15-Littlewood16-Sobolev17 (HLS) inequality, also known as the weak Young’s

inequality [218, Theorem 4.3]:

15Godfrey Harold Hardy (1877-1947) was the most influential mathematician in Britain in the 20th century. He wrote
almost 100 papers together with Littlewood, considered to have been the most fruitful collaboration in the history of
mathematics. He was also a militant atheist and liked to talk of God as his personal enemy.

16John Edensor Littlewood (1885-1977) is a Britishmathematician, best known for his achievements in analysis, number
theory, and differential equations. He practised his belief that mathematicians should take a vacation of at least 21 days a
year during which they should do no mathematics.

17Sergei Lvovich Sobolev (1908-1989) was a Soviet mathematician working in mathematical analysis and partial differ-
ential equations.
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Theorem 3.2. Given k P p´N, 0q and p, q ą 1 satisfying

1
p
`

1
q
“ 2` k

N
,

there exists an optimal constant CHLS “ CHLSpp, q, kq such that for all f P LppRN q and g P LqpRN q,
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ĳ

RNˆRN

|x´ y|kfpxqgpyq dxdy

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď CHLS}f}p}g}q . (3.21)

Inequality (3.21) (not in the sharp form) was proved in [180] and [181]. Thanks to Lieb [217],

the optimal constant CHLS is known explicitly if p “ q “ 2N{p2N ` kq since in that case, it is

possible to explicitly compute the optimisers of (3.21), i.e. functions which, when inserted into

(3.21), give equality with the smallest constant. Indeed, optimisers for the sharp HLS inequality

p “ q are non-zero multiples of translations and dilations of

hpxq :“
ˆ

1
1` |x|2

˙p2N`kq{2
.

In other words, the set of optimisers O to (3.21) is given by

O :“
!

λh
´x

s
´ x0

¯

|λ P Rzt0u , s P Rą0 , x0 P RN
)

In fact, the HLS optimisers play an important role: they are stationary states of the non-linear

Fokker–Planck equation (2.10) obtained from rescaling the fast diffusion (2.5) with diffusion ex-

ponent m̃pk,Nq :“ 1 ´ 2{p2N ` kq. Note that indeed m˚ ă m̃ ă 1 for all k P p´N, 0q, and so we

are in the range where the Barenblatt profile Gm (2.8) is well defined.

In the case p ‰ q on the other hand, optimisers to (3.21) exist, but neither the optimal constant

CHLS nor the optimisers are known explicitly.

As suggested by the connection between optimisers of the HLS inequality (3.21) and self-

similar solutions to the fast diffusion equation (2.5), there is a rich and fruitful interplay between

functional inequalities and non-linear partial differential equations [92, 125, 74, 133, 70, 132, 137]

that is still in the process of being discovered. Let us illustrate the kind of connection we might

want to exploit in our context with the example k “ 2´N in dimensionN ě 3. This is particularly

interesting since cN |x|2´N is the fundamental solution of the Laplacian,

cN |x|
2´N ˚ f “ p´∆q´1f , cN :“ pp2´NqσN q´1

,

where σN :“ 2πN{2{Γ pN{2q denotes the surface area of the N -dimensional unit ball. Therefore,

choosing p “ q “ 2N{p2N ` kq “ 2N{pN ` 2q in (3.21), we see that the sharp HLS inequality

encodes the smoothing properties of p´∆q´1 on RN .
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3. Part I: Results

Let us rewrite the sharp HLS inequality (3.21) as Erf s ě 0 for f P L2N{pN`2qpRN q, where the

so-called HLS functional E is given by

Erf s :“ CS}f}
2
2N{pN`2q ´

ż

RN
fpxq

“

p´∆q´1f
‰

pxq dx

with CS :“ cNCHLS “
4

NpN´2qσ
´2{N
N`1 given explicitly. Since the HLS optimisers O are the at-

tracting stationary states for a fast diffusion flow (2.11) with diffusion exponent m̃ “ N{pN ` 2q,

one might hope that the HLS functional E would be monotone decreasing along this flow. This is

indeed the case, and was shown in [74]: Fix some f P L2N{pN`2qpRN q, f ě 0,
ş

f dx “
ş

Gm̃ dx “ 1

satisfying (2.9) for someR ą 0, and let ρpt, xq be a solution of the fast diffusion equation (2.5) with

diffusion exponent m̃ and ρp1, xq “ fpxq. Then, for all t ą 1, it follows that d
dtErρptqs ď 0. For a

proof of this monotonicity relation, see [74, Theorem 2.1].

Further, using only the fast diffusion flow, rearrangement inequalities and the conformal invari-

ance of the HLS functional E , the authors in [74] were able to reprove the HLS inequality (3.21) for

the Newtonian case k “ 2 ´N , N ě 3. Their approach uses the fast diffusion flow to reduce the

HLS inequality to a Gagliardo-Nirenberg-Sobolev (GNS) inequality, which in turn reduces to the

Schwarz inequality. Note that the diffusion exponent m̃ “ N{pN ` 2q corresponds to the critical

exponent of the FDE related to the boundedness of the second moment of the stationary states

Gm and it plays a certain role in the long-time assymptotics of the FDE, see [101, 35].

A similar role is played by the logarithmic HLS inequality, established in its sharp version

in [77]:

Theorem 3.3. Let k “ 0, m “ 1. For all non-negative measurable functions f P L1pRN q such that

f log f, f logp1` |x|2q P L1pRN q, we have

´χ

ĳ

RNˆRN

fpxqlog |x´ y|fpyqdxdy ď 1
N

ż

RN
fpxq log fpxqdx` C0, (3.22)

where the optimal constant C0 “ C0pNq is given by

C0pNq :“ 1
2 log π ` 1

N
log

˜

Γ
`

N
2
˘

Γ pNq

¸

`
1
2

ˆ

ψpNq ´ ψ

ˆ

N

2

˙˙

.

Here ψ denotes the logarithmic derivative of the Γ-function.

Carlen and Loss, together with Beckner, have demonstrated that the logarithmic HLS inequal-

ity is also a consequence of (3.21) as k Ñ 0, see [77].

Further, the sharp logarithmic HLS inequality on R2 can be obtained by a similar fast diffusion

flow argument as we discussed above for the HLS inequality (3.21) [74], an approach which is

facilitated by the fact that the logarithmic HLS functional is invariant under scalings. It can also
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be derived by optimal transport techniques in one dimension and in the two-dimensional radial

setting [62], using techniques which we will adapt for our context in Chapter 2 and Chapter 3.

The above examples illustrate the intrinsic relationship between functional inequalities, their

minimisers, and certain non-linear diffusion equations. We will make use of these connections in

Part I when studying the stationary states to the aggregation-diffusion equations (2.3) and (3.29).

We will now state the new functional inequalities derived in this thesis.

Theorem 3.4. Let k P p´N, 0q, andm ě mc. For f P L1pRN q X LmpRN q, we have
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ĳ

RNˆRN

|x´ y|kfpxqfpyqdxdy

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď C˚||f ||
pk`Nq{N
1 ||f ||mcmc , (3.23)

where the optimal constant C˚ is given by

C˚pN, k,mq :“ sup
f‰0

$

&

%

ˇ

ˇ

ˇ

ť

RNˆRN |x´ y|
kfpxqfpyqdxdy

ˇ

ˇ

ˇ

||f ||
pk`Nq{N
1 ||f ||mcmc

, f P L1pRN q X LmpRN q

,

.

-

ă 8.

Proof. The inequality is a direct consequence of Theorem 3.2 by choosing p “ q “ 2N{p2N ` kq,

and of Hölder’s inequality. More precisely, for any f P L1pRN q X LmpRN qwithm ą mc, we have
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ĳ

RNˆRN

|x´ y|kfpxqfpyqdxdy

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď CHLS ||f ||
2
p ď CHLS ||f ||

α
1 ||f ||

β
m.

with

α “ 2´ β , β “ 2
ˆ

1´ p
p

˙ˆ

m

1´m

˙

“

ˆ

k

N

˙ˆ

m

1´m

˙

.

Choosingm “ mc, we have α “ 1`k{N , β “ mc, and hence (3.23) follows with C˚ “ C˚pk,m,Nq

finite and bounded from above by CHLS .

Further, we will obtain as a by-product of our investigations the following one-dimensional

HLS-type inequality involving a second moment term:

Theorem 3.5. Let k P p´N, 0q and m “ mc. For any 0 ă χ ă C´1
˚ , there exists an optimal constant

C “ Cpk,N, χq such that

χ

ĳ

RNˆRN

|x´ y|kfpxqfpyq dxdy ď C ` }f}mcmc `
p´kq

2

ż

RN
|x|2fpxq dx (3.24)

for all f P L1pRN q X LmcpRN q with }f}1 “ 1,
ş

xfpxq dx “ 0 and |x|2fpxq P L1pRN q. If N “ 1, then

the set of optimisers is the unique self-similar solution to equation (2.3).

Moreover, we will prove the analogue version of the above functional inequality for positive

0 ă k ă 2{3 in one dimension, corresponding to a reversed HLS-type inequality with a second

moment term:
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3. Part I: Results

Theorem 3.6. Let N “ 1, k P p0, 2{3q andmc :“ 1´ k. For any χ ą 0, there exists an optimal constant

C “ Cpk, χq such that

χ

ĳ

RˆR

|x´ y|kfpxqfpyq dxdy `
k

2

ż

R
|x|2fpxq dx ě C `

ż

R
fmcpxq dx (3.25)

for all f P L1pRqXLmcpRqwith }f}1 “ 1,
ş

xfpxq dx “ 0 and
`

|x|2 ` |x|k
˘

fpxq P L1pRq. The optimiser

is given by the unique self-similar solution to equation (2.3).

Up to our knowledge, the functional inequalities (3.24) and (3.25) are not known in the litera-

ture.

The analysis of the free energy functionals Fm,k and their respective gradient flows is closely

related to HLS-type inequalities [218, 163, 74, 39]. To give a flavour, we highlight the case pm “

1, k “ 0q, called the logarithmic case. It is known from [136, 41] using [77, 19] that the functional

F1,0 is bounded from below if and only if 0 ă χ ď 1. Moreover, F1,0 achieves its minimum if and

only if χ “ 1 and the extremal functions are mass-preserving dilations of Cauchy’s density:

ρ̄0pxq “
1
π

ˆ

1
1` |x|2

˙

. (3.26)

In [77], the authors have proved the uniqueness (up to dilations and translations) of this logarith-

mic HLS inequality based on a competing-symmetries argument. We develop in Chapter 3 an

alternative argument based on some accurate use of the Jensen’s inequality to extend these results

to the case N “ 1, k P p´1, 0q and m “ mc. This goal will be achieved for the variant of the HLS

inequality (3.23) as in [39], indeed being a combination of the HLS inequality and interpolation

estimates.

In Chapter 3, we develop a strategy which enables to recover directly inequalities (3.22), (3.23),

(3.24) and (3.25). Our method involves two main ingredients:

• First it is required to know a priori that the inequality possesses some extremal function

denoted e.g. by ρ̄pxq (characterised as a critical point of the energy functional). This is not

an obvious task due to the intricacy of the equation satisfied by ρ̄pxq. Without this a priori

knowledge, the proof of the inequality remains incomplete. The situation is in fact similar

to the case of convex functionals, where the existence of a critical point ensures that it is a

global minimiser of the functional.

• Second we invoke convexity inequalities related to Jensen’s inequality.
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3.3 The fair-competition regime

In the fair-competition regime, when m “ mc “ 1 ´ k{N , we denote the corresponding energy

functional by Fkrρs “ F1´k{N,krρs. Notice that the functional Fk is homogeneous in this regime,

i.e. for dilations ρλpxq :“ λNρpλxq, we have

Fkrρλs “ λ´kFkrρs . (3.27)

In fact, using the Euler18 theorem for homogeneous functions, we can show that for k P p´N, 0q

any stationary state of the aggregation-diffusion equation (2.3) with bounded second moment

has zero energy (see Chapter 2, Lemma 3.2). This argument does not apply in the logarithmic

case k “ 0 and it allows us here to make the connection between global minimisers of Fk and

stationary states of (2.3) for k ă 0. Indeed, for any ρ P Y , where

Y :“
"

ρ P L1
`

`

RN
˘

X Lm
`

RN
˘

: ||ρ||1 “ 1 ,
ż

xρpxq dx “ 0
*

,

and for any χ ą 0, we can rewrite the functional inequality (3.23) as follows:

Fkrρs ě
1´ χC˚
Npm´ 1q ||ρ||

m
m ,

where C˚ “ C˚pk,Nq is the optimal constant defined in (3.23). Since the energy of the global

minimisers is always smaller or equal to the energy of the stationary states, and stationary states

have zero energy as mentioned above, it follows that χ ě 1{C˚. We define the critical interaction

strength by

χcpk,Nq :“ 1
C˚pk,Nq

. (3.28)

Hence, for χ “ χc, all stationary states of equation (2.3) are global minimisers of Fk. We can also

directly see that for 0 ă χ ă χc, no stationary states exist. Showing that stationary states of an

equation are globalminimisers of the associated energy functional is usually themore challenging

implication. The converse is trivial for systems that exhibit a gradient flow structure (2.19) since

global minimisers are critical points of the energy functional, i.e. the first variation of the energy

functional vanishes at these points, and therefore global minimisers are automatically stationary

states. It remains then to verify that global minimisers of Fk are regular enough to be station-

ary states of equation (2.3). Showing the good regularity properties can be challenging, and it is

proven and explained in detail in Chapter 2.

The case k ą 0 has been a lot less studied, and we will show in Chapter 2 that no critical inter-

action strength exists as there is no χ ą 0 for which Fk admits global minimisers. On the other

hand, we observe certain similarities with the behaviour of the fast diffusion equation (0 ă m ă 1,

χ “ 0) [287].
18Leonhard Euler (1707-1783), born in Switzerland and deceased in Russia, was one of the most influential and prolific

mathematicians in history with more than 800 papers bearing his name. He was blind for the last 15 years of his life,
during which time he nevertheless wrote over 300 papers.
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3. Part I: Results

From these observations, one can see that the analysis in the fair-competition regime depends

on the sign of k. We give a short overview of the differences between the cases k ă 0, k “ 0, k ą 0

in the definition below, including new insights obtained in this thesis:

Definition 3.7 (Three different cases in the fair-competition regime).

k ă 0 This is the porous medium case with m P p1, 2q, where diffusion is small in regions of small

densities. The classical porous medium equation, i.e. χ “ 0, is very well studied, see [289] and the

references therein. Here, we have a dichotomy for existence of stationary states and global minimisers of

the energy functional Fk depending on the critical parameter χc defined in (3.28), and hence separate

the sub-critical, the critical and the super-critical case, according to χ ž χc.

k “ 0 This is the logarithmic case. There exists an explicit extremal density ρ̄0 given in (3.26) which

realises the minimum of the functionalF0 when χ “ 1. Moreover, the functionalF0 is bounded below

but does not achieve its infimum for 0 ă χ ă 1 while it is not bounded below for χ ą 1. Hence,

χc “ 1 is the critical parameter in the logarithmic case whose asymptotic behaviour was analysed

in [62] in one dimension and radial initial data in two dimensions. We refer to the results in [71, 148]

for the two dimensional case.

k ą 0 This is the fast diffusion case with m P p0, 1q, where diffusion is strong in regions of small den-

sities. For any χ ą 0, no radially symmetric non-increasing stationary states with bounded kth

moment exist, and Fk has no radially symmetric non-increasing minimisers. However, we have ex-

istence of self-similar profiles independently of χ ą 0 as long as diffusion is not too fast, i.e. k ď 1.

Self-similar profiles can only exist if diffusion is not too strong with restriction 0 ă k ă 2, that is

pN ´ 2q{N ă m ă 1.

3.3.1 Change of variables

As mentioned above, for certain choices of m, k and χ, there are no stationary states to (2.3),

see Section 3.3.2. This is known in the case of the sub-critical classical Keller–Segel model in two

dimensions [41] for instance. If there are no stationary states, the scale invariance of (2.3)motivates

us to look for self-similar solutions instead. To this end, we rescale equation (2.3) to a non-linear

Fokker–Planck-type equation as in explained in Section 2.1.3 in the context of the non-linear heat

equation. Let us define

upt, xq :“ αN ptqρ pβptq, αptqxq ,

where ρpt, xq solves (2.3) and the functions αptq, βptq are to be determined. If we assume up0, xq “

ρp0, xq, then upt, xq satisfies the rescaled aggregation-diffusion equation
$

’

&

’

%

Btu “
1
N∆um ` 2χ∇ ¨ pu∇Skq `∇ ¨ pxuq , t ą 0 , x P RN ,

upt “ 0, xq “ ρ0pxq ě 0 ,
ż 8

´8

ρ0pxq dx “ 1 ,
ż 8

´8

xρ0pxq dx “ 0 ,
(3.29)
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for the choices

αptq “ et, βptq “

$

’

&

’

%

1
2´k

`

ep2´kqt ´ 1
˘

, if k ‰ 2,

t, if k “ 2,

and with ∇Sk given by (2.17) with u instead of ρ. By differentiating the centre of mass of u, we

see easily that
ż

RN
xupt, xq dx “ e´t

ż

RN
xρ0pxq dx “ 0 , @t ą 0 ,

and so the initial zero centre of mass is preserved for all times. Self-similar solutions to (2.3) now

correspond to stationary solutions of (3.29).

From now on, we switch notation from u to ρ for simplicity, it should be clear from the context if

we are in original or rescaled variables.

In rescaled variables, equation (3.29) is the formal gradient flow of the rescaled free energy

functional Fk,resc, which is complemented with an additional quadratic confinement potential,

Fk,rescrρs “ Fkrρs `
1
2Vrρs , Vrρs “

ż

RN
|x|2ρpxq dx .

Defining the sets

Y2 :“ tρ P Y : Vrρs ă 8u , Yk :“
"

ρ P Y :
ż

RN
|x|kρpxq dx ă 8

*

,

we see that Fk,resc is well-defined and finite on Y2 for k ă 0 and on Y2,k :“ Y2 XYk for k ą 0. Just

like the original equation (2.3), the rescaled system (3.29) has a formal gradient flow structure in

the Euclidean Wasserstein metric W, and so we can write (3.29) as

Btρ “ ∇ ¨ pρ∇Tk,rescrρsq “ ´∇WFk,rescrρs ,

where Tk,resc denotes the first variation of the rescaled energy functional,

Tk,rescrρspxq :“ Tkrρspxq `
|x|2

2

with Tk as defined in (2.20).

3.3.2 Main results Chapter 2

In Chapter 2, we analyse the properties of the functional Fk, its global minimisers, and its relation

to stationary states of (2.3) for the fair-competition regime in any dimension N ě 1. For the

porous medium case k ă 0, we show a similar dichotomy to [39] in the whole range k P p´N, 0q

including the most singular cases ´N ă k ď 1 ´ N . We show that stationary states exist only

for a critical value of χ “ χc with χc given by (3.28) and that they are compactly supported,

bounded, radially symmetric decreasing and continuous functions. Moreover, we show that they
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3. Part I: Results

are global minimisers of Fk. Next, we analyse the sub-critical case χ ă χc in rescaled variables

andwe show the existence of global minimisers for the rescaled free energy functional Fk,resc with

the properties above leading to the existence of self-similar solutions in original variables. Let us

mention that the regularity results for global minimisers of Fk and Fk,resc need a careful treatment

of the problem in radial coordinates involving non-trivial properties of hypergeometric functions,

particularly in the singular regime´N ă k ď 1´N when additional Hölder regularity C0,αpRN q

with α P p1 ´ k ´ N, 1q is needed for the gradient ∇Sk to be well defined. The properties of the

kernel in radial coordinates are postponed to the Appendix A of Chapter 2.

In Section 4 of Chapter 2, we analyse the fast diffusion case k ą 0. Let us mention that, to

the best of our knowledge, there are no results in the literature concerning the case k P p0, Nq in

which 0 ă mc “ 1 ´ k{N ă 1. There is one related result in [116] for the limiting case in one

dimension taking m “ 0, corresponding to logarithmic diffusion, and k “ 1. In that case, there

is no criticality present as solutions to (2.3) with pm “ 0, k “ 1q are globally defined in time for

all values of the parameter χ ą 0. We show that no radially symmetric non-increasing stationary

states and no radially symmetric non-increasing global minimisers exist in original variables for

all values of the critical parameter χ and for k P p0, Nq while we establish the existence of sta-

tionary states for all values of the critical parameter χ in rescaled variables for k P p0, 1s. In this

sense, there is no criticality for k ą 0. However, we have not analysed the minimisation problem

for Fk,resc directly for arbitrary dimension N ě 1 as we did for the case k ă 0. A full proof of

non-criticality involves the analysis of the minimisation problem in rescaled variables showing

that global minimisers exist in the right functional spaces for all values of the critical parameter

and that they are indeed stationary states. This will be proved in one dimension in Chapter 3 by

optimal transport techniques and postponed for further future investigations in general dimen-

sion. We finally illustrate these results by numerical experiments in one dimension corroborating

the absence of critical behaviour for k ą 0.

More precisely, we will prove the following main theorems in Chapter 2:

Theorem 3.8 (The Critical Porous Medium Regime). In the porous medium regime k P p´N, 0q and

for critical interaction strengths χ “ χc, there exist global minimisers of Fk and they are radially sym-

metric non-increasing, compactly supported and uniformly bounded. Furthermore, all stationary states

with bounded second moment are global minimisers of the energy functional Fk, and conversely, all global

minimisers of Fk are stationary states of (2.3).

Theorem 3.9 (The Sub-Critical Porous Medium Regime). In the porous medium regime k P p´N, 0q

and for sub-critical interaction strengths 0 ă χ ă χc, no stationary states exist for equation (2.3) and

no minimisers exist for Fk. In rescaled variables, all stationary states are continuous and compactly sup-
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ported. There exist global minimisers of Fk,resc and they are radially symmetric non-increasing and uni-

formly bounded stationary states of equation (3.29).

Due to the homogeneity (3.27) of the functional Fk, each global minimiser gives rise to a family

of global minimisers for χ “ χc by dilation since they have zero energy. It is an open problem to

show that there is a unique global minimiser for χ “ χc modulo dilations. This uniqueness was

proven in the Newtonian case in [302], and for any k P p´1, 0q for the one-dimensional case in

Chapter 3.

In contrast, in rescaled variables, we do not know if stationary states with bounded second

moment are among global minimisers of Fk,resc for the sub-critical case 0 ă χ ă χc except in one

dimension, see Chapter 3. It is also an open problem to show the uniqueness of radially symmetric

stationary states of the rescaled equation (3.29) for N ě 2.

Theorem 3.10 (The Fast Diffusion Regime). In the fast diffusion regime k P p0, Nq equation (2.3)

has no radially symmetric non-increasing stationary states with kth moment bounded, and there are no

radially symmetric non-increasing global minimisers for the energy functionalFk for anyχ ą 0. In rescaled

variables, radially symmetric non-increasing stationary states can only exist if 0 ă k ă 2, that is pN ´

2q{N ă mc ă 1. Similarly, global minimisers with finite energy Fk,resc can only exist in the range 0 ă k ă

2N{p2 ` Nq, that is N{p2 ` Nq ă mc ă 1. For k P p0, 1s, there exists a continuous radially symmetric

non-increasing stationary state of the rescaled equation (3.29).

3.3.3 Main results Chapter 3

Chapter 3 focuses on the one-dimensional fair-competition regime. We will make a survey of

the main results known in one dimension about the stationary states of the aggregation-diffusion

equation and globalminimisers of the associated energy functionals in the fair-competition regime

while at the same time providing newmaterial in one dimensionwith alternative proofs and infor-

mation about long time asymptotics which are not known yet in higher dimensions. The novelties

will be showing the functional inequalities (3.23) for m “ mc, (3.24) and (3.25) independently of

the flow and studying the long-time asymptotics of the equations (2.3) and (3.29) by exploiting

the one dimensional setting. More precisely, we will make accurate use of the expression for the

dissipation of the Wasserstein distance derived in Theorem 4.1, which is only valid in one dimen-

sion. A similar identity to (??) can also be derived for the radial setting in higher dimension, which

opens up opportunities to generalise our one-dimensional results. Let us stress that we did not

develop any theory of the evolution problem as mentioned before, and in this sense, the conver-

gence results in this chapter remain formal, assuming that solutions ρpt, xq are regular enough for

our computations to hold.
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In the sub-critical and critical porous medium regime, we will demonstrate convergence to

equilibrium in Wasserstein distance under a certain stability condition, a restriction which is not

necessary for the asymptotic behaviour in the fast diffusion regime. More precisely, the required

stability condition is a uniform W2,8pRq-stability estimate on the Brenier map ψpt, xqwhose gra-

dient pushes forward a solution ρpt, xq onto a stationary state, ρpt, xq dx “ Bxψpt, xq#ρ̄pxq dx:

Bxxψpt, xq P L
8 pR`, L8pRqq such that ||Bxxψ||L8pR`,L8pRqq ď 1` 1

m
.

For the sub-critical porous medium regime, and for the fast diffusion regime, we obtain exponen-

tial convergence to self-similar profiles with an explicit rate which does not depend on the interac-

tion strength χ. This is remarkable in the sub-critical case χ ă χc as it means that the asymptotic

behaviour does not change as χ approaches χc from below, whilst the behaviour at χ “ χc is very

different with the existence of infinitely many stationary states that act as attractors for a certain

class of solutions. This effect appeared in the logarithmic case (k “ 0,m “ 1) analysed in [62].

Finally, we provide numerical simulations of system (2.3) to illustrate the properties of equi-

libria and self-similar profiles in the different parameter regimes for the fair-competition regime.

We use a Jordan-Kinderlehrer-Otto (JKO) steepest descent scheme [195, 248] which was proposed

in [36] for the logarithmic case k “ 0, and generalised to the porous-medium case k P p´1, 0q

in [67]. It can easily be extended to rescaled variables and works just in the same way in the fast

diffusion regime k P p0, 1q.

For the logarithmic case k “ 0, m “ 1, we know that the critical interaction strength is given by

χc “ 1 separating the blow-up regime from the regime where self-similar solutions exist [136, 41,

33]. As shown in Chapter 2, there is no critical interaction strength for the fast diffusion regime

k ą 0, however the dichotomy appears in the porous medium regime k ă 0. It is not known

how to compute the critical parameter χcpkq explicitly for k ă 0, however, we can make use of the

numerical scheme to compute χc numerically.

Figure 1.5 gives an overview of the behaviour of solutions. In the red region, we observe finite-

time blow-up of solutions, whereas for a choice of pk, χq in the green region, solutions converge

exponentially fast to a unique self-similar profile. The critical regime is characterised by the black

line χcpkq with ´1 ă k ď 0, separating the grey from the white region. Note that numerically we

have χcp´0.99q “ 0.11 and χcp0q “ 1. Figure 1.5 has been created by solving the rescaled equa-

tion (3.29) repeatedly for each k from ´0.99 to 0 in 0.01 steps. For a given k, the numerical critical

interaction strength χcpkq is defined to be the largest χ for which the numerical solution can be

computed without blow-up until the L2-error between two consecutive solutions is less than a

specified tolerance. In Chapter 3, we describe in detail the numerical scheme and investigate the

behaviour of solutions at selected points in the parameter space pk, χq.
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Figure 1.5: Regions of blow-up (red) and convergence to self-similarity (green) in the fair-
competition regimemc “ 1´ k{N .

We closeChapter 3with some investigations on the diffusion- and attraction-dominated regimes,

using the numerical scheme described above to develop an intuition for the asymptotic behaviour

of solutions we may expect.

For the attraction-dominated regime in any dimension Npm ´ 1q ` k ă 0, it is known that both

global existence of solutions and blow-up can occur in original variables depending on the choice

of initial data [118, 275, 278, 109, 32, 110, 224, 65]. In Chapter 3, we demonstrate this change

of behaviour numerically in one dimension. Further, we investigate in more detail the regime

m “ m˚˚ :“ 2N{p2N ` kq for which the free energy functional (2.18) is conformal invariant, a

choice which also falls within the attraction-dominated regime Npm ´ 1q ` k ă 0. For k ă 0, we

prove the existence of a critical point for the energy functional (2.18), using the fact that this choice

of diffusion exponent corresponds to the case p “ q “ m in the HLS inequality (3.21) for which

the optimisers and the optimal constant are known explicitly.

Finally, we state two conjectures for the regimem “ m˚˚. Firstly, we suggest that a similar result

to [109, Theorem 2.1] holds true for general k P p´N, 0q andm “ m˚˚ stating that global existence

and blow-up in the radially symmetric setting can be characterised by a relation between the ini-

tial data and the HLS-optimisers. Numerically, we can indeed observe this behaviour for N “ 1.

Secondly, we conjecture that the unique HLS-optimiser with unit mass that is also a critical point

for the energy functional (2.18) is in fact an unstable stationary state of equation (2.3). Again, we

show that this can be observed numerically in one dimension.
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3. Part I: Results

Tables 1.1 and 1.3 provide an overview of the new results that we prove in part I of this thesis

in the one dimensional fair-competition regime for the porous medium case (k ă 0) and the fast

diffusion case (k ą 0) respectively. Table 1.2 summarises the relevant results known for the loga-

rithmic case (k “ 0). For an overview of the different regimes and choices of m and k discussed

in this thesis, see Figure 1.4.

χ ă χcpkq χ “ χcpkq χ ą χcpkq

Functional Inequalities:

• There are no stationary states
in original variables, there are
no minimisers for Fk (Chapter 2
Theorem 2.7).

• In rescaled variables, all sta-
tionary states are continuous and
compactly supported (Chapter 2
Theorem 2.7).

• There exists a minimiser of
Fk,resc. Minimisers are symmet-
ric non-increasing and uniformly
bounded. Minimisers are station-
ary states in rescaled variables
(Chapter 2 Theorem 2.7).

• If ρ̄resc is a stationary state in
rescaled variables, then all solu-
tions of the rescaled equation sat-
isfy Fk,rescrρs ě Fk,rescrρ̄rescs
(Chapter 3 Theorem 3.6).

• Stationary states in rescaled
variables and minimisers of
Fk,resc are unique (Chapter 3
Corollary 3.9).

Functional Inequalities:

• There exists a minimiser of
Fk . Minimisers are symmetric
non-increasing, compactly sup-
ported and uniformly bounded.
Minimisers are stationary states
in original variables (Chapter 2
Theorem 2.6).

• There are no stationary states
in rescaled variables in Y2, and
there are nominimisers of Fk,resc
in Y2 (Chapter 3 Corollary 3.11
(ii)).

• If ρ̄ is a stationary state in orig-
inal variables, then all solutions
satisfy Fkrρs ě Fkrρ̄s “ 0,
which corresponds to a variation
of the HLS inequality (Chapter 3
Theorem 3.2).

• Stationary states in original
variables and minimisers of
Fk are unique up to dilations
(Chapter 3 Corollary 3.5), and
they coincide with the equality
cases of Fkrρs ě 0.

Functional Inequalities:

• There are no stationary states in
original variables in Y , and there
are no minimisers of Fk in Y
(Chapter 3 Corollary 3.11 (i)).

• There are no stationary states
in rescaled variables in Y2, and
there are nominimisers of Fk,resc
in Y2 (Chapter 3 Corollary 3.11
(ii)).

Asymptotics:

• Under a stability condition
solutions converge exponentially
fast in Wasserstein distance to-
wards the unique stationary state
in rescaled variables with rate 1
(Chapter 3 Proposition 4.5).

Asymptotics:

• Under a stability condition
and for solutions with second
moment bounded in time, we
have convergence in Wasserstein
distance (without explicit rate) to
a unique (up to dilation) station-
ary state (Chapter 3 Proposition
4.3).

Asymptotics:
Asymptotics are not well under-
stood yet.

• If there exists a time t0 ě 0
such that Fkrρpt0qs ă 0, then ρ
blows up in finite time [275, 39].

• Numerics suggest that the
energy of any solution becomes
negative in finite time, but no
analytical proof is known.

Table 1.1: Overview of results in one dimension for ´1 ă k ă 0 andm “ mc P p1, 2q.

3.4 The diffusion-dominated regime

3.4.1 Main results Chapter 4

In Chapter 4, we investigate the diffusion-dominated regime where m ą mc “ 1 ´ k{N and

k P p´N, 0q. In this regime diffusive forces dominate, avoiding blow-up for any choice of χ ą 0,

and so there is no criticality for χ. Some of the techniques developed in Chapters 2 and 3 can
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χ ă 1 χ “ 1 χ ą 1

Functional Inequalities:

• There are no stationary states in
original variables, but self-similar
profiles [136, 41, 70, 71, 148].

Functional Inequalities:

• If ρ̄ is a stationary state in orig-
inal variables, then all solutions
satisfy Fkrρs ě Fkrρ̄s, which
corresponds to the logarithmic
HLS inequality [136, 41, 62].

• Stationary states are given by
dilations of Cauchy’s density,
ρ̄pxq “ 1{pπp1 ` |x|2qq, which
coincide with the equality cases
of the logarithmic HLS inequal-
ity. They all have infinite second
moment [136, 41, 62].

Functional Inequalities:

• Smooth fast-decaying solu-
tions do not exist globally in
time [242, 34, 41, 68].

• There are no stationary states
in original variables and there
are no minimisers of F0 in Y
(Chapter 3 Remark 3.4).

Asymptotics:

• Solutions converge exponen-
tially fast in Wasserstein distance
towards the unique stationary
state in rescaled variables [62].

Asymptotics:

• Solutions converge in Wasser-
stein distance to a dilation of
Cauchy’s density (without ex-
plicit rate) if the initial second
moment is infinite, and to a Dirac
mass otherwise [33, 40, 62, 37, 75].

Asymptotics:

• All solutions blow up in finite
time provided the second mo-
ment is initially finite [187, 260].

Table 1.2: Overview of results in one dimension for k “ 0 andm “ mc “ 1.

No criticality for χ

Functional Inequalities:

• There are no stationary states in original variables (Chapter 3 Remark 4.9). In rescaled variables, there exists a con-
tinuous symmetric non-increasing stationary state (Chapter 2 Theorem 2.9).

• There are no symmetric non-increasing global minimisers of Fk . Global minimisers of Fk,resc can only exist in the range
0 ă k ă 2

3 (Chapter 2 Theorem 2.9).
• If ρ̄resc is a stationary state in rescaled variables, then all solutions of the rescaled equation satisfy Fk,rescrρs ě Fk,rescrρ̄rescs
(Chapter 3 Theorem 3.13). Hence, for 0 ă k ă 2

3 , there exists a global minimiser for Fk,resc.
• For 0 ă k ă 2

3 , stationary states in rescaled variables and global minimisers of Fk,resc are unique (Chapter 3 Corollary
3.16).

Asymptotics:

• Solutions converge exponentially fast in Wasserstein distance to the unique stationary state in rescaled variables with
rate 1 (Chapter 3 Proposition 4.8).

Table 1.3: Overview of results in one dimension for 0 ă k ă 1 andm “ mc P p0, 1q.

be extended to the porous medium diffusion-dominated regime, such as the characterisation of

stationary states for equation (2.3) and of global minimisers for the energy functional (2.18), which

we denote by F :“ Fm,k for simplicity. Let us define the diffusion exponentm˚,

m˚ :“

$

’

&

’

%

2´k´N
1´k´N , if N ě 1 and ´N ă k ă 1´N ,

`8 if N ě 2 and 1´N ď k ă 0 .

as it will play an important role for the regularity properties of global minimisers of F .
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First of all, we show in Chapter 4 that stationary states of (2.3) in Y are radially symmetric for

all χ ą 0, k P p´N, 0q and m ą mc. This is one of the main results of [89], and is achieved under

the assumption that the interaction kernelWk is not more singular than the Newtonian potential

close to the origin. The proof in [89] can be adapted to our setting as the main arguments con-

tinue to hold even for more singularWk. Let us mention that the radiality of stationary states is

crucial when making the connection to global minimisers of F , which are also radially symmetric

as the energy decreases under taking symmetric decreasing rearrangements19. In other words, this

result reduces the question of uniqueness of stationary states to uniqueness of radially symmetric

stationary states, allowing us to work in the radial setting instead.

Investigating the properties of global minimisers for F , we show in Chapter 4 that they are com-

pactly supported and uniformly bounded for all χ ą 0, k P p´N, 0q and m ą mc. Note that

this result corresponds to what we find in the critical porous medium fair-competition regime,

see Theorem 3.8. However here, we choose to develop a new method for the proof: instead of an

iterative argument using hypergeometric functions to control global minimisers at the origin di-

rectly (see Chapter 2), we first proof an estimate for the mean-field potential Sk “Wk ˚ρ, and then

argue by contradiction. The idea is that for every unbounded global minimiser one can construct

a bounded competitor that decreases the energy. The difficulty in handling terms involving hy-

pergeometric functions remains the same. Existence of global minimisers can be obtained using

the concentration compactness argument by Lions [220], whereas proving Hölder regularity in

the singular range ´N ă k ď 1´N turns out to be more challenging in the diffusion-dominated

case as one may have diffusion exponents m that are greater than 2, in which case one cannot

transfer Hölder regularity of ρm´1 to ρ directly. We obtain that global minimisers of F are regular

enough to be stationary states of equation (2.3) under the condition that diffusion is not too fast,

mc ă m ă m˚. Moreover, bootstrapping on the obtained regularity using the Euler18-Lagrange20

equation, we obtain that global minimisers of F in Y are C8 inside their support.

Finally, we apply the same methods as in Chapter 3 to derive an HLS-type inequality in one di-

mension using optimal transport techniques, establishing equivalence between global minimisers

of F in Y and stationary states of equation (2.3). Additionally, this functional inequality provides

uniqueness of stationary states in one dimension.

In summary, we will prove the following results in Chapter 4:

19The function ρ# is said to be the symmetric decreasing rearrangement of ρ if ρ# is radially symmetric non-increasing
with the level sets of ρ# and ρ having the same measure, i.e. |tx : ρ#pxq ą cu| “ |tx : ρpxq ą cu|.

20Joseph Louis Lagrange (1736-1813)was an Italian-Frenchmathematician and astronomer. Lagrangewas only 19 years
old when he wrote to Euler announcing a new formalism to simplify Euler’s method for finding a curve that satisfies an
extremum condition. Using this formalism, he derived the fundamental equation of the calculus of variations, known
today as Euler-Lagrange equation.
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Theorem 3.11. Let N ě 1, χ ą 0 and k P p´N, 0q. All stationary states of equation (1.2) are radially

symmetric decreasing. If m ą mc, then there exists a global minimiser ρ of F on Y . Further, all global

minimisers ρ P Y are radially symmetric non-increasing, compactly supported, uniformly bounded and

C8 inside their support. Moreover, all global minimisers of F are stationary states of (1.2) whenever

mc ă m ă m˚. Finally, ifmc ă m ă 2, we have ρ P W1,8 `

RN
˘

.

Theorem 3.12. Let N “ 1, χ ą 0 and k P p´1, 0q. All stationary states of (1.2) are global minimisers of

the energy functional F on Y . Further, stationary states of (1.2) in Y are unique.

4 Part I: Perspectives

There are many interesting open problems of varying difficulty centered around model (2.3), and

I have started further investigations on some of them. In the light of Chapters 2-4, the central

question is of course how to complete the picture of asymptotic behaviour in the fair-competition

regime Npm ´ 1q ` k “ 0, and how to tackle the cases when attractive and repulsive forces are

not in balance, namely the diffusion-dominating regime Npm ´ 1q ` k ą 0 and the aggregation-

dominating regime Npm´ 1q ` k ă 0.

4.1 The fair-competition regimem “ mc

The following are promising directions of work in progress or future research:

• Uniqueness of stationary states and self-similar profiles k P p´N, 0q: Due to homogeneity,

each global minimiser of Fm,k gives rise to a family of global minimisers for χ “ χc by

dilation in the porous medium case k P p´N, 0q, but it is an open problem to show that

there is a unique global minimiser modulo dilations. This uniqueness was proven in the

Newtonian case in [302], and in one dimension in Chapter 3. It would be interesting to

explore the uniqueness modulo dilations of global minimisers in radial variables in higher

dimensions, as one would then obtain the full set of stationary states with bounded second

moment for model (2.3) as a by-product.

In self-similar variables, we do not know if stationary states with second moment bounded

are among global minimisers of the rescaled free energy Fresc for the sub-critical regime

0 ă χ ă χc except in one dimension. ForN “ 1, we fully answered the uniqueness question

in Chapter 3 using optimal transport techniques. It is also an open problem to show the

uniqueness of radially symmetric self-similar profiles to (2.3) for N ą 1.

• Asymptotic behaviour k P p´N,Nq: Formulating identity (??) in radial coordinates, it seems

there is a natural generalisation of the methods employed in Chapter 3 to show convergence
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to equilibrium in Wasserstein distance in any dimension in the radial setting. The compu-

tations are in spirit similar, but technically challenging due to the hypergeometric function

terms involved. Ground states of Fm,k are the natural candidates amongst which to look for

asymptotic profiles, and in this sense, Chapters 2 and 3 provide the necessary ground work

for further investigations into the asymptotic behaviour of solutions.

• Cauchyproblem k P p´N,Nq: The existence anduniqueness theory for theCauchy problem

of (2.3) is still an open problem. In the porous medium range k P p´N, 0q, I would like to

explore the possibility that a good variation of the results in [32, 39, 41] allows to tackle this

question. In the fast diffusion range k P p0, Nq nothing is known yet and it is not even clear

which is the good functional framework to work in.

• Very fast diffusion k P p0, Nq: We showed inChapter 2 that radially symmetric non-increasing

stationary states in self-similar variables have so-called fat tails for large |x|. In particular,

there is a critical kc :“ 2 and respectively a critical diffusion exponent mc :“ pN ´ 2q{N

where a change of behaviour occurs. For k ă kc, mass is preserved, whereas if diffusion is

too fast k ą kc, it is well known that mass escapes to infinity in the case of the classical fast

diffusion equation (χ “ 0) and integrableL8-solutions go extinct in finite time. Extinction is

an important phenomenon in the theory of non-linear diffusion, and it would be interesting

to explore it for the fair-competition regime with k ą kc for which – up to my knowledge

– nothing is known yet. Another interesting direction would be to study smoothing effects

using the techniques developed in [287] as regularisationwould allow us to reduce the ques-

tion of extinction to the behaviour of the tails.

• Duality and stability estimates for related functional inequalities k P p´N, 0q: For the one-

dimensional fair-competition regime we obtained the functional inequality Fk,rescrρs ě c

for the sub-critical porous medium case χ ă χc, k P p´1, 0q, which contains an additional

confinement potential, breaking homogeneity. Wewere not able to find this inequality in the

literature and it certainly deserves further investigation. Rewriting the inequality as G ď E

for suitable functionals E and G, one can formulate the dual functional inequality

E˚ ď G˚ (4.30)

via Legendre21 transforms. This dual functional inequality is by itself interesting and we

are currently working on a local stability estimate for (4.30) by linearisation arguments. The

optimisers of the classical HLS inequality are known explicitly, however we do not know the

optimisers of G ď E due to the second moment term. To the best of our knowledge, [76] is

21Adrien-Marie Legendre (1752-1833) was a French mathematician. For nearly 200 years, books, paintings and articles
have incorrectly shown a portrait of French politician Louis Legendre (1752-1797) representing him, until the mistake was
discovered in 2005.
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the only work in the literature where a stability estimate has been found without knowing

the optimisers, and [111] is the first time stability has been shown for fractional powers,

where the authors proved a stability estimate for the fractional HLS inequality by lifting the

problem up to the sphere.

Once local stability for E˚ ď G˚ is established, we can hope to obtain global stability by

a concentration compactness argument. Finally, it is possible to transport such a stability

estimate back onto G ď E using the strategy introduced in [73]. The above argument also

works in any dimension, assuming G ď E holds true forN ě 2. Using the optimal transport

approach applied in Chapter 3, it seems possible to prove the functional inequality in higher

dimensions at least in the radial setting. Additionlly, this method may allow us to find an

explicit expression for the critical interaction strength χc “ χcpk,Nq using duality.

4.2 The diffusion-dominated regimem ą mc

In the diffusion-dominating regime, two main cases have been studied in the literature: the log-

arithmic case k “ 0, m ą 1 in two dimensions [78], and the Newtonian case k “ 2 ´ N with

m ą 1 [39], and m ą 2 ´ 2{N [199]. It would be interesting to see whether some techniques we

used for the fair-competition regime in Chapters 2 and 3 could be applied for general k P p´N,Nq

and m ą mc, extending the results in Chapter 4. In particular, as we have only investigated the

singular kernel case k P p´N, 0q so far, it would be interesting to explore the behaviour in the case

k P p0, Nq. If k P p0, Nq is large enough, onewould expect that stationary states for the system (2.3)

can exist. The goal here would be to first show that Fm,k is bounded below by proving a suitable

version of a reversed HLS-type inequality. This allows then to tackle the question of existence of

global minimisers using concentration-compactness arguments [223, 222, 221, 220].

In the case whenmc ă m ă 1, we expect global minimisers of Fm,k to be supported on the whole

space, and therefore, one can use the methods developed in [35] to linearise around a minimiser

– if it exists. More precisely, we expect the linearised flow to be self-adjoint in a weighted space

with an appropriate norm, and a spectral gap of the linearised operator would yield an estimate

for the local rate of convergence to equilibrium, which is optimal for large time. A more chal-

lenging problem is to investigate if the global rate of convergence is given by the asymptotic rate

of convergence, which we do not know how to do so far without a suitable Bakry-Emery-type

estimate [9].

4.3 The aggregation-dominated regimem ă mc

In the aggregation-dominated regime m ă mc and k P p´N,Nq, very little is known except the

work [109] by Chen, Liu and Wang where m “ 2N{pN ` 2q, and [32] by Bian and Liu where
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0 ă m ă 2 ´ 2{N , both focusing on the Newtonian kernel case k “ 2 ´ N . There, the authors

classify blow-up vs global existence of radially symmetric solutions and study their long-time

behaviour in terms of the non-linearity of the diffusion m and the choice of initial data. Their

results rely on the special properties of the Newtonian potential and it is not at all clear how to

tackle the problem for more general k andm.
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5 Part II: Non-woven textiles

This part of the thesis is concerned with the development of a suitable method to show con-

vergence to equilibrium for certain types of kinetic equations where the equilibrium state is not

known a priori. We develop such a method in the context of a specific industrial application:

modelling part of the production process of non-woven textiles.

5.1 Production process of non-woven textiles

Figure 1.6: Non-woven Fab-

ric Production Line. Source:

product catalogue Zhejiang

Sanlong Universal Machin-

ery Co., Ltd22.

Non-woven textiles are neitherwoven nor knitted, and have nowa-

days replaced traditional materials in many areas. From medi-

cal equipment such as surgical gowns and surgical masks, differ-

ent types of filters for gasoline, oil and air, or coffee filters and

tea bags, to diapers, tampons, mailing envelopes, pillows, cush-

ions and mattress cores – non-woven textiles have become part of

our everyday lives. They are now also being used as geotextiles

for roadway underlayment, erosion control, canal construction,

drainage systems, frost protection and agricultural mulch. They

have the advantage that the production process does not require

to convert fibres to yarn, and one can use recycled fabrics and oil-

basedmaterials to produce non-woven textiles. Depending on the

application, these textiles are required to possess specific properties such as absorbency, liquid

repellence, resilience, stretch, softness, strength, flame retardancy, washability, cushioning, ther-

mal insulation, acoustic insulation, filtration, or act as a bacterial barrier. It is desirable to be able

to control these properties during the production process. In particular, one would like to create

a homogeneous material with the same set of properties at each point. Modelling the produc-

tion process as an evolution equation, this corresponds to finding a stationary state of the system.

Because of the equation’s particular structure, mathematically, it is an interesting question to un-

derstand in which way the system converges to this stationary state and how to find an explicit

rate of convergence in terms of the model parameters.

Let us now describe in more detail how non-woven textiles are produced using melt-spinning

operations. A melted polymer is extruded through nozzles placed densely and equidistantly in a

row at a spinning beam, creating hundreds of individual endless fibres. The visco-elastic, slender

and in-extensible fibres lay down on a moving conveyor belt to form a web, where they solidify

22sinotongyong.en.made-in-china.com/product/nXuJrewvhxcM/China%2DSMMS%2DFour%2DBeams%2DNonwoven%
2DFabric%2DProduction%2DLine.html
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5. Part II: Non-woven textiles

due to cooling air streams. Before touching the conveyor belt, the fibres become entangled and

form loops due to highly turbulent air flow.

5.2 The fibre lay-down model

Figure 1.7: Compound for non-woven

fabric production line. Source: prod-

uct catalogue Zhejiang Sanlong Uni-

versal Machinery Co., Ltd23.

The mathematical description of non-woven textile pro-

duction has received a lot of interest in recent years with

the development of several models [230, 231, 172, 203,

205, 134, 206]. We will now describe the context and the

derivation of the model analysed in Chapter 5.

5.2.1 Stochastic description

In [230] a general mathematical model for the fibre dy-

namics is presented which enables the full simulation of

the process. Due to the huge amount of physical de-

tails, these simulations of the production process usu-

ally require an extremely large computational effort and

high memory storage, see [231]. Thus, a simplified two-

dimensional stochastic model is introduced in [172], where the production of the fibres at the

spinning beam and their entanglement due to air turbulence are not included, focusing instead

on the way in which the fibres distribute onto the conveyor belt, called fibre lay-down. Generalisa-

tions of the two-dimensional stochastic model [172] to three dimensions have been developed by

Klar et al. in [203] and to any dimension N ě 2 by Grothaus et al. in [177].

We now describe the model we are interested in, developed in [172]. We track the position

xptq P R2 and the angle αptq P S1 of the fibre at the lay-down point where it touches the conveyor

belt, see Figure 1.8. Interactions of neighbouring fibres are neglected. If x0ptq is the lay-down

point in the coordinate system following the conveyor belt, then the tangent vector of the fibre is

denoted by τpαptqq with τpαq “ pcosα, sinαq. Since the extrusion of fibres happens at a constant

speed, and the fibres are in-extensible, the lay-down process can be assumed to happen at constant

normalised speed }x10ptq} “ 1. If the conveyor belt moves with constant normalised speed κ in

direction e1 “ p1, 0q, then
dx
dt “ τpαq ` κe1.

23sinotongyong.en.made-in-china.com/productimage/HbjmKkDMGOWw-2f1j00kjgTKfpCgYov/
China-SMMS-Spunbond-and-Melt-Blown-Compound-Non-Woven-Fabric-Production-Line-Ty-S-Series.html
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1. Introduction

Figure 1.9: Representative path behaviours for solutions Xt “ pxt, αtq to model (5.31) with a
stationary conveyor belt (κ “ 0), potential V pxq “ |x|, for balanced (A “ 1) as well as deterministic
(A ă 1) and stochastic (A ą 1) dominated scenarios. Source: [172].

Note that the speed of the conveyor belt cannot exceed the lay-down speed: 0 ď κ ď 1. The

fibre is produced at a point above the origin, and so the coiling properties of the fibre push the

lay-down point back to x “ 0. The fibre dynamics in the deposition region close to the conveyor

belt are dominated by the turbulent air flow. Applying this concept, the dynamics of the angleαptq

can be described by a deterministic force moving the lay-down point towards the origin and by a

Brownianmotionmodelling the effect of the turbulent air flow. We obtain the following stochastic
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5. Part II: Non-woven textiles

differential equation for the random variable Xt “ pxt, αtq on R2 ˆ S1,
$

’

’

&

’

’

%

dxt “ pτpαtq ` κe1qdt,

dαt “
“

´τKpαtq ¨∇xV pxtq
‰

dt`AdWt ,

(5.31)

whereWt denotes a one-dimensionalWiener24 process,A ą 0 measures its strength relative to the

deterministic forcing, τKpαq “ p´ sinα, cosαq, and V : R2 Ñ R is an external potential carrying

information on the coiling properties of the fibre. More precisely, since a curved fibre tends back

to its starting point, the change of the angle α is assumed to be proportional to τKpαq ¨ ∇xV pxq.

See Figure 1.9 for representative path behaviour of the system (5.31) with stationary conveyor belt

(κ “ 0) and for the choice of potential V pxq “ |x| with different noise intensities A describing the

strength of the air turbulence.

Figure 1.8: Position xptq P R2

and angle αptq P S1 of the fi-

bre where it is touching the

conveyor belt.

It is shown in [206] that under suitable assumptions on the ex-

ternal potential V , the fibre lay down process (5.31) has a unique

invariant distribution and is geometrically ergodic. More pre-

cisely, in [206] the authors assume that the potential satisfies

lim
|x|Ñ8

|∇xV pxq|

V pxq
“ 0, lim

|x|Ñ8

|∇2
xV pxq|

|∇xV pxq|
“ 0, lim

|x|Ñ8
|∇xV pxq| “ 8.

(5.32)

Conceptually, these conditions ensure that the potential V is driv-

ing the process back inside a compact set where the noise can be

controlled. Under assumptions (5.32), there exists an invariant dis-

tribution ν to the fibre lay-downprocess (5.31), and some constants

Cpx0q ą 0, λ ą 0 such that

}Px0,α0 pXt P ¨q ´ ν}TV ď Cpx0qe
´λt ,

where Px0,α0 is the law ofXt starting atX0 “ px0, α0q, and }¨}TV denotes the total variation norm.

The stochastic Lyapunov technique applied in [206] however does not give any information on how

the constant Cpx0q depends on the initial position x0, or how the rate of convergence λ depends

on the conveyor belt speed κ, the potential V and the noise strength A. We will show in Chapter

5 that a stronger result can be obtained with a functional analysis approach. Our framework is

more general than conditions (5.32) in some aspects (including bounded potential gradient) and

more restrictive in others (assuming a Poincaré inequality). Using hypocoercivity techniques and

adapting the Lyapunov function argument presented in [206] to control the effect of the perturba-

24NorbertWiener (1894-1964), an Americanmathematician and philosopher, was awarded his Ph.D. when just 18 years
old. Wienerwas a non-conformist, scientifically andmathematically, but also socially, culturally, politically, and philosoph-
ically. AWiener process is a one-dimensional Brownianmotion, named after the Scottish botanist Robert Brown (1773-1858).
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tion κBx1 , we prove convergence in a weighted L2-norm and derive an explicit rate of convergence

in terms of κ, D and V .

5.2.2 Kinetic description

As we are not interested in the behaviour of the lay-down point of an individual fibre, but rather

in the distribution of fibres on the belt as the number of fibres is large, we adopt a continuum

description of the stochastic model (5.31). Let us denote by fpt, x, αq the density of the law of

Xt “ pxt, αtq in R2 ˆ S1. Then by Itô’s Lemma25 [266], fpt, x, αq is governed by the linear Fokker–

Planck equation

Btf ` pτ ` κe1q ¨∇xf ´ Bα
`

τK ¨∇xV f
˘

“ DBααf (5.33)

with diffusivity D “ A2{2. In other words, fpt, x, αq is the probability density distribution of

fibres touching the belt at point x P R2 at angle α P S1 at time t ě 0.

In Chapter 5, we study the asymptotic behaviour of the kinetic model (5.33) using hypocoercivity

techniques, a framework which we explain in more detail in the next section.

6 Part II: Hypocoercivity

Hypocoercivity is a method to show convergence to equilibrium for dissipative evolution equa-

tions involving a degenerate dissipative operator, and a first order operator generating a time-

reversible conservative equation. Typically, the dissipative part is not coercive, in the sense that

it does not admit a spectral gap. Additionally, its kernel is not stable under the action of the con-

servative part. A strategy to show convergence to equilibrium for this type of equation has been

developed by several groups in the 2000s, see for instance [185, 178, 225, 129? ], and a theoret-

ical framework was adopted by Villani in [298]. The term hypocoercivity26 has been introduced

by Villani by analogy with problems encountered in the theory of hypoellipticity, a concept intro-

duced byHörmander in 1967 [193] and inwhich one is concernedwith regularity issues instead of

convergence to equilibrium. For many important equations, hypoellipticity has been established

around the same time as hypocoercivity through the works of Hérau and Nier [185, 184], Eck-

mann and Hairer [141], Helffer and Nier [182]. However, hypocoercivity and hypoellipticity are

independent concepts, despite the fact that they occur together in a number of models. More pre-

cisely, hypoellipticity can be localised as a property, whereas hypocoercivity cannot as it is always

a global property of the operator.

25Itô’s lemma is occasionally referred to as the Itô–Doeblin Theorem in recognition of posthumously discovered work
of Wolfgang Doeblin.

26Hypo is an ancient Greek preposition, which translates as under, whereas hypermeans over or beyond. The term hypoco-
ercivity makes allusion to the fact that the operator is ’less than coercive’.
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As described by Villani himself, the motivation for developing the general hypocoercivity

theory as presented in [298] was 1) to simplify and unify the approach for the results obtained

in [129, 130] for the Fokker–Planck equation and the Boltzmann equation, and 2) to find gen-

eral methods that apply to various models sharing similar features. Villani derives in [298] re-

sults for exponential convergence to equilibrium for rather general operators in an abstract Hör-

mander form and under some commutator assumptions. With this new framework, Villani was

able to prove an abstract and more general version of the non-linear results previously obtained

in [129, 130].

Since the publication of [298], the hypocoercivity approach has been applied in a variety of con-

texts, from micro-magnetism and fluid mechanics (stability of Oseen vortices [162]) to statistical

mechanics (models for propagation of heat [296, 226]). The advantage of the method is that one

can find an explicit rate of convergence to equilibrium. However, this rate is most likely not opti-

mal, and it remains to see if it is quantitatively relevant in the context of the model.

6.1 Abstract hypocoercivity approach: an example

Let us begin with a concrete and simple yet important example to give an idea of the general and

rather abstract hypocoercivity approach. Consider the kinetic Fokker–Planck equation

Btf ` v ¨∇xf “ ∆vf `∇v ¨ pvfq x P TN , v P RN ,

which has normalised stationary stateMpvq :“ p2πq´N{2e´
|v|2

2 . Since we have omitted the pres-

ence of a confining potential, we work on the torus TN to keep the space variable confined. It is

convenient to formulate the equation for the normalised solution h :“ f{M :

Bth` v ¨∇xh “ ∆vh´ v ¨∇vh (6.34)

with stationary state h8 “ 1. Working in the Hilbert space L2pMpvqdxdvq, we denote by
@

¨ , ¨
D

and || ¨ || the corresponding inner product and norm. Hoping that the operator

L :“ v ¨∇xh´∆vh` v ¨∇vh

may be coercive on H1, one would like to show decay to the equilibrium h8 in the H1-norm

||h||2H1 :“ ||h||2 ` ||∇xh||
2 ` ||∇vh||

2. This however is not possible. Taking for example a density

h “ hpxq P L2pMpvqdxdvq that is independent of velocities, we find

1
2

d
dt ||h||

2
H1 “

ĳ

TNˆRN

v ¨∇xh∆xhM dxdv ´
ĳ

TNˆRN

hv ¨∇xhM dxdv

“ ´

ĳ

TNˆRN

p∆xh´ hq∇x ¨∇vM dxdv “ 0 ,
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and so decay cannot be guaranteed once the evolution reaches the set of velocity-independent

densities. Since the null space of the dissipative part´∆v`v ¨∇v is not stable under the transport

part v ¨∇x of the operator, the set of velocity-independent densities is strictly larger than Ker L and

the evolution may not have reached equilibrium yet. The core idea of the hypocoercivity strategy

is to add amixed term
@

∇xh , ∇vh
D

that can recover the missing decay. Let us define themodified

entropy

Grhs :“ ||h||2 ` a||∇vh||
2 ` 2b

@

∇xh , ∇vh
D

` c||∇xh||
2 (6.35)

with suitable constants c ! b ! a ! 1. Then Gr¨s is norm-equivalent to || ¨ ||H1 as long as b2 ă ac.

However, these two norms are quite different since L is coercive with respect to G, whereas it is

not with respect to || ¨ ||H1 . The reason is the fact that the mixed term
@

∇xh , ∇vh
D

is able to pick

up the influence of the anti-symmetric part B :“ v ¨∇x of L to recover the derivative in the space

variable:

@

∇xBh , ∇vh
D

`
@

∇xh , ∇vBh
D

“
@

B∇xh , ∇vh
D

`
@

∇xh , ∇vBh
D

“
@

∇xh , B˚∇vh
D

`
@

∇xh , ∇vBh
D

“ ´
@

∇xh , B∇vh
D

`
@

∇xh , ∇vBh
D

“
@

∇xh, r∇v , Bsh
D

“ ||∇xh||
2 .

Here, we used that ∇x and B commute, anti-symmetry of B, and the fact that r∇v , Bs “ ∇x.

This shows why it may be useful to work with a Hörmander commutator notation similar to Hör-

mander’s hypoellipticity theorem [193]. Let us give the main ideas of a simplified (i.e. only one

commutator instead of several iterated commutators) hypocoercivity statement without going too

much into detail. Following the hypocoercivity formalism established in [298], we write

Btf ` Lf “ 0 , L :“ A˚A` B .

In the example (6.34), we have A :“ p0N ,∇vq and B :“ pv, 0N q ¨∇x,v . Then A˚ “ p0N ,´∇v ´ vq,

and so L can be written in Hörmander form of second type27: L “ ´
ř

j A2
j ` pB `

ř

j cjAjq with

c :“ p0N , vq. Let us define the commutator C :“ rA,Bs “ AB ´ pB b Id2N qA “ p0N ,∇xq. [298,

Theorem 18]28 states

Theorem 6.1. If B is anti-symmetric, and there exist constants α, β such that

(i) A and A˚ commute with C; A commutes with A (i.e. Ai commutes with Aj for all i, j P t1, . . . , 2Nu;

(ii) rA,A˚s is α-bounded relatively to Id2N ` A;

27In short, this means the operator can be written as sum of squares of derivations, plus a derivation, see [185, 141, 182].
28For a detailed description of the commutator notation used here and relative boundedness of operators, see [298].
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(iii) rB,Cs is β-bounded relatively to A,A2,C and AC;

then there exists a scalar product
@@

¨ , ¨
DD

on H1{K, where K :“ Ker L, that is norm-equivalent to || ¨ ||H1

such that
@@

h , Lh
DD

ě K1
`

||Ah||2 ` ||Ch||2
˘

for some constantK1 ą 0, only depending on α and β. If, in addition, A˚A`C˚C isK2-coercive for some

K2 ą 0, then there is a constant λ “ λpα, β,K2q ą 0, such that

@h P H1{K ,
@@

h , Lh
DD

ě λ
@@

h , h
DD

.

It follows that L is hypocoercive on fluctuations H1{K. It is easy to see that our example (6.34)

satisfies all assumptions of the above theorem. Here,H1{K “

!

h P H1 |
ť

TNˆRN hMpvqdxdv “ 0
)

is the orthogonal of all constant functions
@

h8
D

in
@

¨ , ¨
D

, and C “ ∇x. Conditions (i)-(iii) are triv-

ially satisfied since (i) A only acts on velocities, whereas C only acts on space, (ii) rA,A˚s “ Id2N

and (iii) rB,Cs “ 0. Thanks to the Poincaré29 inequality

@h P H1 s.t.
ĳ

TNˆRN

hMpvqdxdv “ 0 : ||∇xh||
2 ` ||∇vh||

2 ě K2||h||
2 ,

the operator A˚A` C˚C is coercive on H1{K. Further,
@@

h , h
DD

“ Grhs, and so Theorem 6.1 tells

us that there exists a constant λ ą 0 such that

d
dtGrhs ď ´2λGrhs . (6.36)

Generally, it is not possible to show ||hptq||H1 ď ||hp0q||H1e´λt as explained above. However, it

follows from norm-equivalence between Gr¨s and || ¨ ||2H1 and from (6.36) that

||hptq||H1 ď c0||hp0q||H1e´λt

on H1{K for some λ ą 0 and c0 ą 1. This is exactly what wemean by saying that L is hypocoercive

on H1{K.

6.2 Framework for linear kinetic equations

In Chapter 5, we focus on a specific example of a linear kinetic equation conserving mass, a class

of equations for which the general hypocoercivity theory simplifies greatly [135]. For a detailed

account of the general method, see [298, 296] and the references therein. Consider the abstract

ODE
d
dtf ` Tf “ Qf (6.37)

29Jules Henri Poincaré (1854-1912) was a French mathematician, theoretical physicist, engineer, and philosopher of
science, and often described as a ’polymath’. He was proponent of the view, known as conventionalism, that it is not an
objective question which model of geometry best fits physical space, but is rather a matter of which model we find most
convenient.
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governing the evolution of a density fpt, x, vq, where x and v denote the space and velocity vari-

ables respectively, and fpt, ¨q P H for all t ě 0 for some Hilbert space H. Here, T denotes a

skew-symmetric transport operator and Q is a collision operator that is assumed to be negative

semi-definite. Both operators are possibly unbounded. Further, let us assume that we have exis-

tence of a unique equilibrium distribution F P H of unit mass satisfying TF “ QF . The goal is

to show convergence to F in the norm } ¨ } corresponding to the Hilbert space H for initial data

fin P H of unit mass.

Hypocoercivity as a method has been developed for equations where the collision part of

the operator only acts on the velocity variable. In particular, denoting by Π the projection onto

velocity-independent densities, Πf :“ ρfF {ρF with ρf :“
ş

fdv, we have ΠQ “ QΠ “ 0. Since

the mixing only occurs in the velocity variable, it is not directly obvious why one would expect

to observe convergence to equilibrium both in space and in velocity. However, with the good as-

sumptions on T, the mixing in v can be transferred to x via transport effects.

Under the assumptions that T is skew-symmetric and Q is negative semi-definite, one obtains

the H-theorem

d
dt}f}

2 “
@

Qf, f
D

ď 0 , (6.38)

In other words, } ¨ }2 is a Lyapunov functional for equation (6.37). However, this does not give

us any information about the kernel of T. Further, since Q is only negative semi-definite and not

coercive, we cannot directly derive convergence to equilibrium from identity (6.38) as the decay in

} ¨ }2 pauses as soon as the solution fptq reaches the kernel of Q without necessarily being in the

kernel of T. As described in the previous section, this can be remedied by adding a suitable mixed

term as an equivalent norm, for which the operator is coercive. In this section, we describe how

to formulate the framework of Theorem 6.1 for linear kinetic equations conserving mass without

recourse to commutators, following the functional setting in [135]. The main difference of the

approach taken in [135] compared to [298] is to work in an L2-framework instead of H1, giving

important physical information on the behaviour of solutions. For example, one can obtain ex-

ponential decay even if the initial datum fin oscillates wildly, meaning that the hypocoercivity

method is not sensitive to the regularity of fin. Even though hypoellipticity may provide H1-

regularity, there are two advantages to showing convergence in L2: firstly, the approach in [135]

also applies to equations that are not hypoelliptic, and secondly, an L2-framework is preferable if

one is interested in physical applications and dependence on the initial data. We also point out

that H1-regularisation with global estimates in weighted norms has not been done yet for equa-

tion (6.37). In order to work inL2, definition (6.35) is replacedwith a different generalised entropy

using a suitable auxiliary operator.
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6.2.1 Generalised entropy

The main idea of the convergence proof for hypocoercive operators is to find a Lyapunov func-

tional, a generalised entropy, that is better than the ’natural’ entropy } ¨ }2, by adding carefully cho-

sen lower-order terms. This approach is motivated by [184] in the context of commutator theory

for hypoelliptic operators, see Section 6.1. In the case of a linear kinetic equation of type (6.37), a

suitable generalised entropy G : H Ñ R` is given by

Grf s :“ 1
2}f}

2 ` ε
@

Af, f
D

, ε ą 0

with

A :“ p1` pTΠq˚TΠq´1
pTΠq˚ . (6.39)

The ˚-notation refers to the adjoint in the inner product
@

¨, ¨
D

corresponding to H. Note that

pTΠq˚TΠ is an elliptic operator. The operator A is bounded and regularises the solution to (6.37)

in the space variable (and it is not the same as the operator A in Section 6.1). The idea of choosing

this generalised entropy is due to [135] and allows to use the projection Π instead of having to

deal with ∇v . Here, pTΠq˚ plays the role of the mixed term
@

∇xh , ∇vh
D

in (6.35), and choosing

A “ pTΠq˚ would be enough to build a hypocoercivity theory along the lines of Theorem 6.1. The

main idea of choosing A as in (6.39) is borrowed from Hérau [184]: replacing the H1-norm plus

a mixed term with a mixed term only, but which is divided by a second order operator to obtain

an operator of order zero (i.e. no derivatives). Here, the operator A is of order ´1, but allows to

show that solutions to (6.37) decay exponentially fast in L2, i.e. the aim is to find an explicit λ ą 0

such that d
dtG ď ´λG and show that G is norm-equivalent to || ¨ ||2.

6.2.2 Microscopic and macroscopic coercivity

Let us differentiate G along trajectories of the system,

d
dtGrf s “

@

Qf, f
D

´ ε
@

ATΠf, f
D

´ ε
@

ATp1´ Πqf, f
D

` ε
@

TAf, f
D

` ε
@

AQf, f
D

, (6.40)

using the fact that T is skew-symmetric, and so
@

Tf, f
D

“ 0, as well as QA “ 0 which follows since

g :“ Af satisfies g “ ´ΠTf `ΠT2Πg and so it is in the kernel of Q. The first term can be conrolled

by the following microscopic coercivity assumption: there exists λm ą 0 such that

´
@

Qf, f
D

ě λm}p1´ Πqf}2 . (6.41)

In other words, this means that we require the collision operator Q to be coercive on the comple-

ment of its kernel. In order to control the second term in (6.40), we need that the elliptic operator

ATΠ satisfies a Poincaré inequality, which corresponds to a spectral gap on the macroscopic level.

This can be formulated as the following macroscopic coercivity assumption: there exists λM ą 0
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such that

}TΠf}2 ě λM }Πf}2 ùñ
@

ATΠf, f
D

ě
λM

1` λM
}Πf}2 . (6.42)

In other words, the restriction of T to Ker Q is coercive.

6.2.3 Diffusive macroscopic limit

Take a change of variables pt, x, vq ÞÑ pt{ε2, x{ε, vq in equation (6.37) depending on 0 ă ε ! 1 such

that the rescaled density fεpt, x, vq “ f
`

t{ε2, x{ε, v
˘

satisfies

ε2 d
dtf

ε ` εTfε “ Qfε . (6.43)

Consider fluctuations around the set of velocity-independent densities, that is fε “ Πfε` εRε for

some Rε P H. Substituting this ansatz into (6.43) and projecting onto the kernel of Q, we obtain

the conservation law

ε
d
dt pΠf

εq ` ΠTΠfε ` εΠTRε “ 0 , (6.44)

since Π2 “ Π, ΠRε “ Πp1´ Πqfε{ε “ 0 and ΠQ “ 0. Assuming that fε Ñ f0 and Rε Ñ R0 in the

limit εÑ 0, we obtain the identity

ΠTΠ “ 0 . (6.45)

It follows from (6.43) that Qf0 “ 0, and since f0 is in KerQ, we conclude that f0 “ Πf0. Further,

dividing (6.43) by ε and using that QΠ “ 0, we have

ε
d
dtf

ε ` Tfε “ Qfε{ε “ Qp1´ Πqfε{ε “ QRε .

Therefore, we obtain in the limit that Tf0 “ QR0. Recalling that f0 “ Πf0, we have

R0 “ Q̂´1Tf0 “ Q̂´1TΠf0 , Q̂ :“ Q|p1´ΠqH .

Finally, dividing (6.44) by ε and using (6.45), we obtain in the limit εÑ 0 themacroscopic equation

BtΠf0 ´ pTΠq˚ Q̂´1TΠf0 “ 0 ,

where we used that T is skew-symmetric T˚ “ ´T, and Π˚ “ Π. In other words, assuming

ΠTΠ “ 0 corresponds to a diffusive macroscopic limit of equation (6.37).

6.2.4 Exponential convergence

The price to pay by using the generalised entropy G is that one needs to be able to control the last

three terms in (6.40) also. The assumption ΠTΠ “ 0 yields [135, Lemma 1]

}Af} ď 1
2}p1´ Πqf} , }TAf} ď }p1´ Πqf} .
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It follows from the first estimate that G is norm-equivalent to the Hilbert space norm } ¨ }2 if ε ă 1.

Finally, it remains to show that the following auxiliary operators are bounded:

@

ATp1´ Πqf, f
D

`
@

AQf, f
D

ď CM }p1´ Πqf}2 (6.46)

for some constant CM ą 0. Putting all the bounds together, we obtain exponential decay of }fptq},

i.e. hypocoercivity, with an explicitly computable rate depending on λm, λM , CM , assuming that

(6.41), (6.42), (6.46) and ΠTΠ “ 0 hold. For the detailed proof of this statement, see [135].

Applications of the hypocoercivity approach in the linear kinetic setting include equations con-

taining confinement terms and different types of collision operators with mass conservation, such

as the Fokker–Planck equation, scattering models and the linearised BGK equations, see [135] and

the references therein. Further recent applications include the fibre-lay down process (5.33) for a

stationary conveyor belt [134], a velocity-jump model for bacterial chemotaxis [69], and particles

interacting with a vibrating medium [1].

7 Part II: Results

In Chapter 5, we apply the hypocoercivity method described above to the linear kinetic equation

modelling the fibre lay-down in the production process of non-woven textiles as formulated in

(5.33). The full hypocoercivity analysis of the long-time behaviour of solutions to this kinetic

model in the case of a stationary conveyor belt κ “ 0 is completed in [134]. In the case κ “ 0, there

exists a unique global normalised equilibrium distribution

F0pxq “
e´V pxq

ş

R2 eV pxqdx
.

For technical applications in the production process of non-wovens, one is interested in a model

including the movement of the conveyor belt, and in Chapter 5, we extend the results in [134] to

the case κ ą 0. This is not a trivial task for several reasons. First of all, for a moving conveyor belt,

we are not able to find a stationary state for equation (5.33) explicitly. The hypocoercivity method

however is used to find estimates about rates of convergence after the existence and uniqueness of

a steady state have been established.

Secondly, adding the movement of the belt breaks the symmetry of the problem, and the operator

assumptions required for the hypocoercivity strategy to work do not hold in the ’natural’ func-

tional framework. However, the hypocoercivity theory is based on a priori estimates [135], and is

therefore stable under perturbation. Wewill show in Chapter 5 how the hypocoercivity technique

can be adapted to this context under the assumption that the conveyor belt moves slow enough.

57



1. Introduction

7.1 Functional framework

To set up a suitable functional framework for the fibre lay-down process, we rewrite the Fokker–

Planck equation (5.33) as an abstract ODE

Btf “ Lκf “ pQ´ Tq f ` Pκf, (7.47)

where Q :“ DBαα represents collisions, Pκ is the perturbation introduced by the moving belt,

Pκf :“ ´κe1 ¨∇xf,

and the transport operator T is given by

Tf :“ τ ¨∇xf ´ Bα
`

τK ¨∇xV f
˘

.

The main idea here is to introduce a weight function g that allows the control of the perturbative

term in the case when the potential gradient ∇xV is unbounded:

gpx, αq “ exp
ˆ

βV pxq ` |∇xV pxq|Γ
ˆ

τpαq ¨
∇xV pxq

|∇xV pxq|

˙˙

if |∇xV | Ñ 8 as |x| Ñ 8, and g ” 0 otherwise. For a detailed definition of β ą 1 and Γ P

C1 pr´1, 1sq, Γ ą 0, see Chapter 5 Section 3. We consider solutions to (7.47) in the spaceL2pdµκq :“

L2pR2 ˆ S1,dµκqwith measure

dµκpx, αq “
´

eV pxq ` ζκgpx, αq
¯ dxdα

2π .

We denote by x¨, ¨yκ the corresponding scalar product and by } ¨ }κ the associated norm. Here,

ζ ą 0 is a free parameter that needs to be chosen big enough depending on the relative speed of

the conveyor belt κ in order to guarantee convergence to equilibrium.

In this functional setting, the operators T, Q and Pκ have several nice properties that allow us

to apply the general hypocoercivity theory for linear kinetic equations conserving mass as out-

lined in [135]. First of all, if κ “ 0, then Q and T are closed operators on L2pdµ0q such that Q´ T

generates the C0-semigroup epQ´Tqt on L2pdµ0q [134]. Adding the movement of the belt (κ ą 0),

we use the additional weight function g ą 0 to control the perturbative term Pκ in the case of

unbounded potential gradients. This allows us to construct a C0-semigroup for Lκ “ Q´ T` Pκ
also for κ ą 0 (Theorem 4.1 in Chapter 5). Note that Lκ is closable in L2pdµκq and its operator core

is given by C :“ C8c
`

R2 ˆ S1˘. Unless otherwise specified, all computations are performed on C,

and can be extended to L2pdµκq by density arguments.

The orthogonal projection Π on the set of local equilibria KerQ is Πf :“ 1
2π

ş

S1 f dα, and we define

the mass of a given distribution f P L2pdµκq byMf “
ş

R2 Πf dx. Integrating (7.47) over R2 ˆ S1,

we see that the mass of any solution of (7.47) is conserved over time. Moreover, any solution of
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(7.47) remains non-negative as soon as the initial datum is non-negative.

In the case of a stationary conveyor belt κ “ 0, it was shown in [134] that the fibre lay-down

model (7.47) fits into the hypocoercivity theory of linear kinetic equations conserving mass de-

scribed in Section 6.2. Indeed, the collision operator Q is symmetric and negative semi-definite on

C,

xQf, fy0 “ ´D }Bαf}20 ď 0 ,

i.e. Q is dissipative in L2pdµ0q. Further, we have TΠf “ e´V τ ¨∇xuf for f P C with uf :“ eV Πf ,

which implies ΠTΠ “ 0 on C. Our approach for tackling the problem of exponential convergence

if κ ą 0 is to treat the system as a small perturbation of the case κ “ 0 for which microscopic and

macroscopic coercivity are satisfied for sufficiently ’nice’ potentials V .

In order to ensure that the operators Q and T satisfy microscopic and macroscopic coercivity

respectively, we need to impose certain assumptions on the external potential V . Further, in order

to recover convergence to equilibrium for the perturbed equation κ ą 0, we need to make sure

that the perturbation Pκ can be controlled in a suitable way. Therefore, we make the following

assumptions on the external potential V :

(H1) Regularity and symmetry: V P C2pR2q and V is spherically symmetric outside some ball

Bp0, RV q.

(H2) Normalisation:
ş

R2 e
´V pxq dx “ 1.

(H3) Spectral gap condition: there exists a positive constant Λ such that for any u P H1pe´V dxq

with
ş

R2 ue
´V dx “ 0, we have the Poincaré inequality

ż

R2
|∇xu|

2
e´V dx ě Λ

ż

R2
u2e´V dx.

(H4) Pointwise condition: there exists c1 ą 0 such that for any x P R2,

|∇2
xV pxq| ď c1p1` |∇xV pxq|q,

where ∇2
xV denotes the Hessian of V pxq.

(H5) Behaviour at infinity:

lim
|x|Ñ8

|∇xV pxq|

V pxq
“ 0, lim

|x|Ñ8

|∇2
xV pxq|

|∇xV pxq|
“ 0 .

Assumptions (H2-3-4) are as stated in [134]. Assumption (H1) assumes regularity of the potential

that is stronger and included in that discussed in [134] since (H1) implies V PW 2,8
loc pR

2q. Roughly

speaking, (H2) and (H3) require a sufficiently strong growth of V pxq at infinity, whereas (H4) puts
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a limitation on the growth behaviour. This leaves room, however, for a large class of confining

potentials including V pxq “ p1 ` |x|2qs{2, s ě 1. Assumption (H5) is only necessary if the poten-

tial gradient |∇xV | is unbounded. Both bounded and unbounded potential gradients may appear

depending on the physical context.

Thanks to the spectral gap condition (H3), microscopic and macroscopic coercivity follow:

• Microscopic coercivity: The operator Q is symmetric and the Poincaré inequality on S1,

1
2π

ż

S1
|Bαf |

2 dα ě 1
2π

ż

S1

ˆ

f ´
1

2π

ż

S1
f dα

˙2
dα,

yields that for all f in the operator domain DpQq,

´xQf, fy0 ě D }p1´ Πqf}20 .

• Macroscopic coercivity: The operator T is skew-symmetric and for any h P L2pdµq such that

uh “ eV Πh P H1pe´V dxq and
ť

R2ˆS1 hdµ “ 0, we have

}TΠh}20 “
1

4π

ĳ

R2ˆS1

e´V |∇xuh|
2 dx dα

ě
Λ
4π

ĳ

R2ˆS1

e´V u2
h dxdα “ Λ

2 }Πh}20

by the spectral gap condition (H3).

Inspired by [135], we define the hypocoercivity functional

Grf s :“ 1
2}f}

2
κ ` ε1xAf, fy0 ,

with the auxiliary operator A as given in (6.39), and for some suitably chosen ε1 P p0, 1q to be

determined later. It follows from [135] that Gr¨s is equivalent to } ¨ }2κ on L2pdµκq,
ˆ

1´ ε1

2

˙

}f}2κ ď Grf s ď
ˆ

1` ε1

2

˙

}f}2κ ,

7.2 Hypocoercivity estimate and convergence

In Chapter 5, we prove a hypocoercivity estimate on the dissipation of the generalised entropy

G that allows us to deduce both existence and uniqueness of an equilibrium distribution Fκ to

equation (7.47) in the case of a moving conveyor belt κ ą 0. Let us emphasize that a specific

contribution of this work is to introduce two (and not one as in [135, 134]) modifications of the

entropy: 1) we first modify the space itself with the coercivity weight g, then 2) we change the

norm with an auxiliary operator following the hypocoercivity approach. As opposed to [134],

where the authors estimate dG{dt on fluctuations around the equilibrium F0 for κ “ 0, we derive

a more general estimate for any f P L2 pdµκq, involving an additional mass term:
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Proposition 7.1. Assume that hypothesis (H1-2-3-4-5) hold and that 0 ă κ ă 1 is small enough (with a

quantitative estimate). Let fin P L2pdµκq and f “ fpt, x, αq be a solution of (5.33) in L2pdµκq subject to

the initial condition fpt “ 0q “ fin. Then f satisfies the following Grönwall type estimate:

d
dtGrfpt, ¨qs ď ´γ1Grfpt, ¨qs ` γ2M

2
f , (7.48)

where γ1 ą 0, γ2 ą 0 are explicit constants only depending on κ, D and V .

Estimate (7.48) allows us to establish existence of solutions to (7.47) using semigroup theory

(Theorem 4.1 in Chapter 5). More importantly, the above hypocoercivity estimate is the key in-

gredient that ensures existence and uniqueness of an equilibrium distribution Fk P L2 pdµκq for

equation (7.47). The main idea of the existence proof is to seek a stationary state in the bounded

set

B :“
"

f P L2pdµκq : Grf s ď γ2

γ1
, f ě 0, Mf “ 1

*

using a contraction argument. More precisely, we show in Chapter 5 Section 4.2 that the set B is

preserved under the action of the semi-group: StpBq Ă B for all t ě 0. Together with the hypoco-

ercivity estimate (7.48) and Banach’s fixed point theorem, this allows us to find ut P B such that

Stpu
tq “ ut for all t ě 0. Further, proving that B is sequentially compact and repeatedly apply-

ing the semi-group property of St, we show that there exists u P B independent of t such that

Stpuq “ u for all t ě 0. This concludes the existence of a stationary state Fk of unit mass for

equation (7.47). Moreover, when applied to the difference of two solutions with the same mass,

the hypocoercivity estimate (7.48) gives an estimate on the exponential decay rate towards equi-

librium, and so uniqueness follows.

Our results in Chapter 5 can be summarised by the following theorem:

Theorem 7.2. Let fin P L2pdµκq and let (H1-2-3-4-5) hold. For 0 ă κ ă 1 small enough (with a

quantitative estimate) and ζ ą 0 large enough (with a quantitative estimate), there exists a unique non-

negative stationary state Fκ P L2pdµκq with unit massMFκ “ 1. In addition, for any solution f of (5.33)

in L2pdµκq with massMf and subject to the initial condition fpt “ 0q “ fin, we have

}fpt, ¨q ´MfFκ}κ ď C }fin ´MfFκ}κ e
´λκt ,

where the rate of convergence λκ ą 0 depends only on κ, D and V , and the constant C ą 0 depends only

on D and V .
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In the case of a stationary conveyor belt κ “ 0 considered in [134], the stationary state is char-

acterised by the eigenpair pΛ0, F0q with Λ0 “ 0, F0 “ e´V , and so Ker L0 “ xF0y. This means that

there is an isolated eigenvalue Λ0 “ 0 and a spectral gap of size at least r´λ0, 0s with the rest of

the spectrum ΣpL0q to the left of´λ0 in the complex plane. Adding the movement of the conveyor

belt, Theorem 7.2 shows that Ker Lκ “ xFκy and the exponential decay to equilibrium with rate

λκ corresponds to a spectral gap of size at least r´λκ, 0s. Further, it allows to recover an explicit

expression for the rate of convergence λ0 for κ “ 0. In general, we are not able to compute the

stationary state Fκ for κ ą 0 explicitly, but Fκ converges to F0 “ e´V weakly as κÑ 0.

Remark 7.3. Let us compare our assumptions (H1-2-3-4-5)with the conditions the authors require in [206]

to show a stochastic convergence result in the case of a perturbed process (κ ą 0). Our framework (H1-

2-3-4-5) is more general than conditions (1.4) in some aspects (including bounded potential gradient) and

more restrictive in others (assuming a Poincaré inequality). The proof in [206] relies on the strong Feller

property which can be translated in some cases into a spectral gap; it also uses hypoellipticity to deduce

the existence of a transition density, and concludes via an explicit Lyapunov function argument. With our

framework (H1-2-3-4-5), and adapting the Lyapunov function argument presented in [206] to control the

effect of κBx1 , we derive an explicit rate of convergence in terms of κ, D and V .

7.3 Perspectives

Working in L2pdµκq Ă L2pdµ0qwe are treating the operator Lκ as a small perturbation of the case

κ “ 0 with stationary conveyor belt. The natural space to investigate the convergence to Fκ in the

case κ ą 0 however is L2 `F´1
κ dx dα

˘

. In this L2-space the transport operator T´ Pκ is not skew-

symmetric and the collision operator Q is not self-adjoint, so the hypocoercivity method [135]

cannot be applied. To get around this, one can split the operator Lκ differently into a transport

and a collision part following the approach in [69]. More precisely, we can write Lκ “ Q̃ ´ T̃

where
$

’

’

&

’

’

%

Q̃f “ Bα
´

DBαf ´
BαFκ
Fκ

f
¯

,

T̃f “ pτ ` κe1q ¨∇xf ´ Bα
“`

τK ¨∇xV `
BαFκ
Fκ

˘

f
‰

.

Then in L2 `F´1
κ dxdα

˘

the operator Q̃ is symmetric and negative semi-definite, and the operator

T̃ is skew-symmetric. Furthermore, the stationary state Fκ lies in the intersection of the kernels

of the collision and transport operators, i.e. Fκ P Ker Q̃ X Ker T̃. The hypocoercivity approach

requires microscopic and macroscopic coercivity of Q̃ and T̃. To this end, we need to be able to

control the behaviour of the stationary state at infinity as in [69], i.e. for large enough |x|,

@α P S1, e´σ1V pxq ď Fκpx, αq ď e´σ2V pxq

for some constants σ1, σ2 ą 0. If true, this would be an important physical information on the

stationary state, but we still do not know how to prove it. Even with this information at hand,
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this approach requires that the existence of the stationary state be known a priori. The rate of

convergence one obtains in this case may be different from the rate obtained here, and it is not

clear which method yields the better rate as both are most likely not optimal.

There are several ways in which one could seek to improve the results in Chapter 5. For exam-

ple, one could try to push the convergence result to larger values of κ using bifurcation techniques.

More precisely, for a path p : κ ÞÑ Fk mapping κ to the stationary state Fκ of equation (5.33), The-

orem (7.2) guarantees that p is defined on a small interval r0, κ0q for some 0 ă κ0 ! 1. It may be

possible to extend this interval by showing that the implicit equation P pκ, Fκq “ 0 defining the

stationary state Fκ is non-degenerate, i.e. that B2P pκ, Fκq ‰ 0.

Another future avenue would be to apply the techniques developed here to other models where

the global equilibrium is not known a priori.
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8 Part III: From micro to macro

The 6th problem asked by Hilbert30 in 1900 is concerned with the axiomatisation of physics. More

than 100 years later it is still unresolved, andmight never be considered completed as the problem

statement is rather broad. Precisely, the original German textMathematische Probleme states:

Durch die Untersuchungen über die Grundlagen der Geometrie wird uns die Auf-

gabe nahegelegt, nach diesemVorbilde diejenigen physikalischen Disciplinen axioma-

tisch zu behandeln, in denen schon heute die Mathematik eine hervorragende Rolle

spielt; dies sind in erster Linie die Wahrscheinlichkeitsrechnung und die Mechanik.

Was die Axiome der Wahrscheinlichkeitsrechnung31 angeht, so scheint es mir wün-

schenswert, daß mit der logischen Untersuchung derselben zugleich eine strenge und

befriedigende Entwickelung der Methode der mittleren Werte in der mathematischen

Physik, speziell in der kinetischen Gastheorie Hand in Hand gehe.

Ueber die Grundlagen der Mechanik liegen von physikalischer Seite bedeutende Un-

tersuchungen vor; ich weise hin auf die Schriften von Mach32, Hertz33, Boltzmann34

und Volkmann35; es ist daher sehr wünschenswert, wenn auch von den Mathematik-

ern die Erörterung der Grundlagen der Mechanik aufgenommen würde. So regt uns

beispielsweise das Boltzmannsche Buch über die Principe der Mechanik an, die dort

angedeuteten Grenzprocesse, die von der atomistischen Auffassung zu den Gesetzen

über die Bewegung der Continua führen, streng mathematisch zu begründen und

durchzuführen. Umgekehrt könnte man die Bewegung über die Gesetze starrer Kör-

per durch Grenzprocesse aus einem System von Axiomen abzuleiten suchen, die auf

der Vorstellung von stetig veränderlichen, durch Parameter zu definirenden Zustän-

den eines den ganzen Raum stetig erfüllenden Stoffes beruhen - ist doch die Frage nach

der Gleichberechtigung verschiedener Axiomensysteme stets von hohemprincipiellen

Interesse.

The problem, suggested by Boltzmann’s work on the principles of mechanics [45], is therefore to

develop “mathematically the limiting processes [...] which lead from the atomistic view to the

laws of motion of continua”, namely to obtain a unified description of gases, including all levels

30David Hilbert (1862-1943) was a German mathematician and is recognised as one of the most influential and uni-
versal mathematicians of the 19th and early 20th centuries. He was invited to address the 2nd International Congress of
Mathematicians in Paris in 1900, where he proposed 23 problems that are known today as Hilbert’s problems.

31Vgl. Bohlmann, Ueber Versicherungsmathematik 2te Vorlesung aus Klein und Riecke, Ueber angewandte Mathe-
matik und Physik, Leipzig und Berlin 1900

32Die Mechanik in ihrer Entwickelung, Leipzig, zweite Auflage. Leipzig 1889
33Die Principien der Mechanik, Leipzig 1894
34Vorlesungen über die Principien der Mechanik, Leipzig 1897
35Einführung in das Studium der theoretischen Physik, Leipzig 1900
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of description. In other words, the challenging question is whether macroscopic concepts can be

understood microscopically.

The set of methods for making the connection between microscopic and macroscopic models are

called multiscale analysis or scaling process or limiting process. The idea of multiscale analysis is to

mathematically derive one particularmodel describingmacroscopic phenomena in the observable

physical world, from a microscopic model that is based on interactions between atoms, particles,

or agents. Typically, the microscopic model (depending on space, time and velocity) contains

more information than the macroscopic one (depending only on space and time). One can make

the connection between these two regimes by averaging over the velocities and rescaling the time

and space variables. Mathematically, this corresponds to ’zooming out’, and sowe are exchanging

the loss of information on the kinetics with the ability to capture emerging dynamics of the bulk of

particles that were only implicit in the kinetic equation. The choice of rescaling influences which

phenomenawe are able to observe on themacroscopic scale and has to be chosen in a sensible way

to match the physical context: if we speed up time too much with respect to the scaling in space,

the particles may escape to infinity andwe see nothing; if we do not speed up time fast enough, no

change will occur on the macroscopic level and so no interesting phenomena arise. Since certain

information are lost in the scaling process, it is possible that different kinetic models lead to the

same macroscopic equation. Examples of limiting processes for kinetic equations can be found in

the classical references [263, 103, 294]. Let us mention that the terms ’microscopic’, ’macroscopic’

and ’mesoscopic’ are sometimes used ambiguously in the literature. In this thesis, wewill use ’mi-

croscopic’ in the sense of ’kinetic’ as opposed to a regime describing individual particle dynamics.

Building on the ideas of Maxwell in [232], in 1872, Boltzmann published his famous work [46]

on what can be considered the master equation of kinetic theory

Btf ` v ¨∇xf “ Qpf, fq , (8.49)

where x P RN represents position and v P RN velocity, for the probability density fpt, x, vq. The

bilinear collision operator Q may differ depending on the type of microscopic interactions at play.

Equation (8.49) is known as the Boltzmann equation andwas derived for a monoatomic rarefied gas

by merging mechanical concepts and statistical considerations [232, 46]. It describes gas particles

undergoing free transport and collisions. In the modern literature, the term Boltzmann equation

is often used in a more general sense, referring to any kinetic equation that describes the change

of some quantity such as energy, charge or particle number in a thermodynamic system.

Chapter 6 is centred around the idea of understanding the relationship between different ki-

netic and macroscopic models using multiscale analysis. Diffusion approximations to kinetic
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equations have been studied in various works, see for example [293, 13, 26, 121, 210, 258] and

the references therein. In this section, we discuss two particular scaling approaches that play a

role in Chapter 6, grazing collision limits and parabolic diffusion limits, exemplified by the Boltz-

mann equation (8.49) for different choices of collision kernels Q. The latter shows how a limiting

process can be used to derive the classical Keller–Segel model (1.1) from a kinetic description for

bacterial motion.

8.1 The Boltzmann equation: grazing collisions

The Boltzmann equation (8.49) has generated over the past century (and is still generating) a vast

volume of literature, see [294] and the references therein. The Boltzmann collision kernel Q is

given in its general form by

Qpf, fq “
ż

R3

ż

S2
Bpv ´ v˚, θqpf

1f 1˚ ´ ff˚q dσdv˚ ,

where v and v˚ are the pre-collisional velocities that determine the post-collisional velocities v1

and v1˚ respecting conservation of energy and momentum, parametrised by the unit vector σ:

v1 “
v ` v˚

2 `
|v ´ v˚|

2 σ ,

v1˚ “
v ` v˚

2 ´
|v ´ v˚|

2 σ .

For brevity, we write f 1˚ “ fpt, x, v1˚q etc. The deflection angle θ P r0, π{2s is such that cos θ “

pv ´ v˚q ¨ σ{|v ´ v˚|. The kernel B is determined depending on the nature of interaction between

particles. We will here only concentrate on one particular type of particle interaction that is rel-

evant for the analysis in Chapter 6: If we assume that particles interact through a 1{rs force law,

where r is the distance between interacting particles, then the kernel B has a non-integrable sin-

gularity at θ “ 0 which corresponds to grazing collisions. Grazing collisions are collisions that do

not deviate the particles too much. In many studies, the singularity issue is avoided by replacing

B with a locally integrable collision kernel, which is usually referred to as cut-off process [175].

But what happens if there are more and more collisions, but these collisions generate smaller and

smaller deviations? This limit process is known as grazing collision limit.

It is known that in the limit and under certain assumptions, solutions of the Boltzmann equation

(8.49) converge to solutions of the Fokker-Planck-Landau (FPL) equation [158, 157]. The FPL equa-

tion describes the binary collisions between charged particles occurring in a plasma [128, 219] and

was introduced as an approximation of the Boltzmann equation (8.49) in the case of Coulomb in-

teractions [208]. In fact, the Boltzmann operatorQpf, fq ismeaningless in the case of a Coulomb in-

teraction as the effect of grazing collisions prevails over the effect of other collisions in that case. In

the early 90’s, Degond and Lucquin-Desreux [122] and Desvillettes [127] showed the convergence
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of the Boltzmann operator Q to the FPL operator (not to be confused with convergence of the solu-

tions). For further results clarifying the connection between the Boltzmann equation and the FPL

equation, see [291, 158]. For more details on the grazing collision limit, see [8, 122, 127, 291, 292]

and the references therein. In Chapter 6, we will use a grazing collision limit to derive a Vlasov-

type flocking equation from a kinetic model for collective animal behaviour. The kinetic model

is of Boltzmann-type in the sense that the collision kernel describing the interaction between two

colliding gas particles is replacedwith an interaction kernel describing the communicationmecha-

nism between individuals. Albeit very different applications, the general structures of these equa-

tions are similar. Applying a grazing limit to this Boltzmann-type equation, we obtain a flocking

model that has been previously derived from individual-based models (Vicsek or Cucker-Smale

models), see Chapter 6 Section 3.2.

8.2 Bacterial chemotaxis: a kinetic description

Boltzmann’s idea for modelling the dynamics of a rarefied monoatomic gas can be transferred to

a wide range of applications using kinetic equations of a similar structure. In the context of this

thesis, it is noteworthy that a non-linear generalisation of the classical Keller–Segel model (1.1)

can, in fact, be derived from a kinetic Boltzmann-type equation via multiscale analysis. Or, to be

more precise, by making the connection to the underlying microscopic dynamics that drive the

emerging patterns on the macroscopic level, we can understand better why certain limitations of

the classical Keller–Segel model arise. In fact, the classical Keller–Segel model does not take the

microscopic scale into account and it is an oversimplified description of the real dynamics as can

be seen by the dramatic blow-up in the two dimensional case [136]. Starting with a microscopic

description of the movement of a single cell in response to chemical gradients, one can use a diffu-

sive limiting process to derive a macroscopic model for bacterial chemotaxis. Wewill here explain

this scaling in more detail since it provides the mathematical tools for performing the multiscale

analysis of a two-dimensional kinetic models for social interactions studied in Chapter 6.

Let us consider a model for bacterial chemotaxis, where the first equation in (1.1) (macroscopic

evolution of the cell density) is replaced by a kinetic equation, whilst the chemoattractant concen-

tration Spt, xq is still governed by the macroscopic diffusion equation

BtS “ DS∆S ´ αS ` βρ . (8.50)

where ρpt, xq “
ş

vεV
fpt, x, vqdv denotes the macroscopic cell density. Here, α ě 0 and β ě 0 are

the degradation and production rates of the chemoattractant respectively.
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Figure 1.10: Run and tumble swimming pattern

of E. coli . Source: [142].

The motion of a single bacterium combines

so-called run and tumbling phases. During a

run phase a bacterium swims at a constant

speed c in a given direction, while during a

tumble event it changes direction in a way that

is almost uniformly random, see Figure 1.10.

Therefore, the evolution of the microscopic

density of cells fpt, x, vq can be described by

the following Boltzmann-type equation, pro-

posed in the pioneering works of Othmer,

Dunbar and Alt [247, 2, 274, 150, 301]:

Btf ` v ¨∇xf
looooooomooooooon

run

“

ż

v1PV

TrSspv1, vqfpt, x, v1q dv1 ´ λrSsfpt, x, vq
looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

tumble

. (8.51)

Here, the set V of all possible velocities is bounded and symmetric in general. The tumbling

kernel T rSspv, v1q describes the frequency of changing velocity from v to v1 as a function of the

chemoattractant S, and the tumbling rate is given byλrSs “
ş

v1PV
TrSspv, v1q dv1. In absence of any

external stimulus, E. coli perform a random walk, and so T r0s is a positive constant. E. coli have

receptors on their outer membrane that allow them to sense changes in chemical concentration

in their environment, which in turn introduces a bias into their tumbling frequency, and so it is

reasonable to assume that E. coli react instantaneously to a variation of S along their trajectories,

TrSspv, v1q “ ψ

ˆ

DS

Dt

˙

“ ψ pBtS ` v ¨∇xSq ,

where DS
Dt “ BtS` v ¨∇xS denotes the material derivative of S. The tumbling kernel T is defined

in analogy with the Boltzmann collision kernel B. However, T is not bilinear as it depends on the

macroscopic cell density ρ via the dynamics of S (8.50). Further, notice that the tumbling kernel

does not depend on the posterior speed v1 as cells can be considered to choose a new direction

uniformly random during a tumble. Finally, the function ψ : R Ñ Rą0 is decreasing, expressing

that a cell is less likely to tumble when the external chemical signal increases along the cell’s

trajectory.

8.3 Parabolic scaling

When the bias (that is, the amplitude of the variation of ψ) is small compared to a cell’s unbiased

movement, we expect the limitingmacroscopic equations to be of diffusion or drift-diffusion type,

see for instance [104] for a rigorous proof. Therefore, a parabolic diffusion limit is well adapted to

capture the macroscopic dynamics of (8.51). We will here explain the limiting process performed
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in [265] that allows to recover the classical Keller–Segel model for the fully coupled system.

The key assumption allowing to pass to a macroscopic description is that the turning proba-

bility TrSspv, v1q is a small perturbation of a random turning process,

TrSspv, v1q “ ψ0 ` εψ0φrSspvq , ε ! 1 ,

where the signal response function φ is to be chosen according to the reaction of cells to the

stimulus S. Rescaling the kinetic equation to its non-dimensional form, and changing variables

pt, x, vq ÞÑ pt{ε2, x{ε, vq, we obtain the following equation for the rescaled density fεpt, x, vq in the

new variables:

εBtf
ε ` v ¨∇xf “

µ

ε

´

ρεpt, xq ´ |V |fεpt, x, vq
¯

`

µ

„
ż

v1εV

φrSεspv1qfεpt, x, v1qdv1 ´ |V |φrSεspvqfεpt, x, vq



,
(8.52)

where ρεpt, xq “
ş

vεV
fεpt, x, vqdv denotes themacroscopic cell density, andµ is a non-dimensional

coefficient of order 1. Taking the limit ε Ñ 0, and assuming that fε, ρε, Sε converge to f0, ρ0, S0

respectively, the dominant term is a relaxation towards a uniform distribution in velocity at each

position: f0pt, x, vq “ ρ0pt, xq{|V |. Integrating (8.52) over V , we obtain

Btρ
ε `∇ . jε “ 0, jε :“ 1

ε

ż

vεV

vfεpt, x, vqdv. (8.53)

In order to determine the bacterial flow jε P RN , we integrate (8.52) against v P V ,

εBt

ˆ
ż

vεV

vfεpt, x, vq dv

˙

`∇x ¨

ˆ
ż

vεV

v b vfεpt, x, vq dv

˙

“ ´µ|V |jε ´ µ|V |

ż

vεV

vφrSεspvqfεpt, x, vq dv ,

which becomes formally in the limit εÑ 0:

j0 “ ´∇x

´

ρ0pt, xq
1

µN |V |2

ż

vεV

|v|2 dv
¯

´ ρ0pt, xq
1
|V |

ż

vεV

vφrS0spvq dv .

Hence, by (8.53), the cell density ρ0 solves the macroscopic drift-diffusion equation

Btρ
0 “ Dρ∆ρ0 ´∇ ¨ pρ0urS0sq , (8.54)

where the macroscopic bacterial diffusion coefficient Dρ and the chemotactic flux urS0s are de-

rived from the microscopic parameters µ, the velocity set V and the signal response function φ:

Dρ “
1

µN |V |2

ż

vεV

|v|2 dv , urS0s “
1
|V |

ż

vεV

vφpv ¨∇S0q dv .

The only unknown of the model remains the response function φ which indicates how a cell re-

acts to chemical variations in its environment. In the most general description, it is only assumed
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to be odd and decreasing in order to be consistent with the biological context. Linearising (8.54)

by assuming that the chemotactic flux is of the form urSs “ χ∇S, we obtain exactly the classical

Keller–Segel model (1.1). In other words, the macroscopic model (1.1) describes sufficiently well

the observed behaviour as long as the non-linear terms of the chemotactic flux are not predomi-

nant, which holds true for small enough chemical gradients.

9 Part III: Collective animal behaviour

Migrating herds of ungulates, zigzagging flocks of birds, stationary aggregations formed by rest-

ing animals, moving bands of bacteria or milling schools of fish are just some of the many patters

thatwe observe in animal communities. Inmany instances, these (temporarily) stablemacroscopic

patterns are of surprising complexity but appear with remarkable regularity. How do these pat-

terns arise? Can we reproduce them mathematically? And if yes, which are the driving factors

for the dynamics? In Chapter 6, we try to answer some of these questions focusing on collective

behaviour in absence of a leader, which is whywe call it self-organised behaviour. If each individual

can only communicate with neighbours within a certain range, which is the case for starlings and

certain types of bats for example, how is it possible that we observe beautiful coordination on a

macroscopic level, as if the group is moving with one body and one mind?

(a) (b) (c)

Figure 1.11: Murmurations by photographer and artist Alain Delorme36.
Source: Delorme’s website37.

Over the past 10-20 years amultitude of kinetic andmacroscopic models have been introduced

to investigate the formation and movement of various biological aggregations: from cells [22, 5]

and bacteria [257] to flocks of birds, schools of fish and even human aggregations (see, for exam-

ple, [290, 124, 147, 146, 153, 86] and the references therein). Generally, these models assume that

individuals, particles, or cells can organise themselves in the absence of a leader as a results of

various social forces: repulsion from nearby neighbours, attraction to far-away neighbours (or to
36Did you think you are looking at birds? This art project tricks the eye bymaking trash bags look like flocks of starlings.

For more details, see www.wired.com/2014/05/alain-delorme-murmurations/.
37www.alaindelorme.com/works-murmurations
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9. Part III: Collective animal behaviour

roosting areas [93]) and alignment/orientation with neighbours positioned at intermediate dis-

tances.

9.1 Overview of models and scalings

(in space) model

1D FokkerïPlank

(in space) model

2D FokkerïPlank
(in orientation)

model

2D FokkerïPlank
<+ /q=

f(y)=y

model
2D kinetic

1D 2ïspeed

 model
hyperbolic 

Figure 1.12: Scaling approaches taken in

Chapter 6.

In Chapter 6, we consider two families of non-

local kinetic models proposed in [147, 146, 153],

one being one-dimensional, and the other two-

dimensional, and make the connection to sev-

eral macroscopic models using multiscale anal-

ysis (parabolic limits/grazing collision limits),

see Figure 1.12. In this section, we give an

overview of the models and scaling approaches

presented in Chapter 6, summarising the obtained

results.

The following one-dimensional model was introduced in [147, 146] to describe the densities

of left-moving (u´) and right-moving (u`) individuals that interact with conspecifics via social

interactions:

Btu
` ` γBxu

` “ ´λ`u` ` λ´u´ , (9.55a)

Btu
´ ´ γBxu

´ “ λ`u` ´ λ´u´ . (9.55b)

Here, individuals travel at constant speed γ and λ` “ λ`ru`, u´s denotes the rate at which right-

moving individuals turn left (vice versa for λ´ “ λ´ru`, u´s). In Chapter 6, we generalise the

turning rates in [147, 146, 144] and assume that

λ˘ru`, u´s “λ1 ` λ2fpyN q ` λ3fpy
˘
Dq , (9.56)

where yN “ yN ru
`, u´s and y˘D “ y˘Dru

`, u´s denote the non-directed and directed turningmech-

anisms respectively. The turning function fp¨q is a non-negative, increasing, bounded functional

of the interactions with neighbours, and λ1, λ2, λ3 denote constant turning rates. In Chapter 6,

we focus on two particular choices of λ˘ corresponding to models M2 and M4 in [146]. We focus

on these two particular choices because: (i) model M2 with λ1 “ 0 has been generalised to 2D

in [153]; (ii) model M4 with λ2 “ 0 has been investigated analytically and numerically, and it was

shown that it can exhibit Hopf bifurcations (even without alignment forces) giving rise to spatio-

temporal patterns such as rotating waves and modulated rotating waves [56]. In contrast, model

M2 with λ2 “ 0 does not seem to exhibit rotating waves in the absence of alignment, see [146].
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We perform a parabolic scaling of the kinetic model (9.55) via pt, xq ÞÑ pt{ε2, x{εq, using two

different scaling assumptions. Firstly, let us assume that individuals have a reduced perception of

their surroundings for small values of ε [143], that is, in rescaled variables

fε

´

y˘Dru, vs
¯

“ εf
´

y˘D
“

u,

ż

x{ε

εBtu
‰

¯

, fε

´

yN rus
¯

“ εf
´

yN rus
¯

,

where u :“ u` ` u´ and v :“ γpu` ´ v´q. We obtain formally in the limit εÑ 0,

Btu “ D0Bxxu´ Bx

´

S0 uV puq
¯

,

with diffusion rate D0 “ γ2{p2λ1q and drift rate S0 “ λ3γ{p2λ1q explicitly given in terms of the

microscopic parameters. The expression for the velocity V puq differs for M2 or M4.

Secondly, if instead we assume f to be a linear function with a very weak directed turning be-

haviour, we can write

λ˘ “ λ1 ` λ2K
N ˚ u` ε λ3y

˘
Drus (9.57)

with yN rus “ KN ˚u for a social interaction kernelKN given in terms of attraction, repulsion and

alignment terms. By taking the limit ε Ñ 0 in (9.55) with scaling assumption (9.57), we obtain in

Chapter 6 a parabolic equation with density-dependent coefficients,

Btu “ Bx pDrusBxuq ´ Bx

´

Srusu
`

y´Drus ´ y
`
Drus

˘

¯

, (9.58a)

Drus “
γ2

2pλ1 ` λ2KN ˚ uq
and Srus “

λ3γ

2pλ1 ` λ2KN ˚ uq
. (9.58b)

A specific case of the 1D kinetic model (9.55) has been generalised to a 2D kinetic Boltzmann-

type equation in [153]:

Btu` γeφ ¨∇xu “

ż π

´π

T px, φ1, φqupx, φ1, tqdφ1 ´ λpx, φqupx, φ, tq . (9.59)

Here, upx, φ, tq is the total population density of individuals located at x “ px, yq P R2, moving at

a constant speed γ ą 0 in direction φ P r0, 2πq. The term eφ “ pcosφ, sinφq gives the movement

direction of individuals. The re-orientation terms, λpx, φq and T px, φ1, φq depend on the non-local

interactions with neighbours, which can be positioned in the repulsive, attractive, and alignment

ranges depicted in Fig. 1.13. Thus, these terms have three components each, corresponding to

the three social interactions, T px, φ1, φq “ Talpx, φ1, φq ` Tapx, φ1, φq ` Trpx, φ1, φq, and we define

λ “
ř

j λj with

λjpx, φ1q “
ż π

´π

Tjpx, φ1, φqdφ, j “ r, a, al .

For a detailed description of the turning mechanism, see Chapter 6 Section 3. In Chapter 6, we

generalise the turning mechanisms T̄j , j “ tal, a, ru, from [153] by adding a constant turning rate,
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9. Part III: Collective animal behaviour

Tj :“ ηj{p2πq`λ3T̄j for constants λ1 :“ ηr`ηal`ηa and λ3 ě 0 chosen according to the biological

context.

Figure 1.13: Interaction ranges.

Fetecau [153] showed that by imposing the turning angle

to have only two possible values φ “ ˘π, the 2D model

(9.59) can be reduced to the 1D model (9.55) for a specific

choice of turning rates λ˘. In Chapter 6, we perform a

similar reduction making the connection to the 1D model

(9.55) for λ1, λ3 ě 0, λ2 “ 0 and a linear turning func-

tion fpzq “ z. The model we obtain is similar to M2

in [146].

Further, in Chapter 6, we consider the parabolic limit for the change of variables t “ t˚{ε2,

x “ x˚{ε ofmodel (9.59)with density-dependent turning rates38. The diffusion limit of a transport

model similar to (9.59), but with constant turning rates λ was discussed in [189, 190]. Since the

velocity in the new variables is of order 1{ε, we make the scaling assumption that an individual’s

turning behaviour is only influenced slightly by the presence of neighbours:

T ruspx, φ1, φq “ λ1

2π `
λ2

2π K
d ˚ ρpx, tq ` ε λ3Bruspx, φ1, φq,

where ρpx, tq “
şπ

´π
upx, φ, tqdφ is the macroscopic density of individuals, Kdpxq “

ř

j K
d
j pxq

is a social distance kernel given in terms of attraction, repulsion and alignment terms and we call

Brus the social response function. For explicit expressions, see Chapter 6. Note that the turning rate

λpx, φq then corresponds to the 1D turning rates (9.57)with the choice yDrus “
şπ

´π
Bruspx, φ1, φqdφ1.

Further, note that the set-up of this limiting process is very similar to the one discussed in Section

8.3, especially for λ2 “ 0. With the good scaling of Kd and Brus, and matching orders of ε for

the Hilbert expansion u “ u0 ` εu1 ` ε
2u2 ` ..., we obtain at leading order a relaxation towards a

uniform angular distribution at each position:

u0px, φ, tq “ ρ0px, tqF pφq , F pφq :“ 1
2π1φPp´π,πs.

Under the assumptions that (i) individuals can process information in a similar manner for all

three types of social interactions, and (ii) individuals can process information equally well from

38This parabolic scaling was already completed in my master thesis for the case ηj “ 0, j “ tal, a, ru.
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left and right (symmetric perception), we obtain formally in the limit εÑ 0

Btρ “ ∇x . pD0rρs∇xρq ´∇x . pρkrρsq , (9.60a)

D0rρs “
γ2

2pλ1 ` λ2Kd ˚ ρq
, (9.60b)

krρspx, tq “ λ2πγ

λ1 ` λ2Kd ˚ ρ

ˆ

qrK
d
r pxq

x
|x| ´ qaK

d
apxq

x
|x|

˙

˚ ρ , (9.60c)

where qr and qa denote the strength of repulsive and attractive forces respectively. For notational

convenience, we dropped the zero in ρ0. Note that this equation is similar to the 1D drift-diffusion

equation (9.58) obtained via the parabolic limit for linear social interactions. Indeed, the above

diffusive limit of the 2D model (9.59) reduces to a special case of the parabolic scaling of the 1D

model, which includes a λ2 term for non-directed turning.

Remark 9.1. For some particular choices of distance kernels Kd, the limiting parabolic model (9.60) can

be reduced to a particular case of the Keller–Segel type model (2.3) discussed in part I of this thesis. Let us

assume, for example, that the distance kernels are constant on the whole domain,

Kd
j pxq “ 1, j “ al, a, r. (9.61)

This assumption corresponds to a setting in which individuals interact equally well with all other individuals

present in the entire domain. This is true locally for example if many individuals are packed in little space.

Under assumption (9.61) together with λ1 “ 0 and in the case when attractive and repulsive interactions

are not exactly equally strong qr ‰ qa (as they would cancel out otherwise), model (9.60) simplifies to the

aggregation-diffusion equation

Btρ “ D∆ρ` χ∇ . pρ p∇W ˚ ρqq , (9.62)

with W pxq “ |x| and D ą 0, χ ą 0 only depending on the parameters of the model and the total mass
ş

ρ dx. Even for more general distance kernelsKd
j , the social flux can be written in the form krρs “ ∇W ˚ρ

with the interaction potentialW behaving like |x| close to zero and decaying exponentially fast as |x| ÝÑ 8

(e.g. Morse potentials). Equation (9.62) models the behaviour of particles interacting through a pairwise

potential while diffusing with Brownian motion and is part of the family of aggregation-diffusion equations

analysed in Part I with linear diffusion (m “ 1) and a non-singular interaction kernel (k “ 1).

Finally, we consider the case where individuals turn only a small angle upon interactions with

neighbours, quantified by the parameter ε ! 1. This is biologically realistic as, for example,

many migratory birds follow favourable winds or magnetic fields [244] and social interactions

with neighbours might not have a considerable impact on directional changes of individuals. Fol-

lowing the discussion in Section 8.1, a grazing collision limit is well adapted when collisions with
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small deviation dominate. In Chapter 6, we show that the Boltzmann-type equation (9.59) can

be reduced via a grazing collision limit to the following Fokker-Planck equation with non-local

advective and diffusive terms in the orientation space.

Btu` γeφ ¨∇xu “λ1

ˆ

1
2πρpx, tq ´ upx, φ, tq

˙

(9.63)

` Bφ

”

´ uCεru,x, φs ` BφpuDεru,x, φsq
ı

,

We omit here the details of Cεru,x, φs and Dεru,x, φs for brevity. While non-local 2D Fokker-

Planck models have been introduced in the past years in connection with self-organised aggrega-

tions, the majority of these models consider local diffusion [123, 12]. If we neglect second order

terms in ε (i.e. Dε « 0) and assume λ1 “ 0, equation (9.63) reduces to a Vlasov-type flocking

equation:

Btu` γeφ ¨∇xu` Bφ

”

uCεru, x, φs
ı

“ 0.

These type of models have been previously derived from individual-based models (Vicsek or

Cucker-Smale models) with or without noise [123, 179, 87].

9.2 Asymptotic preserving numerical methods

Finally, we investigate how two types of patterns (travelling and stationary aggregations) dis-

played by the 1D kinetic models, are preserved in the limit to macroscopic parabolic models. To

this end, we first analyse the local stability of spatially homogeneous patterns characterised by

individuals spread evenly over the domain, and show that local Hopf bifurcations are lost in the

parabolic limit. These Hopf bifurcations give rise to travelling aggregations (i.e. rotating waves).

We then test this observation numerically with the help of asymptotic preserving (AP) methods,

analysing changes in the patterns as the scaling coefficient ε is varied from ε “ 1 (for kinetic mod-

els) to ε “ 0 (for the limiting parabolic models). Understanding these transitions is important

when investigating biological phenomena that occur on multiple scales, since it allows to make

decisions regarding themodels that are most suitable to reproduce the observed dynamics. While

AP schemes have been derived since the late 1990’s to investigate the asymptotic dynamics of var-

ious transport models [201, 202, 88], they have only recently been applied to investigate multiscale

aspects of biological aggregations [102]. In Chapter 6, we show that some patterns (describing

stationary aggregations) are preserved in the limit ε Ñ 0, while others (describing moving ag-

gregations) are lost. To understand the loss of these patterns, we construct bifurcation diagrams.

Numerical and analytical investigation is still difficult for 2D non-local models, see [153].
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9.3 Conclusions and perspectives

The scaling approaches taken in Chapter 6 allow to simplify the kinetic models that incorporate

microscopic-level interactions (such as individuals’ speed and turning rates) to obtain parabolic

models described in terms of average speed and average turning behaviour. While for the kinetic

models the non-local interactions influence the turning rates, for the limit parabolic models the

non-local interactions influence the dispersion and the drift of the aggregations. In particular, the

assumption that individuals can turn randomly following the non-directional perception of neigh-

bours around them leads, in the macroscopic scaling, to density-dependent diffusion. Moreover,

this diffusion decreases with increasing population density. Biologically, this means that larger

animal groups are less likely to spread out. This phenomenon has been observed for various

species. For example, studies have shown that aggregations of locusts [55] or ants [21] can persist

only if the number of individuals is above a certain threshold.

The introduction in (9.56) of the term yN describing random non-directional turning (which

generalises the turning rates in [147]) is required in order to compare the parabolic limit models

in 1D and 2D. This suggests that even if the 2Dmodel (9.59) can be reduced to a special case of the

1D model (9.55) (as shown in [153]) there are more subtle differences between these non-local 1D

and 2D models. These differences can impact the types of patterns displayed by the 2D models –

an aspect that would be interesting to study in the future.

In Chapter 6, we use asymptotic preserving numerical methods to investigate the preservation

of patterns via the 1Dparabolic limit, but similar investigations could be performed for the grazing

collision limit. Moreover, as shown previously [146], model (9.55) can display manymore types of

complex spatio-temporal patterns than the two types of patterns investigated here. We choose to

focus on travelling and stationary aggregations since our aim is not to investigate how all possible

patterns are preserved by all these different scaling approaches. Rather, we want to show that by

taking these asymptotic limits, some patterns could be lost. Therefore, even if the macroscopic

models are simpler to investigate, they might not exhibit the same patterns as the kinetic models.

Our analysis aims at highlighting the usefulness of AP schemes to understand the bifurcation of

the solutions as one investigates the transition frommicroscopic-level to macroscopic-level aggre-

gation dynamics.
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ἀνδρῶν γὰρ ἐπιφανῶν πᾶσα γῆ τάφος,

καὶ οὐ στηλῶν μόνον ἐν τῇ οἰκείᾳ σημαίνει ἐπιγραφή,

ἀλλὰ καὶ ἐν τῇ μὴ προσηκούσῃ ἄγραφος μνήμη παρ᾿ ἑκάστῳ

τῆς γνώμης μᾶλλον ἢ τοῦ ἔργου ἐνδιαιτᾶται.
39

What you leave behind

is not what is engraved

in stone monuments,

but what is woven

into the lives of others40.

Pericles

39as quoted in Thucydides’History of the PeloponnesianWar, II.43.3 (5th century BC) fromPericles’ funeral oration. Literal
translation by Steven Lattimore: "The whole earth is the tomb of famousmen, and not only inscriptions set up in their own
country mark it but even in foreign lands an unwritten memorial, present not in monument but in mind, abides within
each man." [212, page 98]

40modern paraphrasing of the above as quoted in [249, page 118].



Chapter2

Ground States in the

Fair-Competition Regime

This chapter follows in most parts the article “Equilibria of homogeneous functionals in the fair-

competition regime”written in collaboration with Vincent Calvez1 and José A. Carrillo2, and pub-

lished in the special issue "Advances in Reaction-Cross-Diffusion Systems" of Nonlinear Analysis

TMA.

Chapter Summary

We consider macroscopic descriptions of particles where repulsion is modelled by non-

linear power-law diffusion and attraction by a homogeneous singular/non-singular kernel lead-

ing to variants of the Keller–Segel model of chemotaxis. We analyse the regime in which both

homogeneities scale the same with respect to dilations, that we coin as fair-competition. In the

singular kernel case, we show that existence of global equilibria can only happen at a certain

critical value and they are characterised as optimisers of a variant of HLS inequalities. We also

study the existence of self-similar solutions for the sub-critical case, or equivalently of optimisers

of rescaled free energies. These optimisers are shown to be compactly supported radially sym-

metric and non-increasing stationary solutions of the non-linear Keller–Segel equation. On the

other hand, we show that no radially symmetric non-increasing stationary solutions exist in the

non-singular kernel case, implying that there is no criticality. However, we show the existence of

positive self-similar solutions for all values of the parameter under the condition that diffusion

is not too fast. We finally illustrate some of the open problems in the non-singular kernel case

by numerical experiments.

1Unité de Mathématiques Pures et Appliquées, CNRS UMR 5669 and équipe-projet INRIA NUMED, École Normale
Supérieure de Lyon, Lyon, France.

2Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
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1. Introduction

1 Introduction

The goal of this chapter is to investigate properties of the following class of homogeneous func-

tionals, defined for centred probability densities ρpxq, belonging to suitable Lp-spaces, and some

interaction strength coefficient χ ą 0 and diffusion powerm ą 0:

Fm,krρs “
ż

RN
Um pρpxqq dx` χ

ĳ

RNˆRN

ρpxqWkpx´ yqρpyq dxdy

:“ Umrρs ` χWkrρs , (1.1)

ρpxq ě 0 ,
ż

RN
ρpxq dx “ 1 ,

ż

RN
xρpxq dx “ 0 ,

with

Umpρq “

$

’

’

&

’

’

%

1
Npm´ 1qρ

m , if m ‰ 1

1
N
ρ log ρ , if m “ 1

,

and

Wkpxq “

$

’

&

’

%

|x|k

k
, if k P p´N,Nqzt0u

log |x| , if k “ 0
.

The conditions on k imply that the kernelWkpxq is locally integrable in RN . The centre of mass is

assumed to be zero since the free energy functional is invariant by translation.

There exists a strong link between the aforementioned functional (1.1) and the following family

of partial differential equations modelling self-attracting diffusive particles at the macroscopic

scale,
$

’

&

’

%

Btρ “
1
N

∆ρm ` 2χ∇ ¨ pρ∇Skq , t ą 0 , x P RN ,

ρpt “ 0, xq “ ρ0pxq ě 0 ,
ż

RN
ρ0pxq dx “ 1 ,

ż

RN
xρ0pxq dx “ 0 ,

(1.2)

where we define the mean-field potential Skpxq :“ Wkpxq ˚ ρpxq. For k ą 1 ´ N , the gradient

∇Sk :“ ∇ pWk ˚ ρq is well defined. For ´N ă k ď 1´N however, it becomes a singular integral,

and we thus define it via a Cauchy principal value. Hence, the mean-field potential gradient in

equation (1.2) is given by

∇Skpxq :“

$

’

’

&

’

’

%

∇Wk ˚ ρ , if k ą 1´N ,

ż

RN
∇Wkpx´ yq pρpyq ´ ρpxqq dy , if ´N ă k ď 1´N .

(1.3)

The noticeable characteristic of the class of PDEs (1.2) and the functional Fm,k consists in the com-

petition between the diffusion (possibly non-linear), and the non-local, quadratic non-linearity

which is due to the self-attraction of the particles through themean-field potential Sk. The param-

eter χ ą 0 measures the strength of the interaction and scales with the mass of solution densities.
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2. Fair-Competition Regime

The strong connection between the functional Fm,k and the PDE (1.2) is due to the fact that

the functional Fm,k is non-increasing along the trajectories of the system. Namely Fm,k is the free

energy of the system and it satisfies at least formally

d

dt
Fm,krρptqs “ ´

ż

RN
ρpt, xq

ˇ

ˇ

ˇ

ˇ

∇
ˆ

m

Npm´ 1qρpt, xq
m´1 ` 2χWkpxq ˚ ρpt, xq

˙
ˇ

ˇ

ˇ

ˇ

2
dx .

Furthermore, the system (1.2) is the formal gradient flow of the free energy functional (1.1) when

the space of probability measures is endowed with the Euclidean Wasserstein metric W. This

means that the family of PDEs (1.2) can be written as

Btρptq “ ∇ ¨ pρptq∇Tm,krρptqsq “ ´∇WFm,krρptqs ,

where Tm,krρs denotes the first variation of the energy functional in the set of probability densities:

Tm,krρspxq :“ δFm,k
δρ

rρspxq “
m

Npm´ 1qρ
m´1pxq ` 2χWkpxq ˚ ρpxq . (1.4)

This illuminating statement has been clarified in the seminal paper by Otto [248] for the porous

medium equation, and generalised to a large family of equations subsequently in [96, 3, 97], we

refer to [295, 3] for a comprehensive presentation of this theory of gradient flows in Wasserstein

metric spaces, particularly in the convex case. Let us mention that such a gradient flow can be

constructed as the limit of discrete in time steepest descent schemes. Performing gradient flows

of a convex functional is a natural task, and suitable estimates from below on the right notion of

Hessian of Fm,k translate into a rate of convergence towards equilibrium for the PDE [295, 96, 3].

However, performing gradient flows of non-convex functionals is much more delicate, and one

has to seek compensations. Such compensations do exist in our case, and we will observe them

at the level of existence of minimisers for the free energy functional Fm,k and stationary states of

the family of PDEs (1.2) in particular regimes.

The family of non-local problems (1.2) has been intensively studied in various contexts arising

in physics and biology. The two-dimensional logarithmic case pm “ 1, k “ 0q is the so-called

Keller–Segel system in its simplest formulation [196, 197, 243, 194, 136, 41, 256]. It has been pro-

posed as a model for chemotaxis in cell populations. Cells may interact with each other by secret-

ing a chemical substance to attract cells around them. This occurs for instance during the star-

vation stage of the slime mould Dictyostelium discoideum. More generally, chemotaxis is widely

observed in various biological fields (morphogenesis, bacterial self-organisation, inflammatory

processes among others). The two- and three-dimensional configurations with Newtonian inter-

action pm “ 1, k “ 2´Nq are the so-called Smoluchowski-Poisson system arising in gravitational

physics. It describes macroscopically a density of particles subject to a self-sustained gravitational

field [106, 107].
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1. Introduction

Let us describe in more detail the two-dimensional Keller–Segel system as the analysis of its

peculiar structure will serve as a guideline to understand the other cases. In fact, the functional

(1.1) pm “ 1, k “ 0q is bounded from below if and only if χ “ 1. The gradient flow is also

subject to a remarkable dichotomy, well described mathematically. The density exists globally in

time if χ ă 1 (diffusion overcomes self-attraction), whereas blow-up occurs in finite time when

χ ą 1 (self-attraction overwhelms diffusion). This transition has been first formulated in [113].

Mathematical contributions are [194] for the existence part, [242] for the radial case, and [136, 41]

in the full space. The critical case χ “ 1 was analysed further in [40, 37, 75] in terms of stability of

stationary states.

The effect of substituting linear diffusion by non-linear diffusionwithm ą 1 in two dimensions

and higher was described in [61, 277] where it is shown that solutions exist globally in time for all

values of the parameter χ ą 0. The role of both non-linear diffusion and non-local aggregation

termswas clarified in [39], see also [276], where the authors find that there is a similar dichotomy to

the two-dimensional classical Keller–Segel case pN “ 2,m “ 1, k “ 0q, for awhole range of param-

eters, choosing the non-local term as the Newtonian potential, pN ě 3,m “ 2´ 2{N, k “ 2´Nq.

Themain difference is that the stationary states found for the critical case are compactly supported.

Choosing the non-local term as the Newtonian potential, this range of parameters can be under-

stood as fixing the non-linear diffusion such that both terms in the functional Fm,k scale equally

for mass-preserving dilations. This mass-preserving dilation homogeneity of the functional Fm,k
is shared by the range of parameters pm, kqwith Npm´ 1q ` k “ 0 for all dimensions,m ą 0 and

k P p´N,Nq. We call this range of parameters the fair-competition regime, since both terms are

competing each other at equal foot.

In this chapter, we will analyse the properties of the functional Fm.k in relation to global min-

imisers and its relation to stationary states of (1.2). We will first define properly the notion of sta-

tionary states to (1.2) and analyse their basic properties in Section 2. Wewill also state and explain

themain results of this chapter once the different regimes have been introduced. We postpone fur-

ther discussion of the related literature to Section 2. Section 3 is devoted to the fair-competition

regime with k ă 0 for which we show a similar dichotomy to [39] in the whole range k P p´N, 0q

including themost singular cases. We show that stationary states exist only for a critical value of χ

and that they are compactly supported, bounded, radially symmetric decreasing and continuous

functions. Moreover, we show that they are global minimisers of Fm.k. The sub-critical case is also

analysed in scaled variables and we show the existence of global minimisers with the properties

above leading to the existence of self-similar solutions in original variables. The critical parameter

is characterised by a variant of HLS inequalities as in [39]. Let us mention that the regularity re-

sults need a careful treatment of the problem in radial coordinates involving non-trivial properties
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2. Fair-Competition Regime

of hypergeometric functions. The properties of the kernel in radial coordinates are postponed to

the Appendix A.

In Section 4, we analyse the case k ą 0. Let us mention that there are no results in the literature

to our knowledge concerning the case k P p0, Nq in which 0 ă m “ 1 ´ k{N ă 1. There is

one related result in [116] for the limiting case in one dimension taking m “ 0, corresponding to

logarithmic diffusion, and k “ 1. They showed that no criticality is present in that case as solutions

to (1.2) with pm “ 0, k “ 1q are globally defined in time for all values of the parameter χ ą 0. We

show that no radially symmetric non-increasing stationary states and no radially symmetric non-

increasing global minimisers exist in original variables for all values of the critical parameter χ

and for k P p0, Nq while we show the existence of stationary states for all values of the critical

parameter χ in scaled variables for k P p0, 1s. In this sense, we show that there is no criticality

for k ą 0. A full proof of non-criticality involves the analysis of the minimisation problem in

scaled variables as for k ă 0 showing that global minimisers exist in the right functional spaces

for all values of the critical parameter and that they are indeed stationary states. This is proven

in one dimension in Chapter 3 by optimal transport techniques and postponed for further future

investigations in general dimension. We finally illustrate these results by numerical experiments

in one dimension corroborating the absence of critical behaviour for k ą 0.

2 Stationary states & main results

2.1 Stationary states: definition & basic properties

Let us define precisely the notion of stationary states to the aggregation equation (1.2).

Definition 2.1. Given ρ̄ P L1
`

`

RN
˘

XL8
`

RN
˘

with ||ρ̄||1 “ 1, it is a stationary state for the evolution

equation (1.2) if ρ̄m P W1,2
loc

`

RN
˘

, ∇S̄k P L1
loc

`

RN
˘

, and it satisfies

1
N

∇ρ̄m “ ´2χ ρ̄∇S̄k (2.5)

in the sense of distributions in RN . If ´N ă k ď 1 ´ N , we further require ρ̄ P C0,α `RN
˘

with

α P p1´ k ´N, 1q.

We start by showing that the function Sk and its gradient defined in (1.3) satisfy even more

than the regularity ∇Sk P L1
loc

`

RN
˘

required in Definition 2.1.

Lemma 2.2. Let ρ P L1
`

`

RN
˘

X L8
`

RN
˘

with ||ρ||1 “ 1. If 0 ă k ă N , we additionally assume

|x|kρ P L1 `RN
˘

. Then the following regularity properties hold:

i) Sk P L8loc
`

RN
˘

for 0 ă k ă N and Sk P L8
`

RN
˘

for ´N ă k ă 0.

84



2. Stationary states & main results

ii) ∇Sk P L8loc
`

RN
˘

for 1 ă k ă N and ∇Sk P L8
`

RN
˘

for ´N ă k ă 0 and 0 ă k ď 1, assuming

additionally ρ P C0,α `RN
˘

with α P p1´ k ´N, 1q in the range ´N ă k ď 1´N .

Proof. A direct decomposition in near- and far-field sets A :“ ty : |x´ y| ď 1u and B :“ RN ´ A

yields for ´N ă k ă 0 and x P RN ,

|Skpxq| ď

ż

RN
|Wkpx´ yq|ρpyq dy ď

1
|k|

ż

A
|x´ y|kρpyq dy `

1
|k|

ż

B
ρpyq dy

ď
1
|k|

ˆ

σN
k `N

||ρ||8 ` 1
˙

ă 8 ,

where σN “ 2πpN{2q{ΓpN{2q denotes the surface area of the N -dimensional unit ball. Locally,

boundedness extends to the fast diffusion regime 0 ă k ă N by using the inequality

|x´ y|k ď η
`

|x|k ` |y|k
˘

, η “ maxt1, 2k´1u . (2.6)

This inequality follows directly from splitting into cases k ă 1 and k ą 1. The inequality |x´y|k ď

|x|k ` |y|k is true for any k P p0, 1s with x, y P RN by direct inspection. For N ą 1 and k P p1, Nq,

we have by convexity |x´ y|k ď 2k´1 `|x|k ` |y|k
˘

, for any x, y P RN , and so (2.6) holds true.

Similarly, in order to prove ii) for 1´N ă k ď 1 and x P RN , we estimate ∇Sk as

|∇Skpxq| ď
ż

RN
|∇Wkpx´ yq|ρpyq dy ď

ż

A
|x´ y|k´1ρpyq dy `

ż

B
ρpyq dy

ď

ˆ

σN
k `N ´ 1 ||ρ||8 ` 1

˙

ă 8 .

In the Cauchy integral range´N ă k ď 1´N , we additionally require a certain Hölder regularity,

yielding

|∇Skpxq| “
ˇ

ˇ

ˇ

ˇ

ż

A
∇Wkpx´ yq pρpyq ´ ρpxqq dy `

ż

B
∇Wkpx´ yq pρpyq ´ ρpxqq dy

ˇ

ˇ

ˇ

ˇ

ď

ż

A
|∇Wkpx´ yq| |ρpyq ´ ρpxq| dy `

ż

B
|∇Wkpx´ yq|ρpyq dy

ď rρsC0,α

ż

A
|x´ y|k´1|x´ y|α dy `

ż

B
ρpyq dy ă 8 ,

where rρsC0,α denotes theα-Hölder semi-normof ρ, andwhere the term
ş

B ∇Wkpx´yq dy vanishes

by anti-symmetry. For 1 ă k ă N and x in some compact set, we have

|∇Skpxq| ď
ż

A
|x´ y|k´1ρpyq dy `

ż

B
|x´ y|k´1ρpyq dy

ď
σN

k `N ´ 1 ||ρ||8 `
ż

B
|x´ y|kρpyq dy

which concludes∇Sk P L8loc
`

RN
˘

using (2.6) and the fact that the kthmoment of ρ is bounded.

We will prove that for certain cases there are no stationary states to (1.2) in the sense of Def-

inition 2.1, for instance for the sub-critical classical Keller–Segel model in two dimensions [41].
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2. Fair-Competition Regime

However, the scale invariance of (1.2) motivates us to look for self-similar solutions instead. To

this end, we rescale equation (1.2) to a non-linear Fokker–Planck type equation as in [100]. Let us

define

upt, xq :“ αN ptqρ pβptq, αptqxq ,

where ρpt, xq solves (1.2) and the functions αptq, βptq are to be determined. If we assume up0, xq “

ρp0, xq, then upt, xq satisfies the rescaled drift-diffusion equation
$

’

&

’

%

Btu “
1
N∆um ` 2χ∇ ¨ pu∇Skq `∇ ¨ pxuq , t ą 0 , x P RN ,

upt “ 0, xq “ ρ0pxq ě 0 ,
ż 8

´8

ρ0pxq dx “ 1 ,
ż 8

´8

xρ0pxq dx “ 0 ,
(2.7)

for the choices

αptq “ et, βptq “

$

’

&

’

%

1
2´k

`

ep2´kqt ´ 1
˘

, if k ‰ 2,

t, if k “ 2,

and with ∇Sk given by (1.3) with u instead of ρ. By differentiating the centre of mass of u, we see

easily that
ż

RN
xupt, xq dx “ e´t

ż

RN
xρ0pxq dx “ 0 , @t ą 0 ,

and so the initial zero centre of mass is preserved for all times. Self-similar solutions to (1.2) now

correspond to stationary solutions of (2.7). Similar to Definition 2.1, we state what we exactly

mean by stationary states to the aggregation equation (2.7).

Definition 2.3. Given ū P L1
`

`

RN
˘

XL8
`

RN
˘

with ||ū||1 “ 1, it is a stationary state for the evolution

equation (2.7) if ūm P W1,2
loc

`

RN
˘

, ∇S̄k P L1
loc

`

RN
˘

, and it satisfies

1
N

∇ūm “ ´2χ ū∇S̄k ´ x ū (2.8)

in the sense of distributions in RN . If ´N ă k ď 1 ´ N , we further require ū P C0,α `RN
˘

with

α P p1´ k ´N, 1q.

From now on, we switch notation from u to ρ for simplicity, it should be clear from the context

if we are in original or rescaled variables. In fact, stationary states as defined above have even

more regularity:

Lemma 2.4. Let k P p´N,Nqzt0u and χ ą 0.

(i) If ρ̄ is a stationary state of equation (1.2) with |x|kρ̄ P L1 `RN
˘

in the case 0 ă k ă N , then ρ̄ is

continuous on RN .

(ii) If ρ̄resc is a stationary state of equation (2.7) with |x|kρ̄resc P L1 `RN
˘

in the case 0 ă k ă N , then

ρ̄resc is continuous on RN .
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2. Stationary states & main results

Proof. (i) First, note that ∇S̄k P L8loc
`

RN
˘

by Lemma 2.2, and therefore, ρ̄∇S̄k P L1
loc

`

RN
˘

X

L8loc
`

RN
˘

. Hence, we get by interpolation that ∇ ¨
`

ρ̄∇S̄k
˘

P W´1,p
loc

`

RN
˘

for all 1 ă p ă 8.

Recall from Definition 2.1 that ρ̄m is a weak W1,2
loc

`

RN
˘

solution of

1
N

∆ρ̄m “ ´2χ∇ ¨
`

ρ̄∇S̄k
˘

in RN , and so ρ̄m is in fact a weak solution in W1,p
loc

`

RN
˘

for all 1 ă p ă 8 by classic el-

liptic regularity. Using Morrey’s inequality, we deduce that ρ̄m belongs to the Hölder space

C0,α
loc

`

RN
˘

with α “ pp ´ Nq{N for any N ă p ă 8, and thus ρ̄m P C
`

RN
˘

. Hence, ρ̄ itself

is continuous as claimed.

(ii) Sincexρ̄resc P L1
loc

`

RN
˘

XL8loc
`

RN
˘

, we obtain again by interpolation∇¨pxρ̄rescq P W´1,p
loc

`

RN
˘

for all 1 ă p ă 8. By Definition 2.3, ρ̄mresc is a weak W1,2
loc

`

RN
˘

solution of

1
N

∆ρ̄mresc “ ´2χ∇ ¨
`

ρ̄resc∇S̄k
˘

´∇ ¨ pxρ̄rescq

in RN , and so ρ̄mresc is again a weak solution in W1,p
loc

`

RN
˘

for all 1 ă p ă 8 by classic elliptic

regularity. We conclude as in original variables.

In the case k ă 0, we furthermore have a non-linear algebraic equation for stationary states:

Corollary 2.5 (Necessary Condition for Stationary States). Let k P p´N, 0q and χ ą 0.

(i) If ρ̄ is a stationary state of equation (1.2), then ρ̄ P W1,8 `

RN
˘

and it satisfies

ρ̄pxqm´1 “
Npm´ 1q

m

`

Ckrρ̄spxq ´ 2χ S̄kpxq
˘

`
, @x P RN , (2.9)

where Ckrρ̄spxq is constant on each connected component of supp pρ̄q.

(ii) If ρ̄resc is a stationary state of equation (2.7), then ρ̄resc P W1,8
loc

`

RN
˘

and it satisfies

ρ̄rescpxq
m´1 “

Npm´ 1q
m

ˆ

Ck,rescrρ̄spxq ´ 2χ S̄kpxq ´
|x|2

2

˙

`

, @x P RN , (2.10)

where Ck,rescrρ̄spxq is constant on each connected component of supp pρ̄rescq.

Proof. (i) For a stationary state ρ̄ of equation (1.2), let us define the set

Ω “
 

x P RN : ρ̄pxq ą 0
(

.

Since ρ̄ is continuous by Lemma 2.4, Ω is an open set with countably many open, possibly

unbounded connected components. Let us take any bounded smooth connected open subset

U such that U Ă Ω. By continuity, ρ̄ is bounded away from zero in U , and thus ∇ρ̄m´1 “

87



2. Fair-Competition Regime

m´1
mρ̄ ∇ρ̄m holds in the distributional sense in U . From (2.5) in the definition of stationary

states, we conclude that

∇
ˆ

m

Npm´ 1q ρ̄
m´1 ` 2χ S̄k

˙

“ 0 , (2.11)

in the sense of distributions in Ω. Hence, the functionCkrρ̄spxq :“ m
Npm´1q ρ̄

m´1pxq`2χ S̄kpxq

is constant in each connected component of Ω, and so (2.9) follows. Additionally, it follows

from (2.11) that for any x P RN

ˇ

ˇ∇ρ̄m´1pxq
ˇ

ˇ “
2χNpm´ 1q

m

ˇ

ˇ∇S̄kpxq
ˇ

ˇ ď c

for some constant c ą 0 since S̄k P W1,8 `

RN
˘

by Lemma 2.2. Sincem P p1, 2q, we conclude

ρ̄ P W1,8 `

RN
˘

.

(ii) We follow the same argument for a stationary state ρ̄resc of the rescaled equation (2.7) and

using (2.8) in Definition 2.3, we obtain

∇
ˆ

m

Npm´ 1q ρ̄
m´1
resc ` 2χ S̄k `

|x|2

2

˙

“ 0 ,

in the sense of distributions in Ω. Here, the function Ck,rescrρ̄rescspxq :“ m
Npm´1q ρ̄

m´1
resc pxq `

2χ S̄kpxq ` |x|2

2 is again constant in each connected component of supp pρ̄rescq. Similarly, it

follows from Lemma 2.2 that for any ω ą 0 and x P Bp0, ωq,

ˇ

ˇ∇ρ̄m´1
resc pxq

ˇ

ˇ “
Npm´ 1q

m

`

2χ
ˇ

ˇ∇S̄kpxq
ˇ

ˇ` |x|
˘

ď c

for some constant c ą 0, and so ρ̄resc P W1,8
loc

`

RN
˘

.

2.2 Fair-competition regime: main results

It is worth noting that the functional Fm,krρs possesses remarkable homogeneity properties, see

Chapter 1 Section 3.1. Wewill here only concentrate on the fair-competition regimeNpm´1q`k “

0, and denote the corresponding energy functional by Fkrρs “ F1´k{N,krρs. For a definition of

the different regimes and detailed explanations and references, see Chapter 1 Definition 3.1. An

overview of the parameter space pk,mq and the different regimes is given in Chapter 1 Figure 1.4.

Notice that the functional Fk is homogeneous in this regime, i.e.,

Fkrρλs “ λ´kFkrρs . (2.12)

The analysis in the fair-competition regime depends on the sign of k, see Chapter 1 Definition 3.7,

and we therefore split our investigations into the porous medium case (k ă 0), and the fast diffu-

sion case (k ą 0). More information on the logarithmic case (k “ 0) can be found in [62]. When
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2. Stationary states & main results

dealing with the energy functional Fk, we work in the set of non-negative normalised densities,

Y :“
"

ρ P L1
`

`

RN
˘

X Lm
`

RN
˘

: ||ρ||1 “ 1 ,
ż

xρpxq dx “ 0
*

.

In rescaled variables, equation (2.7) is the formal gradient flow of the rescaled free energy func-

tional Fk,resc, which is complemented with an additional quadratic confinement potential,

Fk,rescrρs “ Fkrρs `
1
2Vrρs , Vrρs “

ż

RN
|x|2ρpxq dx .

Defining the sets

Y2 :“ tρ P Y : Vrρs ă 8u , Yk :“
"

ρ P Y :
ż

RN
|x|kρpxq dx ă 8

*

,

we see that Fk,resc is well-defined and finite on Y2 for k ă 0 and on Y2,k :“ Y2 X Yk for k ą 0.

Thanks to the formal gradient flow structure in the EuclideanWasserstein metricW, we can write

the rescaled equation (2.7) as

Btρ “ ∇ ¨ pρ∇Tk,rescrρsq “ ´∇WFk,rescrρs ,

where Tk,resc denotes the first variation of the rescaled energy functional,

Tk,rescrρspxq :“ Tkrρspxq `
|x|2

2 (2.13)

with Tk as defined in (1.4). In this chapter, we prove the following results:

Theorem 2.6 (The Critical Porous Medium Regime). In the porous medium regime k P p´N, 0q and

for critical interaction strengths χ “ χc, there exist global minimisers of Fk and they are radially sym-

metric non-increasing, compactly supported and uniformly bounded. Furthermore, all stationary states

with bounded second moment are global minimisers of the energy functional Fk, and conversely, all global

minimisers of Fk are stationary states of (1.2).

Theorem 2.7 (The Sub-Critical Porous Medium Regime). In the porous medium regime k P p´N, 0q

and for sub-critical interaction strengths 0 ă χ ă χc, no stationary states exist for equation (1.2) and

no minimisers exist for Fk. In rescaled variables, all stationary states are continuous and compactly sup-

ported. There exist global minimisers of Fk,resc and they are radially symmetric non-increasing and uni-

formly bounded stationary states of equation (2.7).

Remark 2.8. Due to the homogeneity (2.12) of the functionalFk, each global minimiser gives rise to a family

of global minimisers for χ “ χc by dilation since they have zero energy, see (3.19). It is an open problem to

show that there is a unique global minimiser for χ “ χc modulo dilations. This uniqueness was proven in

the Newtonian case in [302], but is still an open problem in the general. Notice that from uniqueness one

obtains the full set of stationary states with bounded second moment for (1.2) as a by-product.
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2. Fair-Competition Regime

In contrast, in rescaled variables, we do not know if stationary states with second moment bounded are

among global minimisers ofFk,resc for the sub-critical case 0 ă χ ă χc except in one dimension, see Chapter

3. It is also an open problem to show the uniqueness of radially symmetric stationary states of the rescaled

equation (2.7) for N ě 2.

Theorem 2.9 (The Fast Diffusion Regime). In the fast diffusion regime k P p0, Nq equation (1.2)

has no radially symmetric non-increasing stationary states with kth moment bounded, and there are no

radially symmetric non-increasing global minimisers for the energy functional Fk for any χ ą 0. In

rescaled variables, radially symmetric non-increasing stationary states can only exist if 0 ă k ă 2, that is

pN ´ 2q{N ă m ă 1. Similarly, global minimisers with finite energy Fk,resc can only exist in the range

0 ă k ă 2N{p2 ` Nq, that is N{p2 ` Nq ă m ă 1. For k P p0, 1s, there exists a continuous radially

symmetric non-increasing stationary state of the rescaled equation (2.7).

3 Porous medium case k ă 0

In the porous medium case, we have ´N ă k ă 0 and hence 1 ă m ă 2. Our aim in this

section is to make a connection between global minimisers of the functionals Fk and Fk,resc and

stationary states of equations (1.2) and (2.7) respectively. We will show that in the critical case

χ “ χc, global minimisers and stationary states are equivalent for original variables. In the sub-

critical case 0 ă χ ă χc, all minimisers of Fk,resc will turn out to be stationary states of the rescaled

equation (2.7).

3.1 Global minimisers

A key ingredient for the analysis in the porous medium case are certain functional inequalities

which are variants of the Hardy-Littlewood-Sobolev (HLS) inequality, also known as the weak

Young’s inequality [218, Theorem 4.3]:
ĳ

RNˆRN

fpxq|x´ y|kfpyq dxdy ď CHLSpp, q, kq}f}p}f}q , (3.14)

1
p
`

1
q
“ 2` k

N
, p, q ą 1 , k P p´N, 0q .

Theorem 3.1 (Variation of HLS). Let k P p´N, 0q. For f P L1 `RN
˘

X Lm
`

RN
˘

, we have
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ĳ

RNˆRN

fpxq|x´ y|kfpyqdxdy

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď C˚||f ||
N`k
N

1 ||f ||mm, (3.15)

where C˚pk,Nq is defined as the best constant.

Proof. The inequality is a direct consequence of the standard HLS inequality (3.14) by choosing

p “ q “ 2N
2N`k , and of Hölder’s inequality. For k P p´N, 0q and for any f P L1 `RN

˘

X Lm
`

RN
˘

,
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3. Porous medium case k ă 0

we have
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ĳ

RˆR

fpxq|x´ y|kfpyqdxdy

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď CHLS ||f ||
2
p ď CHLS ||f ||

N`k
N

1 ||f ||mm.

Consequently, C˚ is finite and bounded from above by CHLS .

Now, let us compute explicitly the energy of stationary states:

Lemma 3.2. For any´N ă k ă 0 and χ ą 0, all stationary states ρ̄ of (1.2)with |x|2ρ̄ P L1 `RN
˘

satisfy

Fk rρ̄s “ 0.

Proof. Integrating (2.5) against x, we obtain for 1´N ă k ă 0:

1
N

ż

RN
x ¨∇ρ̄m “ ´2χ

ĳ

RNˆRN

x ¨ px´ yq|x´ y|k´2ρ̄pxqρ̄pyq dxdy

´

ż

RN
ρ̄m “ ´χ

ĳ

RNˆRN

px´ yq ¨ px´ yq|x´ y|k´2ρ̄pxqρ̄pyq dxdy

1
Npm´ 1q

ż

RN
ρ̄m “ ´χ

ĳ

RNˆRN

|x´ y|k

k
ρ̄pxqρ̄pyq dxdy , (3.16)

and the result immediately follows. For´N ă k ď 1´N , the term ∇S̄k is a singular integral, and

thus writes

∇S̄kpxq “ lim
εÑ0

ż

Bcpx,εq

|x´ y|k´2px´ yqρ̄kpyq dy

“

ż

R
|x´ y|k´2px´ yq pρ̄kpyq ´ ρ̄kpxqq dy .

The singularity disappears when integrating against x,
ż

RN
x ¨∇S̄kpxqρ̄kpxq dx “

1
2

ĳ

RNˆRN

|x´ y|kρ̄kpxqρ̄kpyq dxdy . (3.17)

In order to prove (3.17), let us define

fεpxq :“
ż

Bcpx,εq

x ¨∇xWkpx´ yqρ̄kpyq dy.

Then by definition of the Cauchy Principle Value, fεpxq Ñ x ¨∇S̄kpxq pointwise for almost every

x P RN as εÑ 0. Further, we have for 0 ă ε ă 1,

|fεpxq| ď |x|

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Bcpx,εqXBpx,1q
∇xWkpx´ yqρ̄kpyq dy `

ż

Bcpx,εqXBcpx,1q
∇xWkpx´ yqρ̄kpyq dy

ˇ

ˇ

ˇ

ˇ

ˇ

ď |x|

˜
ˇ

ˇ

ˇ

ˇ

ˇ

ż

Bcpx,εqXBpx,1q
∇xWkpx´ yqρ̄kpyq dy

ˇ

ˇ

ˇ

ˇ

ˇ

`

ż

|x´y|ě1
|x´ y|k´1ρ̄kpyq dy

¸

ď |x|

˜
ˇ

ˇ

ˇ

ˇ

ˇ

ż

Bcpx,εqXBpx,1q
∇xWkpx´ yqρ̄kpyq dy

ˇ

ˇ

ˇ

ˇ

ˇ

` 1
¸
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2. Fair-Competition Regime

Since ∇Wk is anti-symmetric, the term
ş

Bcpx,εqXBpx,1q∇xWkpx ´ yq dy vanishes and we are thus

free to subtract it. Using the fact that ρ̄k P C0,αpRN q for some α P p1´ k ´N, 1q, we have
ˇ

ˇ

ˇ

ˇ

ˇ

ż

Bcpx,εqXBpx,1q
∇xWkpx´ yqρ̄kpyq dy

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Bcpx,εqXBpx,1q
∇xWkpx´ yq rρ̄kpyq ´ ρ̄kpxqs dy

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż

Bcpx,εqXBpx,1q
|x´ y|k´1 |ρ̄kpyq ´ ρ̄kpxq| dy

ď

ż

Bcpx,εqXBpx,1q
|x´ y|k`α´1 dy

“
σN

k `N ´ 1` α
`

1´ εk`N´1`α˘

ď
σN

k `N ´ 1` α .

We conclude that |fεpxq| ď
´

σN`k`N´1`α
k`N´1`α

¯

|x| for all 0 ă ε ă 1, and therefore by Lebesgue’s

dominated convergence theorem,
ż

RN
x ¨∇S̄kpxqρ̄kpxq dx “

ż

R
lim
εÑ0

fεpxqρ̄kpxq dx “ lim
εÑ0

ż

R
fεpxqρ̄kpxq dx

“ lim
εÑ0

ĳ

|x´y|ěε

x ¨ px´ yq|x´ y|k´2ρ̄kpxqρ̄kpyq dxdy

“
1
2 lim
εÑ0

ĳ

|x´y|ěε

|x´ y|kρ̄kpxqρ̄kpyq dxdy

“
1
2

ĳ

RNˆRN

|x´ y|kρ̄kpxqρ̄kpyq dxdy .

This concludes the proof of (3.17). Therefore, it follows that (3.16) holds true for any´N ă k ă 0.

We remark that a bounded second moment is necessary to allow for the use of |x|2{2 as a test

function by a standard approximation argument using suitable truncations.

Let us point out that the the previous computation is possible due to the homogeneity of the

functional Fk. In fact, a formal use of the Euler theorem for homogeneous functions leads to this

statement. This argument does not apply in the logarithmic case k “ 0. Here, it allows to connect

stationary states and minimisers of Fk.

It follows directly from Theorem 3.1, that for all ρ P Y and for any χ ą 0,

Fkrρs ě
1´ χC˚
Npm´ 1q ||ρ||

m
m ,

where C˚ “ C˚pk,Nq is the optimal constant defined in (3.15). Since global minimisers have

always smaller or equal energy than stationary states, and stationary states have zero energy by

Lemma 3.2, it follows that χ ě 1{C˚. We define the critical interaction strength by

χcpk,Nq :“ 1
C˚pk,Nq

, (3.18)
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3. Porous medium case k ă 0

and so for χ “ χc, all stationary states of equation (1.2) are global minimisers of Fk. We can also

directly see that for 0 ă χ ă χc, no stationary states exist. These observations can be summarised

in the following theorem:

Theorem 3.3 (Stationary States in Original Variables). Let ´N ă k ă 0. For critical interaction

strength χ “ χc, all stationary states ρ̄ of equation (1.2) with |x|2ρ̄ P L1 `RN
˘

are global minimisers of

Fk. For sub-critical interaction strengths 0 ă χ ă χc, no stationary states with |x|2ρ̄ P L1 `RN
˘

exist for

equation (1.2).

We now turn to the study of global minimisers of Fk and Fk,resc with the aim of proving the

converse implication to Theorem 3.3. Firstly, we have the following existence result:

Proposition 3.4 (Existence of Global Minimisers). Let k P p´N, 0q.

(i) If χ “ χc, then there exists a radially symmetric and non-increasing function ρ̃ P Y satisfying

Fkrρ̃s “ 0.

(ii) If χ ă χc, then Fk does not admit global minimisers, but there exists a global minimiser ρ̃ of Fk,resc
in Y2.

(iii) If χ ą χc, then both Fk and Fk,resc are not bounded below.

Proof. Generalising the argument in [39, Proposition 3.4], we obtain the following result for

the behaviour of the free energy functional Fk: Let χ ą 0. For k P p´N, 0q, we have

Ikpχq :“ inf
ρPY

Fkrρs “

$

’

&

’

%

0 if χ P p0, χcs,

´8 if χ ą χc ,

(3.19)

and the infimum Ikpχq is only achieved if χ “ χc. This implies statements (ii) and (iii) for Fk.

Case (iii) directly follows also in rescaled variables as in [39, Proposition 5.1]. The argument

in the sub-critical case (ii) for Fk,resc is a bit more subtle than in the critical case (i) since we

need tomake sure that the secondmoment of our global minimiser is bounded. Wewill here

only prove (ii) for rescaled variables, as (i) and (ii) in original variables are straightforward

generalisations from [39, Lemma 3.3] and [39, Proposition 3.4] respectively.

Inequality (3.15) implies that the rescaled free energy is bounded on Y2 by

´
C˚
k
pχc ` χq ||ρ||

m
m `

1
2Vrρs ě Fk,rescrρs ě ´

C˚
k
pχc ´ χq ||ρ||

m
m `

1
2Vrρs, (3.20)

and it follows that the infimum of Fk,resc over Y2 in the sub-critical case is non negative.

Hence, there exists a minimising sequence ppjq P Y2,

Fk,rescrpjs Ñ µ :“ inf
ρPY2

Fk,rescrρs.
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2. Fair-Competition Regime

Note that ||pj ||m and Vrpjs are uniformly bounded, ||pj ||m`Vrpjs ď C0 say, since from (3.20)

0 ă ´C˚
k
pχc ´ χq ||pj ||

m
m `

1
2Vrpjs ď Fk,rescrpjs ď Fk,rescrp0s.

Further, the radially symmetric decreasing rearrangement pp˚j q of ppjq satisfies

||p˚j ||m “ ||pj ||m, Vrp˚j s ď Vrpjs, Wkrp
˚
j s ď Wkrpjs

by the reversedHardy-Littlewood-Sobolev inequality [198] andRiesz rearrangement inequal-

ity [218]. In other words, Fk,rescrp˚j s ď Fk,rescrpjs and so pp˚j q is also a minimising sequence.

To show that the infimum is achieved, we start by showing that pp˚j q is uniformly bounded

at a point. For any choice of R ą 0, we have

1 “ ||p˚j ||1 “ σN

ż 8

0
p˚j prqr

N´1 dr

ě σN

ż R

0
p˚j prqr

N´1 dr ě σN
RN

N
p˚j pRq .

Similarly, since ||p˚j ||m is uniformly bounded,

C0 ě ||p
˚
j ||

m
m “ σN

ż 8

0
rN´1p˚j prq

m dr

ě σN

ż R

0
rN´1p˚j prq

m dr ě σN
RN

N
p˚j pRq

m .

We conclude that

0 ď pjpRq ď bpRq :“ C1 inf
!

R´N , R´
N
m

)

, @R ą 0 (3.21)

for a positive constant C1 only depending on N , m and C0. Then by Helly’s3 Selection

Theorem there exists a subsequence pp˚jnq and a non-negative function ρ̃ : RN Ñ R such

that p˚jn Ñ ρ̃ pointwise almost everywhere. In addition, a direct calculation shows that

x ÞÑ bp|x|q P L
2N

2N`k
`

RN
˘

, and hence, using (3.14) for p “ q “ 2N{p2N ` kq, we obtain

px, yq ÞÑ |x´ y|kbp|x|qbp|y|q P L1pRN ˆ RN q.

Together with (3.21) and the pointwise convergence of pp˚jnq, we conclude

Wkpp
˚
jnq Ñ Wkpρ̃q ă 8

by Lebesgue’s4 dominated convergence theorem. In fact, since ||p˚jn ||m and Vrp˚jns are uni-

formly bounded and ||p˚jn ||1 “ 1, we have the existence of a subsequence pp˚jlq and a limit

3Eduard Helly (1884-1943) was an Austrian mathematician. After being enlisted in the Austrian army during World
War I, he was shot in 1915, and spent the rest of the war as a prisoner of the Russians. He continued organising mathe-
matical seminars and writing important contributions to functional analysis while in Siberian prison camps.

4Henri Léon Lebesgue (1875-1941) was a French mathematician. Even though a very good lecturer, he never taught
his own theory of integration, saying "Réduites à des thóries générales, les mathématiques seraient une belle forme sans
contenu".
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3. Porous medium case k ă 0

P P L1 `RN
˘

such that p˚jl Ñ P weakly in L1 `RN
˘

by the Dunford–Pettis5 Theorem. Using

a variant of Vitali’s6 Lemma [262], we see that the sequence pp˚jlq actually converges strongly

to ρ̃ in L1 `RN
˘

on all finite balls in RN . In other words, P “ ρ̃ almost everywhere. Further-

more, ρ̃ has finite second moment by Fatou’s Lemma,

Vrρ̃s ď lim inf
lÑ8

Vrp˚jls ď C0,

and by convexity of |.|m form P p1, 2q, we have lower semi-continuity,
ż

ρ̃m ď lim inf
lÑ8

ż

`

p˚jl
˘m
ď C0.

We conclude that ρ̃ P Y2 and

Fk,rescrρ̃s ď lim
lÑ8

Fk,rescrp˚jls “ µ.

Hence, ρ̃ is a global minimiser of Fk,resc.

Remark 3.5. The existence result in original variables also provides optimisers for the variation of the HLS

inequality (3.15), and so the supremum in the definition of C˚pN, kq is in fact attained.

The following necessary condition is a generalisation of results in [39], but using a different

argument inspired by [78].

Proposition 3.6 (Necessary Condition for Global Minimisers). Let k P p´N, 0q.

(i) If χ “ χc and ρ P Y is a global minimiser of Fk, then ρ is radially symmetric non-increasing,

satisfying

ρm´1pxq “
Npm´ 1q

m
p´2χpWk ˚ ρqpxq `Dkrρsq` a.e. in RN . (3.22)

Here, we denote

Dkrρs :“ 2Fkrρs `
m´ 2

Npm´ 1q ||ρ||
m
m.

(ii) If 0 ă χ ă χc and ρ P Y2 is a global minimiser of Fk,resc, then ρ is radially symmetric non-increasing,

satisfying

ρm´1pxq “
Npm´ 1q

m

ˆ

´2χpWk ˚ ρqpxq ´
|x|2

2 `Dk,rescrρs

˙

`

a.e. in RN . (3.23)

Here, we denote

Dk,rescrρs :“ 2Fk,rescrρs ´
1
2Vrρs ` m´ 2

Npm´ 1q ||ρ||
m
m .

5Nelson James Dunford (1906-1986) and Billy James Pettis (1913-1979) were American mathematicians, known for
their contributions to functional analysis.

6Giuseppe Vitali (1875-1932) was an Italian mathematician. From 1926, Vitali developed a serious illness, suffered a
paralysed arm and could no longer write. Despite this about half his research papers were written in the last four years of
his life.
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2. Fair-Competition Regime

Proof. (i) Let us write as in (1.1)

Fkrρs “ U1´k{N rρs ` χWkrρs, Umrρs “
1

Npm´ 1q ||ρ||
m
m, and

Wkrρs “

ĳ

RNˆRN

|x´ y|k

k
ρpxqρpyq dxdy.

We will first show that all global minimisers of Fk are radially symmetric non-increasing.

Indeed, let ρ be a global minimiser of Fk in Y , then for the symmetric decreasing rearrange-

ment ρ# of ρ, we have Umrρ#s “ Umrρs and by the Riesz rearrangement inequality [77,

Lemma 2], Wrρ#s ď Wrρs. So Fkrρ#s ď Fkrρs and since ρ is a global minimiser this implies

Wkrρ
#s “ Wkrρs. By Riesz rearrangement properties [77, Lemma 2], there exists x0 P RN

such that ρpxq “ ρ#px´ x0q for all x P RN . Moreover, we have
ż

RN
xρpxq dx “ x0 `

ż

RN
xρ#pxq dx “ x0,

and thus the zero centre-of-mass condition holds if and only if x0 “ 0, giving ρ “ ρ#. For

any test function ψ P C8c
`

RN
˘

such that ψp´xq “ ψpxq, we define

ϕpxq “ ρpxq

ˆ

ψpxq ´

ż

RN
ψpxqρpxq dx

˙

.

We fix 0 ă ε ă ε0 :“ p2||ψ||8q´1. Then

ρ` εϕ “ ρ

ˆ

1` ε
ˆ

ψ ´

ż

RN
ψρ

˙˙

ě ρ p1´ 2||ψ||8εq ě 0,

and so ρ ` εϕ P L1
`

`

RN
˘

X Lm
`

RN
˘

. Further,
ş

ϕpxq dx “
ş

xϕpxq dx “ 0, and hence ρ `

εϕ P Y . Note also that supp pϕq Ď Ω̄ :“ supp pρq. To calculate the first variation Tk of the

functional Fk, we need to be careful about regularity issues. Denoting by Ω the interior of Ω̄,

we write

Fkrρ` εϕs ´ Fkrρs
ε

“
1

Npm´ 1q

ż

Ω

pρ` εϕqm ´ ρm

ε
dx

` 2χ
ż

RN
pWk ˚ ρq pxqϕpxq dx` εWkrϕs

“
m

Npm´ 1q

ż 1

0
Gεptq dt

` 2χ
ż

RN
pWk ˚ ρq pxqϕpxq dx` εWkrϕs,

where Gεptq :“
ş

Ω |ρ` tεϕ|
m´2

pρ` tεϕqϕdx. Then by Hölder’s inequality,

|Gεptq| ď p||ρ||m ` ε0||ϕ||mq
m´1

||ϕ||m

for all t P r0, 1s and ε P p0, ε0q. Lebesgue’s dominated convergence theorem yields
ż 1

0
Gεptq dtÑ

ż

Ω
ρm´1pxqϕpxq dx
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3. Porous medium case k ă 0

as εÑ 0. In addition, one can verify that Wkrϕs ď 4||ψ||28Wkrρs ă 8. Hence,

lim
εÑ0

ˆ

Fkrρ` εϕs ´ Fkrρs
ε

˙

“
m

Npm´ 1q

ż

Ω
ρm´1pxqϕpxq dx

` 2χ
ż

RN
pWk ˚ ρq pxqϕpxq dx

“

ż

RN
Tkrρspxqϕpxq dx ,

proving (1.4). Since ρ is a globalminimiser, Fkrρ`εϕs ě Fkrρs and hence
ş

Tkrρspxqϕpxq dx ě

0. Taking ´ψ instead of ψ, we obtain by the same argument
ş

Tkrρspxqϕpxq dx ď 0, and so
ż

RN
Tkrρspxqϕpxq dx “ 0.

Owing to the choice of ϕ,

0 “
ż

RN
Tkrρspxqϕpxq dx

“

ż

RN
Tkrρspxqρpxqψpxq dx´

ˆ
ż

RN
ψρ

˙ˆ

2Fkrρs `
m´ 2

Npm´ 1q ||ρ||
m
m

˙

“

ż

RN
ρpxqψpxq pTkrρspxq ´Dkrρsq dx

for any symmetric test function ψ P C8c
`

RN
˘

. Hence Tkrρspxq “ Dkrρs a.e. in Ω̄, i.e.

ρm´1pxq “
Npm´ 1q

m
p´2χ pWk ˚ ρq pxq `Dkrρsq a.e. in Ω̄. (3.24)

Now, we turn to conditions over ρ on the whole space. Let ψ P C8c
`

RN
˘

, ψp´xq “ ψpxq,

ψ ě 0, and define

ϕpxq :“ ψpxq ´ ρpxq

ż

RN
ψpxq dx P L1 `RN

˘

X Lm
`

RN
˘

.

Then for 0 ă ε ă ε0 :“ p||ψ||8|supp pψq|q´1, we have

ρ` εϕ ě ρ

ˆ

1´ ε
ż

RN
ψ

˙

ě ρ p1´ ε||ψ||8|supp pψq|q .

So ρ` εϕ ě 0 in Ω̄, and also outside Ω̄ since ψ ě 0, hence ρ` εϕ P Y . Repeating the previous

argument, we obtain
ż

RN
Tkrρspxqϕpxq dx ě 0.

Using the expression of ϕ, we have

0 ď
ż

RN
Tkrρspxqϕpxq dx

“

ż

RN
Tkrρspxqψpxq dx´

ˆ
ż

RN
ψ

˙ˆ

2Fkrρs `
m´ 2

Npm´ 1q ||ρ||
m
m

˙

“

ż

RN
ψpxq pTkrρspxq ´Dkrρsq dx .
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2. Fair-Competition Regime

Hence Tkrρspxq ě Dkrρs a.e. in RN , and so

ρm´1pxq ě
Npm´ 1q

m
p´2χ pWk ˚ ρq pxq `Dkrρsq a.e. in RN . (3.25)

Note that (3.25) means that the support Ω̄ coincides with the set
 

x P RN | ´ 2χ pWk ˚ ρq pxq `Dkrρs ą 0
(

.

Combining (3.24) and (3.25) completes the proof of (3.22).

(ii) First, note that if ρ P Y2 and ρ# denotes the symmetric decreasing rearrangement of ρ, then

it follows from the reversed Hardy-Littlewood-Sobolev inequality [198] that Vrρ#s ď Vrρs.

Since Umrρ#s “ Umrρs and Wrρ#s ď Wrρs, we conclude Fk,rescrρ#s ď Fk,rescrρs. For a

global minimiser ρ P Y2, we have Fk,rescrρ#s “ Fk,rescrρs and hence Wrρ#s “ Wrρs and

Vrρ#s “ Vrρs. The former implies that there exists x0 P RN such that ρpxq “ ρ#px´ x0q for

all x P RN by Riesz rearrangement properties [77, Lemma 2], and so the equality in second

moment gives ρ “ ρ#.

Next, we will derive equation (3.23). We define for any test function ψ P C8c
`

RN
˘

the func-

tion ϕpxq “ ρpxq
`

ψpxq ´
ş

RN ψpxqρpxq dx
˘

, and by the same argument as in (i), we obtain

0 “
ż

RN
Tk,rescrρspxqϕpxq dx “

ż

RN
ρpxqψpxq pTk,rescrρspxq ´Dk,rescrρsq dx ,

with Tk,resc as given in (2.13). Hence Tk,rescrρspxq “ Dk,rescrρs a.e. in Ω̄ :“ supp pρq. Following

the same argument as in (i), we further conclude Tk,rescrρspxq ě Dk,rescrρs a.e. inRN . Together

with the equality on Ω̄, this completes the proof of (3.23).

Remark 3.7. For critical interaction strength χ “ χc, if ρ̄ is a stationary state of equation (1.2) with

bounded second moment, then it is a global minimiser of Fk by Theorem 3.3. In that case, we can identify

the constantCkrρ̄s in (2.9)withDkrρ̄s in (3.22), which is the same on all connected components of supp pρ̄q.

3.2 Regularity properties of global minimisers

Proposition 3.6 allows us to conclude the following useful corollary, adapting some arguments

developed in [39].

Corollary 3.8 (Compactly Supported Global Minimisers). If χ “ χc, then all global minimisers of Fk
in Y are compactly supported. If 0 ă χ ă χc, then global minimisers of Fk,resc are compactly supported.

Proof. Let ρ P Y be a global minimiser of Fk. Then ρ is radially symmetric and non-increasing by

Proposition 3.6 (i) and has zero energy by (3.19). Using the expression of the constantDkrρs given

by Proposition 3.6 (i), we obtain

Dkrρs “
m´ 2

Npm´ 1q ||ρ||
m
m ă 0 .
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3. Porous medium case k ă 0

Let us assume that ρ is supported on RN . We will arrive at a contradiction by showing that ρm´1

andWk ˚ ρ are in Lm{pm´1q `RN
˘

. Since

Dkrρs “
m

Npm´ 1qρpxq
m´1 ` 2χ pWk ˚ ρq pxq

a.e. in RN by (3.22), this would mean that the constant Dkrρs ă 0 is in Lm{pm´1q and decays at

infinity, which is obviously false.

It remains to show that Wk ˚ ρ is in Lm{pm´1q `RN
˘

since ρ P Lm
`

RN
˘

by assumption. From

ρ P L1 `RN
˘

X Lm
`

RN
˘

we have ρ P Lr
`

RN
˘

for all r P p1,ms by interpolation, and hence

Wk ˚ ρ P L
s
`

RN
˘

for all s P p´N{k,Nm{pkp1´mqqs by [218, Theorem 4.2]. Finally, we conclude

thatWk ˚ ρ is in Lm{pm´1q `RN
˘

since ´N{k ă m{pm´ 1q ă Nm{pkp1´mqq.

In the sub-critical case for the rescaled functional Fk,resc, we argue as above to conclude that

for any global minimiser ρ in Y2 we have ρm´1 andWk ˚ ρ in Lm{pm´1q `RN
˘

. If ρwere supported

on the whole space, it followed from the Euler-Lagrange condition for the rescaled equation (3.23)

that |x|2 ` C P Lm{pm´1q `RN
˘

for some constant C. This is obviously false.

The same argument works for stationary states by using the necessary conditions (2.9) and

(2.10).

Corollary 3.9 (Compactly Supported Stationary States). If χ “ χc, then all stationary states of equa-

tion (1.2) are compactly supported. If 0 ă χ ă χc, then all stationary states of the rescaled equation (2.7)

are compactly supported.

Lemma 3.10. Let ρ be either a global minimiser of Fk over Y or a global minimiser of Fk,resc over Y2. If

there exists p P p´N, 0s such that

ρprq À 1` rp for all r P p0, 1q , (3.26)

then for r P p0, 1q,

ρprq À

$

’

&

’

%

1` rgppq if p ‰ ´N ´ k ,

1` |logprq|
1

m´1 if p “ ´N ´ k ,
(3.27)

where

gppq “
p`N ` k

m´ 1 . (3.28)

Proof. Since global minimisers are radially symmetric non-increasing, we can bound ρprq by ρp1q

for all r ě 1, and hence the bound (3.26) holds true for all r ą 0. Further, we know from Corol-

lary 3.8 that all global minimisers are compactly supported. Let us denote supp pρq “ Bp0, Rq,

0 ă R ă 8. We split our analysis in four cases: (1) the regime 1 ´ N ă k ă 0 with k ‰ 2 ´ N

and N ě 2, where we can use hypergeometric functions in our estimates, (2) the Newtonian case
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2. Fair-Competition Regime

k “ 2´N , N ě 3, (3) the one dimensional regime ´1 ă k ă 0 where we need a Cauchy principle

value to deal with the singular integral in the mean-field potential gradient, but everything can be

computed explicitly, and finally (4) the regime ´N ă k ď 1´N andN ě 2, where again singular

integrals are needed to deal with the singularities of the hypergeometric functions.

Case 1: 1´N ă k ă 0, k ‰ 2´N , N ě 2

We would like to make use of the Euler-Lagrange condition (3.22), and hence we need to un-

derstand the behaviour of Wk ˚ ρ. It turns out that it is advantageous to estimate the derivative

instead, writing

´pWk ˚ ρq prq “ ´ pWk ˚ ρq p1q `
ż 1

r

Br pWk ˚ ρq psq ds . (3.29)

The first term on the right-hand side can be estimated explicitly, and we claim that for any x P RN ,

we have

´pWk ˚ ρq pxq ă 8 . (3.30)

To see this, let us denote γ :“ |x|, and let us fix R̄ ě R such that 0 ă γ ă R̄. If γ{2 ď R, then

´pWk ˚ ρq pγq “

ˆ

´
1
k

˙
ż

Bp0,RqzBp0,γ{2q
|x´ y|kρpyq dy `

ˆ

´
1
k

˙
ż

Bp0,γ{2q
|x´ y|kρpyq dy

ď

ˆ

´
1
k

˙

ρ
´γ

2

¯

ż

Bp0,RqzBp0,γ{2q
|x´ y|k dy

`

´

´
σN
k

¯

ż γ{2

0
|γ ´ r|kρprqrN´1 dr

Àγ´N
ż

Bp0,R̄qzBp0,γ{2q
|x´ y|k dy `

ż γ{2

0
|γ ´ r|kρprqrN´1 dr

Àγ´N
ż

Bpx,R̄`γq

|x´ y|k dy `
´γ

2

¯k

||ρ||1

“γ´NσN

ż R̄`γ

0
rk`N´1 dr `

´γ

2

¯k

ă 8 ,

where we used in the third line the fact that ρ is radially symmetric non-increasing, and so

1 ě
ż

Bp0,γ{2q
ρpxq dx ě ρ

´γ

2

¯

ż

Bp0,γ{2q
dx “ ρ

´γ

2

¯´σN
N

¯´γ

2

¯N

.

If γ{2 ą R on the other hand, we simply have similar to above

´pWk ˚ ρq pγq ď

ˆ

´
1
k

˙
ż

Bp0,γ{2q
|x´ y|kρpyq dy À

´γ

2

¯k

ă 8 ,

which concludes the proof of (3.30).

In order to control the second term in (3.29), we use the formulation (A.56) from Appendix A,

Br pWk ˚ ρq prq “ rk´1
ż 8

0
ψk

´η

r

¯

ρpηqηN´1 dη , (3.31)
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3. Porous medium case k ă 0

where ψk is given by (A.57) and can be written in terms of Gauss hypergeometric functions, see

(A.60).

Sub-Newtonian Regime 1´N ă k ă 2´N

Note that ψkpsq ă 0 for s ą 1 in the sub-Newtonian regime 1´N ă k ă 2´N (see Appendix A

Lemma A.3 and Figure 2.3(a)). Together with the induction assumption (3.26) and using the fact

that ρ is compactly supported, we have for any r P p0, Rq

Br pWk ˚ ρq prq “ r
k´1

ż r

0
ψk

´η

r

¯

ρpηqηN´1 dη ` rk´1
ż R

r

ψk

´η

r

¯

ρpηqηN´1 dη

“ rk`N´1
ż 1

0
ψk psq ρprsqs

N´1 ds` rk`N´1
ż R{r

1
ψk psq ρprsqs

N´1 ds

ď rk`N´1
ż 1

0
ψk psq ρprsqs

N´1 ds

À rk`N´1
ˆ
ż 1

0
ψk psq s

N´1 ds

˙

` rp`k`N´1
ˆ
ż 1

0
ψk psq s

p`N´1 ds

˙

“C1r
k`N´1 ` C2r

p`k`N´1 , (3.32)

where we defined

C1 :“
ż 1

0
ψk psq s

N´1 ds , C2 :“
ż 1

0
ψk psq s

p`N´1 ds .

In the case when r P rR,8q, we use the fact that ψkpsq ą 0 for s P p0, 1q by Lemma A.3 and so we

obtain by the same argument

Br pWk ˚ ρq prq “ r
k´1

ż R

0
ψk

´η

r

¯

ρpηqηN´1 dη À rk´1
ż R

0
ψk

´η

r

¯

p1` ηpq ηN´1 dη

“ rk`N´1

˜

ż R{r

0
ψk psq s

N´1 ds

¸

` rp`k`N´1

˜

ż R{r

0
ψk psq s

p`N´1 ds

¸

ďC1r
k`N´1 ` C2r

p`k`N´1 , (3.33)

with constants C1, C2 as given above. It is easy to see that C1 and C2 are indeed finite. From

(A.61) it follows that ψk psq sN´1 and ψk psq sp`N´1 are integrable at zero since ´N ă p and ψk is

continuous on r0, 1q. Similarly, both expressions are integrable at one using (A.63) in Lemma A.4.

Hence, we conclude from (3.32) and (3.33) that for any r P p0, 1q,

Br pWk ˚ ρq prq À rk`N´1 ` rp`k`N´1 .

Substituting into the right-hand side of (3.29) and using (3.30) yields

´pWk ˚ ρq prq À 1`
ż 1

r

`

sk`N´1 ` sp`k`N´1˘ ds

for any r P p0, 1q. It follows that for p ‰ ´k ´N ,

´pWk ˚ ρq prq À 1` 1´ rk`N

k `N
`

1´ rp`k`N

p` k `N
À 1` rp`k`N .
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2. Fair-Competition Regime

If p “ ´k ´N , we have instead

´pWk ˚ ρq prq À 1` 1´ rk`N

k `N
´ logprq À 1` | logprq| .

If ρ is a global minimiser of Fk, then it satisfies the Euler-Lagrange condition (3.22). Hence, we

obtain (3.27) with the function gppq as defined in (3.28). If ρ is a global minimiser of the rescaled

functional Fk,resc, then it satisfied condition (3.23) instead, and we arrive at the same result.

Super-Newtonian Regime k ą 2´N

In this regime, ψkpsq is continuous, positive and strictly decreasing for s ą 0 (see Appendix A

Lemma A.3 and Figure 2.3(b)) and hence integrable on p0, sq for any s ą 0. Under the induction

assumption (3.26) and using the fact that ρ is compactly supported and radially symmetric non-

increasing, we have for any r P p0, Rq

Br pWk ˚ ρq prq “ r
k´1

ż R

0
ψk

´η

r

¯

ρpηqηN´1 dη “ rN`k´1
ż R{r

0
ψk psq ρprsqs

N´1 dη

À rk`N´1

˜

ż R{r

0
ψk psq s

N´1 ds

¸

` rp`k`N´1

˜

ż R{r

0
ψk psq s

p`N´1 ds

¸

“C1prqr
k`N´1 ` C2prqr

p`k`N´1 ,

where we defined

C1prq :“
ż R{r

0
ψk psq s

N´1 ds , C2prq :“
ż R{r

0
ψk psq s

p`N´1 ds .

Next, let us verify that C1p¨q and C2p¨q are indeed bounded above. From (A.61) it follows again

that ψk psq sN´1 and ψk psq sp`N´1 are integrable at zero since ´N ă p. In order to deal with the

upper limit, we make use of property (A.62), which implies that there exist constants L ą 1 and

CL ą 0 such that for all s ě L, we have

ψkpsq ď CLs
k´2 .

It then follows that for r ă R{L,

ż R{r

L

ψk psq s
N´1 ds ď

CL
N ` k ´ 2

˜

ˆ

R

r

˙N`k´2
´ LN`k´2

¸

,

and hence we obtain

C1prq “

ż L

0
ψk psq s

N´1 ds`

ż R{r

L

ψk psq s
N´1 ds À 1` r´N´k`2 .

Similarly,

C2prq “

ż L

0
ψk psq s

p`N´1 ds`

ż R{r

L

ψk psq s
p`N´1 ds À 1` r´p´N´k`2 .
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3. Porous medium case k ă 0

We conclude

Br pWk ˚ ρq prq À
`

1` r´N´k`2˘ rk`N´1 `
`

1` r´p´N´k`2˘ rp`k`N´1

À1` rk`N´1 ` rp`k`N´1 . (3.34)

For R{L ď r ă R on the other hand we can do an even simpler bound:

C1prq ` C2prq ď

ż L

0
ψk psq s

N´1 ds`

ż L

0
ψk psq s

p`N´1 ds À 1 ,

and so we can conclude for (3.34) directly. In the case when r P rR,8q, we obtain by the same

argument

Br pWk ˚ ρq prq À r
k`N´1

˜

ż R{r

0
ψk psq s

N´1 ds

¸

` rp`k`N´1

˜

ż R{r

0
ψk psq s

p`N´1 ds

¸

ďC1pRqr
k`N´1 ` C2pRqr

p`k`N´1 ,

with constants C1p¨q, C2p¨q as given above, and so we conclude that the estimate (3.34) holds true

for any r ą 0. Substituting (3.34) into (3.29), we obtain for r P p0, 1q

´ pWk ˚ ρq prq À 1`
ż 1

r

`

sk`N´1 ` sp`k`N´1˘ ds

and so we conclude as in the sub-Newtonian regime.

Case 2: k “ 2´N , N ě 3 Newtonian Regime

In the Newtonian case, we can make use of known explicit expressions. We write as above

´pWk ˚ ρq prq “ ´

ˆ

r2´N

p2´Nq ˚ ρ
˙

p1q `
ż 1

r

Br

ˆ

r2´N

p2´Nq ˚ ρ
˙

psq ds , (3.35)

where ´
´

r2´N

p2´Nq ˚ ρ
¯

p1q is bounded using (3.30). To control
ş1
r
Br

´

r2´N

p2´Nq ˚ ρ
¯

psq ds, we use New-

ton’s Shell Theorem implying

Br

ˆ

r2´N

p2´Nq ˚ ρ
˙

psq “
σNMpsq

|BBp0, sq| “Mpsqs1´N ,

where we denote byMpsq “ σN
şs

0 ρptqt
N´1 dt the mass of ρ in Bp0, sq. Note that this is precisely

expression (3.31) we obtained in the previous case, choosing ψkpsq “ 1 for s ă 1 and ψk “ 0

for s ą 1 with a jump singularity at s “ 1 (see also (A.54) in Appendix A). By our induction

assumption (3.26), we have

Mpsq À σN

ż s

0
p1` tpqtN´1 dt “ σN

ˆ

sN

N
`

sN`p

N ` p

˙

, s P p0, 1q ,
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and hence if p ‰ ´2, then

ż 1

r

Br

ˆ

r2´N

p2´Nq ˚ ρ
˙

psq ds À
1

2N
`

1´ r2˘`
1

pN ` pqpp` 2q
`

1´ rp`2˘ .

If p “ ´2, we obtain instead

ż 1

r

Br

ˆ

r2´N

p2´Nq ˚ ρ
˙

psq ds À
1

2N
`

1´ r2˘´
1

pN ` pq
logprq .

Substituting into the right-hand side of (3.35) yields for all r P p0, 1q

´ pWk ˚ ρq prq À

$

’

&

’

%

1` rp`2 if p ‰ ´2 ,

1` |logprq| if p “ ´2 .

Thanks again to the Euler-Lagrange condition (3.22) if ρ is a global minimiser of Fk, or thanks to

condition (3.23) if ρ is a global minimiser of Fk,resc instead, we arrive in both cases at (3.27).

Case 3: ´1 ă k ă 0, N “ 1

In one dimension, we can calculate everything explicitly. Since the mean-field potential gradi-

ent is a singular integral, we have

BxSkpxq “

ż

R

x´ y

|x´ y|2´k
pρpyq ´ ρpxqq dy

“ lim
δÑ0

ż

|x´y|ąδ

x´ y

|x´ y|2´k
ρpyq dy “

x

r
BrSkprq

with the radial component for r P p0, Rq given by

BrSkprq “

ż 8

0

ˆ

r ´ η

|r ´ η|2´k
`

r ` η

|r ` η|2´k

˙

pρpηq ´ ρprqq dη

“

ż 8

0

r ` η

|r ` η|2´k
ρpηq dη ` lim

δÑ0

ż

|r´η|ąδ

r ´ η

|r ´ η|2´k
ρpηq dη

“rk´1
ż 8

0
ψ1

´η

r

¯

ρpηq dη ` rk´1 lim
δÑ0

ż

|r´η|ąδ

ψ2

´η

r

¯

ρpηq dη

“rk´1
ż R

0
ψ1

´η

r

¯

ρpηq dη ` rk´1 lim
δÑ0

˜

ż r´δ

0
`

ż R

r`δ

¸

ψ2

´η

r

¯

ρpηq dη

where

ψ1psq :“ 1` s
|1` s|2´k “ p1` sq

k´1, ψ2psq :“ 1´ s
|1´ s|2´k “

$

’

&

’

%

p1´ sqk´1 if 0 ď s ă 1 ,

´ps´ 1qk´1 if s ą 1
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3. Porous medium case k ă 0

are well defined on r0, 1q Y p1,8q. Define γ :“ mint1, R{2u. Since ψ2psq ă 0 for s ą 1 and ρ

radially symmetric decreasing, we can estimate the last term for any r P p0, γq and small δ ą 0 by

rk´1

˜

ż r´δ

0
`

ż R

r`δ

¸

ψ2

´η

r

¯

ρpηq dη

ď rk´1
ż r´δ

0
ψ2

´η

r

¯

ρpηq dη ` rk´1ρp2rq
ż 2r

r`δ

ψ2

´η

r

¯

dη

“ rk
ż 1´δ{r

0
ψ2 psq ρprsq ds` r

kρp2rq
ż 2

1`δ{r
ψ2 psq ds .

Under assumption (3.26), we can bound the above expression by

BrSkprq À rk
ż R{r

0
ψ1psq ds` r

k`p

ż R{r

0
ψ1psqs

p ds

` rk lim
δÑ0

«

ż 1´δ{r

0
ψ2psq ds` r

p

ż 1´δ{r

0
ψ2psqs

p ds` p1` rpq
ż 2

1`δ{r
ψ2 psq ds

ff

“ rk lim
δÑ0

C1pr, δq ` r
k`p lim

δÑ0
C2pr, δq ,

where we defined

C1pr, δq :“
ż R{r

0
ψ1psq ds`

ż 1´δ{r

0
ψ2psq ds`

ż 2

1`δ{r
ψ2 psq ds ,

C2pr, δq :“
ż R{r

0
ψ1psqs

p ds`

ż 1´δ{r

0
ψ2psqs

p ds`

ż 2

1`δ{r
ψ2 psq ds .

Next, let us show that the functions limδÑ0 C1pr, δq and limδÑ0 C2pr, δq can be controlled in terms

of r. The function ψ2 has a non-integrable singularity at s “ 1, however, we can seek compensa-

tions from below and above the singularity. One can compute directly that

C1pr, δq “
1
k

«

ˆ

R

r
` 1

˙k

´ 1
ff

`
1
k

«

1´
ˆ

δ

r

˙k
ff

`
1
k

«

ˆ

δ

r

˙k

´ 1
ff

“
1
k

˜

ˆ

R

r
` 1

˙k

´ 1
¸

ď ´
1
k
,

C2pr, δq “

«

ˆ

R

r
` 1

˙k´1 ˆ
R

r

˙p`1
ff

´
1
k

«

ˆ

δ

r

˙k
ff

`
1
k

«

ˆ

δ

r

˙k

´ 1
ff

“

ˆ

R

r
` 1

˙k´1 ˆ
R

r

˙p`1
´

1
k
ď

ˆ

R

r

˙k´1 ˆ
R

r

˙p`1
´

1
k
“ Rk`pr´k´p ´

1
k
,

so that we obtain the estimate

BrSkprq À 1` rk ` rk`p .

Finally, we have for all r P p0, γq:

´pWk ˚ ρq prq “ ´ pWk ˚ ρq pγq `

ż γ

r

BrSkpsq ds À 1`
ż γ

r

`

sk ` sp`k
˘

ds ,
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2. Fair-Competition Regime

where we made again use of estimate (3.30). If p ‰ ´k ´ 1, we have

´pWk ˚ ρq prq À 1` γk`1 ´ rk`1

k ` 1 `
γp`k`1 ´ rp`k`1

p` k ` 1 À 1` rp`k`1 .

If p “ ´k ´ 1 however, we obtain

´pWk ˚ ρq prq À 1` γk`1 ´ rk`1

k ` 1 ` logpγq ´ logprq À 1` | logprq| .

Using again the Euler-Lagrange condition (3.22) for a global minimiser of Fk or (3.23) for a global

minimiser of Fk,resc respectively, we obtain (3.27) in the one dimensional case.

Case 4: ´N ă k ď 1´N , N ě 2

In this case, we can again use hypogeometric functions, but here the mean-field potential gra-

dient is a singular integral due to the singularity properties of hypogeometric functions. It writes

as

∇Skpxq “ lim
δÑ0

ż

|x´y|ąδ

x´ y

|x´ y|2´k
ρpyq dy “

x

r
BrSkprq

with the radial component given by

BrSkprq “r
k´1 lim

δÑ0

ż

|r´η|ąδ

ψk

´η

r

¯

ρpηqηN´1 dη

“rk´1 lim
δÑ0

˜

ż r´δ

0
`

ż R

r`δ

¸

ψk

´η

r

¯

ρpηqηN´1 ds ,

where ψk is given by (A.60) on r0, 1q Y p1,8q, and we used the fact that ρ is compactly supported.

In this regime, the singularity at s “ 1 is non-integrable and has to be handled with care. Define

γ :“ mint1, R{2u. Since ψ2psq ă 0 for s ą 1 (see Appendix A Lemma A.3) and since ρ is radially

symmetric non-increasing, we can estimate the second integral above for any r P p0, γq and small

δ ą 0 by

rk´1
ż R

r`δ

ψk

´η

r

¯

ρpηqηN´1 dη ďrk´1ρp2rq
ż 2r

r`δ

ψk

´η

r

¯

ηN´1 dη

“rN`k´1ρp2rq
ż 2

1`δ{r
ψk psq s

N´1 ds .

Under assumption (3.26), we can then bound the above expression by

Br pWk ˚ ρq prq À r
N`k´1 lim

δÑ0

«

ż 1´δ{r

0
ψkpsqs

N´1 ds` rp
ż 1´δ{r

0
ψkpsqs

p`N´1 ds

` p1` rpq
ż 2

1`δ{r
ψk psq s

N´1 ds

ff

“rN`k´1 lim
δÑ0

C1pr, δq ` r
p`N`k´1 lim

δÑ0
C2pr, δq ,
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3. Porous medium case k ă 0

where

C1pr, δq :“
ż 1´δ{r

0
ψkpsqs

N´1 ds`

ż 2

1`δ{r
ψk psq s

N´1 ds ,

C2pr, δq :“
ż 1´δ{r

0
ψkpsqs

p`N´1 ds`

ż 2

1`δ{r
ψk psq s

N´1 ds .

The crucial step is again to show that limδÑ0 C1pr, δq and limδÑ0 C2pr, δq are well-defined and

can be controlled in terms of r, seeking compensations from above and below the singularity at

s “ 1. Recalling that ψkpsqsN´1 and ψkpsqs
p`N´1 are integrable at zero by Lemma A.1 and at

any finite value above s “ 1 by continuity, we see that the lower bound 0 and upper bound 2 in

the integrals only contribute constants, independent of r and δ. The essential step is therefore to

check integrability close to the singularity s “ 1. From (A.63) and (A.64) in Appendix A Lemma

A.4(2), we have for any α P R and s close to 1:

s ă 1 : ψk psq s
α “ K1 p1´ sqN`k´2

`O
´

p1´ sqN`k´1
¯

,

s ą 1 : ψk psq s
α “ ´K1 ps´ 1qN`k´2

`O
´

ps´ 1qN`k´1
¯

,

where the constantK1 is given by (A.65)–(A.66). Hence, for ´N ă k ă 1´N we obtain

C1pr, δq À 1´ K1

N ` k ´ 1

ˆ

δ

r

˙N`k´1
`

K1

N ` k ´ 1

ˆ

δ

r

˙N`k´1
`O

˜

ˆ

δ

r

˙N`k
¸

“ 1`O
˜

ˆ

δ

r

˙N`k
¸

with exactly the same estimate for C2pr, δq. Taking the limit δ Ñ 0, we see that both terms are

bounded by a constant. For k “ 1 ´ N , we obtain similarly that both C1pr, δq and C2pr, δq are

bounded by

1´K1 log
ˆ

δ

r

˙

`K1 log
ˆ

δ

r

˙

`O

ˆˆ

δ

r

˙˙

“ 1`O
ˆˆ

δ

r

˙˙

multiplied by some constant. In other words, for any r P p0, γq and ´N ă k ď 1´N we have

Br pWk ˚ ρq prq À rN`k´1 ` rp`N`k´1 .

Now,we are ready to estimate the behaviour of ρ around the origin using again the Euler-Lagrange

condition. To estimate the mean-field potential, we use again (3.30) and write

´pWk ˚ ρq prq “ ´ pWk ˚ ρq pγq `

ż γ

r

Br pWk ˚ ρq psq ds À 1`
ż γ

r

`

sk`N´1 ` sp`k`N´1˘ ds

for any r P p0, γq. It follows that for p ‰ ´k ´N ,

´pWk ˚ ρq prq À 1` γk`N ´ rk`N

k `N
`
γp`k`N ´ rp`k`N

p` k `N
À 1` rp`k`N .
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2. Fair-Competition Regime

If p “ ´k ´N , we have instead

´pWk ˚ ρq prq À 1` γk`N ´ rk`N

k `N
` logpγq ´ logprq À 1` | logprq| .

This concludes the proof of Lemma 3.10 using again Euler-Lagrange condition (3.22) if ρ is a min-

imiser of Fk, or condition (3.23) if ρ is a minimiser of Fk,resc, to obtain (3.27).

Corollary 3.11 (Boundedness). If χ “ χc and ρ is a global minimiser of Fk over Y , then ρ P L8
`

RN
˘

.

If 0 ă χ ă χc and ρ is a global minimiser of Fk,resc over Y2, then ρ P L8
`

RN
˘

.

Proof. Let ρ be a global minimiser of either Fk over Y , or of Fk,resc over Y2. Since ρ is radially

symmetric non-increasing by Proposition 3.6, it is enough to show that ρp0q ă 8. Following the

argument in [89], we use induction to show that there exists some α ą 0 such that for all r P p0, 1q

we have

ρprq À 1` rα . (3.36)

Note that gppq as defined in (3.28) is a linear function of p with positive slope, and let us denote

gpnqppq “ pg ˝ g ¨ ¨ ¨ ˝ gq ppq. Computing explicitly, we have for all n P N

gpnqppq “
N ` k

m´ 2 `
ppm´ 2q ´N ´ k
pm´ 2qpm´ 1qn “ ´N `

p`N

pm´ 1qn ,

so that

lim
nÑ8

gpnqppq “ `8 for any p ą ´N .

Since ρprqm|Bp0, rq| ď ||ρ||mm ă 8we obtain the estimate

ρprq ď CpN,m, ||ρ||mqr
´N{m for all r ą 0 .

It follows that ρ satisfies the induction requirement (3.26)with choice p0 :“ ´N{m. Since p0 ą ´N

there exists n0 P N such that gpn0qpp0q ą 0 and so we can apply Lemma 3.10 n0 times. This

concludes the proof with α “ gpn0qpp0q. We point out that p0 ă ´N´k and so there is a possibility

that gpnqpp0q “ ´N ´ k might occur for some 0 ă n ď n0: if this happens, the logarithmic case

occurs and by the second bound in (3.27), we obtain

ρprq À 1` | logprq|
1

m´1 ď 1` r´1 ,

hence applying the first bound in (3.27) for p “ ´1 yields (3.36) with α “ 1{pm´ 1q.

Corollary 3.12 (Regularity). If χ “ χc, then all global minimisers ρ P Y of Fk satisfy Sk P W1,8 `

RN
˘

and ρm´1 P W1,8 `

RN
˘

. If 0 ă χ ă χc, then all minimisers ρ P Y2 of Fk,resc satisfy Sk P W1,8 `

RN
˘

and ρm´1 P W1,8 `

RN
˘

. In the singular range ´N ă k ď 1´N , we further obtain ρ P C0,α `RN
˘

with

α P p1´ k ´N, 1q in both original and rescaled variables.

108



3. Porous medium case k ă 0

Proof. Let ρ be a global minimiser either of Fk over Y , or of Fk,resc over Y2. Then ρ P L8
`

RN
˘

by Corollary 3.11. Let us start by considering the singular regime ´N ă k ď 1 ´ N , N ě 2 or

´1 ă k ă 0 for N “ 1. Since ρ P L1 `RN
˘

X L8
`

RN
˘

, we have ρ P Lp
`

RN
˘

for any 1 ă p ă 8.

Using the fact that ρ “ p´∆qs Sk with fractional exponent s “ pN ` kq{2 P p0, 1{2q, we gain

2s derivatives implying Sk P W2s,p `RN
˘

for p ě 2 if N ě 2 or for p ą ´1{k if N “ 1 by using

the HLS inequality for Riesz kernels, see [272, Chapter V]. More precisely, by definition of the

Bessel potential space L2s,ppRN q, if u, p´∆qsu P LppRN q, then u P L2s,ppRN q. Since L2s,ppRN q Ă

W2s,ppRN q for any p ě 2 and s P p0, 1{2q [272, p.155, Theorem 5(A)], we have u P W2s,ppRN q. Next,

we use classical Sobolev embedding, W2s,p `RN
˘

Ă C0,β `RN
˘

with β “ 2s´N{p for p ą N
2s ą 2 if

N ě 2 or for p ą maxt 1
k`1 ,´

1
k u ifN “ 1, which yields ρ P C0,β `RN

˘

. IfN ě 2 and s “ 1{2, we use

instead that Sk P L1,ppRN q for all p ě 2 implies Sk P L2r,ppRN q for all p ě 2 and r P p0, 1{2q [272,

p.135], and then reason as above using any r P p0, 1{2q instead of s “ 1{2.

In the case 1{2´N ă k ď 1´N , we can ensure β ą 1´ k ´N for large enough p, obtaining the

required Hölder regularity. For k ď 1{2´N on the other hand, we need to bootstrap a bit further.

Let us fix n P N, n ě 2 such that

1
n` 1 ´N ă k ď

1
n
´N

and let us define βn :“ β ` pn ´ 1q2s “ n2s ´ N{p. Note that Sk P L8
`

RN
˘

by Lemma 2.2,

and βn´1 ` 2s ă 1. This allows us to repeatedly apply [270, Proposition 2.8] stating that ρ P

C0,γ `RN
˘

implies Sk P C0,γ`2s `RN
˘

for any γ P p0, 1s such that γ ` 2s ă 1. It then follows

that ρm´1 P C0,γ`2s `RN
˘

using the Euler-Lagrange conditions (3.22) and (3.23) respectively and

Corollary 3.8. Since m P p1, 2q, we conclude ρ P C0,γ`2s `RN
˘

. Iterating this argument pn ´ 1q

times starting with γ “ β, we obtain ρ P C0,βn
`

RN
˘

and choosing p large enough, we have indeed

βn ą 1´ k ´N .

For any ´N ă k ă 0, we then have Sk P W1,8 `

RN
˘

by Lemma 2.2. It also immediately fol-

lows that ρm´1 P W1,8 `

RN
˘

using the Euler-Lagrange conditions (3.22) and (3.23) respectively,

Corollary 3.8 and Lemma 2.2. Sincem P p1, 2q, we also conclude ρ P W1,8 `

RN
˘

.

Remark 3.13. For proving sufficient Hölder regularity in the singular regime´N ă k ď 1´N , one may

choose to bootstrap on the fractional Sobolev space W2s,p `RN
˘

directly, making use of the Euler-Lagrange

conditions (3.22) and (3.23) respectively to show that ρ P Wr,p
`

RN
˘

ñ Sk P Wr`2s,p `RN
˘

with r ą 0

for p large enough depending only onN . Here, we need that Wr,p
`

RN
˘

is preserved under taking positive

parts of a function for 0 ă r ď 1 and compositions with Lipschitz functions since we take the 1{pm ´ 1q

power of ρ, see [268, Section 3.1].
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2. Fair-Competition Regime

Theorem 3.14 (Global Minimisers as Stationary States). If χ “ χc, then all global minimisers of Fk
are stationary states of equation (1.2). If 0 ă χ ă χc, then all global minimisers of Fk,resc are stationary

states of the rescaled equation (2.7).

Proof. For χ “ χc, let ρ P Y be a global minimiser of Fk. The regularity properties provided by

Corollary 3.12 imply that∇ρm “ m
m´1ρ∇ρm´1 and that ρ is indeed a distributional solution of (2.5)

using (3.22). As a consequence, ρ is a stationary state of equation (1.2) according to Definition 2.1.

A similar argument holds true in the rescaled case for sub-critical χ.

Remark 3.15. As a matter of fact, the recent result of radial symmetry of stationary states [89] applies to

the critical case χ “ χc in the range k P r2 ´N, 0q. Together, Theorem 3.3 and Proposition 3.6 show that

all stationary states are radially symmetric for the full range k P p´N, 0q. In other words, the homogeneity

of the energy functional Fk allows us to extend the result in [89] to k P p´N, 2´Nq and to find a simple

alternative proof in the less singular than Newtonian range.

4 Fast diffusion case k ą 0

We investigate in this section the case k P p0, Nq and hence m P p0, 1q where the diffusion is fast

in regions where the density of particles is low. The main difficulty is that it seems there is no

HLS-type inequality in this range which would provide a lower bound on the free energy, and so

a different approach is needed than in the porous medium regime. We concentrate here on the

radial setting. Let us define X to be the set

X :“
"

ρ P L1
`

`

RN
˘

: ||ρ||1 “ 1 ,
ż

xρpxq dx “ 0
*

.

The following Lemma will be a key ingredient for studying the behaviour in the fast diffusion

case.

Lemma 4.1. For k P p0, Nq, any radially symmetric non-increasing ρ P X with |x|kρ P L1 `RN
˘

satisfies

Ikrρs ď pWk ˚ ρqpxq ď η

ˆ

|x|k

k
` Ikrρs

˙

, @ x P RN (4.37)

with

Ikrρs :“
ż

RN

|x|k

k
ρpxq dx, η “ maxt1, 2k´1u.

Proof. The bound from above was proven in (2.6). To prove the lower bound in one dimension,

we use the symmetry and monotonicity assumption to obtain

Bx pWk ˚ ρq “
1
k

ż

yą0

`

|x´ y|k ´ |x` y|k
˘

Byρ dy ě 0 , @ x ě 0

since |x´ y|k ´ |x` y|k ď 0 for x, y ě 0. By symmetry ofWk ˚ ρ it follows that Bx pWk ˚ ρq pxq ď 0

for all x ď 0 and hence (4.37) holds true in one dimension for the bound from below.
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4. Fast diffusion case k ą 0

For N ě 2, note that since both Wk and ρ are radial functions, so is the convolution Wk ˚ ρ. By

slight abuse of notation, we write pWk ˚ ρqprq. For r ą 0, we have
ż

Bp0,rq
∆x pWk ˚ ρq dx “

ż

BBp0,rq
∇x pWk ˚ ρq ¨ ndS

“ |BBp0, rq| Br pWk ˚ ρq “ rN´1σN Br pWk ˚ ρq .

From ∆xWkpxq “ pN ` k ´ 2q |x|k´2 ą 0, it then follows that Br pWk ˚ ρq prq ą 0 for all r ą 0. This

implies the lower bound in higher dimensions.

4.1 Results in original variables

Theorem 4.2 (Non-Existence of Stationary States). Let k P p0, Nq. For any χ ą 0, there are no radially

symmetric non-increasing stationary states in X for equation (1.2) with kth moment bounded.

Proof. Assume ρ̄ P X is a radially symmetric non-increasing stationary state for equation (1.2)

such that |x|kρ̄ P L1 `RN
˘

. Then ρ̄ is continuous by Lemma 2.4. We claim that ρ̄ is supported on

RN and satisfies

ρ̄pxq “ pAWk ˚ ρ̄pxq ` Crρ̄sq
´N{k

, a.e. x P RN , (4.38)

with A :“ 2χNk{pN ´ kq ą 0 and some suitably chosen constant Crρ̄s. Indeed, by radiality and

monotonicity, supp pρ̄q “ Bp0, Rq for some R P p0,8s and by the same arguments as in Corollary

2.5 leading to (2.11), we obtain

ρ̄pxq´k{N “ AWk ˚ ρ̄pxq ` Crρ̄s, a.e. x P Bp0, Rq .

Assume ρ̄ has compact support, R ă 8. It then follows from Lemma 4.1 that the left-hand side is

bounded above,

ρ̄pxq´k{N ď ηAIkrρ̄s `
ηARk

k
` Crρ̄s, a.e. x P Bp0, Rq .

By continuity, ρpxq Ñ 0 as |x| Ñ R, but then ρpxq´k{N diverges, contradicting the bound from

above. We must therefore have R “ 8, which concludes the proof of (4.38).

Next, taking the limit xÑ 0 in (4.38) yields

AIkrρ̄s ` Crρ̄s ą 0.

We then have from Lemma 4.1 for a.e. x P RN ,

0 ď
ˆ

Aη

ˆ

|x|k

k
` Ikrρ̄s

˙

` Crρ̄s

˙´N{k

ď ρ̄pxq .

However, the lower bound in the estimate above is not integrable on RN , and hence ρ̄ R L1 `RN
˘

.

This contradicts ρ̄ P X .
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2. Fair-Competition Regime

In the fast diffusion regime, we do not have a suitable HLS-type inequality to show bounded-

ness of the energy functional Fk. Although we do not knowwhether Fk is bounded below or not,

we can show that the infimum is not achieved in the radial setting.

Theorem 4.3 (Non-Existence of Global Minimisers). Let k P p0, Nq. For any χ ą 0, there are no

radially symmetric non-increasing global minimisers of Fk over Yk.

Proof. Let ρ be a global minimiser of Fk over Yk. Following the same argument as in Proposition

3.6, we obtain

ρpxq´k{N “ ApWk ˚ ρqpxq `Dkrρs a.e. in supp pρq , (4.39)

ρpxq´k{N ě ApWk ˚ ρqpxq `Dkrρs a.e. inRN . (4.40)

where

Dkrρs :“ ´ 2Nk
pN ´ kq

Fkrρs ´
ˆ

N ` k

N ´ k

˙
ż

RN
ρ̄mpxq dx .

Since Wk is continuous and ρ P L1 `RN
˘

, it follows from (4.39) that ρ is continuous inside its

support, being a continuous function of Wk convolved with ρ. If ρ is radially symmetric non-

increasing, then supp pρq “ Bp0, Rq for some R P p0,8s. By continuity of ρ at the origin, we

can take the limit |x| Ñ 0 in (4.39) to obtain AIkrρs ` Dkrρs ą 0. It then follows from (4.40) and

(4.37) that in fact ρpxq´k{N ą 0 for a.e. x P RN . Hence, we conclude that supp pρq “ RN . The

Euler-Lagrange condition (4.39) and estimate (4.37) yield

ρpxq “ pA pWk ˚ ρqpxq `Dkrρsq
´N{k

ě

ˆ

Aη

ˆ

|x|k

k
` Ikrρs

˙

`Dkrρs

˙´N{k

a.e. on RN . Again, the right-hand side is not integrable for any k P p0, Nq and hence ρ R Yk.

4.2 Results in rescaled variables

Corollary 4.4 (Necessary Condition for Stationary States). Let k P p0, Nq, χ ą 0 and ρ̄ P X . If ρ̄ is a

radially symmetric non-increasing stationary state of the rescaled equation (2.7)with bounded kth moment,

then ρ̄ is continuous, supported on RN and satisfies

ρ̄pxq “
`

ApWk ˚ ρ̄qpxq `B|x|
2 ` Crρ̄s

˘´N{k
, a.e. x P RN . (4.41)

Here, the constant Crρ̄s is chosen such that ρ̄ integrates to one and

A :“ 2χ Nk

pN ´ kq
ą 0, B :“ Nk

2pN ´ kq ą 0. (4.42)

Proof. Continuity follows fromLemma 2.4, andwe can show supp pρ̄q “ RN and (4.41) by a similar

argument as for (4.38).
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4. Fast diffusion case k ą 0

From the above analysis, if diffusion is too fast, then there are no stationary states to the rescaled

equation (2.7):

Theorem 4.5 (Non-Existence of Stationary States). Let χ ą 0,N ě 3 and k P r2, Nq, then there are no

radially symmetric non-increasing stationary states in X with kth moment bounded to the rescaled equation

(2.7).

Proof. Assume ρ̄ P X is a radially symmetric non-increasing stationary state such that |x|kρ̄ P

L1 `RN
˘

. It follows from (4.41) and (4.37) that

ρ̄pxq ě

ˆ

Aη

ˆ

|x|k

k
` Ikrρ̄s

˙

`B|x|2 ` Crρ̄s

˙´N{k

.

However, the lower bound is not integrable on RN for k ě 2, contradicting ρ̄ P L1 `RN
˘

.

Remark 4.6. Condition (4.41) tells us that radially symmetric non-increasing stationary states have so-

called fat tails for large r “ |x|. More precisely, Lemma 4.1 shows they behave at least like r´N for large r

if k ě 2, whereas ρ̄prq „ r´2N{k for large r ą 0 and for k ă 2. This means there is a critical k˚ :“ 2 and

respectively a critical diffusion exponentm˚ :“ 1´ 2{N where a change of behaviour occurs.

For k ă k˚, radially symmetric non-increasing stationary states, if they exist, are integrable and mass

is preserved. This restriction on k corresponds exactly to the well-known classical fast diffusion regime

m ą m˚ in the case χ “ 0 [287], where mass escapes to the far field but is still preserved. In our case,

the behaviour of the tails is dominated by the non-linear diffusion effects even for χ ą 0 as for the classical

fast-diffusion equation whenm ą m˚.

If diffusion is ’too fast’, i.e. k ą k˚ andm ă m˚, then no radially symmetric non-increasing stationary

states of the rescaled equation (2.7) exist as stated in Theorem 4.5. It is well known that mass escapes to

infinity in the case of the classical fast diffusion equation (χ “ 0) and integrable L8-solutions go extinct in

finite time (for a detailed explanation of this phenomenon, see [287, Chapter 5.5]). It would be interesting

to explore this in our case.

Remark 4.7. If N ě 2 and k P rK, 2q with

KpNq :“ ´N2 `

c

N2

4 ` 2N P r1, 2q , (4.43)

then radially symmetric non-increasing solutions ρ̄ P X to equation (4.41) have unbounded kth moment.

Indeed, assuming for a contradiction that |x|kρ̄ P L1 `RN
˘

. It then follows from (4.41) and (4.37) that

|x|kρ̄pxq ě |x|k
ˆ

Aη

ˆ

|x|k

k
` Ikrρ̄s

˙

`B|x|2 ` Crρ̄s

˙´N{k

a.e. on RN , and the right-hand side is integrable only in the region k2 ` Nk ´ 2N ă 0. This condition

yields (4.43).
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Proposition 4.8 (Necessary Condition for Global Minimisers). For k P p0, Nq, let ρ be a global min-

imiser of Fk,resc in Y2,k. Then for any χ ą 0, ρ is continuous inside its support and satisfies

ρpxq´k{N “ ApWk ˚ ρqpxq `B|x|
2 `Dk,rescrρs a.e. in supp pρq , (4.44)

ρpxq´k{N ě ApWk ˚ ρqpxq `B|x|
2 `Dk,rescrρs a.e. in RN . (4.45)

Here, constants A,B are given by (4.42) and

Dk,rescrρs :“ ´4BFk,rescrρs `BVrρs ´
ˆ

N ` k

N ´ k

˙
ż

RN
ρ̄mpxq dx .

Moreover, radially symmetric non-increasing global minimisers in Y2.k are supported on the whole space,

and so in that case (4.44) holds true in RN .

Proof. The proof of (4.44) and (4.45) follows analogously to Proposition 3.6. Further, since Wk is

continuous and ρ P L1 `RN
˘

, it follows from (4.44) that ρ is continuous inside its support being a

continuous function of the convolution between Wk and ρ. Now, if ρ is radially symmetric non-

increasing, we argue as for Theorem 4.3 to conclude that supp pρq “ RN .

Remark 4.9. Just like (4.41), condition (4.44) provides the behaviour of the tails for radially symmetric non-

increasing global minimisers of Fk,resc using the bounds in Lemma 4.1. In particular, they have unbounded

kth moment for any χ ą 0 if k ě K with K given by (4.43), and they are not integrable for k ą k˚ :“ 2.

Further, their second moment is bounded and ρm P L1 `RN
˘

if and only if k ă 2N{p2`Nq. Note that

2N
2`N ă KpNq ă k˚ .

Hence, radially symmetric non-increasing global minimisers with finite energy Fk,rescrρs ă 8 can only

exist in the range 0 ă k ă 2N{p2 ` Nq. For k ě 2N
2`N , one may have to work with relative entropies

instead.

Apart from the Euler-Lagrange condition above, we have very little information about global

minimisers of Fk,resc in general, and it is not known in general if solutions to (4.44)-(4.45) exist.

Thus, we use a different approach here than in the porous medium regime, showing existence of

stationary states to (2.7) directly by a compactness argument. Let us define the set

X̄ :“
"

ρ P CpRN q X X :
ż

|x|kρpxq dx ă 8 , ρ# “ ρ , lim
rÑ8

ρprq “ 0
*

,

where ρ# denotes the symmetric decreasing rearrangement of ρ.

Theorem 4.10 (Existence of Stationary States). Let χ ą 0 and k P p0, 1s X p0, Nq. Then there exists a

stationary state ρ̄ P X̄ for the rescaled system (2.7).

Here, decay at infinity of the equilibrium distribution is a property we gain automatically

thanks to the properties of the equation, but we choose to include it here a priori.
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4. Fast diffusion case k ą 0

Proof. Corollary 4.4 suggests that we are looking for a fixed point of the operator T : X Ñ X ,

Tρpxq :“
`

ApWk ˚ ρqpxq `B|x|
2 ` C

˘´N{k
.

For this operator to be well-defined, we need to be able to choose a constant C “ Crρs such that
ş

R Tρpxq dx “ 1. To show that this is indeed the case, let us define for any α ą 0,

wpαq :“
ż

RN

ˆ

α`A
|x|k

k
`B|x|2

˙´N{k

dx , W pαq :“
ż

RN

`

α`B|x|2
˘´N{k

dx .

Note that w and W are finite and well-defined since k ă 2. Furthermore, both w and W are

continuous, strictly decreasing to zero as α increases, and blow-up at α “ 0. Hence, we can take

inverses δ :“ w´1p1q ą 0 and δ :“ W´1p1q ą 0. Here is where we use the condition k ď 1 as this

means η “ 1 in Lemma 4.1 (see also Remark 4.11). Fixing some ρ P X̄ and denoting byM pρ, Cq

the mass of Tρ, we obtain from Lemma 4.1,

M pρ, δ ´AIkrρsq ě 1 , M
`

ρ, δ ´AIkrρs
˘

ď 1 .

Since M pρ, ¨q is continuous and strictly decreasing on the interval
“

δ ´AIkrρs, δ ´AIkrρs
‰

, we

conclude that there exists Crρs with δ ´ AIkrρs ď Crρs ď δ ´ AIkrρs andM pρ, Crρsq “ 1. From

Lemma 4.1, we obtain for all x P RN ,
ˆ

AIkrρs ` Crρs `A
|x|k

k
`B|x|2

˙´N{k

ď Tρpxq ď
`

AIkrρs ` Crρs `B|x|
2˘´N{k ,

and integrating over RN ,

w pAIkrρs ` Crρsq ď 1 ďW pAIkrρs ` Crρsq , (4.46)

implying

0 ă δ ď AIkrρs ` Crρs ď δ ă 8. (4.47)

As a consequence, we have a pointwise estimate for Tρ,

mpxq ď Tρpxq ďMpxq, (4.48)

where we define

mpxq :“
ˆ

δ `A
|x|k

k
`B|x|2

˙´N{k

, Mpxq :“
`

δ `B|x|2
˘´N{k

. (4.49)

We are now ready to look for a fixed point of T . Applying T to X̄ , we are able to make use of a

variant of the Arzéla-Ascoli Theorem to obtain compactness. The key ingredients are the bounds

in Lemma 4.1 and the uniform estimate (4.47) since they allow us to derive the pointwise estimate

(4.48), which gives decay at infinity and uniform boundedness of Tρ:

Tρpxq ď
`

δ `B|x|2
˘´N{k

ď min
!

B´N{k |x|´2N{k, δ´N{k
)

. (4.50)
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Further, we claim Tρ is k-Hölder continuous on compact ballsKR :“ Bp0, Rq Ă RN , R ą 0,

|Tρpx1q ´ Tρpx2q| ď CR,N,k |x1 ´ x2|
k, (4.51)

with k-Hölder semi-norm

CR,N,k :“ rTρp¨qsC0,k “
N

k
δ´p1`N{kq

ˆ

A

k
` 3BR2´k

˙

ą 0 . (4.52)

To see this, let Gpxq :“ ApWk ˚ ρqpxq `B|x|
2 ` Crρs and upGq :“ G´N{k so that we can write

|Tρpx1q ´ Tρpx2q| “ |Gpx1q
´N{k ´Gpx2q

´N{k| ď Lip puq |Gpx1q ´Gpx2q|

ď Lip puq
`

A rWk ˚ ρsC0,k `B
“

| ¨ |2
‰

C0,k

˘

|x1 ´ x2|
k,

where Lipp¨q denotes the Lipschitz constant on a suitable domain specified below. Indeed, Gpxq

satisfies the inequality 0 ă δ ď Gpxq ď A |x|
k

k ` B|x|2 ` δ for all x P RN by (4.37) and (4.47).

Moreover, G is k-Hölder continuous:

|pWk ˚ ρqpx1q ´ pWk ˚ ρqpx2q| “
1
k

ż

RN

ˇ

ˇ|x1 ´ y|
k ´ |x2 ´ y|

k
ˇ

ˇ ρpyq dy

ď
|x1 ´ x2|

k

k
2k´1 ď

|x1 ´ x2|
k

k

and hence rWk ˚ ρsC0,k ď 1{k uniformly. Further, the k-Hölder semi-norm of |x|2 is bounded by

3R2´k onKR: for x, y P KR, x ‰ y and z :“ x´ y, we have for |z| ď R,
ˇ

ˇ|x|2 ´ |y|2
ˇ

ˇ

|x´ y|k
ď
|z|2 ` 2|z|mint|x|, |y|u

|z|k
ď 3R|z|1´k ď 3R2´k,

and similarly for |z| ě R,
ˇ

ˇ|x|2 ´ |y|2
ˇ

ˇ

|x´ y|k
ď

2R2

Rk
“ 2R2´k,

and so
“

| ¨ |2
‰

C0,k ď 3R2´k. We are left to estimate the Lipschitz coefficient Lip puq for G P rδ,8q.

Indeed, we can calculate it explicitly using the mean value theorem,

|upG1q ´ upG2q| ď

ˆ

max
ξPrδ,8q

|u1pξq|

˙

|G1 ´G2|,

and so we have

Lip puq ď max
ξPrδ,8q

|u1pξq| “
N

k
δ´p1`N{kq.

This concludes the proof of Hölder continuity of Tρ on KR, (4.51)-(4.52). Since
ş

RN |x|
kMpxq dx ă 8 if k P p0, 1s, it follows from (4.48) that Tρ has bounded kth moment. To-

gether with the estimate of the tails (4.50), we have indeed T X̄ Ă X̄ , and so T is well-defined. We

conclude that the operator T : X̄ Ñ X̄ is compact by a variant of the Arzéla-Ascoli Theorem using

uniform decay at infinity and uniform boundedness (4.50) together with equi-Hölder-continuity

(4.51). Continuity of the map T : X̄ Ñ X̄ can be analogously checked since the convolution with
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Wk is a continuous map from X̄ to CpRN q together with a similar argument as before for the

Hölder continuity of Tρ. Additionally, we use that Crρs is continuous in terms of ρ as Mpρ, Cq,

the mass of Tρ, is a continuous function in terms of both ρ and C and strictly decreasing in terms

of C, and hence Crρs “M´1pρ, 1q is continuous in terms of ρ. Here,M´1pρ, ¨q denotes the inverse

ofMpρ, ¨q.

Finally, by Schauder’s fixed point theorem there exists ρ̄ P X̄ such that T ρ̄ “ ρ̄. In other

words, ρ̄ satisfies relation (4.41) on RN . By continuity and radial monotonicity, we further have

ρ̄ P L8
`

RN
˘

from which we deduce the required regularity properties using supp pρ̄q “ RN

and Lemma 2.2. We conclude that ρ̄ is a stationary state of the rescaled equation according to

Definition 2.3.

Remark 4.11. Note that the restriction k ď 1 in the statement of Theorem 4.10 arises from Lemma 4.1 as

we need the upper and lower bounds in (4.37) to scale with the same factor (η “ 1). By Corollary 4.4, this

restriction on k also means that we are in the range where stationary states have bounded kth moment since

pp0, 1s X p0, Nqq Ă p0,Kq. To see why this is the case, let us take any k P p0,Kq and so η ě 1. Applying

Lemma 4.1 to Tρpxq and integrating over RN then gives

wη pηAIkrρs ` Crρsq ď 1 ďW pAIkrρs ` Crρsq

instead of (4.46), with

wηpαq :“
ż

RN

ˆ

α` ηA
|x|k

k
`B|x|2

˙´N{k

dx .

Taking inverses, we conclude

δη ď ηAIkrρs ` Crρs , AIkrρs ` Crρs ď δ (4.53)

for δη :“ w´1
η p1q and for η ě 1. This is where η “ 1 becomes necessary in order to conclude for the

pointwise estimate (4.48).

If the constant Crρs is non-negative however, we can go a bit further and remove the condition k ď 1 whilst

still recovering a pointwise estimate on Tρ. More precisely, if Crρs ě 0, then we obtain from (4.53) for any

k P p0,Kq

0 ă
δη
η
ď AIkrρs ` Crρs ď δ .

Instead of (4.48), we get

mηpxq ď Tρpxq ďMηpxq

with

mηpxq :“
ˆ

ηδ `A
|x|k

k
`B|x|2

˙´N{k

, Mηpxq :“
ˆ

δη
η
`B|x|2

˙´N{k

.

However, firstly, the sign of Crρs depends on the kth moment Ikrρs, and secondly, knowing a priori that

Crρs ě 0 implies CrTρs ě 0 for all ρ P X̄ is complicated, see Remark 4.12.
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Remark 4.12. Both Crρs ă 0 and Crρs ě 0 are possible for ρ P X̄ and k P p0,Kq, depending on the kth

moment of ρ. More precisely, Crρs is defined as the value in the interval
“

δη ´ ηAIkrρs, δ ´AIkrρs
‰

such

thatMpρ, Crρsq “ 1. Hence, we have

Ikrρs ď δη{pηAq ùñ Crρs ě 0 ,

Ikrρs ą δ{A ùñ Crρs ă 0 .

Remark 4.13. Having established existence of radially symmetric stationary states to the rescaled equation

(2.7), it is a natural question to ask whether these stationary states correspond to minimisers of the rescaled

free energy functionalFk,resc. For a stationary state ρ̄ to have finite energy, we require in addition Vrρ̄s ă 8,

ρ̄m P L1 `RN
˘

and |x|kρ̄ P L1 `RN
˘

, in which case ρ̄ P Y2,k. As noted in Remark 4.9, this is true if and

only if 0 ă k ă 2N
2`N . This restriction corresponds to N

2`N ă m ă 1 and coincides with the regime of the

fast diffusion equation (χ “ 0) where the Barenblatt profile has second moment bounded and itsmth power

is integrable [47].

Remark 4.14. In particular, the non-existence result in original variables Theorem 4.3 means that there

is no interaction strengths χ for which the energy functional Fk admits radially symmetric non-increasing

global minimisers. In this sense, there is no criticalχc for k ą 0 as it is the case in the porousmedium regime.

Existence of global minimisers for the rescaled free energy functionalFk,resc for allχ ą 0would provide a full

proof of non-criticality in the fast diffusion range and is still an open problem for arbitrary dimensionsN . We

suspect that Fk,resc is bounded below. In one dimension, one can establish equivalence between stationary

states of the rescaled equation (2.7) and global minimisers of Fk,resc by completely different methods, proving

a type of reversed HLS inequality, see Chapter 3. The non-existence of a critical parameter χ is a very

interesting phenomenon, which has already been observed in [116] for the one-dimensional limit case k “ 1,

m “ 0.

4.3 Numerical simulations in one dimension

To illustrate our analysis of the fast diffusion regime, we present numerical simulations in one

dimension. We use a Jordan–Kinderlehrer–Otto (JKO) steepest descent scheme [195, 248] which

was proposed in [36] for the logarithmic case k “ 0, and generalised to the porous-medium case

k P p´1, 0q in [67]. It corresponds to a standard implicit Euler method for the pseudoinverse of

the cumulative distribution function, where the solution at each time step of the non-linear system

of equations is obtained by an iterative Newton-Raphson procedure. It can easily be extended to

rescaled variables and works just in the same way in the fast diffusion regime k P p0, 1q.

Our simulations show that solutions in scaled variables for k P p0, 1q converge always to a sta-

tionary state suggesting the existence of stationary states as discussed in the previous subsection.
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(a) (b)

Figure 2.1: Parameter choices: χ “ 1.2, k “ 0.2. (a) Density distribution in rescaled variables: As
initial data (black) we chose a characteristic supported on the centred ball of radius 1{2, which
can be seen to converge to the stationary state ρ̄ (red); (b) Logplot of the density including bounds
mpxq (dotted blue) andMpxq (dashed blue) as given in (4.48).

(a) (b)

Figure 2.2: Parameter choices: χ “ 0.8, k “ 0.95. (a) Density distribution in rescaled variables:
As initial data (black) we chose a centred Gaussian distribution, which can be seen to converge
to the stationary state ρ̄ (red) - here, ρ̄ is more peaked as k is closer to 1 and so we only display
the lower part of the density plot (maxxPR ρ̄pxq “ 75.7474); (b) Logplot of the density including
boundsmpxq (dotted blue) andMpxq (dashed blue) as given in (4.48).

Using the numerical scheme, we can do a quality check of the upper and lower bounds derived

in (4.48) for stationary states in X̄ :

mpxq ď ρ̄pxq ďMpxq

with mpxq andMpxq given by (4.49). Figures 2.1 and 2.2 show numerical results at two different

points in the pk, χq-parameter space. For a more detailed description of the numerical scheme and

a comprehensive list of numerical results, see Chapter 3.
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A Appendix: Properties of ψk

We are here investigating in more detail the properties of the mean-field potential gradient for

global minimisers in the porousmedium regime. Inmore than one dimension, it can be expressed

in terms of hypergeometric functions. Their properties are well understood and allow us to anal-

yse the regularity properties of global minimisers. Since global minimisers of Fk and Fk,resc are

radially symmetric by Proposition 3.6, the aim is here to find the radial formulation of ∇Sk de-

fined in (1.3). In one dimension, explicit expressions are available, and so we are assuming from

now on thatN ě 2. There are three different cases: (1) The Newtonian case k “ 2´N withN ě 3,

(2) the range 1´N ă k ă 0, k ‰ 2´N where ∇pWk ˚ρq is well defined, and (3) the singular range

´N ă k ď 1´N where the force field is given by a Cauchy principle value.

(1) In the Newtonian case k “ 2´N , we have an explicit formula for the radial derivative of the

force field using Newton’s Shell Theorem,

Br pW2´N ˚ ρq prq “Mprqr1´N ,

whereMprq “ σN
şr

0 ρpsqs
N´1 ds is the mass of ρ in a ball of radius r. Hence, we can write

BrpW2´N ˚ ρqprq “ r1´N
ż 8

0
ψ2´N

´η

r

¯

ρpηqηN´1 dη

where ψ2´N is defined to have a jump singularity at s “ 1,

ψ2´N psq :“

$

’

&

’

%

1 if 0 ď s ă 1 ,

0 if s ą 1 .
(A.54)

(2) In the range 1´N ă k ă 0 and k ‰ 2´N , the mean-field potential gradient is given by

∇Skpxq :“ ∇pWk ˚ ρqpxq “

ż

RN
∇W px´ yqρpyqdy

“
1
σN

ż 8

0

ż

BBp0,|y|q
∇W px´ yqdσpyqρp|y|qd|y| .

Denoting |y| “ η, we can write for x “ re1,

1
σN

ż

BBp0,|y|q
∇W px´ yqdσpyq “ 1

σN

ż

BBp0,|y|q
px´ yq|x´ y|k´2 dσpyq

“

˜

1
σN

ż

BBp0,ηq
e1 ¨ pre1 ´ yq|re1 ´ y|

k´2 dσpyq
¸

x

r

“ ηN´1

˜

1
σN

ż

BBp0,1q
pr ´ ηe1.zq|re1 ´ ηz|

k´2 dσpzq
¸

x

r

“ ηN´1rk´1ψk

´η

r

¯ x

r
,
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where

ψk psq “
1
σN

ż

BBp0,1q
p1´ se1.zq|e1 ´ sz|

k´2 dσpzq , s P r0, 1q Y p1,8q . (A.55)

By radial symmetry,

∇pWk ˚ ρqpxq “ rk´1
ˆ
ż 8

0
ψk

´η

r

¯

ρpηqηN´1 dη
˙

x

r
“ BrpWk ˚ ρqprq

x

r

with

BrpWk ˚ ρqprq “ rk´1
ż 8

0
ψk

´η

r

¯

ρpηqηN´1 dη . (A.56)

(3) In the regime´N ă k ď 1´N however, the derivative of the convolution with the interaction

kernel is a singular integral, and in this case the force field is defined as

∇Sk :“
ż

R

x´ y

|x´ y|2´k
pρpyq ´ ρpxqq dy

“ lim
δÑ0

ż

|x´y|ąδ

x´ y

|x´ y|2´k
ρpyq dy “

x

r
BrSkprq

with the radial component given by

BrSkprq “r
k´1

ż 8

0
ψk

´η

r

¯

pρpηq ´ ρprqq ηN´1 dη

“rk´1 lim
δÑ0

ż

|r´η|ąδ

ψk

´η

r

¯

ρpηqηN´1 dη ,

and ψk is given by (A.55) on r0, 1q Y p1,8q.

For any ´N ă k ă 0 with k ‰ 2´N , we can rewrite (A.55) as

ψkpsq “
σN´1

σN

ż π

0
p1´ s cospθqq sinN´2pθqAps, θqk´2 dθ , s P r0, 1q Y p1,8q (A.57)

with

Aps, θq “
`

1` s2 ´ 2s cospθq
˘1{2

.

It is useful to express ψk in terms of Gauss Hypergeometric Functions. The hypergeometric func-

tion F pa, b; c; zq is defined as the power series

F pa, b; c; zq “
8
ÿ

n“0

paqnpbqn
pcqn

zn

n! (A.58)

for |z| ă 1 and a, b P C, c P CztZ´ Y t0uu, see [4], where pqqn is the Pochhammer symbol defined

for any q ą 0, n P N by

pqq0 “ 1, pqqn “
pn` q ´ 1q!
pq ´ 1q! .

We will here make use of its well known integral representation [4]

F pa, b; c; zq “ Γpcq
ΓpbqΓpc´ bq

ż 1

0
tb´1p1´ tqc´b´1p1´ tzq´a dt
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for c ą b ą 0, a ą 0 and |z| ă 1. Moreover, if c ´ a ´ b ą 0, then F is well defined at z “ 1 and

satisfies

F pa, b; c; 1q “ ΓpcqΓpc´ a´ bq
Γpc´ aqΓpc´ bq .

Otherwise, we have the limiting case discussed in [4]:

lim
zÑ1´

F pa, b; c; zq
p1´ zqc´a´b “

ΓpcqΓpa` b´ cq
ΓpaqΓpbq , if c´ a´ b ă 0 . (A.59)

Let us define

Hpa, b; c; zq :“ ΓpbqΓpc´ bq
Γpcq F pa, b; c; zq .

To express ψk as a combination of hypergeometric functions, we write

ψkpsq “
σN´1

σN

ż π

0
p1´ s cospθqq

`

1` s2 ´ 2s cospθq
˘

k´2
2 sinN´2pθq dθ

“
σN´1

σN
p1` sqk´2

ż π

0
p1´ s cospθqq

ˆ

1´ 4s
p1` sq2 cos2

ˆ

θ

2

˙˙

k´2
2

sinN´2 pθq dθ

“
σN´1

σN
p1` sqk´2

ż π

0

ˆ

1´ 4s
p1` sq2 cos2

ˆ

θ

2

˙˙

k´2
2

sinN´2 pθq dθ

´
σN´1

σN
p1` sqk´2

s

ż π

0
cospθq

ˆ

1´ 4s
p1` sq2 cos2

ˆ

θ

2

˙˙

k´2
2

sinN´2 pθq dθ

“:f1psq ´ f2psq .

Now, we use the change of variable t “ cos2 pθ{2q to get

f1psq “
σN´1

σN
p1` sqk´2

ż π

0

ˆ

1´ 4s
p1` sq2 cos2

ˆ

θ

2

˙˙

k´2
2

sinN´2 pθq dθ

“
σN´1

σN
p1` sqk´2 2N´2

ż 1

0

ˆ

1´ 4s
p1` sq2 t

˙

k´2
2

t
N´3

2 p1´ tq
N´3

2 dt

“
σN´1

σN
p1` sqk´2 2N´2H pa, b1; c1; zq

with

a :“ 1´ k

2 , b1 :“ N ´ 1
2 , c1 :“ N ´ 1, z :“ 4s

p1` sq2 .

Let us define h1psq :“ f1psq, and

h2psq :“ σN´1

σN
p1` sqk´2 2N´2H pa, b2; c2; zq

with

a :“ 1´ k

2 , b2 :“ N ´ 1
2 , c2 :“ N ´ 1, z :“ 4s

p1` sq2 .

Then

f2psq “
σN´1

σN
p1` sqk´2

s

ż π

0
cospθq

ˆ

1´ 4s
p1` sq2 cos2

ˆ

θ

2

˙˙

k´2
2

sinN´2 pθq dθ

“´ sh1psq ` 2sh2psq
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by the same change of variable. We conclude

ψkpsq “ p1` sqh1psq ´ 2sh2psq , s P r0, 1q X p1,8q . (A.60)

Let us now study the behaviour of ψk in more detail for k ‰ 2´N . For any fixed s P r0, 1qXp1,8q,

|ψkpsq| ď
1
σN

ż

BBp0,1q
|e1 ´ sx|

k´1 dσpxq ă 8

and by the dominated convergence theorem, it is easy to see that ψk is continuous on s P r0, 1q X

p1,8q for any ´N ă k ă 2 ´ N and 2 ´ N ă k ă 0. A singularity occurs at s “ 1 if k ă 2 ´ N ,

however this singularity is integrable in the range 1´N ă k ă 2´N .

In order to handle the expression of the mean-field potential gradient, it is important to un-

derstand the behaviour of ψk at the limits of the integral 0 and 8 as well as at the singularity

s “ 1.

Lemma A.1 (Behaviour at 0). For α ą ´1, ´N ă k ă 0 and small s ą 0,

ψkpsqs
α “ sα `O

`

sα`1˘ . (A.61)

Proof. Following the same argument as in [138, Lemma 4.4], we obtain ψkp0q “ 1 for any ´N ă

k ă 0, and so (A.61) follows.

Similarly, extending the argument in [138, Lemma 4.4] to ´N ă k ă 0, we have

Lemma A.2 (Behaviour at8). For ´N ă k ă 0,

lim
sÑ8

s2´kψkpsq “
N ` k ´ 2

N
. (A.62)

(a) (b)

Figure 2.3: ψk for different values of k withN “ 6, increasing k by 0.2 for each plot: (a)´N ă k ă
2´N , (b) 2´N ă k ă 0.
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Further, it is obvious from (A.57) that ψkpsq ą 0 for s P p0, 1q. From [138],

ψ1kpsq “

ˆ

σN´1

σN

˙

pk ´ 2qpN ` k ´ 2q
pN ´ 1q s

ż π

0
sinN pθqAps, θqk´4 dθ , s P r0, 1q X p1,8q

andhenceψk is strictly decreasing for k ą 2´N and strictly increasing for k ă 2´N . It then follows

from (A.62) that in the super-Newtonian regime k ą 2 ´ N , ψk converges to zero as s Ñ 8, is

finite and continuous at s “ 1, and strictly positive on r0,8q (Figure 2.3(b)). In the sub-Newtonian

regime´N ă k ă 2´N on the other hand, the monotonicity of ψk and the fact that ψk converges

to 0 as sÑ8 imply that

lim
sÑ1´

ψkpsq “ `8 , lim
sÑ1`

ψkpsq “ ´8 ,

and so we conclude that ψk ă 0 on p1,8q if´N ă k ă 2´N (Figure 2.3(a)). We summarise these

observations in the following lemma:

Lemma A.3 (Overall Behaviour). Let ψk be as defined in (A.55).

(i) If 2´N ă k ă 0, then ψk is continuous, positive and strictly decreasing on r0,8q.

(ii) If ´N ă k ă 2 ´ N , then ψk is continuous, positive and strictly increasing on r0, 1q, and it is

continuous, negative and strictly increasing on p1,8q. Further, it has a singularity at s “ 1 which is

integrable for 1´N ă k ă 2´N .

Using the hypergeometric function representation ofψk, we can characterise its behaviour near

the singularity.

Lemma A.4 (Behaviour at 1). For α P R and ε ą 0 small, we have

(1) in the super-Newtonian regime 2´N ă k ă 0 and for s “ 1˘ ε:

ψkpsqs
α “ ψkp1q `O pεq ,

(2) in the sub-Newtonian regime ´N ă k ă 2´N and

(i) for s “ 1´ ε:

ψk psq s
α “ K1ε

N`k´2 `K2ε
N`k´1 `O

`

εN`k
˘

, (A.63)

(ii) for s “ 1` ε:

ψk psq s
α “ ´K1ε

N`k´2 `K3ε
N`k´1 `O

`

εN`k
˘

, (A.64)
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where

K1 “

ˆ

σN´1

σN

˙

γ

2 ą 0 , K2rαs “ ´

ˆ

σN´1

σN

˙ˆ

B1 ` γp1´N ` 2αq
4

˙

, (A.65)

K3rαs “ ´

ˆ

σN´1

σN

˙ˆ

B1 ` γp2k `N ´ 5` 2αq
4

˙

and

γ “
Γpc2 ´ b2qΓpa` b2 ´ c2q

Γpaq ą 0 . (A.66)

Proof. (1) follows directly from the fact that ψk is continuous at s “ 1 [138, Lemma 4.4]. In order

to prove (2), we make use of expression (A.60) for ψk in terms of hypergeometric functions and

known expansions around the point of singularity. Denoting δ :“ ε{|2 ´ ε| ą 0, we have for any

β ą 0,

δβ “
´ε

2

¯β

` β
´ε

2

¯β`1
`O

`

εβ`2˘ . (A.67)

From (A.60) we can write

ψkpsq “ p1` sqh1psq ´ 2sh2psq “ p1` sq ph1psq ´ h2psqq ` p1´ sqh2psq ,

and hence, denoting z “ 1´ δ2, we obtain for s “ 1´ ε:

22´N σN
σN´1

ψkp1´ εq “ p2´ εqk´1
pH pa, b1; c1; zq ´H pa, b2; c2; zqq

` ε p2´ εqk´2
H pa, b2; c2; zq

“ p2´ εqk´1
δN`k´3

ˆ

H pa, b1; c1; zq
p1´ zqc1´a´b1

´
H pa, b2; c2; zq
p1´ zqc2´a´b2

˙

` ε p2´ εqk´2
δN`k´3

ˆ

H pa, b2; c2; zq
p1´ zqc2´a´b2

˙

. (A.68)

Similarly, above the singularity point at s “ 1` ε, we obtain:

22´N σN
σN´1

ψkp1` εq “ p2` εqk´1
δN`k´3

ˆ

H pa, b1; c1; zq
p1´ zqc1´a´b1

´
H pa, b2; c2; zq
p1´ zqc2´a´b2

˙

´ ε p2` εqk´2
δN`k´3

ˆ

H pa, b2; c2; zq
p1´ zqc2´a´b2

˙

. (A.69)

Using the power series expression (A.58) for hypergeometric functions, we can write
ˆ

H pa, b1; c1; zq
p1´ zqc1´a´b1

´
H pa, b2; c2; zq
p1´ zqc2´a´b2

˙

“

8
ÿ

n“0
An

zn

n! “
8
ÿ

m“0

p´1qmBm
m! δ2m ,

Bm :“
8
ÿ

n“m

An
pn´mq! ,

An :“
ˆ

pc1 ´ aqnpc1 ´ b1qn
pc1qn

´ b1
pc2 ´ aqnpc2 ´ b2qn

pc2qn

˙

Γpb1qΓpc1 ´ b1q
Γpaq .

In the singularity regime ´N ă k ă 2´N , we have

c1 ´ a´ b1 “ c2 ´ a´ b2 “
N ` k ´ 3

2 ă 0 ,
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and so we can make use of (A.59) to show that the leading order term vanishes:

B0 “ lim
δÑ0

8
ÿ

m“0

p´1qmBm
m! δ2m “ lim

zÑ1´

ˆ

H pa, b1; c1; zq
p1´ zqc1´a´b1

´
H pa, b2; c2; zq
p1´ zqc2´a´b2

˙

“
Γpc1 ´ b1qΓpa` b1 ´ c1q

Γpaq ´
Γpc2 ´ b2qΓpa` b2 ´ c2q

Γpaq “ 0 .

Hence

H pa, b1; c1; zq
p1´ zqc1´a´b1

´
H pa, b2; c2; zq
p1´ zqc2´a´b2

“ ´B1δ
2 `Opδ4q ,

H pa, b2; c2; zq
p1´ zqc2´a´b2

“
Γpc2 ´ b2qΓpa` b2 ´ c2q

Γpaq `O
`

δ2˘ :“ γ `O
`

δ2˘ .

Substituting these estimates and making use of (A.67), (A.68) becomes

22´N σN
σN´1

ψkp1´ εq “ ε p2´ εqk´2 `
γδN`k´3 `O

`

δN`k´1˘˘ ,

` p2´ εqk´1 `
´B1δ

N`k´1 `O
`

δN`k`1˘˘

“ ε
“

2k´2 ´ εpk ´ 2q2k´3 `O
`

ε2˘‰

ˆ

„

γ
´ε

2

¯N`k´3
` γ pN ` k ´ 3q

´ε

2

¯N`k´2
`O

`

εN`k´1˘


`
“

2k´1 `O pεq
‰

„

´B1

´ε

2

¯N`k´1
`O

`

εN`k
˘



“ γ2´N`1εN`k´2 ` γ2´N rpN ` k ´ 3q ` p2´ kqs εN`k´1

´B12´NεN`k´1 `O
`

εN`k
˘

“ γ2´N`1εN`k´2 ` 2´N rγ pN ´ 1q ´B1s ε
N`k´1 `O

`

εN`k
˘

.

Similarly, (A.69) has expansion

22´N σN
σN´1

ψkp1` εq “ ´ ε p2` εqk´2 `
γδN`k´3 `O

`

δN`k´1˘˘ ,

` p2` εqk´1 `
´B1δ

N`k´1 `O
`

δN`k`1˘˘

“ ´ ε
“

2k´2 ` εpk ´ 2q2k´3 `O
`

ε2˘‰

ˆ

„

γ
´ε

2

¯N`k´3
` γ pN ` k ´ 3q

´ε

2

¯N`k´2
`O

`

εN`k´1˘


`
“

2k´1 `O pεq
‰

„

´B1

´ε

2

¯N`k´1
`O

`

εN`k
˘



“ ´ γ2´N`1εN`k´2 ` γ2´N r´ pN ` k ´ 3q ` p2´ kqs εN`k´1

´B12´NεN`k´1 `O
`

εN`k
˘

“ ´ γ2´N`1εN`k´2 ` 2´N rγ p5´N ´ 2kq ´B1s ε
N`k´1 `O

`

εN`k
˘

.
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We conclude

ψkp1´ εq “
ˆ

σN´1

σN

˙

´γ

2

¯

εN`k´2 `

ˆ

σN´1

σN

˙ˆ

γ pN ´ 1q ´B1

4

˙

εN`k´1 `O
`

εN`k
˘

,

ψkp1` εq “ ´
ˆ

σN´1

σN

˙

´γ

2

¯

εN`k´2 `

ˆ

σN´1

σN

˙ˆ

γ p5´N ´ 2kq ´B1

4

˙

εN`k´1 `O
`

εN`k
˘

,

and so (2)(i)-(ii) directly follow.
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Chapter3

Asymptotics in the One-Dimensional

Fair-Competition Regime

This chapter follows in most parts the article “The geometry of diffusing and self-attracting parti-

cles in a one-dimensional fair-competition regime” written in collaboration with Vincent Calvez1

and José A. Carrillo2, and to appear in “Nonlocal and Nonlinear Diffusions and Interactions: New

Methods and Directions”, volume 2186 of Lecture Notes in Math., Springer.

Chapter Summary

We consider an aggregation-diffusion equation modelling particle interaction with non-

linear diffusion and non-local attractive interaction using a homogeneous kernel (singular and

non-singular) leading to variants of the Keller–Segel model of chemotaxis. We analyse the fair-

competition regime in which both homogeneities scale the same with respect to dilations. Our

analysis here deals with the one-dimensional case, building on the work in Chapter 2, and pro-

vides an almost complete classification. In the singular kernel case and for critical interaction

strength, we prove uniqueness of stationary states via a variant of theHardy-Littlewood-Sobolev

inequality. Using the same methods, we show uniqueness of self-similar profiles in the sub-

critical case by proving a new type of functional inequality. Surprisingly, the same results hold

true for any interaction strength in the non-singular kernel case. Further, we investigate the

asymptotic behaviour of solutions, proving convergence to equilibrium in Wasserstein distance

in the critical singular kernel case, and convergence to self-similarity for sub-critical interaction

strength, both under a uniform stability condition. Moreover, solutions converge to a unique

self-similar profile in the non-singular kernel case. Finally, we provide a numerical overview

for the asymptotic behaviour of solutions in the full parameter space demonstrating the above

results. We also discuss a number of phenomena appearing in the numerical explorations for

the diffusion-dominated and attraction-dominated regimes.

1Unité de Mathématiques Pures et Appliquées, CNRS UMR 5669 and équipe-projet INRIA NUMED, École Normale
Supérieure de Lyon, Lyon, France.

2Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
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1. Introduction

1 Introduction

Mean field macroscopic models for interacting particle systems have been derived in the liter-

ature [245, 240] with the objective of explaining the large time behaviour, the qualitative prop-

erties and the stabilisation of systems composed by a large number of particles with compet-

ing effects such as repulsion and attraction between particles. They find natural applications in

mathematical biology, gravitational collapse, granular media and self-assembly of nanoparticles,

see [105, 196, 96, 282, 191, 207] and the references therein. These basic models start from particle

dynamics in which their interaction is modelled via pairwise potentials. By assuming the right

scaling between the typical interaction length and the number of particles per unit area one can

obtain different mean field equations, see for instance [43]. In the mean-field scaling they lead

to non-local equations with velocity fields obtained as an average force from a macroscopic den-

sity encoding both repulsion and attraction, see [39, 10] and the references therein. However, if

the repulsion strength is very large at the origin, one can model repulsive effects by (non-linear)

diffusion while attraction is considered via non-local long-range forces [240, 282].

In this chapter, we concentrate on this last approximation: repulsion is modelled by diffusion

and attraction by non-local forces. We will make a survey of the main results in this topic exem-

plifying them in the one dimensional setting while at the same time we will provide newmaterial

in one dimension with alternative proofs and information about long time asymptotics which are

not known yet in higher dimensions. In order to understand the interplay between repulsion via

non-linear diffusion and attraction via non-local forces, we concentrate on the simplest possible

situation in which both the diffusion and the non-local attractive potential are homogeneous func-

tions. We will focus on models with a variational structure that dissipate the free energy of the

system.

The plan for this chapter is twofold. In a first part we shall investigate some properties of

the following class of homogeneous functionals, defined for centered probability densities ρpxq,

belonging to suitable weighted Lp-spaces, and some interaction strength coefficient χ ą 0 and

diffusion powerm ą 0:

Fm,krρs “
ż

R
Um pρpxqq dx` χ

ĳ

RˆR

ρpxqWkpx´ yqρpyq dxdy :“ Umrρs ` χWkrρs , (1.1)

ρpxq ě 0 ,
ż

R
ρpxq dx “ 1 ,

ż

R
xρpxq dx “ 0 ,

with

Umpρq “

$

’

&

’

%

1
m´ 1 ρ

m , if m ‰ 1

ρ log ρ , if m “ 1
,
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and

Wkpxq “

$

’

&

’

%

|x|k

k
, if k P p´1, 1qzt0u

log |x| , if k “ 0
. (1.2)

The center of mass of the density ρ is assumed to be zero since the free energy functional is invari-

ant by translation. Taking mass preserving dilations, one can see that Umr¨s scales with a power

m ´ 1, whilst Wkr¨s scales with power ´k, indicating that the relation between the parameters k

andm plays a crucial role here. And indeed, one observes different types of behaviour depending

on which of the two forces dominates, non-linear diffusion or non-local attraction. This motivates

the definition of three different regimes: the diffusion-dominated regime (m ´ 1 ą ´k), the fair-

competition regime (m ´ 1 “ ´k), and the attraction-dominated regime (m ´ 1 ă ´k). We will here

concentrate mostly on the fair-competition regime.

This chapter can be viewed as a continuation of the seminal paper by McCann [234] in a non-

convex setting. Indeed, McCann used the very powerful toolbox of Euclidean optimal transporta-

tion to analyse functionals like (1.1) in the casem ě 0 and for a convex interaction kernelWk. He

discovered that such functionals are equipped with an underlying convexity structure, for which

the interpolant rρ0, ρ1st follows the line of optimal transportation [295]. This provides many in-

teresting features among which a natural framework to show uniqueness of the ground state as

soon as it exists. In this chapter we deal with concave homogeneous interaction kernelsWk given

by (1.2) for which McCann’s results [234] do not apply. Actually, the conditions on k imply that

the interaction kernelWk is locally integrable on R and concave on R`, which means that Wkr¨s is

displacement concave as shown in [85]. We explain in this chapter how some ideas from [234] can

be extended to some convex-concave competing effects. Our main statement is that the functional

(1.1) – the sum of a convex and a concave functional – behaves almost like a convex functional

in some good cases detailed below. In particular, existence of a critical point implies uniqueness

(up to translations and dilations). The bad functional contribution is somehow absorbed by the

convex part for certain homogeneity relations and parameters χ.

The analysis of these free energy functionals and their respective gradient flows is closely re-

lated to some functional inequalities of Hardy-Littlewood-Sobolev (HLS) type [218, 163, 74, 39].

To give a flavour, we highlight the case pm “ 1, k “ 0q, called the logarithmic case. It is known

from [136, 41] using [77, 19] that the functionalF1,0 is bounded frombelow if and only if 0 ă χ ď 1.

Moreover, F1,0 achieves its minimum if and only if χ “ 1 and the extremal functions are mass-

preserving dilations of Cauchy’s density:

ρ̄0pxq “
1
π

ˆ

1
1` |x|2

˙

. (1.3)
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In [77] authors have proved the uniqueness (up to dilations and translations) of this logarithmic

HLS inequality based on a competing-symmetries argument. We develop in this chapter an alter-

native argument based on some accurate use of the Jensen’s inequality to get similar results in the

porous medium case ´1 ă k ă 0. This goal will be achieved for some variant of the HLS inequal-

ity as in [39], indeed being a combination of the HLS inequality and interpolation estimates, see

Theorem 3.1. The case 0 ă k ă 1 has been a lot less studied, and we will show here that no crit-

ical interaction strength exists as there is no χ ą 0 for which Fm,k admits global minimisers. On

the other hand, we observe certain similarities with the behaviour of the fast diffusion equation

(0 ă m ă 1, χ “ 0) [287]. The mass-preserving dilation homogeneity of the functional Fm,k is

shared by the range of parameters pm, kq with Npm ´ 1q ` k “ 0 for all dimensions, m ą 0 and

k P p´N,Nq. This general fair-competition regime is analysed in Chapter 2.

In a second stage, here we also tackle the behaviour of the following family of partial differen-

tial equations modelling self-attracting diffusive particles at the macroscopic scale,
$

&

%

Btρ “ Bxx pρ
mq ` 2χBx pρ BxSkq , t ą 0 , x P R ,

ρpt “ 0, xq “ ρ0pxq .
(1.4)

where we define the mean-field potential Skpxq :“ Wkpxq ˚ ρpxq. For k ą 0, the gradient BxSk :“

Bx pWk ˚ ρq is well defined. For k ă 0 however, it becomes a singular integral, and we thus define

it via a Cauchy principal value. Hence, the mean-field potential gradient in equation (1.4) is given

by

BxSkpxq :“

$

’

’

&

’

’

%

BxWk ˚ ρ , if 0 ă k ă 1 ,
ż

R
BxWkpx´ yq pρpyq ´ ρpxqq dy , if ´ 1 ă k ă 0 .

(1.5)

Further, it is straightforward to check that equation (1.4) formally preserves positivity, mass and

centre of mass, and so we can choose to impose

ρ0pxq ě 0 ,
ż

ρ0pxq dx “ 1 ,
ż

xρ0pxq dx “ 0 .

This class of PDEs are one of the prime examples for competition between the diffusion (possibly

non-linear), and the non-local, quadratic non-linearity which is due to the self-attraction of the

particles through the mean-field potential Skpxq. The parameter χ ą 0 measures the strength of

the interaction. We would like to point out that we are here not concerned with the regularity of

solutions or existence/uniqueness results for equation (1.4), allowing ourselves to assume solu-

tions are ’nice’ enough in space and time for our analysis to hold (for more details on regularity

assumptions, see Section 4).
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3. 1D Fair-Competition Regime

There exists a strong link between the PDE (1.4) and the functional (1.1). Not only is Fm,k
decreasing along the trajectories of the system, but more importantly, system (1.4) is the formal

gradient flow of the free energy functional (1.1) when the space of probability measures is en-

dowed with the Euclidean Wasserstein metric W:

Btρptq “ ´∇WFm,krρptqs . (1.6)

This illuminating statement has been clarified in the seminal paper by Otto [248]. We also refer

to the books by Villani [295] and Ambrosio, Gigli and Savaré [3] for a comprehensive presenta-

tion of this theory of gradient flows in Wasserstein metric spaces, particularly in the convex case.

Performing gradient flows of a convex functional is a natural task, and suitable estimates from

below on the Hessian of Fm,k in (1.1) translate into a rate of convergence towards equilibrium for

the PDE [96, 295, 97]. However, performing gradient flow of functionals with convex and concave

contributions is more delicate, and one has to seek compensations. Such compensations do exist

in our case, and one can prove convergence in Wasserstein distance towards some stationary state

under suitable assumptions, in some cases with an explicit rate of convergence. It is of course

extremely important to understand how the convex and the concave contributions are entangled.

The results obtained in the fully convex case generally consider each contribution separately,

resp. internal energy, potential confinement energy or interaction energy, see [96, 295, 3, 97]. It

happens however that adding two contributions provides better convexity estimates. In [96] for

instance the authors prove exponential speed of convergence towards equilibrium when a degen-

erate convex potentialWk is coupled with strong enough diffusion, see [44] for improvements.

The family of non-local PDEs (1.4) has been intensively studied in various contexts arising in

physics and biology. The two-dimensional logarithmic case pm “ 1, k “ 0q is the so-called Keller–

Segel system in its simplest formulation [196, 197, 243, 194, 41, 256]. It has been proposed as a

model for chemotaxis in cell populations. The three-dimensional configuration pm “ 1, k “ ´1q

is the so-called Smoluchowski-Poisson system arising in gravitational physics [105, 107, 106]. It

describes macroscopically a density of particles subject to a self-sustained gravitational field.

Let us describe in more details the two-dimensional Keller–Segel system, as the analysis of its

peculiar structure will serve as a guideline to understand other cases. The corresponding gradient

flow is subject to a remarkable dichotomy, see [113, 194, 242, 159, 136, 41] . The density exists

globally in time if χ ă 1 (diffusion overcomes self-attraction), whereas blow-up occurs in finite

timewhen χ ą 1 (self-attraction overwhelms diffusion). In the sub-critical case, it has been proved

that solutions decay to self-similarity solutions exponentially fast in suitable rescaled variables [70,

71, 148]. In the super-critical case, solutions blow-up in finite time with by nowwell studied blow-

up profiles for close enough to critical cases, see [187, 260].
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Substituting linear diffusion by non-linear diffusion withm ą 1 in two dimensions and higher

is a way of regularising the Keller–Segel model as proved in [61, 277] where it is shown that so-

lutions exist globally in time regardless of the value of the parameter χ ą 0. It corresponds to

the diffusion-dominated case in two dimensions for which the existence of compactly supported

stationary states and global minimisers of the free energy has only been obtained quite recently

in [89]. The fair-competition case for Newtonian interaction k “ 2 ´ N was first clarified in [39],

see also [276], where the authors find that there is a similar dichotomy to the two-dimensional

classical Keller–Segel case pN “ 2,m “ 1, k “ 0q, choosing the non-local term as the Newtonian

potential, pN ě 3,m “ 2´2{N, k “ 2´Nq. The main difference is that the stationary states found

for the critical case are compactly supported. We will see that such dichotomy also happens for

k ă 0 in our case while for k ą 0 the system behaves totally differently. In fact, exponential con-

vergence towards equilibrium seems to be the generic behaviour in rescaled variables as observed

in Figure 3.1.

Figure 3.1: Density evolution for parameter choices χ “ 0.7, k “ ´0.2, m “ 1.2 following the
PDE (1.4) in rescaled variables from a characteristic supported on Bp0, 1{2q (black) converging to
a unique stationary state (red). For more details, see Figure 3.6 and the explanations in Section 5.

The chapter is structured as follows: in Section 2, we give an analytic framework with all nec-

essary definitions and assumptions. In cases where no stationary states exist for the aggreg-ation-

diffusion equation (1.4), we look for self-similar profiles instead. Self-similar profiles can be stud-

ied by changing variables in (1.4) so that stationary states of the rescaled equation correspond to

self-similar profiles of the original system. Further, we give some main results of optimal trans-

portation needed for the analysis of Sections 3 and 4. In Section 3, we establish several functional

inequalities of HLS type that allow us to make a connection between minimisers of Fm,k and

stationary states of (1.4), with similar results for the rescaled system. Section 4 investigates the

long-time asymptotics where we demonstrate convergence to equilibrium inWasserstein distance

under certain conditions, in some cases with an explicit rate. Finally, in Section 5, we provide
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3. 1D Fair-Competition Regime

numerical simulations of system (1.4) to illustrate the properties of equilibria and self-similar pro-

files in the different parameter regimes for the fair-competition regime. In Section 6, we use the

numerical scheme to explore the asymptotic behaviour of solutions in the diffusion- and attraction-

dominated regimes.

2 Preliminaries

2.1 Stationary states: definition & basic properties

Let us define precisely the notion of stationary states to the aggregation-diffusion equation (1.4).

Definition 2.1. Given ρ̄ P L1
` pRq X L8 pRq with ||ρ̄||1 “ 1, it is a stationary state for the evolution

equation (1.4) if ρ̄m P W1,2
loc pRq, BxS̄k P L1

loc pRq, and it satisfies

Bxρ̄
m “ ´2χ ρ̄BxS̄k

in the sense of distributions in R. If k P p´1, 0q, we further require ρ̄ P C0,α pRq with α P p´k, 1q.

In fact, the function Sk and its gradient defined in (1.5) satisfy even more than the regularity

BxSk P L
1
loc pRq required in Definition 2.1. We have from Chapter 2 Lemma 2.2:

Lemma 2.2. Let ρ P L1
` pRq X L8 pRq with ||ρ||1 “ 1. If k P p0, 1q, we additionally assume |x|kρ P

L1 pRq. Then the following regularity properties hold:

i) Sk P L8loc pRq for 0 ă k ă 1 and Sk P L8 pRq for ´1 ă k ă 0.

ii) BxSk P L8 pRq for k P p´1, 1qzt0u, assuming additionally ρ P C0,α pRq with α P p´k, 1q in the

range ´1 ă k ă 0.

Furthermore, for certain cases, see Chapter 2, there are no stationary states to (1.4) in the sense

of Definition 2.1 (for a dynamical proof of this fact, see Remark 4.6 in Section 4.1.2), and so the

scale invariance of (1.4) motivates us to look for self-similar solutions instead. To this end, we

rescale equation (1.4) to a non-linear Fokker–Planck type equation as in [100]. Let us define

upt, xq :“ αptqρ pβptq, αptqxq ,

where ρpt, xq solves (1.4) and the functions αptq, βptq are to be determined. If we assume up0, xq “

ρp0, xq, then upt, xq satisfies the rescaled drift-diffusion equation
$

’

&

’

%

Btu “ Bxxu
m ` 2χBx pu BxSkq ` Bx pxuq , t ą 0 , x P R ,

upt “ 0, xq “ ρ0pxq ě 0 ,
ż 8

´8

ρ0pxq dx “ 1 ,
ż 8

´8

xρ0pxq dx “ 0 ,
(2.7)
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for the choices

αptq “ et, βptq “

$

’

&

’

%

1
2´k

`

ep2´kqt ´ 1
˘

, if k ‰ 2 ,

t, if k “ 2 ,
(2.8)

and with BxSk given by (1.5) with u instead of ρ. By differentiating the centre of mass of u, we see

easily that
ż

R
xupt, xq dx “ e´t

ż

R
xρ0pxq dx “ 0 , @t ą 0 ,

and so the initial zero centre of mass is preserved for all times. Self-similar solutions to (1.4) now

correspond to stationary solutions of (2.7). Similar to Definition 2.1, we state what we exactly

mean by stationary states to the aggregation-diffusion equation (2.7).

Definition 2.3. Given ū P L1
` pRq X L8 pRq with ||ū||1 “ 1, it is a stationary state for the evolution

equation (2.7) if ūm P W1,2
loc pRq, BxS̄k P L1

loc pRq, and it satisfies

Bxū
m “ ´2χ ūBxS̄k ´ x ū

in the sense of distributions in R. If ´1 ă k ă 0, we further require ū P C0,α pRq with α P p´k, 1q.

From now on, we switch notation from u to ρ for simplicity, it should be clear from the context

if we are in original or rescaled variables. In fact, stationary states as defined above have even

more regularity:

Lemma 2.4. Let k P p´1, 1qzt0u and χ ą 0.

(i) If ρ̄ is a stationary state of equation (1.4) with |x|kρ̄ P L1 pRq in the case 0 ă k ă 1, then ρ̄ is

continuous on R.

(ii) If ρ̄resc is a stationary state of equation (2.7) with |x|kρ̄resc P L1 pRq in the case 0 ă k ă 1, then ρ̄resc
is continuous on R.

In the case k ă 0, we furthermore have a non-linear algebraic equation for stationary states as

shown in Chapter 2 Corollary 2.5:

Corollary 2.5 (Necessary Condition for Stationary States). Let k P p´1, 0q and χ ą 0.

(i) If ρ̄ is a stationary state of equation (1.4), then ρ̄ P W1,8 pRq and it satisfies

ρ̄pxqm´1 “
pm´ 1q
m

`

Ckrρ̄spxq ´ 2χ S̄kpxq
˘

`
, @x P R ,

where Ckrρ̄spxq is constant on each connected component of supp pρ̄q.

(ii) If ρ̄resc is a stationary state of equation (2.7), then ρ̄resc P W1,8
loc pRq and it satisfies

ρ̄rescpxq
m´1 “

pm´ 1q
m

ˆ

Ck,rescrρ̄spxq ´ 2χ S̄kpxq ´
|x|2

2

˙

`

, @x P R ,

where Ck,rescrρ̄spxq is constant on each connected component of supp pρ̄rescq.
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2.2 Overview of results in the fair-competition regime

It is worth noting that the functional Fm,krρs possesses remarkable homogeneity properties, see

Chapter 1 Section 3.1. We will here only concentrate on the one-dimensional fair-competition

regime m ` k “ 1, and denote the corresponding energy functional by Fkrρs “ F1´k,krρs. For a

definition of the different regimes and detailed explanations and references, see Chapter 1 Defini-

tion 3.1. An overview of the parameter space pk,mq and the different regimes is given in Chapter

1 Figure 1.4. Notice that the functional Fk is homogeneous in the fair-competition regime, i.e.,

Fkrρλs “ λ´kFkrρs .

In this chapter, we wil first do a review of the main results known in one dimension about the sta-

tionary states and minimisers of the aggregation-diffusion equation in the fair-competition case.

The novelties will be showing the functional inequalities independently of the flow and studying

the long-time asymptotics of the equations (1.4) and (2.7) by exploiting the one dimensional set-

ting. The analysis in the fair-competition regime depends on the sign of k, see Chapter 1 Definition

3.7, andwe therefore split our investigations into the porousmedium case (k ă 0), and the fast dif-

fusion case (k ą 0). More information on the logarithmic case (k “ 0) can be found in [62]. When

dealing with the energy functional Fk, we work in the set of non-negative normalised densities,

Y :“
"

ρ P L1
` pRq X Lm pRq : ||ρ||1 “ 1 ,

ż

xρpxq dx “ 0
*

.

In rescaled variables, equation (2.7) is the formal gradient flow of the rescaled free energy func-

tional Fk,resc, which is complemented with an additional quadratic confinement potential,

Fk,rescrρs “ Fkrρs `
1
2Vrρs , Vrρs “

ż

R
|x|2ρpxq dx .

Defining the set Y2 :“ tρ P Y : Vrρs ă 8u, we see that Fk,resc is well-defined and finite on Y2.

Thanks to the formal gradient flow structure in the EuclideanWasserstein metricW, we can write

the rescaled equation (2.7) as

Btρ “ ´∇WFk,rescrρs .

In what follows, we will make use of a different characterisation of stationary states based on

some integral reformulation of the necessary condition stated in Corollary 2.5. This characterisa-

tion was also the key idea in [62] to improve on the knowledge of the asymptotic stability of steady

states and the functional inequalities behind.

Lemma 2.6 (Characterisation of stationary states). Let k P p´1, 1qzt0u,m “ 1´ k and χ ą 0.

(i) Any stationary state ρ̄k P Y of system (1.4) can be written in the form

ρ̄kppq
m “ χ

ż

R

ż 1

0
|q|1´mρ̄kpp´ sqqρ̄kpp´ sq ` qq dsdq . (2.9)

Moreover, if such a stationary state exists, it satisfies Fkrρ̄ks “ 0.
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(ii) Any stationary state ρ̄k,resc P Y2 of system (2.7) can be written in the form

ρ̄k,rescppq
m “

ż

R

ż 1

0

ˆ

χ|q|1´m `
|q|2

2

˙

ρ̄k,rescpp´ sqqρ̄k,rescpp´ sq ` qq dsdq . (2.10)

Moreover, it satisfies

Fk,rescrρ̄k,rescs “
m` 1

2pm´ 1q Vrρ̄k,rescs “
ˆ

1
2 ´

1
k

˙

Vrρ̄k,rescs . (2.11)

Proof. We can apply the same methodology as for the logarithmic case (Lemma 2.3, [62]). We will

only prove (2.9), identity (2.10) can be deduced in a similar manner. We can see directly from the

equation that all stationary states of (1.4) in Y satisfy

Bx pρ̄
m
k q ` 2χρ̄kBxS̄k “ 0 .

Hence, if k P p0, 1q, we can write for any test function ϕ P C8c pRq

0 “ ´
ż

R
ϕ1ppqρ̄mk ppq dp` 2χ

ĳ

RˆR

ϕpxq|x´ y|k´2px´ yqρ̄kpxqρ̄kpyq dxdy

“ ´

ż

R
ϕ1ppqρ̄mk ppq dp` χ

ĳ

RˆR

ˆ

ϕpxq ´ ϕpyq

x´ y

˙

|x´ y|kρ̄kpxqρ̄kpyq dxdy .

For k P p´1, 0q, the term BxS̄k is a singular integral, and thus writes

BxS̄kpxq “ lim
εÑ0

ż

Bcpx,εq

|x´ y|k´2px´ yqρ̄kpyq dy

“

ż

R
|x´ y|k´2px´ yq pρ̄kpyq ´ ρ̄kpxqq dy .

The singularity disappears when integrating against a test function ϕ P C8c pRq,
ż

R
ϕpxqBxS̄kpxqρ̄kpxq dx “

1
2

ĳ

RˆR

ˆ

ϕpxq ´ ϕpyq

x´ y

˙

|x´ y|kρ̄kpxqρ̄kpyq dxdy . (2.12)

In order to prove (2.12), let us define

fεpxq :“ ϕpxq

ż

Bcpx,εq

BxWkpx´ yqρ̄kpyq dy.

Then by definition of the Cauchy Principle Value, fεpxq Ñ ϕpxqBxS̄kpxq pointwise for almost every

x P R as εÑ 0. Further, we have for 0 ă ε ă 1,

|fεpxq| “ |ϕpxq|

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Bcpx,εqXBpx,1q
BxWkpx´ yqρ̄kpyq dy `

ż

Bcpx,εqXBcpx,1q
BxWkpx´ yqρ̄kpyq dy

ˇ

ˇ

ˇ

ˇ

ˇ

ď |ϕpxq|

˜
ˇ

ˇ

ˇ

ˇ

ˇ

ż

Bcpx,εqXBpx,1q
BxWkpx´ yqρ̄kpyq dy

ˇ

ˇ

ˇ

ˇ

ˇ

`

ż

|x´y|ě1
|x´ y|k´1ρ̄kpyq dy

¸

ď |ϕpxq|

˜
ˇ

ˇ

ˇ

ˇ

ˇ

ż

Bcpx,εqXBpx,1q
BxWkpx´ yqρ̄kpyq dy

ˇ

ˇ

ˇ

ˇ

ˇ

` 1
¸
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Since BxWk is anti-symmetric, the term
ş

Bcpx,εqXBpx,1q BxWkpx ´ yq dy vanishes and we are thus

free to subtract it. Using the fact that ρ̄k P C0,αpRq for some α P p´k, 1q, we have
ˇ

ˇ

ˇ

ˇ

ˇ

ż

Bcpx,εqXBpx,1q
BxWkpx´ yqρ̄kpyq dy

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Bcpx,εqXBpx,1q
BxWkpx´ yq rρ̄kpyq ´ ρ̄kpxqs dy

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż

Bcpx,εqXBpx,1q
|x´ y|k´1 |ρ̄kpyq ´ ρ̄kpxq| dy

ď

ż

Bcpx,εqXBpx,1q
|x´ y|k`α´1 dy

“
2

k ` α

`

1´ εk`α
˘

ď
2

k ` α
.

We conclude that |fεpxq| ď
´

2`k`α
k`α

¯

|ϕpxq| for all 0 ă ε ă 1, and therefore by Lebesgue’s domi-

nated convergence theorem,
ż

R
ϕpxqBxS̄kpxqρ̄kpxq dx “

ż

R
lim
εÑ0

fεpxqρ̄kpxq dx “ lim
εÑ0

ż

R
fεpxqρ̄kpxq dx

“ lim
εÑ0

ĳ

|x´y|ěε

ϕpxq|x´ y|k´2px´ yqρ̄kpxqρ̄kpyq dxdy

“
1
2 lim
εÑ0

ĳ

|x´y|ěε

ˆ

ϕpxq ´ ϕpyq

x´ y

˙

|x´ y|kρ̄kpxqρ̄kpyq dxdy

“
1
2

ĳ

RˆR

ˆ

ϕpxq ´ ϕpyq

x´ y

˙

|x´ y|kρ̄kpxqρ̄kpyq dxdy .

This concludes the proof of (2.12). Hence, we obtain for any k P p´1, 1qzt0u,

0 “ ´
ż

R
ϕ1ppqρ̄mk ppq dp` χ

ĳ

RˆR

ˆ

ϕpxq ´ ϕpyq

x´ y

˙

|x´ y|kρ̄kpxqρ̄kpyq dxdy

“ ´

ż

R
ϕ1ppqρ̄mk ppq dp` χ

ĳ

RˆR

ż 1

0
ϕ1 pp1´ sqx` syq |x´ y|kρ̄kpxqρ̄kpyq dsdxdy

“ ´

ż

R
ϕ1ppqρ̄mk ppq dp` χ

ż

R
ϕ1ppq

"
ż

R

ż 1

0
|q|kρ̄kpp´ sqqρ̄kpp´ sq ` qq dsdq

*

dp

and so (2.9) follows up to a constant. Since both sides of (2.9) have mass one, the constant is zero.

To see that Fkrρ̄ks “ 0, we substitute (2.9) into (1.1) and use the same change of variables as above.

Finally, identity (2.11) is a consequence of various homogeneities. For every stationary state

ρ̄k,resc of (2.7), the first variation δFk,resc
δρ rρ̄k,rescs “ m{pm´1qρ̄m´1

k,resc`2χWk˚ρ̄k,resc`|x|
2{2vanishes on

the support of ρ̄k,resc and hence it follows that for dilations ρ̄λpxq :“ λρ̄k,rescpλxq of the stationary

state ρ̄k,resc:

´kFk,rescrρ̄k,rescs `
ˆ

k

2 ´ 1
˙

Vrρ̄k,rescs “
d

dλ
Fk,rescrρ̄λs

ˇ

ˇ

ˇ

ˇ

λ“1

“

ż

R

ˆ

δFk,resc
δρ

rρ̄λspxq
dρ̄λ
dλ
pxq

˙

dx

ˇ

ˇ

ˇ

ˇ

λ“1
“ 0 .
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In the fair-competition regime, attractive and repulsive forces are in balance m ` k “ 1, and so

(2.11) follows.

2.3 Optimal transport tools

This sub-section summarises the main results of optimal transportation we will need. They were

already used for the case of logarithmic HLS inequalities and the classical Keller–Segel model in

1D and radial 2D, see [62], where we refer for detailed proofs.

Let ρ̃ and ρ be two density probabilities. According to [53, 233], there exists a convex function

ψ whose gradient pushes forward the measure ρ̃paqda onto ρpxqdx: ψ1# pρ̃paqdaq “ ρpxqdx. This

convex function satisfies the Monge-Ampère equation in the weak sense: for any test function

ϕ P CbpRq, the following identity holds true
ż

R
ϕpψ1paqqρ̃paq da “

ż

R
ϕpxqρpxq dx . (2.13)

The convex map is unique a.e. with respect to ρ and it gives a way of interpolating measures. In

fact, the interpolating curve ρs, s P r0, 1s, with ρ0 “ ρ and ρ1 “ ρ̃ can be defined as ρspxq dx “

psψ1 ` p1 ´ sqIdqpxq#ρpxq dx where Id stands for the identity map in R. This interpolating curve

is actually the minimal geodesic joining the measures ρpxqdx and ρ̃pxqdx. The notion of convex-

ity associated to these interpolating curves is nothing else than convexity along geodesics, intro-

duced and called displacement convexity in [234]. In one dimension, the displacement convex-

ity/concavity of functionals is easier to check as seen in [85, 98]. The convexity of the functionals

involved can be summarised as follows [234, 85]:

Theorem 2.7. The functional Umrρs is displacement-convex provided thatm ě 0. The functional Wkrρs

is displacement-concave if k P p´1, 1q.

Thismeanswe have to dealwith convex-concave compensations. On the other hand, regularity

of the transport map is a complicatedmatter. Here, as it was already done in [62], we will only use

the fact that the Hessian measure detHD2ψpaqda can be decomposed in an absolute continuous

part detAD2ψpaqda and a positive singular measure (Chapter 4, [295]). Moreover, it is known

that a convex function ψ has Aleksandrov second derivativeD2
Aψpaq almost everywhere and that

detAD2ψpaq “ detD2
Aψpaq. In particular we have detHD2ψpaq ě detAD2ψpaq. The formula for

the change of variables will be important when dealing with the internal energy contribution. For

any measurable function U , bounded below such that Up0q “ 0 we have [234]
ż

R
Upρ̃pxqq dx “

ż

R
U

ˆ

ρpaq

detAD2ψpaq

˙

detAD2ψpaq da . (2.14)

Luckily, the complexity of Brenier’s transport problem dramatically reduces in one dimension.

More precisely, the transport map ψ1 is a non-decreasing function, therefore it is differentiable a.e.
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and it has a countable number of jump singularities. The singular part of the positive measure

ψ2pxq dx corresponds to having holes in the support of the density ρ. Also, the Aleksandrov sec-

ond derivative ofψ coincideswith the absolutely continuous part of the positivemeasureψ2pxq dx

that will be denoted by ψ2acpxq dx. Moreover, the a.e. representative ψ1 can be chosen to be the

distribution function of the measure ψ2pxq dx and it is of bounded variation locally, with lateral

derivatives existing at all points and therefore, we can always write for all a ă b

ψ1pbq ´ ψ1paq “

ż

pa,bs

ψ2pxq dx ě

ż b

a

ψ2acpxq dx

for a well chosen representative of ψ1.

The following Lemma proved in [62] will be used to estimate the interaction contribution in

the free energy, and in the evolution of the Wasserstein distance.

Lemma 2.8. Let K : p0,8q Ñ R be an increasing and strictly concave function. Then, for any pa, bq

K
ˆ

ψ1pbq ´ ψ1paq

b´ a

˙

ě

ż 1

0
K
`

ψ2acpra, bssq
˘

ds , (2.15)

where the convex combination of a and b is given by ra, bss “ p1´ sqa` sb. Equality is achieved in (2.15)

if and only if the distributional derivative of the transport map ψ2 is a constant function.

Optimal transport is a powerful tool for reducing functional inequalities onto pointwise in-

equalities (e.g. matrix inequalities). In other words, to pass frommicroscopic inequalities between

particle locations to macroscopic inequalities involving densities. We highlight for example the

seminal paper by McCann [234] where the displacement convexity issue for some energy func-

tional is reduced to the concavity of the determinant. We also refer to the works of Barthe [17, 18]

and Cordero-Erausquin et al. [117]. The previous lemma will allow us to connect microscopic to

macroscopic inequalities by simple variations of the classical Jensen inequality.

3 Functional inequalities

The first part of analysing the aggregation-diffusion equations (1.4) and (2.7) is devoted to the

derivation of functional inequalities which are all variants of theHardy-Littlewood-Sobolev (HLS)

inequality also known as the weak Young’s inequality [218, Theorem 4.3]:
ĳ

RˆR

fpxq|x´ y|kfpyq dxdy ď CHLSpp, q, λq}f}Lp}f}Lq , (3.16)

1
p
`

1
q
“ 2` k , p, q ą 1 , k P p´1, 0q .
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3. Functional inequalities

Theorem 3.1 (Variation of HLS). Let k P p´1, 0q andm “ 1´ k. For f P L1pRq X LmpRq, we have
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ĳ

RˆR

fpxq|x´ y|kfpyqdxdy

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď C˚||f ||
1`k
1 ||f ||mm, (3.17)

where C˚ “ C˚pkq is the best constant.

Proof. The inequality is a direct consequence of the standard HLS inequality (3.16) by choosing

p “ q “ 2
2`k , and of Hölder’s inequality. For k P p´1, 0q and for any f P L1pRq X LmpRq, we have

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ĳ

RˆR

fpxq|x´ y|kfpyqdxdy

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď CHLS ||f ||
2
p ď CHLS ||f ||

1`k
1 ||f ||mm.

Consequently, C˚ is finite and bounded from above by CHLS .

For instance inequality (3.17) is a consequence of interpolation between L1 and Lm. We de-

velop in this section another strategy which enables to recover inequality (3.17), as well as further

variations which contain an additional quadratic confinement potential. This method involves

two main ingredients:

• First it is required to know a priori that the inequality possesses some extremal function

denoted e.g. by ρ̄pxq (characterised as a critical point of the energy functional). This is not

an obvious task due to the intricacy of the equation satisfied by ρ̄pxq. Without this a priori

knowledge, the proof of the inequality remains incomplete. The situation is in fact similar

to the case of convex functionals, where the existence of a critical point ensures that it is a

global minimiser of the functional. The existence of optimisers was shown in Chapter 2.

• Second we invoke some simple lemma at the microscopic level. It is nothing but the Jensen’s

inequality for the case of inequality (3.17) (which is somehow degenerated). It is a variation

of Jensen’s inequality in the rescaled case.

3.1 Porous medium case k ă 0

In the porous medium case, we have k P p´1, 0q and hencem P p1, 2q. For χ “ 0, this corresponds

to the well-studied porous medium equation (see [289] and references therein). It follows directly

from Theorem 3.1, that for all ρ P Y and for any χ ą 0,

Fkrρs ě
1´ χC˚
m´ 1 ||ρ||mm ,

where C˚ “ C˚pkq is the optimal constant defined in (3.17). Since global minimisers have always

smaller or equal energy than stationary states, and stationary states have zero energy by Lemma

2.6, it follows that χ ě 1{C˚. We define the critical interaction strength by

χcpkq :“ 1
C˚pkq

, (3.18)
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3. 1D Fair-Competition Regime

and so for χ “ χcpkq, all stationary states of equation (1.4) are global minimisers of Fk. From

Theorem 2.6 in Chapter 2, we further know that there exist global minimisers of Fk only for crit-

ical interaction strength χ “ χcpkq and they are radially symmetric non-increasing, compactly

supported and uniformly bounded. Further, all minimisers of Fk are stationary states of equation

(1.4).

From the above, we can also directly see that for 0 ă χ ă χcpkq, no stationary states exist for

equation (1.4). Further, there are no minimisers of Fk. However, there exist global minimisers

of the rescaled free energy Fk,resc and they are radially symmetric non-increasing and uniformly

bounded stationary states of the rescaled equation (2.7) (Chapter 2 Theorem 2.7).

Theorem 3.2. Let k P p´1, 0q andm “ 1´ k. If (1.4) admits a stationary density ρ̄k in Y , then for any

χ ą 0

Fkrρs ě 0, @ρ P Y

with the equality cases given dilations of ρ̄k. In other words, for critical interaction strength χ “ χcpkq,

inequality (3.17) holds true for all f P L1pRq X LmpRq.

Proof. For a given stationary state ρ̄k P Y and solution ρ P Y of (1.4), we denote by ψ the con-

vex function whose gradient pushes forward the measure ρ̄kpaqda onto ρpxqdx: ψ1# pρ̄kpaqdaq “

ρpxqdx. Using (2.14), the functional Fkrρs rewrites as follows:

Fkrρs “
1

m´ 1

ż

R

ˆ

ρ̄kpaq

ψ2acpaq

˙m´1
ρ̄kpaq da

`
χ

k

ĳ

RˆR

ˆ

ψ1paq ´ ψ1pbq

a´ b

˙k

|a´ b|kρ̄kpaqρ̄kpbq dadb

“
1

m´ 1

ż

R

`

ψ2acpaq
˘1´m

ρ̄kpaq
m da

`
χ

1´m

ĳ

RˆR

ˆ

ψ1paq ´ ψ1pbq

a´ b

˙1´m
|a´ b|1´mρ̄kpaqρ̄kpbq dadb ,

where ψ1 non-decreasing. By Lemma 2.6 (i), we can write for any γ P R,
ż

R
pψ2acpaqq

´γ ρ̄kpaq
m da “ χ

ĳ

RˆR

@

ψ2acpra, bsq
´γ

D

|a´ b|1´mρ̄kpaqρ̄kpbq dadb ,

where
@

upra, bsq
D

“

ż 1

0
upra, bssq ds

and ra, bss “ p1´ sqa` sb for any a, b P R and u : RÑ R`. Hence, choosing γ “ m´ 1,

Fkrρs “
χ

m´ 1

ĳ

RˆR

#

@

ψ2acpra, bsq
1´mD´

ˆ

ψ1paq ´ ψ1pbq

a´ b

˙1´m
+

|a´ b|1´mρ̄kpaqρ̄kpbq dadb .

144



3. Functional inequalities

Using the strict concavity and increasing character of the power function´p¨q1´m and Lemma 2.8,

we deduce Fkrρs ě 0. Equality arises if and only if the derivative of the transport map ψ2 is a

constant function, i.e. when ρ is a dilation of ρ̄k.

We conclude that if (1.4) admits a stationary state ρ̄k P Y , then Fkpρq ě 0 for any ρ P Y . This

functional inequality is equivalent to (3.17) if we choose χ “ χcpkq.

Remark 3.3 (Comments on the Inequality Proof). In the case of critical interaction strength χ “ χcpkq,

Theorem 3.2 provides an alternative proof for the variant of the HLS inequality Theorem 3.1 assuming

the existence of a stationary density for (1.4). More precisely, the inequalities Fkrρs ě 0 and (3.17) are

equivalent if χ “ χcpkq. However, the existence proof Proposition 3.4 in Chapter 2 crucially uses the HLS

type inequality (3.17). If we were able to show the existence of a stationary density by alternative methods,

e.g. fixed point arguments, we would obtain a full alternative proof of inequality (3.17).

Remark 3.4 (Logarithmic Case). There are no global minimisers of F0 in the logarithmic case k “ 0,

m “ 1 except for critical interaction strength χ “ 1. To see this, note that the characterisation of stationary

states [62, Lemma 2.3] which corresponds to Lemma 2.6(i) for the case k ‰ 0, holds true for any χ ą 0.

Similarly, the result that the existence of a stationary state ρ̄ implies the inequality F0rρs ą F0rρ̄s [62,

Theorem 1.1] holds true for any χ ą 0, and corresponds to Theorem 3.2 in the case k ‰ 0. Taking dilations

of Cauchy’s density (1.3), ρλpxq “ λρ̄0 pλxq, we have F0rρλs “ p1´χq log λ`F0rρ̄0s, and letting λÑ8

for super-critical interaction strengthsχ ą 1, we see thatF0 is not bounded below. Similarly, for sub-critical

interaction strengths 0 ă χ ă 1, we take the limit λÑ 0 to see that F0 is not bounded below. Hence, there

are no global minimisers of F0 and also no stationary states (by equivalence of the two) except if χ “ 1.

Further, we obtain the following uniqueness result:

Corollary 3.5 (Uniqueness in the Critical Case). Let k P p´1, 0q and m “ 1 ´ k. If χ “ χcpkq, then

there exists a unique stationary state (up to dilations) to equation (1.4), with second moment bounded, and

a unique minimiser (up to dilations) for Fk in Y .

Proof. By Theorem 2.6 in Chapter 2, there exists a minimiser of Fk in Y , which is a stationary state

of equation (1.4). Assume (1.4) admits two stationary states ρ̄1 and ρ̄2. By Lemma 2.6, Fkrρ̄1s “

Fkrρ̄2s “ 0. It follows from Theorem 3.2 that ρ̄1 and ρ̄2 are dilations of each other.

A functional inequality similar to (3.17) holds true for sub-critical interaction strengths in

rescaled variables:

Theorem 3.6 (Rescaled Variation of HLS). For any χ ą 0, let k P p´1, 0q andm “ 1´k. If ρ̄k,resc P Y2

is a stationary state of (2.7), then we have for any solution ρ P Y2,

Fk,rescrρs ě Fk,rescrρ̄k,rescs

with the equality cases given by ρ “ ρ̄k,resc.
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3. 1D Fair-Competition Regime

The proof is based on two lemmatas: the characterisation of steady states Lemma 2.6 and a

microscopic inequality. The difference with the critical case lies in the nature of this microscopic

inequality: Jensen’s inequality needs to be replaced here as homogeneity has been broken. To

simplify the notation, we denote by uacpsq :“ ψ2ac pra, bssq as above with ra, bss :“ p1´ sqa` sb for

any a, b P R. We also introduce the notation

@

u
D

:“ ψ1paq ´ ψ1pbq

a´ b
“

ż 1

0
ψ2pra, bssq ds

with upsq :“ ψ2 pra, bssq. Both notations coincide when ψ2 has no singular part. Note there is a

little abuse of notation since ψ2 is a measure and not a function, but this notation allows us for

simpler computations below.

Lemma 3.7. Let α, β ą 0 andm ą 1. For any a, b P R and any convex function ψ : RÑ R:

α
@

ψ2pra, bsq
D1´m

` βp1´mq
@

ψ2pra, bsq
D2
ď pα` 2βq

@ `

ψ2acpra, bsq
˘1´m D

´ βpm` 1q , (3.19)

where equality arises if and only if ψ2 ” 1 a.e.

Proof. We have again by Lemma 2.8,

pα` 2βq
@

u
D1´m

ď pα` 2βq
@

u1´m
ac

D

,

thus

α
@

u
D1´m

` βp1´mq
@

u
D2
ď pα` 2βq

@

u1´m
ac

D

´ β
”

2
@

u
D1´m

` pm´ 1q
@

u
D2
ı

.

We conclude since the quantity in square brackets verifies

@X ą 0 : 2X1´m ` pm´ 1qX2 ě m` 1 .

Equality arises if and only if u is almost everywhere constant and
@

u
D

“ 1.

Proof of Theorem 3.6. We denote by ρ̄ “ ρ̄k,resc P Y2 a stationary state of (2.7) for the sake of clarity.

Then for any solution ρ P Y2 of (2.7), there exists a convex function ψ whose gradient pushes

forward the measure ρ̄paqda onto ρpxqdx,

ψ1# pρ̄paqdaq “ ρpxqdx.

Similarly to the proof of Theorem 3.2, the functional Fk,rescrρs rewrites as follows:

Fk,rescrρs “
1

m´ 1

ż

R
pψ2acpaqq

1´mρ̄paqm da

`
χ

k

ĳ

RˆR

ˆ

ψ1paq ´ ψ1pbq

a´ b

˙k

|a´ b|kρ̄paqρ̄pbq dadb

`
1
4

ĳ

RˆR

ˆ

ψ1paq ´ ψ1pbq

a´ b

˙2
|a´ b|2ρ̄paqρ̄pbq dadb .
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From the characterisation of steady states Lemma 2.6 (ii), we know that for all γ P R:
ż

R
pψ2acpaqq

´γ ρ̄paqm da “

ĳ

RˆR

@

ψ2acpra, bsq
´γ

D

ˆ

χ|a´ b|1´m `
|a´ b|2

2

˙

ρ̄paqρ̄pbq dadb .

Choosing γ “ m´ 1, we can rewrite the energy functional as

pm´ 1qFk,rescrρs “
ĳ

RˆR

@

ψ2acpra, bsq
1´mD

ˆ

χ|a´ b|1´m `
|a´ b|2

2

˙

ρ̄paqρ̄pbq dadb

´

ĳ

RˆR

´

@

ψ2pra, bsq
D1´m

χ|a´ b|1´m

`
@

ψ2pra, bsq
D2
p1´mq |a´ b|

2

4

˙

ρ̄paqρ̄pbq dadb

ě pm` 1q
ĳ

RˆR

|a´ b|2

4 ρ̄paqρ̄pbq dadb

“
m` 1

2

ż

R
|a|2ρ̄paq da “ pm´ 1qFk,rescrρ̄s .

Here, we use the variant of Jensen’s inequality (3.19) and for the final step, identity (2.11). Again

equality holds true if and only if ψ2 is identically one.

Remark 3.8 (New Inequality). Up to our knowledge, the functional inequality in Theorem 3.2 is not

known in the literature. Theorem 3.6 makes a connection between equation (2.7) and this new general

functional inequality by showing that stationary states of the rescaled equation (2.7) correspond to global

minimisers of the free energy functional Fk,resc. The converse was shown in Theorem 2.7 in Chapter 2.

As a direct consequence of Theorem 3.6 and the scaling given by (2.8), we obtain the following

corollaries:

Corollary 3.9 (Uniqueness in the Sub-Critical Case). Let k P p´1, 0q andm “ 1´k. If 0 ă χ ă χcpkq,

then there exists a unique stationary state with second moment bounded to the rescaled equation (2.7), and

a unique minimiser for Fk,resc in Y2.

Proof. By Theorem 2.7 in Chapter 2, there exists a minimiser of Fk,resc in Y2 for sub-critical inter-

action strengths 0 ă χ ă χcpkq, which is a stationary state of equation (2.7). Assume (2.7) admits

two stationary states ρ̄1 and ρ̄2. By Theorem 3.6, Fk,rescrρ̄1s “ Fk,rescrρ̄2s and it follows that ρ̄1 and

ρ̄2 are dilations of each other.

Corollary 3.10 (Self-Similar Profiles). For 0 ă χ ă χcpkq, let k P p´1, 0q andm “ 1´ k. There exists

a unique (up to dilations) self-similar solution ρ to (1.4) given by

ρpt, xq “ pp2´ kqt` 1q
1
k´2 u

´

pp2´ kqt` 1q
1
k´2 x

¯

,

where u is the unique minimiser of Fk,resc in Y2.
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Corollary 3.11 (Non-Existence Super-Critical and Critical Case). (i) Ifχ ą χcpkq, there are no sta-

tionary states of equation (1.4) in Y , and the free energy functional Fk does not admit minimisers in

Y .

(ii) If χ ě χcpkq, there are no stationary states of the rescaled equation (2.7) in Y2, and the rescaled free

energy functional Fk,resc does not admit minimisers in Y2.

Proof. For critical χcpkq, there exists a minimiser ρ̄ P Y of Fk by Theorem 2.6 in Chapter 2, which

is a stationary state of equation (1.4) by Theorem 3.14 in Chapter 2. For χ ą χcpkq, we have

Fkrρ̄s “ Umrρ̄s ` χWkrρ̄s ă Umrρ̄s ` χcpkqWkrρ̄s “ 0

since stationary states have zero energy by Lemma 2.6 (i). However, by Theorem 3.2, if there exists

a stationary state for χ ą χcpkq, then all ρ P Y satisfy Fkrρs ě 0, which contradicts the above.

Therefore, the assumptions of the theorem cannot hold and so there are no stationary states in

original variables. Further, taking dilations ρλpxq “ λρ̄ pλxq, we have Fkrρλs “ λ´kFkrρ̄s ă 0, and

letting λÑ8, we see that infρPY Fkrρs “ ´8, and so (i) follows.

In order to prove (ii), observe that the minimiser ρ̄ P Y of Fk for critical χ “ χcpkq is in Y2 as it

is compactly supported (Corollary 3.8 in Chapter 2). We obtain for the rescaled free energy of its

dilations

Fk,rescrρλs “ λ´kFkrρ̄s `
λ´2

2 Vrρ̄s Ñ ´8 , as λÑ8 .

Hence, Fk,resc is not bounded below in Y2. Similarly, for χ “ χcpkq,

Fk,rescrρλs “
λ´2

2 Vrρ̄s Ñ 0 , as λÑ8 ,

and so for a minimiser ρ̃ P Y2 to exist, it should satisfy Fk,rescrρ̃s ď 0. However, it follows from

Theorem 3.1 that Fk,rescrρs ě 1
2Vrρs ą 0 for any ρ P Y2, and therefore, Fk,resc does not admit

minimisers in Y2 for χ “ χcpkq.

Further, if equation (2.7) admitted stationary states in Y2 for any χ ě χcpkq, then they would be

minimisers of Fk,resc by Theorem 3.6, which contradicts the non-existence of minimisers.

Remark 3.12 (Linearisation around the stationary density). We linearise the functional Fk around

the stationary distribution ρ̄k of equation (1.4). For the perturbed measure µε “ pId ` εη1q#µ̄k, with

dµ̄kpxq “ ρ̄kpxq dx and dµεpxq “ ρεpxq dx, we have

Fkrρεs “
ε2

2 m

»

–

ż

R
η2paq2ρ̄kpaq

m da´ χcpkq

ĳ

RˆR

ˆ

η1paq ´ η1pbq

a´ b

˙2
|a´ b|1´mρ̄kpaqρ̄kpbq dadb

fi

fl

` opε2q

“
ε2

2 mχcpkq
ĳ

RˆR

!

@

η2pra, bsq2
D

´
@

η2pra, bsq
D2
)

|a´ b|1´mρ̄kpaqρ̄kpbq dadb` opε
2q .
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We define the local oscillations (in L2) of functions over intervals as

osc pa,bqpvq :“
ż 1

t“0

 

vpra, bstq ´
@

vpra, bsq
D(2

dt ě 0 .

The Hessian of the functional Fk evaluated at the stationary density ρ̄k then reads

D2Fkrρ̄kspη, ηq “ mχcpkq

ĳ

RˆR

osc pa,bqpη2q|a´ b|1´mρ̄kpaqρ̄kpbq dadb ě 0.

Similarly, we obtain for the rescaled free energy

Fk,rescrρεs “ Fk,rescrρ̄ks `
ε2

2 m
ż

R
η2paq2ρ̄kpaq

m da

´
ε2

2 mχ
ĳ

RˆR

ˆ

η1paq ´ η1pbq

a´ b

˙2
|a´ b|1´mρ̄kpaqρ̄kpbq dadb

`
ε2

4

ĳ

RˆR

ˆ

η1paq ´ η1pbq

a´ b

˙2
|a´ b|2ρ̄kpaqρ̄kpbq dadb` opε

2q

“ Fk,rescrρ̄ks

`
ε2

2

»

–mχ

ĳ

RˆR

!

@

η2pra, bsq2
D

´
@

η2pra, bsq
D2
)

|a´ b|1´mρ̄kpaqρ̄kpbq dadb

`

ĳ

RˆR

"

m

2
@

η2pra, bsq2
D

`
1
2
@

η2pra, bsq
D2
*

|a´ b|2ρ̄kpaqρ̄kpbq dadb

fi

fl` opε2q

to finally conclude

Fk,rescrρεs “ Fk,rescrρ̄ks

`
ε2

2

»

–

ĳ

RˆR

osc pa,bqpη2q
´

mχ|a´ b|1´m `
m

2 |a´ b|
2
¯

ρ̄kpaqρ̄kpbq dadb

`
m` 1

2

ĳ

RˆR

`

η1paq ´ η1pbq
˘2
ρ̄kpaqρ̄kpbq dadb

fi

fl` opε2q ,

and hence, the Hessian evaluated at the stationary state ρ̄k of (2.7) is given by the expression

D2Fk,rescrρ̄kspη, ηq “
ĳ

RˆR

osc pa,bqpη2q
´

mχ|a´ b|1´m `
m

2 |a´ b|
2
¯

ρ̄kpaqρ̄kpbq dadb

` pm` 1q
ż

R
η1paq2ρ̄kpaq da ě 0 .

We have naturally that the functional Fk,resc is locally uniformly convex, with the coercivity constantm`1.

However, the local variations of Fk,resc can be large in the directions where the Brenier’s map η is large in the

C3-norm. Interestingly enough the coercivity constant does not depend on χ, even in the limit χÕ χcpkq.
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3.2 Fast diffusion case k ą 0

Not verymuch is known about the fast diffusion casewhere k P p0, 1q and hencem “ 1´k P p0, 1q,

that is diffusion is fast in regions where the density of particles is low. In Chapter 2, we showed

that equation (1.4) has no radially symmetric non-increasing stationary states with kth moment

bounded, and there are no radially symmetric non-increasing global minimisers for the energy

functional Fk for any χ ą 0. By Theorem 2.9 in Chapter 2, there exists a continuous radially

symmetric non-increasing stationary state of the rescaled equation (2.7) for all χ ą 0. In this

sense, there is no criticality for the parameter χ. We provide here a full proof of non-criticality

by optimal transport techniques involving the analysis of the minimisation problem in rescaled

variables, showing that global minimisers exist in the right functional spaces for all values of the

critical parameter and that they are indeed stationary states - as long as diffusion is not too fast.

More precisely, we showed in Chapter 2 that global minimisers with finite energy Fk,resc can only

exist in the range 0 ă k ă 2
3 , that is

1
3 ă m ă 1. This restriction is exactly what we would expect

looking at the behaviour of the fast diffusion equation (χ “ 0) [287]. In particular, for k P p0, 1q and

m “ 1´k P p0, 1q, radially symmetric non-increasing stationary states, if they exist, are integrable

and have bounded kth moment (Chapter 2 Remarks 4.6 and 4.9). By Remarks 4.13 in Chapter 2

however, their second moment is bounded and ρm P L1 pRq if and only if k ă 2{3, in which case

they belong toY2 and their rescaled free energy is finite. This restriction corresponds to 1
3 ă m ă 1

and coincides with the regime of the one-dimensional fast diffusion equation (χ “ 0) where the

Barenblatt profile has second moment bounded and its mth power is integrable [47]. Intuitively,

adding attractive interaction to the dynamics helps to counteract the escape of mass to infinity.

However, the quadratic confinement due to the rescaling of the fast-diffusion equation is already

stronger than the additional attractive force since k ă 2 and hence, we expect that the behaviour

of the tails is dominated by the non-linear diffusion effects even for χ ą 0 as for the classical fast-

diffusion equation.

Using completely differentmethods, the non-criticality ofχhas also been observed in [116, 115]

for the limiting case in one dimension takingm “ 0, corresponding to logarithmic diffusion, and

k “ 1. The authors showed that solutions to (1.4) with pm “ 0, k “ 1q are globally defined in time

for all values of the parameter χ ą 0.

In order to establish equivalence between global minimisers and stationary states in one di-

mension, we prove a type of reversed HLS inequality providing a bound on
ş

ρm in terms of the

interaction term
ş

pWk ˚ ρqρ. The inequality gives a lower bound on the rescaled energy Fk,resc:
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Theorem 3.13. Let k P p0, 1q, m “ 1 ´ k and χ ą 0. Then ρ̄ P Y2,k is a stationary state of (2.7) if and

only if for any solution ρ P Y2,k we have the inequality

Fk,rescrρs ě Fk,rescrρ̄s

with the equality cases given by ρ “ ρ̄.

The above theorem implies that stationary states in Y2,k of the rescaled equation (2.7) are mim-

imisers of the rescaled free energy Fk,resc. Since the converse is true by Theorem 2.9 in Chapter

2, it allows us to establish equivalence between stationary states of (2.7) and minimisers of Fk,resc.

To prove Theorem 3.13, we need a result similar to Lemma 3.7:

Lemma 3.14. Let α, β ą 0 andm P p0, 1q. For any a, b P R and any convex function ψ : RÑ R:

pα` βq
@ `

ψ2acpra, bsq
˘1´m D

ď α
@

ψ2pra, bsq
D1´m

`
βp1´mq

2
@

ψ2pra, bsq
D2
`
βpm` 1q

2 , (3.20)

where equality arises if and only if ψ2 ” 1 a.e.

Proof. Denote upsq :“ ψ2 pra, bssq with ra, bss :“ p1 ´ sqa ` sb and we write uac for the absolutely

continuous part of u. We have by Lemma 2.8,

pα` βq
@

u1´m
ac

D

ď pα` βq
@

u
D1´m

.

Further by direct inspection,

@X ą 0 : 1
m´ 1 X

1´m `
1
2 X

2 ě
m` 1

2pm´ 1q ,

thus

pα` βq
@

uac
D1´m

ď α
@

u
D1´m

`
βp1´mq

2
@

u
D2
`
βpm` 1q

2

and equality arises if and only if u is almost everywhere constant and
@

u
D

“ 1.

Proof of Theorem 3.13. For a stationary state ρ̄ P Y2,k and any solution ρ P Y2,k of (2.7), there exists

a convex function ψ whose gradient pushes forward the measure ρ̄paqda onto ρpxqdx

ψ1# pρ̄paqdaq “ ρpxqdx.

From characterisation (2.10) we have for any γ P R,
ż

R

`

ψ2acpt, aq
˘´γ

ρ̄kpaq
m da “

ĳ

RˆR

ˆ

χ|a´ b|1´m `
|a´ b|2

2

˙

@

ψ2acpt, pa, bqq
´γ

D

ρ̄kpaqρ̄kpbq dadb .
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Choosing γ “ m´ 1, the functional Fk,rescrρs rewrites similarly to the proof of Theorem 3.6:

Fk,rescrρs “
1

m´ 1

ż

R
pψ2acpaqq

1´mρ̄paqm da

`
χ

1´m

ĳ

RˆR

ˆ

ψ1paq ´ ψ1pbq

a´ b

˙1´m
|a´ b|1´mρ̄paqρ̄pbq dadb

`
1
4

ĳ

RˆR

ˆ

ψ1paq ´ ψ1pbq

a´ b

˙2
|a´ b|2ρ̄paqρ̄pbq dadb

“
1

m´ 1

ĳ

RˆR

@

ψ2acpra, bsq
1´mD

ˆ

χ|a´ b|1´m `
|a´ b|2

2

˙

ρ̄paqρ̄pbq dadb

´
1

m´ 1

ĳ

RˆR

´

@

ψ2pra, bsq
D1´m

χ|a´ b|1´m

`
@

ψ2pra, bsq
D2
p1´mq |a´ b|

2

4

˙

ρ̄paqρ̄pbq dadb

Now, using the variant of Jensen’s inequality (3.20) of Lemma 3.14, this simplifies to

Fk,rescrρs ě
m` 1
m´ 1

ĳ

RˆR

|a´ b|2

4 ρ̄paqρ̄pbq dadb “
m` 1

2pm´ 1q

ż

R
|a|2ρ̄paq da “ Fk,rescrρ̄s .

Here, we used identity (2.11) for the final step. Again equality holds true if and only if ψ2 is

identically one.

Remark 3.15 (Sign of the Rescaled Free Energy). In fact, Fk,rescrρ̄s ď 0. Choosing ρλpxq “ λρ̄pλxq a

dilation of the stationary state, we obtain thanks to the homogeneity properties of the energy functional,

λ´kUmrρ̄s ` λ´kWkrρ̄s ` λ
´2Vrρ̄s “ Fk,rescrρλs ě Fk,rescrρ̄s,

and so we conclude that Fk,rescrρ̄s must be non-positive for any stationary state ρ̄ P Y2 by taking the limit

λÑ8.

Corollary 3.16 (Uniqueness). Let k P
`

0, 2
3
˘

and m “ 1 ´ k. For any χ ą 0, there exists a unique

stationary state with second and kth moment bounded to equation (2.7), and a unique minimiser for Fk,resc
in Y2,k.

Proof. By Theorem 2.9 in Chapter 2 there exists a minimiser of Fk,resc in Y2,k, which is a stationary

state of equation (2.7). Assume (2.7) admits two stationary states ρ̄1 and ρ̄2 in Y2,k. By Theorem

3.13, Fk,rescrρ̄1s “ Fk,rescrρ̄2s and so ρ̄1 “ ρ̄2.

Corollary 3.17 (Self-Similar Profiles). Let k P p0, 1q andm “ 1´ k. For any χ ą 0, if u is a symmetric

stationary state of the rescaled equation (2.7), then there exists a self-similar solution to (1.4) given by

ρpt, xq “ pp2´ kqt` 1q
1
k´2 u

´

pp2´ kqt` 1q
1
k´2 x

¯

.
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4 Long-time asymptotics

This part is devoted to the asymptotic behaviour of solutions, adapting the above computations,

ensuring e.g. uniqueness of the functional ground state, at the level of the gradient flow dynam-

ics. We will demonstrate convergence towards these ground states in Wasserstein distance under

certain conditions, in some cases with an explicit rate. Our results rely on the fact that there is

a simple expression for the Wasserstein distance in one dimension. Therefore, our methodology

cannot be extended to dimension two or more so far except possibly under radial symmetry as-

sumptions.

We assume here that solutions are smooth enough so that the operations in this section are

well-defined. Firstly, we require the mean-field potential gradient BxSkpt, xq to be well-defined

for all t ą 0 which is guaranteed if ρpt, xq has at least the same regularity at each time t ą 0 as

provided by Definition 2.1 for stationary states. From now on, we assume that solutions of (1.4)

satisfy ρpt, xq P C
´

r0, T s, C0,α
loc pRq X Y X L8 pRq

¯

with α P p´k, 1q.

Secondly, certain computations in this section remain formal unless the convex Brenier map ψ

satisfying ρpt, xqdx “ Bxψpt, xq#ρ̄kpxqdx is regular enough. As shown in Chapter 2 for the fast

diffusion regime k ą 0, stationary states are everywhere positive, and thus ψ2 is absolutely con-

tinuous. However, in the porousmedium regime k ă 0, stationary states are compactly supported,

and therefore, the following computations remain formal depending on the regularity and prop-

erties of the solutions of the evolution problem. From now on, we assume that ψ2 is absolutely

continuous whenever we talk about solutions of the evolution problems (1.4) or (2.7).

In order to analyse the asymptotic behaviour of solutions, we make use of the fact that one

can find an upper bound on the disspation of the Wasserstein-2 distance W in terms of the push-

forward between two absolutely continuous probability measures.

Theorem 4.1. Let ρ̄pxq be a stationary state to equation (1.4). For any solution ρpt, xq of (1.4), let φpt, xq

denote the convex Brenier map that pushes forward ρ̄pxq onto ρpt, xq:

ρ̄pxq dx “ Bxφpt, xq#ρpt, xq dx .

Then
d

dt
W pρptq, ρ̄q

2
ď

ż

RN

@

pBxφpt, xq ´ xq , BxTm,krρspt, xq
D

ρpt, xq dx (4.21)

with the first variation Tm,k given by (2.20) in Chapter 1. Identity (4.21) also holds true with equality

under the additional assumption that the velocity field ∇Tm,krρspt, ¨q is locally Lipschitz.

For a detailed proof, see [297, Theorem 23.9]. A similar identity can be obtained for the rescaled

equation (2.7).
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4.1 Porous medium asymptotics

4.1.1 The critical case χ “ χcpkq

In the critical case, the set of global minimisers coincides with the set of stationary states of equa-

tion (1.4) (Chapter 2 Theorem 2.6), but as we will see, it is not clear whether this set is a global

attractor in the Wasserstein sense or not. We will prove here a convergence result under some

conditions, which provides a dynamical proof of uniqueness up to dilations. Recall that in the

fair-competition regime, we have Fkrρλs “ λ´kFkrρs for any dilation ρλpxq “ λρpλxq, λ P R of a

density ρ P Y , and so every stationary state provides in fact a family of stationary states by scale

invariance. Given a density ρ P Y , |x|2ρpxq P L1
`pRq, we define the rescaling ρ1 by

ρ1pxq :“ σρpσxq , σ2 “ Vrρs “
ż

R
|x|2ρpxq dx , (4.22)

and so any stationary state ρ̄k with finite second moment has a dilation ρ̄k,1 with normalised sec-

ond moment Vrρ̄k,1s “ 1. In particular, ρ̄k,1 provides a convenient representative for the family of

stationary states formed by dilations of ρ̄k. Our aim here is to show that although uniqueness is

degenerate due to homogeneity, we have a unique representative ρ̄k,1 with second moment equal

to one. We will present here a discussion of partial results and open questions around the long-

time behaviour of solutions in the critical case.

We first recall the logarithmic case pm “ 1, k “ 0q, where the ground state is explicitly given

by Cauchy’s density ρ̄0 (1.3). The secondmomentum is thus infinite, and theWasserstein distance

to some ground state cannot be finite if the initial datum has finite second momentum. For a ρptq

satisfying (1.4), we have the estimate [62]

d

dt
Wpρptq, ρ̄0q

2 ď 0 ,

where equality holds if and only if ρptq is a dilation of ρ̄0. This makes sense only if ρp0q has infinite

second momentum, and is at finite distance from one of the equilibrium configurations. Notice

that possible ground states (dilations of Cauchy’s density) are all infinitely far from each other

with respect to the Wasserstein distance,

W pρλ1 , ρλ2q
2
“
pλ1 ´ λ2q

2

λ1λ2
Vrρ̄0s “ 8.

Dynamics have been described in [40] when the initial datum has finite second momentum: the

solution converges to a Dirac mass as time goes to `8. However, this does not hold true in the

porous medium case k P p´1, 0q, m “ 1 ´ k, since stationary states are compactly supported by

Corollary 3.9 in Chapter 2. The case where the initial data is at a finite distance from some dilation

of a thick-tail stationary state has been investigated in [37] in two dimensions.
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Proposition 4.2. For χ “ χcpkq, let ρptq satisfy (1.4) in the porous medium case k P p´1, 0q and m “

1´ k. If ρ̄k is a stationary state of (1.4), then the evolution of the Wasserstein distance to equilibrium can

be estimated by
d

dt
Wpρptq, ρ̄kq2 ď pm´ 1qFkrρptqs , (4.23)

where equality holds if and only if ρptq is a dilation of ρ̄k.

Proof. Let φ be the convex Brenier map such that ρ̄kpxqdx “ Bxφpt, xq#ρpt, xqdx and denote by

Bxψpt, xq the reverse transport map, Bxφpt, Bxψpt, aqq “ a. By (4.21), following [62, 295] and using

the regularity of ρpt, xq together with the argument as in the proof of Lemma 2.6 that allows for

the singularity of the mean-field potential gradient to disappear, we have

1
2
d

dt
Wpρptq, ρ̄kq2 ď

ż

R
pφ1pt, xq ´ xq

ˆ

B

Bx

ˆ

m

m´ 1ρpt, xq
m´1

˙

` 2χcpkqBxSkpt, xq
˙

ρpt, xq dx

“ ´

ż

R
φ2pt, xqρpt, xqm dx

` χcpkq

ĳ

RˆR

ˆ

φ1pt, xq ´ φ1pt, yq

x´ y

˙

|x´ y|kρpt, xqρpt, yq dxdy

` pm´ 1qFkrρptqs

“ ´

ż

R

`

ψ2pt, aq
˘´1 `

ψ2pt, aq
˘1´m

ρ̄kpaq
m da

` χcpkq

ĳ

RˆR

ˆ

ψ1pt, aq ´ ψ1pt, bq

a´ b

˙k´1
|a´ b|kρ̄kpaqρ̄kpbq dadb

` pm´ 1qFkrρptqs

to finally conclude that

1
2
d

dt
Wpρptq, ρ̄kq2 ď ´

ż

R

`

ψ2pt, aq
˘´m

ρ̄kpaq
m da

` χcpkq

ĳ

RˆR

ż 1

s“0

`

ψ2pt, ra, bssq
˘´m

|a´ b|kρ̄kpaqρ̄kpbq dsdadb

` pm´ 1qFkrρptqs ,

where we have crucially used the convexity of p¨q´m in the last step. We conclude as for the proof

of Theorem 3.2 thanks to the characterisation (2.9).

By definition of the critical value χcpkq, the functional Fk is everywhere non-negative. It van-

ishes if and only if ρ is a dilation of some critical density. Therefore we cannot deduce from (4.23)

that the density ρptq converges to some dilation of ρ̄k. However, we can show convergence in

Wasserstein distance if we assume a rather restrictive uniformW 2,8pRq-stability estimate on the

Brenier map ψ connecting the solution density to the stationary state:

ψ2pt, xq P L8 pR`, L8pRqq such that ||ψ2||L8pR`,L8pRqq ď 1` 1
m
. (4.24)
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This condition is equivalent to

@t ą 0
@

ψ2pt, px, yqq
D

:“
ż 1

0
ψ2pt, rx, yssq ds P

ˆ

0, 1` 1
m



, for a.e.x, y P R , @t ą 0 . (4.25)

where rx, yss :“ p1 ´ sqx ` sy. If we want to show convergence of a solution ρptq to a stationary

state ρ̄k in Wasserstein distance, we need to investigate quantities that are comparable.

Proposition 4.3. Forχ “ χcpkq, let ρ̄k be a stationary state of (1.4) in the porousmedium case k P p´1, 0q,

m “ 1´ k. Let ρptq be a solution such that

V8 :“ lim
tÑ8

Vrρptqs ă 8 ,

and we denote by ψ the transport map from ρ̄k onto the solution,

ρpt, xqdx “ Bxψpt, xq#ρ̄kpxqdx .

If ψ satisfies the uniform stability estimate (4.24), then

d

dt
Wpρptq, ρ̄kq2 ď 0 ,

where equality holds if and only if ρptq is a dilation of ρ̄k.

Proof. Note that Vrρ̄ks ă 8 since ρ̄k is compactly supported (Chapter 2 Corollary 3.9). We com-

pute the evolution of the Wasserstein distance along the gradient flow, denoting by φ the inverse

transport map, Bxφpt, xq “ Bxψpt, xq´1, we proceed as in Proposition 4.2:

1
2
d

dt
Wpρptq, ρ̄kq2

ď ´

ż

R
φ2pt, xqρpt, xqm dx` χcpkq

ĳ

RˆR

ˆ

φ1pt, xq ´ φ1pt, yq

x´ y

˙

|x´ y|kρpt, xqρpt, yq dxdy

`

ż

R
ρpt, xqm dx´ χcpkq

ĳ

RˆR

|x´ y|kρpt, xqρpt, yq dxdy ,

which we can rewrite in terms of the transport map ψ1 as

1
2
d

dt
Wpρptq, ρ̄kq2

ď ´

ż

R

`

ψ2pt, aq
˘´m

ρ̄kpaq
m da` χcpkq

ĳ

RˆR

@

ψ2pt, pa, bqq
D´m

|a´ b|1´mρ̄kpaqρ̄kpbq dadb

`

ż

R

`

ψ2pt, aq
˘1´m

ρ̄kpaq
m da´ χcpkq

ĳ

RˆR

@

ψ2pt, pa, bqq
D1´m

|a´ b|1´mρ̄kpaqρ̄kpbq dadb .

Using the characterisation (2.9), we obtain for any γ P R,
ż

R

`

ψ2pt, aq
˘´γ

ρ̄kpaq
m da “ χcpkq

ĳ

RˆR

@

ψ2pt, pa, bqq´γ
D

|a´ b|1´mρ̄kpaqρ̄kpbq dadb .
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Hence, the dissipation of the distance to equilibrium can be written as

1
2
d

dt
Wpρptq, ρ̄kq2 ď χcpkq

ĳ

RˆR

|a´ b|k
´

´
@

ψ2pt, pa, bqq´m
D

`
@

ψ2pt, pa, bqq1´m
D

`
@

ψ2pt, pa, bqq
D´m

´
@

ψ2pt, pa, bqq
D1´m

¯

ρ̄kpaqρ̄kpbq dadb .

We now investigate the sign of the microscopic functional Jmrus defined for non-negative func-

tions u : p0, 1q Ñ R` by

Jmrus :“ ´
@

u´m
D

`
@

u1´mD`
@

u
D´m

´
@

u
D1´m

.

The first two terms can be written as

´
@

u´m
D

`
@

u1´mD “ ´α
@

u
D´m

` β
@

u
D1´m

,

where α “
@

u
Dm@

u´m
D

and β “
@

u
Dm´1@

u1´mD. By Jensen’s inequality we have α ě 1, β ě 1,

and by interpolation we have β ď αm{pm`1q. Therefore,

Jmrus ď jmpxuyq “ max
αě1

!

´α
@

u
D´m

` αm{pm`1q@u
D1´m

)

`
@

u
D´m

´
@

u
D1´m

.

We can compute explicitly the maximal value in the above expression. The first order condition

gives

αmax :“
ˆ

m

m` 1
@

u
D

˙m`1
.

Since the function

gpαq :“ ´α
@

u
D´m

` αm{pm`1q@u
D1´m

achieves its maximum at αmax ď 1 for
@

u
D

ď 1` 1{m and is strictly decreasing for α ą αmax, we

have

max
αě1

gpαq “ gp1q, for
@

u
D

ď 1` 1{m

and so we conclude jmpxuyq “ 0 for
@

u
D

ď 1` 1{m. Therefore

1
2
d

dt
Wpρptq, ρ̄kq2 ď χcpkq

ĳ

RˆR

|a´ b|kJmrψ
2pt, pa, bqqsρ̄kpaqρ̄kpbq dadb

ď χcpkq

ĳ

RˆR

|a´ b|kjmr
@

ψ2pt, pa, bqq
D

sρ̄kpaqρ̄kpbq dadb “ 0

thanks to the stability estimate (4.25). To investigate the equality cases, note that β “ αm{pm`1q if

and only if u ” 1 (looking at the equality cases inHölder’s inequality). Moreover, xuy P p0, 1`1{ms

implies

Jmrus ď ´α
@

u
D´m

` αm{pm`1q@u
D1´m

`
@

u
D´m

´
@

u
D1´m

ď 0 ,

using α ě 1. Hence, if Jmrus “ 0, then we must have β “ αm{pm`1q, and so u ” 1. The converse

is trivial by substituting into the expression for Jmrus. Taking u to be the Brenier map ψ2, we

conclude that d
dtWpρptq, ρ̄kq

2 “ 0 if and only if ρ “ ρ̄k.
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The utility of the previous result for understanding the asymptotic behaviour of solutions de-

pends of course on the set of initial data for which solutions satisfy the stability estimate (4.24) at

all times. This set is rather difficult to characterise, and we do not know its size.

Let us now explore what we can say about the long-time behaviour of solutions in the general

case. The first insight consists in calculating the evolution of the second moment. It follows from

homogeneity that
d

dt
Vrρptqs “ 2pm´ 1qFkrρptqs . (4.26)

Identity (4.26) implies that the second moment is non-decreasing, and it converges to some value

V8 P R` Y t`8u. Following [39] we discuss the dichotomy of V8 ă `8 and V8 “ `8. Let

ρptq P Y be a solution of (1.4) such that |x|2ρptq P L1
`pRq for all t ą 0. Let ρ̄k be a stationary

state of (1.4) according to Definition 2.1. Note that Vrρ̄ks ă 8 since ρ̄k is compactly supported by

Corollary 3.9 in Chapter 2.

Case 1: V8 ă `8 If the second moment Vrρptqs converges to V8 ă `8, then we deduce

from (4.26) that the energy functional Fkrρptqs converges to Fkrρ̄ks “ 0 since Fk is non-increasing

along trajectories. This is however not enough to conclude convergence of ρptq to ρ̄k and the ques-

tion remains open. Note further that in order to have convergence, we need to choose a dilation

of ρ̄k with second moment equal to V8. For any dilation ρ̄λk of ρ̄k, we have Vrρ̄λks “ Vrρ̄ks{λ2, and

so there exists a unique λ˚ such that Vrρ̄λ˚k s “ V8. This would be the natural candidate for the

asymptotic behaviour of the solution ρptq.

Case 2: V8 “ `8 If the second moment Vrρptqs diverges to V8 “ `8 however, the dis-

cussion is more subtle and we can give some further intuition. First of all, let us remark that one

has to seek a convergence other than in Wasserstein distance since 8 “ V8 ‰ Vrρ̄ks ă 8. We

can not exclude this case a priori however since a convergence in another sense may be possible

in principle. We use the homogeneity properties of the flow to derive refined inequalities. To do

this, we renormalise the density as in (4.22), but now with a time dependency in σ:

ρ̂pt, yq “ σptqρpt, σptqyq , σptq2 “ Vrρptqs “
ż

R
|x|2ρpt, xq dx . (4.27)

Then ρ̂ satisfies the equation

Btρ̂pt, yq “σptqBtρpt, xq ` 9σptq pρpt, xq ` x ¨ Bxρpt, xqq

“σptq
 

σptq´2´mByyρ̂pt, yq
m ` 2χcpkqσptq´3`kBy pρ̂pt, yqBypWkpyq ˚ ρ̂pt, yqqq

(

`
9σptq

σptq
pρ̂pt, yq ` y ¨ Byρ̂pt, yqq .
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By homogeneity of Fk, we have

Fkrρptqs “ σptq1´mFkrρ̂ptqs , (4.28)

and so it follows from (4.26) that 2σptq 9σptq “ 2pm ´ 1qFkrρptqs “ 2pm ´ 1qσptq1´mFkrρ̂ptqs. We

deduce

Btρ̂pt, yq “σptq
´1´m tByyρ̂pt, yq

m ` 2χcpkqBy pρ̂pt, yqBypWkpyq ˚ ρ̂pt, yqqqu

` σptq´1´mpm´ 1qFkrρ̂ptqs pρ̂pt, yq ` y ¨ Byρ̂pt, yqq .

Alternatively, we get

d

dt
Fkrρ̂ptqs “

d

dt

 

σptqm´1Fkrρptqs
(

“ ´σptqm´1
ż

R
ρpt, xq

ˇ

ˇ

ˇ

ˇ

Bx

ˆ

m

m´ 1ρpt, xq
m´1 ` 2χcpkqWkpxq ˚ ρpt, xq

˙
ˇ

ˇ

ˇ

ˇ

2
dx

` pm´ 1q2σptqm´2σptq´mFkrρ̂ptqsFkrρptqs

“ σptq´1´mGrρ̂s , (4.29)

where

Grρ̂s :“ ´
ż

R

ˇ

ˇ

ˇ

ˇ

By

ˆ

m

m´ 1 ρ̂pyq
m´1 ` 2χcpkqWkpyq ˚ ρ̂pyq

˙
ˇ

ˇ

ˇ

ˇ

2
ρ̂pyq dy ` pm´ 1q2Fkrρ̂s2 .

Proposition 4.4. The functional H defined by Hrρs :“ Grρ̂s on Y2 is zero-homogeneous, and everywhere

non-positive. Moreover, Hrρs “ 0 if and only if ρ is a stationary state of equation (1.4).

Proof. Homogeneity follows from the very definition of H. Non-positivity is a consequence of the

Cauchy-Schwarz inequality:

|pm´ 1qFkrρ̂s|2 “
ˇ

ˇ

ˇ

ˇ

´

ż

R
y ¨ By

ˆ

m

m´ 1 ρ̂pyq
m´1 ` 2χcpkqWkpyq ˚ ρ̂pyq

˙

ρ̂pyq dy

ˇ

ˇ

ˇ

ˇ

2

ď

ˆ
ż

R
|y|2ρ̂pyq dy

˙

˜

ż

R

ˇ

ˇ

ˇ

ˇ

By

ˆ

m

m´ 1 ρ̂pyq
m´1 ` 2χcpkqWkpyq ˚ ρ̂pyq

˙
ˇ

ˇ

ˇ

ˇ

2
ρ̂pyq dy

¸

.

(4.30)

If ρ is a stationary state of equation (1.4), so is ρ̂ and it follows from (4.29) that Grρ̂s “ 0. Conversely,

if Grρ̂s “ 0, then we can achieve equality in the Cauchy-Schwarz inequality (4.30) above, and so

the two functions y and

By

ˆ

m

m´ 1 ρ̂pyq
m´1 ` 2χcpkqWkpyq ˚ ρ̂pyq

˙

are proportional to each other. In other words, there exists a constant π̂ such that for all y P R,

By

ˆ

m

m´ 1 ρ̂pyq
m´1 ` 2χcpkqWkpyq ˚ ρ̂pyq

˙

` π̂y “ 0 . (4.31)
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3. 1D Fair-Competition Regime

This equation is the Euler-Langrange condition of the gradient flow given by the energy functional

Fk ` π̂V :

Btu “ By

ˆ

u By

ˆ

δ

δu
pFk ` π̂Vq rus

˙˙

, (4.32)

and since ρ̂ satisfies (4.31), it is a stationary state of equation (4.32). Testing this equation against

yρ̂pyq, we obtain

π̂ “ pm´ 1qFkrρ̂s ě 0 .

Non-negativity of π̂ follows from the variant of theHLS inequality Theorem 3.1 sinceFkrρs ě 0 for

any ρ P Y if χ “ χcpkq. We will show π̂ “ 0 by contradiction. Assume π̂ ą 0. Applying Theorem

3.6 for Fkr¨s` π̂Vr¨s instead of Fkr¨s` 1
2Vr¨s, we deduce that ρ̂ is a minimiser of the rescaled energy

Fkr¨s ` π̂Vr¨s. In particular, this means that we have for any u P Y2,

Fkrus ` π̂Vrus ě Fkrρ̂s ` π̂Vrρ̂s “ π̂{pm´ 1q ` π̂ ą π̂ .

However, Proposition 3.4(i) and Corollary 3.8 in Chapter 2 provide a global minimiser ρ̄k,1 P Y2

with unit second moment for Fk, which is also a stationary state by Theorem 3.14 in Chapter 2.

Then choosing u “ ρ̄k,1 in the above inequality yields Fkrρ̄k,1s` π̂Vrρ̄k,1s “ 0` π̂, a contradiction.

Therefore we necessarily have π̂ “ 0 and so Fkrρ̂s “ 0. By (4.28), Fkrρs “ 0 and this implies that

ρ is a global minimiser of Fk by Theorem 3.1, and consequently it is a stationary state of (1.4) by

Theorem 2.6 in Chapter 2.

It would be desirable to be able to show that Hrρptqs Ñ Hrρ̄k,1s as tÑ8 to make appropriate

use of the new energy functional H. But even then, similar to the first case, we are lacking a sta-

bility result for H to prove that in fact ρ̂ptq converges to ρ̄k,1. Here, in addition, we do not know at

which rate the second moment goes to `8.

We conjecture that only the first case V8 ă `8 is admissible. The motivation for this claim is

the following: F and H have both constant signs, and vanish only when ρ̂ “ ρ̄k,1. If the stability

inequality

ηFkrρ̂s ď ´Hrρs, @ρ (4.33)

were satisfied for some η ą 0, then we would be able to prove that V8 ă `8. To see this, we

derive a second-order differential inequality for ωptq :“ σptqm`1. We have

9ωptq “ pm` 1qσptqm 9σptq “ pm` 1qpm´ 1qFkrρ̂ptqs ě 0 ,

and so by (4.29),

:ωptq “ pm` 1qpm´ 1qωptq´1Hrρptqs ď 0 .
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Here, non-positivity of :ωptq follows from Proposition 4.4. Therefore, the stability estimate (4.33),

if true, would imply that :ωptq ď ´ηωptq´1 9ωptq, hence

9ωptq ď C ´ η logωptq.

Consequently, ωptq would be bounded, and so we arrive at a contradiction with the assumption

V8 “ `8.

4.1.2 The sub-critical case χ ă χc

We know that in the logarithmic case (m “ 1, k “ 0), solutions to (1.4) converge exponentially

fast towards a unique self-similar profile as t Ñ 8, provided that the parameter χ is sub-critical

(χ ă 1) [62]. A similar argument works in the porous medium regime k P p´1, 0q under certain

regularity assumptions as we will show below. Surprisingly enough, convergence is uniform as

the rate of convergence does not depend on the parameter χ. In particular, it was shown in [62]

for k “ 0 that we have uniform convergence in Wasserstein distance of any solution ρptq for the

rescaled system (2.7) to the equilibrium distribution ρ̄0 of (2.7),

d

dt
Wpρptq, ρ̄0q

2 ď ´2Wpρptq, ρ̄0q
2 .

A similar result has been obtained in two dimension in [71].

Studying the long-time behaviour of the system in the porous medium case k ă 0 is more

subtle than the logarithmic case and we cannot deduce exponentially fast convergence from our

calculations without assuming a uniform stability estimate, which coincides with (4.25). But as in

the critical case, we do not know how many initial data actually satisfy this condition. Note also

that due to the additional confining potential, homogeneity has been broken, and so we cannot

renormalise the second moment of minimisers as we did in the critical case. As in the critical

case, stationary states of the rescaled equation (2.7) are compactly supported by Corollary 3.9 in

Chapter 2.

Proposition 4.5. For sub-critical interaction strength 0 ă χ ă χcpkq, let ρptq be a solution to (2.7) in the

porous medium case k P p´1, 0q, m “ 1 ´ k and ρ̄k a stationary state of (2.7). If the transport map ψ

given by ρpt, xqdx “ Bxψpt, xq#ρ̄kpxqdx satisfies the uniform stability estimate (4.24), then

d

dt
Wpρptq, ρ̄kq2 ď ´2Wpρptq, ρ̄kq2 ,

where equality holds if and only if ρptq is a dilation of ρ̄k. It follows that

lim
tÑ8

Vrρptqs “ Vrρ̄ks .
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Proof. We compute the evolution of the Wasserstein distance along the gradient flow similar to

the proof of Proposition 4.3, denoting by φ the inverse transport map, Bxφpt, xq “ Bxψpt, xq´1,

1
2
d

dt
Wpρptq, ρ̄kq2

ď ´

ż

R
φ2pt, xqρpt, xqm dx` χ

ĳ

RˆR

ˆ

φ1pt, xq ´ φ1pt, yq

x´ y

˙

|x´ y|kρpt, xqρpt, yq dxdy

`

ż

R
ρpt, xqm dx´ χ

ĳ

RˆR

|x´ y|kρpt, xqρpt, yq dxdy

`
1
2

ĳ

RˆR

pφ1pt, xq ´ φ1pt, yqqpx´ yqρpt, xqρpt, yq dxdy ´

ż

R
|x|2ρpt, xq dx ,

where we have used the fact that the centre of mass is zero at all times to double the variables:
ż

R
φ1pt, xqxρpt, xq dx “

1
2

ĳ

RˆR

pφ1pt, xq ´ φ1pt, yqqpx´ yqρpt, xqρpt, yq dxdy .

This rewrites as follows in terms of the transport map ψ1:

1
2
d

dt
Wpρptq, ρ̄kq2

ď ´

ż

R

`

ψ2pt, aq
˘´m

ρ̄kpaq
m da` χ

ĳ

RˆR

@

ψ2pt, pa, bqq
D´m

|a´ b|1´mρ̄paqρ̄kpbq dadb

`

ż

R

`

ψ2pt, aq
˘1´m

ρ̄kpaq
m da´ χ

ĳ

RˆR

@

ψ2pt, pa, bqq
D1´m

|a´ b|1´mρ̄kpaqρ̄kpbq dadb

`
1
2

ĳ

RˆR

@

ψ2pt, pa, bqq
D

|a´ b|2ρ̄kpaqρ̄kpbq dadb

´
1
2

ĳ

RˆR

@

ψ2pt, pa, bqq
D2
|a´ b|2ρ̄kpaqρ̄kpbq dadb .

Using the characterisation (2.10), we obtain for any γ P R,
ż

R

`

ψ2pt, aq
˘´γ

ρ̄kpaq
m da

“

ĳ

RˆR

ˆ

χ|a´ b|1´m `
|a´ b|2

2

˙

@

ψ2pt, pa, bqq´γ
D

ρ̄kpaqρ̄kpbq dadb .

Hence, the dissipation of the distance to equilibrium can be written as

1
2
d

dt
Wpρptq, ρ̄kq2

ď χ

ĳ

RˆR

|a´ b|k
 

´
@

ψ2pt, pa, bqq´m
D

`
@

ψ2pt, pa, bqq1´m
D

`
@

ψ2pt, pa, bqq
D´m

´
@

ψ2pt, pa, bqq
D1´m

)

ρ̄kpaqρ̄kpbq dadb

`
1
2

ĳ

RˆR

|a´ b|2
 

´
@

ψ2pt, pa, bqq´m
D

`
@

ψ2pt, pa, bqq1´m
D

`
@

ψ2pt, pa, bqq
D

´
@

ψ2pt, pa, bqq
D2
)

ρ̄kpaqρ̄kpbq dadb .
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4. Long-time asymptotics

We now examinate the signs of the microscopic functionals Jmrus and Jm,2rus defined as follows

for non-negative functions u : p0, 1q Ñ R`,

Jmrus :“ ´
@

u´m
D

`
@

u1´mD`
@

u
D´m

´
@

u
D1´m

, (4.34)

Jm,2rus :“ ´
@

u´m
D

`
@

u1´mD`
@

u
D

´
@

u
D2
. (4.35)

The first two terms in the functionals Jm and Jm,2 are common. We can rewrite them as

´
@

u´m
D

`
@

u1´mD “ ´α
@

u
D´m

` β
@

u
D1´m

,

where α “
@

u
Dm@

u´m
D

and β “
@

u
Dm´1@

u1´mD. By Jensen’s inequality we have α ě 1, β ě 1,

and by interpolation we have β ď αm{pm`1q. Therefore,

Jmrus ď jmpxuyq :“ max
αě1

gpαq `
@

u
D´m

´
@

u
D1´m

,

Jm,2rus ď jm,2pxuyq :“ max
αě1

gpαq `
@

u
D

´
@

u
D2
,

where

gpαq :“ ´α
@

u
D´m

` αm{pm`1q@u
D1´m

.

We can compute explicitly the maximal value of g, and as before the first order condition gives

αmax “

ˆ

m

m` 1
@

u
D

˙m`1
.

It is straight forward to see that

max
αě1

gpαq “ gp1q for
@

u
D

ď 1` 1{m,

and hence we obtain

jmpxuyq “

$

’

’

&

’

’

%

0, if
@

u
D

ď 1` 1
m

ˆ

m

m` 1

˙m 1
m` 1

@

u
D

`
@

u
D´m

´
@

u
D1´m

, if
@

u
D

ě 1` 1
m

, (4.36)

jm,2pxuyq “

$

’

’

&

’

’

%

´
@

u
D´m

`
@

u
D1´m

`
@

u
D

´
@

u
D2
, if

@

u
D

ď 1` 1
m

ˆ

m

m` 1

˙m 1
m` 1

@

u
D

`
@

u
D

´
@

u
D2
, if

@

u
D

ě 1` 1
m

. (4.37)

We have lim`8 jm “ `8, and lim`8 jm,2 “ ´8. In addition, the function j2,m is non-positive

and uniformly strictly concave:

@ xuy P

ˆ

0, 1` 1
m



j2m,2pxuyq “ m xuy
´m´2

p´pm` 1q ` pm´ 1q xuyq ´ 2

ď ´pm` 1q xuy´m´2
´ 2 .
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3. 1D Fair-Competition Regime

Thus, @ xuy P R`, j2m,2pxuyq ď ´2 and so the following coercivity estimate holds true:

@ xuy P

ˆ

0, 1` 1
m



, jm,2pxuyq ď ´
`@

u
D

´ 1
˘2
. (4.38)

Furthermore, the function jm is everywhere non-negative. The above analysis allows us to rewrite

the dissipation in Wasserstein distance as

1
2
d

dt
Wpρptq, ρ̄kq2 ď

ĳ

RˆR

χ|a´ b|kJmrψ
2pt, pa, bqqsρ̄kpaqρ̄kpbq dadb

`
1
2

ĳ

RˆR

|a´ b|2Jm,2rψ
2pt, pa, bqqsρ̄kpaqρ̄kpbq dadb

ď

ĳ

RˆR

χ|a´ b|kjmr
@

ψ2pt, pa, bqq
D

sρ̄kpaqρ̄kpbq dadb

`
1
2

ĳ

RˆR

|a´ b|2jm,2r
@

ψ2pt, pa, bqq
D

sρ̄kpaqρ̄kpbq dadb

to finally conclude that

1
2
d

dt
Wpρptq, ρ̄kq2 ď ´

1
2

ĳ

RˆR

|a´ b|2
`@

ψ2pt, pa, bqq
D

´ 1
˘2
ρ̄kpaqρ̄kpbq dadb,

where the last inequality follows from (4.36) and the coercivity property (4.38) thanks to the sta-

bility estimate (4.25). This concludes the proof,

d

dt
Wpρptq, ρ̄kq2 ď ´

ĳ

RˆR

|a´ b|2
`@

ψ2pt, pa, bqq
D

´ 1
˘2
ρ̄kpaqρ̄kpbq dadb

“ ´

ĳ

RˆR

`

ψ1paq ´ a´
`

ψ1pbq ´ b
˘˘2

ρ̄kpaqρ̄kpbq dadb,

“ ´2
ż

R

`

ψ1paq ´ a
˘2
ρ̄kpaq da,“ ´2Wpρptq, ρ̄kq2,

using the fact that ρptq and ρ̄k both have zero centre of mass.

Remark 4.6 (Non-Existence of Stationary States). Proposition 4.5 motivates the rescaling in the sub-

critical case since it means that there are no stationary states in original variables. Indeed, assume ū is a

stationary states of equation (1.4), then its rescaling ρpt, xq “ etūpetxq is a solution to (2.7) and converges to

δ0 as tÑ8. Proposition 3.4(ii) and Theorem 3.14 in Chapter 2 on the other hand provide a stationary state

ρ̄k, and the transport map Bxψpt, xq pushing forward ρ̄k onto ρpt, xq can be written as ψpt, xq “ e´tφpxq

for some convex function φ. Hence, for large enough t ą 0, ψpt, xq satisfies the stability estimate (4.24) and

so eventually ρpt, xq converges to ρ̄k by Proposition 4.5 which is not possible.

4.1.3 The super-critical case χ ą χc

Here, we investigate the possible blow-up dynamics of the solution in the super-critical case. In

contrast to the logarithmic case pm “ 1, k “ 0q, for which all solutions blow-up when χ ą χc,
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4. Long-time asymptotics

provided the second momentum is initially finite, see [41], the picture is not so clear in the fair-

competition regime with negative homogeneity k ă 0. There, the key identity is (4.26), which

states in particular that the second momentum is a concave function.

It has been observed in [39] that if the free energy is negative for some time t0, Fkrρpt0qs ă 0,

then the second momentum is a decreasing concave function for t ą t0. So, it cannot remain non-

negative for all time. Necessarily, the solution blows up in finite time. Whether or not the free

energy could remain non-negative for all time was left open. In [302], the author proved that so-

lutions blow-up without condition on the sign of the free energy at initial time, but for the special

case of the Newtonian potential, for which comparison principles are at hand.

In [67], a continuous time, finite dimensional, Lagrangian numerical scheme of [36] was analysed.

This scheme preserves the gradient flow structure of the equation. It was proven that, except for a

finite number of values of χ, the free energy necessarily becomes negative after finite time. Thus,

blow-up seems to be a generic feature of (1.4) in the super-critical case. However, we could not

extend the proof of [67] to the continuous case for two reasons: firstly, we lack compactness esti-

mates, secondly, the set of values of χ to be excluded gets dense as the number of particles in the

Lagrangian discretisation goes to8.

Below, we transpose the analysis of [67] to the continuous level. We highlight the missing

pieces. Let us define the renormalised density ρ̂ as in (4.27). The following statement is the ana-

logue of Proposition 4.4 in the super-critical case.

Proposition 4.7. The functional H defined by Hrρs :“ Grρ̂s on Y2 is zero-homogeneous, and everywhere

non-positive. Moreover, it cannot vanish in the cone of non-negative energy:

pFrρs ě 0q ùñ pHrρs ă 0q . (4.39)

Proof. We proceed as in the proof of Proposition 4.4. Zero-homogeneity follows from the defini-

tion of H, and non-positivity is a direct consequence of the Cauchy-Schwarz inequality. It remains

to show (4.39). Assume that ρ is such that Frρs ě 0 and Hrρs “ 0. The latter condition ensures

that there exists a constant π̂ such that ρ̂ is a critical point of the energy functional F ` π̂V :

By

ˆ

m

m´ 1 ρ̂pyq
m´1 ` 2χWkpyq ˚ ρ̂pyq

˙

` π̂y “ 0 .

Testing this equation against yρ̂pyq, we obtain

π̂ “ pm´ 1qFkrρ̂s “ pm´ 1qσptqm´1Fkrρs ě 0 .

Applying as in the proof of Proposition 4.4 a variant of Theorem 3.6, we obtain that ρ̂ is a global

minimiser of the energy functional F ` π̂V . Here, the amplitude of the confinement potential π̂
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3. 1D Fair-Competition Regime

plays no role, but the sign π̂ ě 0 is crucial. By Theorem 2.6 in Chapter 2, there exists a stationary

state ρ̄ P Y2 for critical interaction strength χ “ χcpkq. If χ ą χcpkq, we have

Fkrρ̄s “ Umrρ̄s ` χWkrρ̄s ă Umrρ̄s ` χcpkqWkrρ̄s “ 0 .

Taking mass-preserving dilations of ρ̄, we see immediately that the functional F ` π̂V is not

bounded below in the super-critical case. This is a contradiction with ρ̂ being a minimiser. Hence,

Hrρs ă 0 and (4.39) holds true.

As in Section 4.1.1, the following non-linear function of the second momentum,

ωptq “ σptqm`1 “

ˆ
ż

R
|x|2ρpt, xq dx

˙

m`1
2

,

satisfies the second order differential inequality,

:ωptq “ pm2 ´ 1qωptq´1Hrρptqs ď 0 . (4.40)

In view of the property (4.39) of the zero-homogeneous functional H, it seems natural to ask

whether there exists a positive constant δ ą 0, such that

pFrρs ě 0q ùñ pHrρs ă ´δq . (4.41)

If this would be the case, then (4.40) could be processed as follows: assume that 9ωptq ě 0 for all

t. This is equivalent to say that the free energy remains non-negative for all t ě 0 using (4.26).

Hence, assuming (4.41) holds, (4.40) becomes

:ωptq ă ´δpm2 ´ 1qωptq´1 ă 0. (4.42)

Multiplying by 9ωptq ě 0, and integrating between 0 and T , we would get

1
2 9ωpT q2 ` δpm2 ´ 1q log pωpT qq ď 1

2 9ωp0q2 ` δpm2 ´ 1q log pωp0qq .

Hence, for any t ą 0,

ωptq ď ωp0q exp
ˆ

9ωp0q2

2δpm2 ´ 1q

˙

.

Back to estimate (4.42), we would conclude that ω is uniformly concave,

:ωptq ď ´

ˆ

δpm2 ´ 1q
ωp0q

˙

exp
ˆ

´
9ωp0q2

2δpm2 ´ 1q

˙

ă 0 .

Therefore, ddtVrρptqswould become negative in finite time. This would be a contradiction with the

everywhere non-negativity of the free energy by (4.26). As a conclusion, the existence of positive

δ ą 0 as in (4.41) implies unconditional blow-up. In [67], existence of such δ is proven for a finite

dimensional Lagrangian discretisation of Fk, and accordingly H, except for a finite set of values

for χ. Numerical simulations using the numerical scheme proposed in [36] clearly show that the

energy has the tendency to become negative, even for positive initial data. Proving (4.41) remains

an open problem.
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4.2 Fast diffusion asymptotics

In the fast diffusion case k ą 0, we are able to show a much stronger result: every stationary

state of (2.7) is in fact a global attractor for any choice of interaction strength χ ą 0. Investigating

the evolution of the Wasserstein distance to equilibrium yields exponential convergence with an

explicit rate which is independent of the interaction strength χ ą 0. In contrast to the porous

medium case, where we required a stability estimate on Brenier’s map, we do not need such an

estimate here. As a consequence, we obtain an alternative proof of uniqueness of stationary states

by a dynamical argument.

Proposition 4.8 (Long-time asymptotics). For k P p0, 1q andm “ 1´ k, if ρptq has zero centre of mass

initially and satisfies (2.7), then the evolution of the Wasserstein distance to the stationary states ρ̄k of (2.7)

can be estimated by
d

dt
Wpρptq, ρ̄kq2 ď ´2Wpρptq, ρ̄kq2 (4.43)

for any interaction strength χ ą 0. As a consequence, stationary states are unique if they exist.

Proof. We compute the evolution of the Wasserstein distance along the gradient flow, denoting by

φ the inverse transport map, Bxφpt, xq “ Bxψpt, xq
´1. Proceeding as in the proof of Proposition

4.5, we can write the dissipation of the distance to equilibrium as

1
2
d

dt
Wpρptq, ρ̄kq2 ď χ

ĳ

RˆR

|a´ b|k
 

´
@

ψ2pt, pa, bqq´m
D

`
@

ψ2pt, pa, bqq1´m
D

`
@

ψ2pt, pa, bqq
D´m

´
@

ψ2pt, pa, bqq
D1´m

)

ρ̄kpaqρ̄kpbq dadb

`
1
2

ĳ

RˆR

|a´ b|2
 

´
@

ψ2pt, pa, bqq´m
D

`
@

ψ2pt, pa, bqq1´m
D

`
@

ψ2pt, pa, bqq
D

´
@

ψ2pt, pa, bqq
D2
)

ρ̄kpaqρ̄kpbq dadb .

We now examine the signs of the microscopic functionals Jmrus and Jm,2rus defined as in (4.34)

and (4.35) for non-negative functions u : p0, 1q Ñ R` by

Jmrus :“ ´
@

u´m
D

`
@

u1´mD`
@

u
D´m

´
@

u
D1´m

,

Jm,2rus :“ ´
@

u´m
D

`
@

u1´mD`
@

u
D

´
@

u
D2
.

However, sincem ă 1 we now have by convexity
@

u
D´m

´
@

u´m
D

ď 0 and
@

u1´mD´
@

u
D1´m

ď 0,

hence

Jmrus ď 0, m P p0, 1q. (4.44)

For the functional Jm,2, the first two terms can be written as

´
@

u´m
D

`
@

u1´mD “ ´α
@

u
D´m

` β
@

u
D1´m

,
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where α “
@

u
Dm@

u´m
D

and β “
@

u
Dm´1@

u1´mD. As opposed to the proof of Proposition 4.5, we

now have β ď 1 ď α by Jensen’s inequality sincem ă 1, and therefore,

@ xuy P R`, Jm,2rus ď jm,2pxuyq :“ ´
@

u
D´m

`
@

u
D1´m

`
@

u
D

´
@

u
D2
.

Note that lim`8 jm,2 “ ´8. In addition, the function j2,m is non-positive and uniformly strictly

concave:

@ xuy P R`, j2m,2pxuyq “ ´mp1`mq xuy
´m´2

´mp1´mq xuy´m´1
´ 2 ď ´2 ,

and hence

@ xuy P R`, jm,2pxuyq ď ´ pxuy ´ 1q2 . (4.45)

From these estimates, we can deduce the exponential speed of convergence for the stationary state

ρ̄k by rewriting the dissipation to equilibrium as

1
2
d

dt
Wpρptq, ρ̄kq2 ď

ĳ

RˆR

χ|a´ b|kJmrψ
2pt, pa, bqqsρ̄kpaqρ̄kpbq dadb

`

ĳ

RˆR

1
2 |a´ b|

2Jm,2rψ
2pt, pa, bqqsρ̄kpaqρ̄kpbq dadb

ď

ĳ

RˆR

1
2 |a´ b|

2jm,2r
@

ψ2pt, pa, bqq
D

sρ̄kpaqρ̄kpbq dadb

ď ´
1
2

ĳ

RˆR

|a´ b|2
`@

ψ2pt, pa, bqq
D

´ 1
˘2
ρ̄kpaqρ̄kpbq dadb,

where the last inequality follows from (4.44) and (4.45). This concludes the proof,

d

dt
Wpρptq, ρ̄kq2 ď ´

ĳ

RˆR

|a´ b|2
`@

ψ2pt, pa, bqq
D

´ 1
˘2
ρ̄kpaqρ̄kpbq dadb

“ ´

ĳ

RˆR

`

ψ1paq ´ a´
`

ψ1pbq ´ b
˘˘2

ρ̄kpaqρ̄kpbq dadb,

“ ´2
ż

R

`

ψ1paq ´ a
˘2
ρ̄kpaq da,“ ´2Wpρptq, ρ̄kq2,

using the fact that ρptq and ρ̄k both have zero centre of mass.

Remark 4.9 (Non-Existence of Stationary States). This result also provides a dynamical proof for the

non-existence of stationary states for k P p0, 2{3q in original variables. Indeed, if ū were a stationary state

of equation (1.4), then its rescaled density ρpt, xq would converge to δ0 for large times. This contradicts the

existence of a stationary state in rescaled variables (Chapter 2 Theorem 4.10) for k P p0, 2{3q together with

exponential convergence to equilibrium Proposition 4.8.
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5 Numerical simulations

There exists an illuminating way to rewrite the energy functional Fkrρs due to the particular form

of the transportmap. We use the Lagrangian transformation ρ ÞÑ X , whereX : p0, 1q Ñ Rdenotes

the pseudo-inverse of the cumulative distribution function (cdf) associatedwith ρ [295, 171, 36, 62],

Xpηq “ F´1pηq :“ inf tx : F pxq ě ηu , F pxq :“
ż x

´8

ρpyq dy .

We introduce the parameter r P t0, 1u as we are interested in both original (r “ 0) and rescaled

(r “ 1) variables. Integrating equations (1.4) and (2.7) over p´8, Xpt, ηqqwith respect to the space

variable yields

Bt

ż Xpt,ηq

´8

ρpt, yq dy “ rBxρ
m ` 2χρBx pWk ˚ ρq ` rxρs|x“Xpt,ηq . (5.46)

Differentiating the identity F pt,Xpt, ηqq “ η with respect to η twice yields

ρpt,Xpt, ηqq “ pBηXpt, ηqq
´1 and Bxρpt,Xpt, ηqq “ ´BηηXpt, ηq{ pBηXpt, ηqq

3
.

Differentiating with respect to time, we obtain BtF pt,Xpt, ηqq “ ´BtXpt, ηq{BηXpt, ηq. This allows

us to simplify (5.46),

BtXpt, ηq “ ´Bη
´

pBηXpt, ηqq
´m

¯

´ 2χ
ż 1

0
|Xpt, ηq ´Xpt, η̃q|

k´2
pXpt, ηq ´Xpt, η̃qq dη̃ ´ rXpt, ηq .

Similarly, the functionals Gk,0 :“ Fk and Gk,1 :“ Fk,resc read equivalently

Gk,rrXs “
1

m´ 1

ż 1

0
pBηXpηqq

1´m dη ` χ

ż 1

0

ż 1

0

|Xpηq ´Xpη̃q|k

k
dηdη̃ `

r

2

ż 1

0
|Xpηq|2 dη .

for k P p´1, 1qzt0u, and

G0,rrXs “ ´

ż 1

0
log

ˆ

dX

dη
pηq

˙

dη ` χ

ż 1

0

ż 1

0
log |Xpηq ´Xpη̃q| dηdη̃ ` r

2

ż 1

0
|Xpηq|2 dη .

in the logarithmic case k “ 0. Intuitively, X encodes the position of particles with respect to the

partial mass η P p0, 1q, and the same homogeneity is preserved: Gk,0rλXs “ λkGk,0rXs.

In Section 3, we showed uniqueness of minimisers of the rescaled energy functional Fk,rescrρs

for 0 ă k ă 2{3 and any χ ą 0 (Corollary 3.16) and also for the sub-critical porous medium

case ´1 ă k ă 0, χ ă χcpkq (Corollary 3.9). One may take these results as an indication that

Fk,rescrρs could in fact be displacement convex. As discussed in Section 2.3, Fk,rescrρs is a sum of

displacement convex and concave contributions and we do not know its overall convexity proper-

ties. We recall that the functionals related to the classical Keller–Segel models in two dimensions

are displacement convex once restricted to boundeddensities [94]. Wewill give some heuristics for

the power-law potential case. If Gk,1rXs were convex, then Fk,rescrρs would be displacement con-

vex [295, 98] and uniqueness of minimisers directly follows [234]. Taylor expanding Gk,1 around
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X yields for any test function ϕ P C8c pr0, 1sq,

Gk,1rX ` εϕs “ Gk,1rXs ` εDϕGk,1rXs `
ε2

2 D
2
ϕGk,1rXs `Opε3q,

where DϕGk,1rXs “
ş1
0 δGk,1rXspηqϕpηq dη with the first variation δGk,1

δX rXspηq given by

δGk,1
δX

rXspηq “ Bη

´

pBηXq
´m

¯

` 2χ
ż 1

0
|Xpηq ´Xpη̃q|k´2 pXpηq ´Xpη̃qq dη̃ `Xpηq

for k P p´1, 1q{t0u. However, the Hessian

D2
ϕGk,1rXs “m

ż 1

0
pBηϕpηqq

2
pBηXpηqq

´pm`1q
dη

`χpk ´ 1q
ż 1

0

ż 1

0
|Xpηq ´Xpη̃q|

k´2
pϕpηq ´ ϕpη̃qq

2
dηdη̃ `

ż 1

0
ϕpηq2 dη

does not have a sign. In other words, we cannot use this strategy to conclude overall convex-

ity/concavity properties of the rescaled energy functional Fk,resc. It is an interesting problem to

explore convexity properties of Gk,r in a restricted set of densities such as bounded densities as

in [94, 119].

5.1 Numerical scheme

To simulate the dynamics ofX we use a numerical scheme which was proposed in [36, 67] for the

logarithmic case, and generalised to the one-dimensional fair-competition regime for the porous

medium case k P p´1, 0q in [66]. It can easily be extended to rescaled variables adding a confining

potential, and works just in the same way in the fast diffusion case k P p0, 1q. We discretise the

energy functional via a finite difference approximation ofXpηq on a regular grid. If pXiq1ďiďn are

the positions of n ordered particles sharing equal mass ∆η “ 1{n such that X1 ă X2 ă ¨ ¨ ¨ ă Xn,

then we define the discretised energy functional by

Gnk,r rpXiqs “
p∆ηqm

m´ 1

n´1
ÿ

i“1
pXi`1 ´Xiq

1´m
` χ p∆ηq2

ÿ

1ďi‰jďn

|Xj ´Xi|
k

k
` r

∆η
2

n
ÿ

i“1
|Xi|

2

for k P p´1, 1qzt0u, and by

Gn0,r rpXiqs “ ´∆η
n´1
ÿ

i“1
log

ˆ

Xi`1 ´Xi

∆η

˙

` χ p∆ηq2
ÿ

1ďi‰jďn
log |Xj ´Xi| ` r

∆η
2

n
ÿ

i“1
|Xi|

2

in the logarithmic case k “ 0. The Euclidean gradient flow of Gnk,r writes for 1 ă i ă n

9Xi “´ p∆ηqm´1
´

pXi`1 ´Xiq
´m

´ pXi ´Xi´1q
´m

¯

´ 2χ∆η
ÿ

1ďj‰iďn
signpi´ jq |Xi ´Xj |

k´1
´ rXi , (5.47)
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complemented with the dynamics of the extremal points

9X1 “ ´p∆ηqm´1 pX2 ´X1q
´m

` 2χ∆η
ÿ

j‰1
|Xj ´X1|

k´1
´ rX1 , (5.48)

9Xn “ p∆ηqm´1 pXn ´Xn´1q
´m

´ 2χ∆η
ÿ

j‰n

|Xj ´Xn|
k´1

´ rXn . (5.49)

Equations (5.48)-(5.49) follow from imposingX0 “ ´8 andXn`1 “ `8 so that the initial centre of

mass
řn
i“1Xi “ 0 is conserved. Workingwith the pseudo-inverse of the cummulative distribution

function of ρ also has the advantage that we can express the Wasserstein distance between two

densities ρ and ρ̃ in amore tractable way. More precisely, if ψ1 is the optimal mapwhich transports

ρ̃ onto ρ, then the Monge-Ampére equation (2.13) is an increasing rearrangement. Let F and F̃

be the cummulative distribution function of ρ and ρ̃ respectively, with pseudo-inversesX and X̃ .

Then we have

F̃ pxq “

ż x

´8

ρ̃pyq dy “

ż ψ1pxq

´8

ρpyq dy “ F ˝ ψ1pxq .

Hence the transport map is given explicitly by ψ1 “ F´1 ˝ F̃ , and we have for the Wasserstein

distance

Wpρ, ρ̃q2 “
ż 1

0

ˇ

ˇF̃´1pηq ´ F´1pηq
ˇ

ˇ

2
dη “

ż 1

0

ˇ

ˇX̃pηq ´Xpηq
ˇ

ˇ

2
dη “ ||X̃ ´X||22 . (5.50)

This means that this numerical scheme can be viewed formally as the time discretisation of the

abstract gradient flow equation (1.6) in the Wasserstein-2 metric space, which corresponds to a

gradient flow in L2 pp0, 1qq for the pseudo-inverse X ,

9Xptq “ ´∇L2Gk,rrXptqs .

Discretising (5.47)-(5.48)-(5.49) by an implicit in time Euler scheme, this numerical scheme then

coincides with a Jordan-Kinderlehrer-Otto (JKO) steepest descent scheme (see [248, 36] and refer-

ences therein). The solution at each time step of the non-linear system of equations is obtained by

an iterative Newton-Raphson procedure.

5.2 Results

For the logarithmic case k “ 0, m “ 1, we know that the critical interaction strength is given by

χc “ 1 separating the blow-up regime from the regime where self-similar solutions exist [136, 41,

33]. As shown inChapter 2, there is no critical interaction strength for the fast diffusion regime k ą

0, however the dichotomy appears in the porous medium regime k ă 0 (see Chapter 2 and [39]).

It is not known how to compute the critical parameter χcpkq explicitly for k ă 0, however, we can

make use of the numerical scheme described in Section 5.1 to compute χcpkq numerically.

Figure 3.2 gives an overviewof the behaviour of solutions. In the grey region, we observe finite-

time blow-up of solutions, whereas for a choice of pk, χq in the white region, solutions converge
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3. 1D Fair-Competition Regime

Figure 3.2: Regions of blow-up (grey) and convergence to self-similarity (white). The notation
refers to subsequent figures as follows: Lines L1, L2 and L3 show the asymptotic profiles over
the range k P p´1, 1q for χ “ 0.05, χ “ 0.8 and χ “ 1.2 respectively (Figure 3.3). Point A shows
the density evolution at pk, χq “ p´0.5, 0.2q in original variables (Figure 3.4), and Point B for the
same choice of parameters pk, χq “ p´0.5, 0.2q in rescaled variables (Figure 3.5). Points C, D and
E correspond to simulations at p´0.2, 0.7q (Figure 3.6), p0.2, 0.8q (Figure 3.7) and p0.2, 1.2q (Figure
3.8) respectively in the parameter space pk, χq, all in rescaled variables. Point F corresponds to
simulations at pk, χq “ p´0.5, 1.0q in original variables (Figure 3.9).

exponentially fast to a unique self-similar profile. The critical regime is characterised by the black

line χcpkq, ´1 ă k ď 0, separating the grey from the white region. Note that numerically we have

χcp´0.99q “ 0.11 and χcp0q “ 1. Figure 3.2 has been created by solving the rescaled equation (2.7)

using the numerical scheme described above with particles equally spaced at a distance ∆η “

10´2. For all choices of k P p´1, 0q and χ P p0, 1.5q, we choose as initial condition a centered

normalised Gaussian with variance σ2 “ 0.32, from where we let the solution evolve with time

steps of size ∆t “ 10´3. We terminate the time evolution of the density distribution if one of the

following two conditions is fullfilled: either the L2-error between two consecutive solutions is less

than a certain tolerance (i.e. we consider that the solution converged to a stationary state), or the

Newton-Raphson procedure does not converge for ρpt, xq at some time t ă tmax because the mass

is too concentrated (i.e. the solution sufficiently approached a Dirac Delta to assume blow-up).

We choose tmax large enough, and ∆η and ∆t small enough so that one of the two cases occurs.

For Figure 3.2, we set the maximal time to tmax “ 10 and the tolerance to 10´5. For a fixed k, we
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start with χ “ 0.01 and increase the interaction strength by 0.01 each run until χ “ 1.5. This is

repeated for each k from ´0.99 to 0 in 0.01 steps. For a given k, the numerical critical interaction

strength χcpkq is defined to be the largest χ for which the numerical solution can be computed

without blow-up until the L2-error between two consecutive solutions is less than the specified

tolerance. In what follows, we investigate the behaviour of solutions in more detail for chosen

points in the parameter space Figure 3.2.

(a) (b)

(c)

Figure 3.3: Profiles of stationary states in rescaled variables (r “ 1) corresponding to lines L1, L2
and L3 in Figure 3.2 for (a) χ “ 0.05, (b) χ “ 0.8 and (c) χ “ 1.2 with k ranging from 0.95 to (a)
´0.95, (b) ´0.1 and (c) 0.1 in 0.05 steps respectively. All stationary states are centered at zero, but
are here displayed shifted so that they are centered at their corresponding value of k. The black
curve indicates the stationary state for k “ 0.

5.2.1 Lines L1, L2 and L3

Apart from points A´ F shown in Figure 3.2, it is also interesting to observe how the asymptotic

profile changes more globally as we move through the parameter space. To this purpose, we

173



3. 1D Fair-Competition Regime

choose three different values of χ and investigate how the stationary profile in rescaled variables

changes with k. Three representative choices of interaction strengths are given by lines L1, L2

and L3 as indicated in Figure 3.2, where L1 corresponds to χ “ 0.05 and lies entirely in the self-

similarity region (white), L2 corresponds to χ “ 0.8 and captures part of the sub-critical region in

the porousmedium regime k ă 0 (white), aswell as some of the blow-up regime (grey), and finally

line L3 which corresponds to χ “ 1.2 and therefore captures the jump from the self-similarity

(white) to the blow-up region (grey) at k “ 0. Note also that points D and E are chosen to lie on

lines L2 and L3 respectively as to give a more detailed view of the behaviour on these two lines

for the same k-value. The asymptotic profiles over the range k P p´1, 1q for lines L1, L2 and L3 are

shown in Figure 3.3, all with the same choice of parameters using time step size ∆t “ 10´3 and

equally spaced particles at distance ∆η “ 10´2.

For each choice of interaction strength χ, we start with k “ 0.95 and decrease k in 0.05 steps for

each simulation either until k “ ´0.95 is reached, or until blow-up occurs and pk, χq lies within the

grey region. For each simulation, we choose as initial condition the stationary state of the previous

k-value (starting with a centered normalised Gaussian distribution with variance σ2 “ 0.32 for

k “ 0.95). As for Figure 3.2, we terminate the time evolution of the density distribution for a given

choice of k and χ if either the L2-error between two consecutive solutions is less than the tolerance

10´5, or the Newton-Raphson procedure does not converge. All stationary states are centered at

zero. To better display how the profile changes for different choices of k, we shift each stationary

state in Figure 3.3 so that it is centered at the corresponding value of k. The black curve indicates

the stationary profile for k “ 0.

In Figure 3.3(a), we observe corners close to the edge of the support of the stationary profiles for

k ă 0. This could be avoided by taking ∆η and ∆t smaller, whichwe chose not to do here, firstly to

be consistent with Figure 3.2 and secondly to avoid excessive computation times. For interaction

strength χ “ 0.8, the smallest k for which the solution converges numerically to a stationary state

is k “ ´0.1 (see Figure 3.3(b)). This fits with what is predicted by the critical curve χcpkq in Figure

3.2 (line L2).

In Figures 3.3(b) and 3.3(c), we see that the stationary profiles become more and more concen-

trated for k approaching the critical parameter k “ k˚ with χ “ χcpk
˚q, which is to be expected

as we know that the stationary state ρ̄k converges to a Dirac Delta as k approaches the blow-up

region. In fact, for χ “ 1.2 the numerical scheme stops converging for k “ 0.05 already since the

mass is too concentrated, and so we only display profiles up to k “ 0.1 in Figure 3.3(c). Further,

in all three cases χ “ 0.05, χ “ 0.8 and χ “ 1.2 we observe that the stationary profiles become

more and more concentrated as k Ñ 1. This reflects the fact that attractive forces dominate as the

diffusivitym converges to zero. Finally, note that we have chosen here to show only a part of the

full picture for Figures 3.3(b) and 3.3(c), cutting the upper part. More precisely, the maximum of
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the stationary state for k “ 0.95 and χ “ 0.8 in Figure 3.3(b) lies at 75.7474, whereas it is at 3, 216.8

for parameter choices k “ 0.95 and χ “ 1.2 shown in Figure 3.3(c).

(a) (b)

(c)

Figure 3.4: Point A: χ “ 0.2, k “ ´0.5, r “ 0.
(a) Inverse cumulative distribution function, (b) solution density, (c) free energy.

5.2.2 Points A-F

Let us now investigate inmore detail the time-evolution behaviour at the pointsA–F in Figure 3.2.

For k “ ´0.5 in the porous medium regime and sub-critical χ “ 0.2 (point A in Figure 3.2), the

diffusion dominates and the density goes pointwise to zero as tÑ8 in original variables. Figure

3.4(a) and 3.4(b) show the inverse cumulative distribution function and the density profile for

pk, χq “ p´0.5, 0.2q respectively, from time t “ 0 (black) to time t “ 100 (red) in time steps of

size ∆t “ 10´3 and with ∆η “ 10´2. We choose a centered normalised Gaussian with variance

σ2 “ 0.32 as initial condition. Figure 3.4(c) shows the evolution of the free energy (1.1) over time,

which continues to decay as expected.
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For exactly the same choice of parameters pk, χq “ p´0.5, 0.2q and the same initial condition we

then investigate the evolution in rescaled variables (point B in Figure 3.2), and as predicted by

Proposition 4.5, the solution converges to a stationary state. See Figures 3.5(a) and 3.5(b) for the

evolution of the inverse cumulative distribution function and the density distribution with ∆t “

(a) (b)

(c) (d)

(e) (f)

Figure 3.5: Point B: χ “ 0.2, k “ ´0.5, r “ 1.
(a) Inverse cumulative distribution function from initial condition (black) to the profile at the last
time step (red), (b) solution density from initial condition (black) to the profile at the last time step
(red), (c) relative free energy, (d) log(relative free energy) and fitted line between times 0 and 0.9
with slope ´7.6965 (red), (e) L2-error between the solutions at time t and at the last time step, (f)
log(L2-error) and fitted line with slope ´4.392 (red).
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10´3 and ∆η “ 10´3 from t “ 0 (black) to the stationary state ρ̄ (red). Again, we terminate the

evolution as soon as the L2-distance between the numerical solution at two consecutive time steps

is less than a certain tolerance, chosen at 10´5. We see that the solution converges very quickly both

in relative energy |Fkrρptqs ´Fkrρ̄s| (Figure 3.5(c)) and in terms of the Wasserstein distance to the

solution at the last time step W pρptq, ρ̄q (Figure 3.5(e)). To check that the convergence is indeed

(a) (b)

(c) (d)

(e) (f)

Figure 3.6: Point C: χ “ 0.7, k “ ´0.2, r “ 1.
(a) Inverse cumulative distribution function from initial condition (black) to the profile at the last
time step (red), (b) solution density from initial condition (black) to the profile at the last time step
(red), (c) relative free energy, (d) log(relative free energy) and fitted line between times 0 and 1.8
with slope ´3.2522 (red), (e) L2-error between the solutions at time t and at the last time step, (f)
log(L2-error) and fitted line with slope ´1.8325 (red).
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exponential as predicted by Proposition 4.5, we fit a line to the logplot of both the relative free

energy (between times t “ 0 and t “ 0.9), see Figure 3.5(d), and to the logplot of the Wasserstein

distance to equilibrium, see Figure 3.5(f). In both cases, we obtain a fitted line y “ ´a ˚ t ` b

with some constant b and rate a “ 7.6965 for the relative free energy and rate a “ 4.392 for the

(a) (b)

(c) (d)

(e) (f)

Figure 3.7: Point D: χ “ 0.8, k “ 0.2, r “ 1.
(a) Inverse cumulative distribution function from initial condition (black) to the profile at the last
time step (red), (b) solution density from initial condition (black) to the profile at the last time step
(red), (c) relative free energy, (d) log(relative free energy) and fitted line between times 0.2 and 3.8
with slope ´3.6904 (red), (e) L2-error between the solutions at time t and at the last time step, (f)
log(L2-error) and fitted line between times 0.2 and 3.8 with slope ´1.9148 (red).
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Wasserstein distance to equilibrium. Recall that the L2-error between two solutions Xpηq and

X̃pηq is equal to the Wasserstein distance between the corresponding densities ρpxq and ρ̃pxq as

described in (5.50). We observe a rate of convergence that is in agreement with [62, 71, 148] for the

logarithmic case k “ 0.

(a) (b)

(c) (d)

(e) (f)

Figure 3.8: Point E: χ “ 1.2, k “ 0.2, r “ 1.
(a) Inverse cumulative distribution function from initial condition (black) to the profile at the last
time step (red), (b) solution density from initial condition (black) to the profile at the last time step
(red), (c) relative free energy, (d) log(relative free energy) and fitted line between times 0.3 and 3.5
with slope ´3.6898 (red), (e) L2-error between the solutions at time t and at the last time step, (f)
log(L2-error) and fitted line between times 0.3 and 3.5 with slope ´1.9593 (red).
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For parameter choices k “ ´0.2 and χ “ 0.7 (point C in Figure 3.2), we are again in the sub-

critical regime where solutions converge to a stationary state in rescaled variables according to

Proposition 4.5, see Figures 3.6(a) and 3.6(b). However, point C is closer to the critical interaction

strength χcpkq than pointB (numerically, we have χcp´0.2q “ 0.71), and as a result we can observe

that the stationary density ρ̄ in Figure 3.6(b) (red) is more concentrated than in Figure 3.5(b). Here,

we choose as initial condition a characteristic function supported on the ball centered at zero with

radius 1{2 (black, Figure 3.6(b)), and fix ∆t “ 10´3, ∆η “ 5 ˚ 10´3 with tolerance 10´5. We

observe that the solution converges very quickly to a stationary state both in relative free energy

|Fkrρptqs´Fkrρ̄s| (Figure 3.6(c)) and in terms of theWasserstein distance to equilibriumWpρptq, ρ̄q

(Figure 3.6(e)). To investigate the exponential rate of convergence, we fit again a line to the logplot

of both the relative free energy (here between times t “ 0 and t “ 1.8) see Figure 3.6(d), and the

Wasserstein distance to equilibrium, see Figure 3.6(f). We obtain fitted lines y “ ´a ˚ t ` b with

some constant b and rate a “ 3.2407 for the relative free energy, whereas the rate is a “ 1.8325 for

the Wasserstein distance to equilibrium.

Next, we are looking at pointD in Figure 3.2, which corresponds to the choice pk, χq “ p0.2, 0.8q

and is part of line L2 (see Figure 3.3(b)). Since point D lies in the fast diffusion regime k ą 0, no

critical interaction strength exists as shown in Chapter 2, and so we look at convergence to self-

similarity. Figures 3.7(a) and 3.7(b) display the evolution of the inverse cumulative distribution

function and the density distribution from t “ 0 (black) to the stationary state ρ̄ (red) in rescaled

variables including the solutions at 50 intermediate time steps. We start with a characteristic func-

tion supported on a centered ball of radius 1{2. Choosing ∆t “ 10´3 and ∆η “ 10´2 is enough.

The density seems to become instantaneously supported on the whole space for any t ą 0, which

cannot be fully represented numerically since the tails are cut by numerical approximation, see

Figure 3.7(a)-(b). Again, we observe very fast convergence both in relative energy (Figure 3.7(c)-

(d)) and in Wasserstein distance to equilibrium (Figure 3.7(e)-(f)) as predicted by Proposition 4.8.

A logplot of the relative free energy (Figure 3.7(d)) and the Wasserstein distance to equilibrium

(Figure 3.7(f)) show exponential rates of convergence with rates a “ 3.6904 and a “ 1.9148 respec-

tively for the fitted line y “ ´a ˚ t` bwith some constant b and for times 0.2 ď t ď 3.8.

For the same choice of k “ 0.2 in the fast diffusion regime, but with higher interaction strength

χ “ 1.2 (point E in Figure 3.2, which is part of line L3, see Figure 3.3(c)), we obtain a similar

behaviour. Figures 3.8(a) and 3.8(b) show the inverse cumulative distribution function and the

density distribution, both for the initial data (black), a characteristic supported on the centered

ball of radius 1{2, and for the stationary state ρ̄ (red). Here we choose as before ∆t “ 10´3 and

∆η “ 10´2. We observe that the stationary state for χ “ 1.2 (Figure 3.8(b)) is more concentrated

than for χ “ 0.8 (Figure 3.7(b)), which is exactly what we would expect for decreasing k as ρ̄

approaches a Dirac Delta for k Ñ 0 if χ “ 1.2, whereas it becomes compactly supported if χ “ 0.8
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5. Numerical simulations

as k crosses the χ-axis (see Chapter 2 Corollary 3.9). Again, we observe very fast convergence

both in relative energy (Figure 3.8(c)-(d)) and inWasserstein distance to equilibrium (Figure 3.8(e)-

(f)) as predicted by Proposition 4.8. A logplot of the relative free energy (Figure 3.8(d)) and the

Wasserstein distance to equilibrium (Figure 3.8(f)) show exponential rates of convergence with

rates a “ 3.6898 and a “ 1.9593 respectively for the fitted lines y “ ´a ˚ t` b and some constant

b between times 0.3 ď t ď 3.5.

(a) (b)

(c)

Figure 3.9: Point F : χ “ 1, k “ ´0.5, r “ 0.
(a) Inverse cumulative distribution function from initial condition (black) to the profile at the last
time step (red), (b) solution density from initial condition (black) to the profile at the last time step
(red), (c) free energy.

Finally, let us investigate the behaviour for pk, χq “ p´0.5, 1q in original variables (point F in

Figure 3.2). Point F lies in the porous medium regime and we expect blow-up as χcp´0.5q ă 1,

see Section 4.1.3. If the mass becomes too concentrated, the Newton-Raphson procedure does not

converge and the simulation stops. We have therefore adapted the numerical scheme to better

capture the blow-up. We fix ∆t “ 10´3 and ∆η “ 10´3 and take a centered normalised Gaussian

with variance σ2 “ 0.32 as initial data. When the simulation stops, we divide the time step size ∆t
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3. 1D Fair-Competition Regime

by two and repeat the simulation, taking as initial condition the last density profile before blow-

up. This process can be repeated any number of times, each time improving the approximation

of an emerging Dirac Delta. The formation of a Dirac Delta in Figure 3.9(b) corresponds to the

formation of a plateaux in 3.9(a). As expected from the analysis in Section 4.1.3, the free energy

diverges to ´8 (Figure 3.9(c)).

6 Explorations in other regimes

6.1 Diffusion-dominated regime in one dimension

The numerical scheme described here gives us a tool to explore the asymptotic behaviour of solu-

tions for parameter choices that are less understood. For example, choosing χ “ 0.3, k “ ´0.5 and

m “ 1.6 in original variables (r “ 0), we observe convergence to a compactly supported stationary

state, see Figure 3.10. This choice of parameters is within the diffusion-dominated regime since

m ` k ą 1 (see Definition 3.1 in Chapter 1). We choose as initial condition a normalised charac-

teristic function supported on Bp0, 15q from where we let the solution evolve with time steps of

size ∆t “ 10´2 and particles spaced at ∆η “ 10´2. We let the density solution evolve until the

L2-error between two consecutive solutions is less than 10´7. Note that herem` k “ 1.1 is close

to the fair-competition regime, for which χc p´0.5q “ 0.39 (see Figure 3.2).

6.2 Attraction-dominated regime in any dimension

In the attraction-dominated regimeNpm´1q`k ă 0 (corresponding toDefinition 3.1 in Chapter 1)

both global existence of solutions and blow-up can occur in original variables in dimensionN ě 1

depending on the choice of initial data [118, 275, 278, 109, 32, 110, 224, 65]. Using the numerical

scheme introduced in Section 5, we can demonstrate this change of behaviour numerically in one

dimension, see Figures 3.11 (dispersion) and 3.12 (blow-up).

We will now investigate in more detail a special parameter choice (m, k) that belongs to the

attraction-dominated regime. Instead of fixing m and k such that attractive and repulsive forces

are in balance (Npm ´ 1q ` k “ 0), one may choose instead to investigate the regime m “ m˚˚

where the free energy functional (1.1) is conformal invariant,

m˚˚ :“ 2N
2N ` k .

For k ă 0, this corresponds to the case p “ q “ m in the HLS inequality (3.16) for which the

optimisers ρHLS and the optimal constantCHLS are known explicitly [217]. We have the following

existence result:
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6. Explorations in other regimes

(a) (b)

(c) (d)

Figure 3.10: Diffusion-dominated regime: χ “ 0.3, k “ ´0.5,m “ 1.6, r “ 0.
(a) Inverse cumulative distribution function from initial condition (black) to the profile at the last
time step (red), (b) solution density from initial condition (black) to the profile at the last time step
(red), (c) relative free energy, (d) log(relative free energy).

Theorem 6.1. Let χ ą 0, k P p´N, 0q andm “ m˚˚ P p1, 2q. Then the free energy functional Fk admits

a critical point in Y .

Proof. Following the approach in [109], we rewrite the free energy functional (1.1) as a sum of two

functionals

Fkrρs “ F1
k rρs ` F2

k rρs ,

where

F1
k rρs :“ 1

Npm´ 1q ||ρ||
m
m

ˆ

1´ χCHLS
Npm´ 1q
p´kq

||ρ||2´mm

˙

“
2N ` k
Np´kq

||ρ||mm

ˆ

1´ χCHLS
N

2N ` k ||ρ||
2´m
m

˙

, (6.51)
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3. 1D Fair-Competition Regime

and

F2
k rρs :“ χ

p´kq

¨

˝CHLS ||ρ||
2
m ´

ĳ

RNˆRN

|x´ y|kρpxqρpyq dxdy

˛

‚ . (6.52)

By the HLS inequality (3.16), the second functional (6.52) is bounded below for any χ ą 0,

F2
k rρs ě 0 , @ρ P Y ,

and by [217, Theorem 3.1], there exists a family of optimisers ρHLS,λ,c,

ρHLS,λ,cpxq “ c

ˆ

λ

λ2 ` |x|2

˙N{m

, λ ą 0, c ą 0 (6.53)

satisfying F2
k rρHLS,λ,cs “ 0 with the optimal constant CHLS given by

CHLS :“ π´k{2

˜

Γ
`

N`k
2

˘

Γ
`

N ` k
2
˘

¸˜

Γ
`

N
2
˘

Γ pNq

¸´pN`kq{N

.

The parameter λ ą 0 in (6.53) corresponds to the scaling that leaves the Lm-norm of ρHLS,λ,c
invariant. Since the first variation of the functional F1

k defined in (6.51) is given by

δF1
k

δρ
rρspxq “

2
p´kq

`

1´ χCHLS ||ρ||2´mm

˘

ρm´1pxq

and since the Lm-norm of the optimiser can be calculated explicitly,

||ρHLS,λ,c||m “ c

˜

21´Nπ
N`1

2

Γ
`

N`1
2

˘

¸1{m

,

there exists a unique choice of pλ, cq “ pλ˚, c˚q for each χ ą 0 such that

δF1
k

δρ
rρHLS,λ˚,c˚spxq “ 0 and

ż

RN
ρHLS,λ˚,c˚pxq dx “ 1

given by

c˚pχq :“
˜

21´Nπ
N`1

2

Γ
`

N`1
2

˘

¸´1{m

pχCHLSq
1{pm´2q

, λ˚pχq :“
ˆ
ż

RN
ρHLS,1,c˚pχqpxq dx

˙2{k
. (6.54)

Hence ρHLS,λ˚,c˚ is a critical point of Fk in Y .

We can choose to leave λ ą 0 as a free parameter in (6.53), only fixing c “ c˚pχq so that

ρHLS,λ,c˚ is a critical point of Fk with arbitrary mass. We conjecture that a similar result to [109,

Theorem 2.1] holds true for general k P p´N, 0q andm “ m˚˚ for radially symmetric initial data:
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6. Explorations in other regimes

Conjecture 1 (Global Existence vs Blow-up). Let χ ą 0, k P p´N, 0q and m “ m˚˚ in dimension

N ě 1. Assume the initial datum ρ0 P Y is radially symmetric.

(i) If there exists λ0 ą 0 such that

ρ0prq ă ρHLS,λ0,c˚prq , @ r ě 0, ,

then any radially symmetric solution ρpt, rq of (1.4) with initial datum ρp0, rq “ ρ0prq is vanishing

in L1
loc

`

RN
˘

as tÑ8.

(ii) If there exists λ0 ą 0 such that

ρ0prq ą ρHLS,λ0,c˚prq , @ r ě 0 ,

then any radially symmetric solution ρpt, rq of (1.4)with initial datum ρp0, rq “ ρ0prqmust blow-up

at a finite time T˚ or has a mass concentration at r “ 0 as time goes to infinity in the sense that there

exist Rptq Ñ 0 as tÑ8 and a positive constant C ą 0 such that
ż

Bp0,Rptqq
ρpt, xq dx ě C .

Further, we expect the following to be true analogous to [109]:

Conjecture 2 (Unstable Stationary State). For any χ ą 0, the density ρHLS,λ˚,c˚ P Y with pλ˚, c˚q

given by (6.54) is an unstable stationary state of equation (1.4).

Numerically, we indeed observe the behaviour predicted in Conjecture 1 for N “ 1. Using

the scheme introduced in Section 5, we choose as initial data the density ρHLS,λ0,c0 given by the

optimisers of the HLS inequality (6.53). For any choice of c0 ą 0, we fix λ0 ą 0 such that ρHLS,λ0,c0

has unit mass and is therefore in Y . Note that ρHLS,λ0,c0 is not a critical point of Fk unless c0 “ c˚.

Comparing with the stationary state ρHLS,λ0,c˚ , we have

sign pc˚ ´ c0q “ sign
`

ρHLS,λ0,c˚pxq ´ ρHLS,λ0,c0pxq
˘

, @x P R .

Note that the mass of the stationary state ρHLS,λ0,c˚ is given by
ż

RN
ρHLS,λ0,c˚pχqpxq dx “ λ

´k{2
0

ż

RN
ρHLS,1,c˚pχqpxq dx ,

which is equal to one if and only if λ0 “ λ˚, that is c0 “ c˚. If we choose c0 ă c˚, then

ρ0 :“ ρHLS,λ0,c0 ă ρHLS,λ0,c˚ and according to Conjecture 1(i), we would expect the solution

ρpt, rq to vanish in L1
loc pRq. This is exactly what can be observed in Figure 3.11 for the choice of

parameters χ “ 0.35, k “ ´1{2, m “ 4{3 in original variables (r “ 0) and with c0 “ 0.4 c˚. Here,
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3. 1D Fair-Competition Regime

we chose time steps of size ∆t “ 10´2 and particles spaced at ∆η “ 10´2. We let the density

solution evolve until the L2-error between two consecutive solutions is less than 10´4 (plotting

every 1000 iterations).

(a) (b)

(c) (d)

(e) (f)

Figure 3.11: Attraction-dominated regime: χ “ 0.35, k “ ´1{2, m “ 4{3, r “ 0 with initial data
ρpt “ 0, xq “ ρHLS,λ0,c0pxq ă ρHLS,λ0,c˚pxq for all x P Rwith c0 “ 0.4c˚.
(a) Solution density from initial condition (black) to the profile at the last time step (red), (b) zoom
of Figure (a), (c) inverse cumulative distribution function from initial condition (black) to the pro-
file at the last time step (red), (d) free energy, (e) log-log plot of the L2-error difference between
two consecutive solutions and fitted line with slope ´0.37987, (f) time evolution of maxx ρpt, xq .

186



6. Explorations in other regimes

For the same choice of initial data, but with c0 “ 1.1 c˚ ą c˚ we observe numerically that

the solution density concentrates at x “ 0 as predicted by Conjecture 1(ii), see Figure 3.12. The

Newton-Raphson procedure stops converging once the mass it too concentrated. Here, we chose

time steps of size ∆t “ 10´3 and particles spaced at ∆η “ 2 ˚ 10´3.

One may also take as initial condition exactly the steady state ρ0 “ ρHLS,λ˚,c˚ , see Figure 3.13.

However, the numerical approximation of the initial data is only accurate up to ∆η “ 10´2 and

we observe indeed pointwise convergence to zero, in accordance with the statement of Conjecture

2 that the stationary state ρHLS,λ˚,c˚ is unstable. Again, we let the Newton-Raphson procedure

evolve with time steps of size ∆t “ 10´2 until the L2-error between two consecutive solutions is

less than the tolerance 10´4.

(a) (b)

(c) (d)
Figure 3.12: Attraction-dominated regime: χ “ 0.35, k “ ´1{2, m “ 4{3, r “ 0 with initial data
ρpt “ 0, xq “ ρHLS,λ0,c0pxq ą ρHLS,λ0,c˚pxq for all x P R with c0 “ 1.1c˚.
(a) Solution density from initial condition (black) to the profile at the last time step (red), (b) zoom
of Figure (a), (c) inverse cumulative distribution function from initial condition (black) to the pro-
file at the last time step (red), (d) free energy.
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3. 1D Fair-Competition Regime

(a) (b)

(c) (d)

(e) (f)

Figure 3.13: Attraction-dominated regime: χ “ 0.35, k “ ´1{2, m “ 4{3, r “ 0 with initial data
ρpt “ 0, xq “ ρHLS,λ˚,c˚pxq given in (6.53).
(a) Solution density from initial condition (black) to the profile at the last time step (red), (b) zoom
of Figure (a), (c) inverse cumulative distribution function from initial condition (black) to the pro-
file at the last time step (red), (d) free energy, (e) log-log plot of the L2-error difference between
two consecutive solutions and fitted line with slope ´0.52817, (f) log-log plot of maxx ρpt, xq and
fitted line with slope ´0.45431 .
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Chapter4

Ground States in the

Diffusion-Dominated Regime

This chapter follows in most parts the article “Ground states in the diffusion-dominated regime”

written in collaboration with José A. Carrillo1, Edoardo Mainini2 and Bruno Volzone3, and sub-

mitted for publication. The radiality proof in Section 2.1 of Chapter 4 was contributed by José A.

Carrillo and Bruno Volzone.

Chapter Summary

We consider macroscopic descriptions of particles where repulsion is modelled by non-

linear power-law diffusion and attraction by a homogeneous singular kernel leading to vari-

ants of the Keller–Segel model of chemotaxis. We analyse the regime in which diffusive forces

are stronger than attraction between particles, known as the diffusion-dominated regime, and

show that all stationary states of the system are radially symmetric decreasing and compactly

supported. The model can be formulated as a gradient flow of a free energy functional for

which the overall convexity properties are not known. We show that global minimisers of the

free energy always exist. Further, they are radially symmetric, compactly supported, uniformly

bounded and C8 inside their support. Global minimisers enjoy certain regularity properties if

the diffusion is not too slow, and in this case, provide stationary states of the system. In one

dimension, stationary states are characterised as optimisers of a functional inequality which es-

tablishes equivalence between global minimisers and stationary states, and allows to deduce

uniqueness.

1Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
2Dipartimento di Ingegneria Meccanica, Università degli Studi di Genova, Genova, Italia
3Dipartimento di Ingegneria, Università degli Studi di Napoli “Parthenope”, Napoli, Italia

189



4. Diffusion-Dominated Regime

Chapter Content

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

2 Stationary states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

2.1 Radial symmetry of stationary states . . . . . . . . . . . . . . . . . . . . 194

2.2 Stationary states are compactly supported . . . . . . . . . . . . . . . . . 196

3 Global minimisers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

3.1 Existence of global minimisers . . . . . . . . . . . . . . . . . . . . . . . . 198

3.2 Boundedness of global minimisers . . . . . . . . . . . . . . . . . . . . . 200

3.3 Regularity properties of global minimisers . . . . . . . . . . . . . . . . . 205

4 Uniqueness in one dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

4.1 Optimal transport tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

4.2 Functional inequality in one dimension . . . . . . . . . . . . . . . . . . . 211

A Appendix: Properties of the Riesz potential . . . . . . . . . . . . . . . . . . . . . 213
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1. Introduction

1 Introduction

As in Chapters 2 and 3, we are interested in the aggregation-diffusion equation

Btρ “
1
N

∆ρm ` 2χ∇ ¨ pρ∇Skq (1.1)

for a density ρpt, xq of unitmass defined onR`ˆRN , andwherewedenote themean-field potential

by Skpxq :“Wkpxq ˚ ρpxqwith the interaction kernelWk given by the Riesz potential,

Wkpxq :“ |x|k

k
, k P p´N, 0q.

For an extensive survey of applications and literature around equation (1.1), see Chapters 1, 2 and

3. In this chapter, we focus on the case when diffusion is non-linear and of porous medium type

m ą 1 whilst Wk has a singularity at the origin k ă 0. The lower bound on k ensures that the

kernelWk is locally integrable inRN . As the Riesz potentialWk is the fundamental solution of the

fractional Laplacian p´∆qs with k “ 2s´N , we sometimes use the notation s P p0, N{2q instead of

k P p´N, 0q. More precisely, the convolution term Sk is governed by a fractional diffusion process,

cN,sp´∆qsSk “ ρ , cN,s :“ p2s´Nq
Γ
`

N
2 ´ s

˘

πN{24sΓpsq
.

For k ą 1 ´ N , the gradient ∇Sk :“ ∇ pWk ˚ ρq is well defined locally. For k P p´N, 1´N s

however, it becomes a singular integral, and we thus define it via a Cauchy principal value,

∇Skpxq :“

$

’

’

&

’

’

%

∇ pWk ˚ ρq pxq , if 1´N ă k ă 0 ,
ż

RN
∇Wkpx´ yq pρpyq ´ ρpxqq dy , if ´N ă k ď 1´N .

(1.2)

The parameter χ ą 0 denotes the interaction strength and scales with the mass of solutions. Since

(1.1) conserves mass, is positivity preserving and invariant by translation, we work with solutions

ρ in the set

Y :“
"

ρ P L1
`pRN q X LmpRN q , ||ρ||1 “ 1 ,

ż

RN
xρpxq dx “ 0

*

.

The associated free energy functional to the evolution equation (1.1) is given by

Fm,krρs :“ Hmrρs ` χWkrρs

with

Hmrρs :“ 1
Npm´ 1q

ż

RN
ρmpxq dx , Wkrρs :“

ĳ

RNˆRN

|x´ y|k

k
ρpxqρpyq dxdy

Note thatFm,k ă 8 onY . The noticeable characteristic of the class of PDEs (1.1) and the functional

Fm,k consists in the competition between non-linear diffusion and a non-local quadratic interac-

tion term which is due to the self-attraction of the particles through the mean-field potential Sk.

The free energy functional Fm,k is not only non-increasing along the trajectories of the system,
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4. Diffusion-Dominated Regime

equation (1.1) is also the formal gradient flow of Fm,k when the space of probability measures is

endowed with the Euclidean Wasserstein metric W, see Chapter 1 Section 2.3.2. This means that

the family of PDEs (1.1) can be written as

Btρptq “ ´∇WFm,krρptqs .

Performing gradient flows of a convex functional is a natural task, and suitable estimates from

below on the right notion of Hessian of Fm,k translate into a rate of convergence towards equilib-

rium for the PDE [295, 96, 3]. However, in our case, the overall convexity properties of the free

energy functional Fm,k are not known, see Chapter 1 Section 2.3. Performing gradient flows of

functionals with convex and concave contributions is much more delicate, and one has to seek

compensations. Such compensations do exist in our case, and we will observe them at the level of

existence of minimisers for the free energy functional Fm,k and stationary states of the family of

PDEs (1.1) for certain ranges of the diffusion exponentm ą 1.

The functionalFm,k possesses remarkable homogeneity properties thatmotivate the definition

of the fair-competition regimeNpm´1q`k “ 0, the diffusion-dominated regimeNpm´1q`k ą 0 and

the attraction-dominated regime Npm´ 1q ` k ă 0, see Chapter 1 Definition 3.1. An overview of the

parameter space pk,mq and the different regimes is given in Chapter 1 Figure 1.4. More precisely,

taking mass-preserving dilations ρλpxq :“ λNρpλxq for λ ą 0 of a density ρ P Y , we obtain

Fm,krρλs “ λNpm´1qHmrρs ` λ
´kχWkrρs .

In other words, the diffusion and aggregation forces are in balance if Npm´ 1q “ ´k. This is the

case for choosing the critical diffusion exponent

mc :“ 1´ k

N
. (1.3)

In this chapter, we deal with the diffusion-dominated regime m ą mc, i.e. diffusion is expected

to overcome aggregation as λ Ñ 8, for any choice of χ ą 0. This domination effect means that

solutions exist globally in time and are bounded uniformly in time [61, 277, 276]. Stationary states

were found byminimisation of the free energy functional in two and three dimensions [273, 78, 99]

in the case of attractive Newtonian potentials k “ 2´N . Stationary states are radially symmetric

if 2´N ď k ă 0 as proven in [89]. Moreover, in the particular case of N “ 2, k “ 0, andm ą 1 it

has been shown in [89] that the asymptotic behaviour is given by compactly supported stationary

solutions independently of χ. For a detailed review of known results, see Chapter 1 Section 3.

Our goal is to generalise these results to the full range k P p´N, 0q andm ą mc. Stationary states

of the system (1.1) provide natural candidates for asymptotic profiles of the evolution problem,

and we focus therefore on understanding the stationary problem first, making the connection to
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minimisers of the energy functional Fm,k. In what follows, we denote F :“ Fm,k for simplicity.

Further, we define the diffusion exponent m˚ that will play an important role for the regularity

properties of global minimisers of F :

m˚ :“

$

’

&

’

%

2´k´N
1´k´N , if N ě 1 and ´N ă k ă 1´N ,

`8 if N ě 2 and 1´N ď k ă 0 .
(1.4)

In this chapter, we will prove the following main results:

Theorem 1.1. Let N ě 1, χ ą 0 and k P p´N, 0q. All stationary states of equation (1.1) are radially

symmetric decreasing. If m ą mc, then there exists a global minimiser ρ of F on Y . Further, all global

minimisers ρ P Y are radially symmetric non-increasing, compactly supported, uniformly bounded and

C8 inside their support. Moreover, all global minimisers of F are stationary states of (1.1) whenever

mc ă m ă m˚. Finally, ifmc ă m ď 2, we have ρ P W1,8 `

RN
˘

.

Theorem 1.2. Let N “ 1, χ ą 0 and k P p´1, 0q. All stationary states of (1.1) are global minimisers of

the energy functional F on Y . Further, stationary states of (1.1) in Y are unique.

2 Stationary states

Let us begin by defining precisely the notion of stationary states to the aggregation-diffusion equa-

tion (1.1).

Definition 2.1. Given ρ̄ P L1
`

`

RN
˘

X L8
`

RN
˘

with ||ρ̄||1 “ 1, and letting S̄k “ Wk ˚ ρ̄, we say that

ρ̄ is a stationary state for the evolution equation (1.1) if ρ̄m P W1,2
loc

`

RN
˘

, ∇S̄k P L1
loc

`

RN
˘

, and it

satisfies
1
N

∇ρ̄m “ ´2χ ρ̄∇S̄k

in the sense of distributions in RN . If ´N ă k ď 1 ´ N , we further require ρ̄ P C0,α `RN
˘

for some

α P p1´ k ´N, 1q.

In fact, as shown in Chapter 2, the function Sk and its gradient defined in (1.2) satisfy even

more than the regularity ∇Sk P L1
loc

`

RN
˘

required in Definition 2.1:

Lemma 2.2. Let ρ P L1
`

`

RN
˘

XL8
`

RN
˘

with ||ρ||1 “ 1 and k P p´N, 0q. Then the following regularity

properties hold:

(i) Sk P L8
`

RN
˘

.

(ii) ∇Sk P L8
`

RN
˘

, assuming additionally ρ P C0,α `RN
˘

with α P p1 ´ k ´ N, 1q in the range

k P p´N, 1´N s.
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4. Diffusion-Dominated Regime

Using the same techniques as in Chapter 2, we can show that Lemma 2.2 implies further reg-

ularity properties for stationary states of (1.1).

Proposition 2.3. Let k P p´N, 0q andm ą mc. If ρ̄ is a stationary state of equation (1.1) and S̄k “Wk˚ρ̄,

then ρ̄ is continuous on RN , ρ̄m´1 P W1,8 `

RN
˘

, and it satisfies

ρ̄pxqm´1 “
Npm´ 1q

m

`

Crρ̄spxq ´ 2χS̄kpxq
˘

`
, @x P RN ,

where Crρ̄spxq is constant on each connected component of supp pρ̄q.

It follows fromProposition 2.3 that any stationary state ρ̄ of equation (1.1) enjoysW1,8-regularity

in the casemc ă m ď 2.

2.1 Radial symmetry of stationary states

The aim of this section is to prove that stationary states of (1.1) are radially symmetric. This is one

of the main results of [89], and is achieved there under the assumption that the interaction kernel

is not more singular than the Newtonian potential close to the origin. As we will briefly describe

in the proof of the next result, the main arguments continue to hold even for the more singular

Riesz kernelsWk.

Theorem 2.4 (Radiality of stationary states). Let χ ą 0 and m ą mc. If ρ̄ P L1
`pRN q X L8pRN q

with }ρ̄}1 “ 1 is a stationary state of (1.1) in the sense of Definition 2.1, then ρ̄ is radially symmetric

non-increasing up to a translation.

Proof. The proof is based on a contradiction argument, being an adaptation of that in [89, Theo-

rem 2.2], to which we address the reader the more technical details. Assume that ρ̄ is not radially

decreasing up to any translation. By Proposition 2.3, we have

ˇ

ˇ∇ρ̄m´1pxq
ˇ

ˇ ď c (2.5)

for some positive constant c in supppρ̄q. Let us now introduce the continuous Steiner symmetrisation

Sτ ρ̄ in direction e1 “ p1, 0, ¨ ¨ ¨ , 0q of ρ̄ as follows. For any x1 P R, x1 P RN´1, h ą 0, let

Sτ ρ̄px1, x
1q :“

ż 8

0
1Mτ pUh

x1
qpx1qdh,

where

Uhx1 “ tx1 P R : ρ̄px1, x
1q ą hu

and Mτ pUhx1q is the continuous Steiner symmetrisation of the Uhx1 (see [89] for the precise defini-

tions and all the related properties). As in [89], our aim is to show that there exist a continuous
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2. Stationary states

family of functions µpτ, xq such that µp0, ¨q “ ρ̄ and some positive constants C1 ą 0, c0 ą 0 and a

small δ0 ą 0 such that the following estimates hold for all τ P r0, δ0s:

Frµrτ ss ´ Frρ̄s ď ´c0τ (2.6)

|µpτ, xq ´ ρ̄pxq| ď C1ρ̄pxqτ for all x P RN (2.7)

ż

Ωi
rµpτ, xq ´ ρ̄pxqs dx “ 0 for any connected component Ωi of supppρ̄q. (2.8)

Following the arguments of the proof in [89, Proposition 2.7], if we want to construct a continuous

family µpτ, ¨q for (2.7) to hold, it is convenient to modify suitably the continuous Steiner symmetri-

sation Sτ ρ̄ in order to have a better control of the speed in which the level sets Uhx1 are moving.

More precisely, we define µpτ, ¨q “ S̃τ ρ̄ as

S̃τ ρ̄0px1, x
1q :“

ż 8

0
1Mvphqτ pUh

x1
qpx1qdh

with vphq defined as

vphq :“

$

’

&

’

%

1 h ą h0 ,

0 0 ă h ď h0 ,

for some sufficiently small constant h0 ą 0 to be determined. Note that this choice of the veloc-

ity is different to the one in [89, Proposition 2.7] since we are actually keeping the level sets of

S̃τ ρ̄p¨, x1q frozen below the layer at height h0. Next, we note that inequality (2.5) and the Lips-

chitz regularity of S̄k (Lemma 2.2) are the only basic ingredients used in the proof of [89, Propo-

sition 2.7] to show that the family µpτ, ¨q satisfies (2.7) and (2.8). Therefore, it remains to prove

(2.6). Since different level sets of S̃τ ρ̄p¨, x1q are moving at different speeds vphq, we do not have

Mvph1qτ pUh1
x1 q Ă Mvph2qτ pUh2

x1 q for all h1 ą h2, but it is still possible to prove that (see [89, Propo-

sition 2.7])

HmrS̃
τ ρ̄s ď Hmrρ̄s for all τ ě 0.

Then, in order to establish (2.6), it is enough to show

WkrS̃
τ ρ̄s ď Wkrρ̄s ´ 2χc0τ for all τ P r0, δ0s, for some c0 ą 0 and δ0 ą 0. (2.9)

As in the proof of [89, Proposition 2.7], proving (2.9) reduces to show that for sufficiently small

h0 ą 0 one has
ˇ

ˇWkrS̃
τ ρ̄s ´WkrS

τ ρ̄s
ˇ

ˇ ď cχτ for all τ . (2.10)

To this aim, we write

Sτ ρ̄px1, x
1q “

ż 8

h0

1Mτ pUh
x1
qpx1qdh`

ż h0

0
1Mτ pUh

x1
qpx1qdh “: f1pτ, xq ` f2pτ, xq

195
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and we split S̃τ ρ̄ similarly, taking into account that vphq “ 1 for all h ą h0:

S̃τ ρ̄px1, x
1q “ f1pτ, xq `

ż h0

0
1Mvphqτ pUh

x1
qpx1qdh “: f1pτ, xq ` f̃2pτ, xq.

Note that

f2 “ Sτ pT h0 ρ̄q ,

where T h0 ρ̄ is the truncation at height h0 of ρ̄. Since vphq “ 0 for h ď h0, we have

f̃2 “ T h0 ρ̄.

If we are in the singular range k P p´N, 1 ´ N s, we have ρ̄ P C0,α `RN
˘

for some α P p1 ´ k ´

N, 1q. Since the continuous Steiner symmetrisation decreases the modulus of continuity (see [54,

Theorem 3.3] and [54, Corollary 3.1]), we also have Sτ ρ̄, f2, f̃2 P C
0,α `RN

˘

. Further, Lemma 2.2

guarantees that the expressions

A1pτq :“
ˇ

ˇ

ˇ

ˇ

ż

f2pWk ˚ f1q ´ f̃2pWk ˚ f1qdx

ˇ

ˇ

ˇ

ˇ

and A2pτq :“
ˇ

ˇ

ˇ

ˇ

ż

f2pWk ˚ f2q ´ f̃2pWk ˚ f̃2qdx

ˇ

ˇ

ˇ

ˇ

can be controlled by ||ρ̄||8 and the α-Hölder seminorm of ρ̄. Hence, we can apply the argument

in [89, Proposition 2.7] to conclude for the estimate (2.10). Now it is possible to proceed exactly as

in the proof of [89, Theorem 2.2] to show that for some positive constantC2, we have the quadratic

estimate

|Frµrτ ss ´ Frρ̄s| ď C2τ
2 ,

which is a contradiction with (2.6) for small τ .

2.2 Stationary states are compactly supported

In this section, we will prove that all stationary states of equation (1.1) have compact support,

which agrees with the properties shown in [199, 78, 89]. We begin by stating a useful asymptotic

estimate on the Riesz potential inspired by [269, §4]. For the proof of Proposition 2.5, seeAppendix

A.

Proposition 2.5 (Riesz potential estimates). Let k P p´N, 0q and let ρ P Y be radially symmetric.

(i) If 1´N ă k ă 0, then |x|k ˚ ρpxq ď C1|x|
k on RN .

(ii) If ´N ă k ď 1´N and if ρ is supported on a ball BR for some R ă 8, then

|x|k ˚ ρpxq ď C2Tkp|x|, Rq |x|
k , @ |x| ą R ,

where

Tkp|x|, Rq :“

$

&

%

´

|x|`R
|x|´R

¯1´k´N
if k P p´N, 1´Nq,

´

1` log
´

|x|`R
|x|´R

¯¯

if k “ 1´N
(2.11)
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Here, C1 ą 0 and C2 ą 0 are explicit constants depending only on k and N .

From the above estimate, we can derive the expected asymptotic behaviour at infinity.

Corollary 2.6. Let ρ P Y be radially non-increasing. Then Wk ˚ ρ vanishes at infinity, with decay not

faster than that of |x|k.

Proof. Notice that Proposition 2.5(i) entails the decay of the Riesz potential at infinity for 1´N ă

k ă 0. Instead, let ´N ă k ď 1´N . Let r P p1´ k ´N, 1q and notice that |y|k ď |y|k`r if |y| ě 1,

so that if B1 is the unit ball centered at the origin we have

|x|k ˚ ρpxq ď

ż

B1

ρpx´ yq|y|k dy `

ż

BC1

ρpx´ yq|y|k`r dy

ď

ˆ

sup
yPB1

ρpx´ yq

˙
ż

B1

|y|k dy ` pWk`r ˚ ρqpxq.

The first term in the right hand side vanishes as |x| Ñ 8, since y ÞÑ |y|k is integrable at the origin,

and since ρ is radially non-increasing and vanishing at infinity as well. The second term goes to

zero at infinity thanks to Proposition 2.5(i), since the choice of r yields k ` r ą 1´N .

On the other hand, the decay at infinity of the Riesz potential can not be faster than that of |x|k.

To see this, notice that there holds

|x|k ˚ ρpxq ě

ż

B1

ρpyq|x´ y|k dy ě p|x| ` 1qk
ż

B1

ρpyq dy

with
ş

B1
ρ ą 0 since ρ P Y is radially non-increasing.

As a rather simple consequence of Corollary 2.6, we obtain:

Corollary 2.7. Let ρ̄ be a stationary state of (1.1). Then ρ̄ is compactly supported.

Proof. By Theorem 2.4we have that ρ̄ is radially non-increasing up to a translation. Since the trans-

lation of a stationary state is itself a stationary state, we may assume that ρ̄ is radially symmetric

with respect to the origin. Suppose by contradiction that ρ̄ is supported on the whole of RN , so

that equation (2.9) holds on the whole RN , with Ckrρ̄spxq replaced by a unique constant C. Then

we necessarily have C “ 0. Indeed, ρ̄m´1 vanishes at infinity since it is radially decreasing and

integrable, and by Corollary 2.6 we have that S̄k “Wk ˚ ρ̄ vanishes at infinity as well. Therefore

ρ̄ “

ˆ

2χNpm´ 1q
m

S̄k

˙1{pm´1q
.

But Corollary 2.6 shows that Wk ˚ ρ decays at infinity not faster than |x|k and this would entail,

sincem ą mc, a decay at infinity of ρ not faster than that of |x|´N , contradicting the integrability

of ρ.
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3 Global minimisers

3.1 Existence of global minimisers

Theorem 3.1 (Existence of Global Minimisers). For all χ ą 0 and k P p´N, 0q, there exists a global

minimiser ρ of F in Y . Moreover, all global minimisers of F in Y are radially non-increasing.

We follow the concentration compactness argument as applied in Appendix A.1 of [199]. Our

proof is based on [220, Theorem II.1, Corollary II.1]. Let us denote by MppRN q the Marcinkiewicz

space or weak Lp space.

Theorem 3.2. (see [220, Theorem II.1]) SupposeW P MppRN q, 1 ă p ă 8, and consider the problem

IM “ inf
ρPYq,M

"

1
Npm´ 1q

ż

RN
ρmdx` χ

ż

RN
ρpρ ˚W qdx

*

.

where

Yq,M “

"

ρ P LqpRN q X L1pRN q , ρ ě 0 a.e.,
ż

RN
ρpxq dx “M

*

, q “
p` 1
p

ă m.

Then there exists a minimiser of problem pIM q if the following holds:

IM0 ă IM ` IM0´M for all M P p0,M0q . (3.12)

Proposition 3.3. (see [220, Corollary II.1]) Suppose there exists some λ P p0, Nq such that

W ptxq ě t´λW pxq

for all t ě 1. Then (3.12) holds if and only if

IM ă 0 for all M ą 0 . (3.13)

Proof of Theorem 3.1. First of all, notice that our choice of potential Wkpxq “ |x|k{k is indeed in

MppRN q with p “ ´N{k. Further, it can easily be verified that Proposition 3.3 applies with λ “

´k. Hence we are left to show that there exists a choice of ρ P Yq,M such that Frρs ă 0. Let us fix

R ą 0 and define

ρ˚pxq :“ MN

σNRN
1BRpxq ,

whereBR denotes the ball centered at zero and of radiusR ą 0, and where σN “ 2πpN{2q{ΓpN{2q

denotes the surface area of the N -dimensional unit ball. Then

Hmrρ˚s “
1

Npm´ 1q

ż

RN
ρm˚ dx “

pMNqmσ1´m
N

N2pm´ 1q RNp1´mq ,

Wkrρ˚s “

ĳ

RNˆRN

Wkpx´ yqρ˚pxqρ˚pyq dxdy

“
pMNq2

kσ2
NR

2N

ĳ

RNˆRN

|x´ y|k1BRpxq1BRpyq dxdy

ď
pMNq2

kσ2
NR

2N p2Rq
k σ

2
N

N2R
2N “ 2kM2R

k

k
ă 0 .
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3. Global minimisers

We conclude that

Frρ˚s “ Hmrρ˚s ` χWkrρ˚s ď
MmNm´2σ1´m

N

pm´ 1q RNp1´mq ` 2kM2χ
Rk

k
.

Since we are in the diffusion-dominated regime Np1 ´ mq ă k ă 0, we can choose R ą 0 large

enough such that Frρ˚s ă 0, and hence condition (3.13) is satisfied. We conclude by Proposition

3.3 and Theorem 3.2 that there exists a minimiser ρ̄ of F in Yq,M with q “ pp` 1q{p “ pN ´ kq{N .

It can easily be seen that in fact ρ̄ P LmpRN q using the HLS inequality (3.21) in Chapter 1:

´Wkrρs “

ĳ

RNˆRN

|x´ y|k

p´kq
ρpxqρpyq dxdy ď

CHLS
p´kq

||ρ||2r ,

where r “ 2N{p2N ` kq “ 2p{p2p´ 1q. Using Hölder’s inequality, we find

´Wkrρs ď
CHLS
p´kq

||ρ||qq||ρ||
2´q
1 .

Hence, since Frρ̄s ă 0,

||ρ̄||mm ď ´χNpm´ 1qWkrρ̄s ď χNpm´ 1q
ˆ

M2´qCHLS
p´kq

˙

||ρ̄||qq ă 8 .

Translating ρ̄ so that its centre of mass is at zero and choosingM “ 1, we obtain a minimiser ρ̄ of

F in Y . Moreover, by Riesz’s rearrangement inequality [218, Theorem 3.7], we have

Wkrρ
#s ď Wkrρs , @ρ P Y, ,

where ρ# is the symmetric decreasing rearrangement of ρ. Thus, if ρ̄ is a global minimiser of F in

Y , then so is ρ̄#, and it follows that

Wkrρ̄
#s “ Wkrρ̄s .

We conclude from [218, Theorem 3.7] that ρ̄ “ ρ̄#, and so all global minimisers of F in Y are

radially symmetric non-increasing.

Global minimisers of F satisfy a corresponding Euler-Lagrange condition. The proof can be

directly adapted from [78, Theorem 3.1] or Chapter 2 Proposition 3.6, and we omit it here.

Proposition 3.4. Let k P p´N, 0q andm ą mc. If ρ is a global minimiser of the free energy functional F

in Y , then ρ is radially symmetric and non-increasing, satisfying

ρm´1pxq “
Npm´ 1q

m
pDrρs ´ 2χWk ˚ ρpxqq` a.e. in RN . (3.14)

Here, we denote

Drρs :“ 2Frρs ` m´ 2
Npm´ 1q ||ρ||

m
m, ρ P Y .
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3.2 Boundedness of global minimisers

This section is devoted to showing that all global minimisers of F in Y are uniformly bounded. In

the following, for a radial function ρ P L1pRN qwe denote byMρpRq :“
ş

BR
ρ dx the corresponding

mass function, where BR is a ball of radius R, centered at the origin. We start with the following

technical lemma:

Lemma 3.5. Let χ ą 0,´N ă k ă 0,m ą 1 and 0 ď q ă m{N . Assume ρ P Y is radially decrasing. For

a fixedH ą 0, the level set tρ ě Hu is a ball centered at the origin whose radius we denote byAH . Then we

have the following cross-range interaction estimate: There existsH0 ą 1, depending only on q,N,m, }ρ}m,

such that, for any H ą H0,
ż

BC
AH

ż

BAH

|x´ y|kρpxqρpyq dx dy ď Ck,N MρpAHqKk,q,N pHq,

where

Kk,q,N pHq :“

$

&

%

H1´qpk`Nq `H´kq if k P p´N, 0q, k ‰ 1´N,

H1´qp2` logp1`Hqqq `HqpN´1q if k “ 1´N

and Ck,N is a constant depending only on k and N .

Proof. Notice that the result is trivial if ρ is bounded. The interesting case here is ρ unbounded,

implying that AH ą 0 for any H ą 0.

First of all, since ρ P LmpRN q and ρ ě H on BAH , the estimate

σNA
N
H

N
Hm “

ż

BAH

Hm ď

ż

BAH

ρm ď ||ρ||mm

implies that HqAH is vanishing as H Ñ `8 as soon as q ă m{N , and in particular that we can

find H0 ą 1, depending only on q,m,N, ||ρ||m, such that

H´q ě 2AH for any H ą H0.

We fix q P r0,m{Nq and H ą H0 as above from here on.

Let us make use of Proposition 2.5, which we apply to the compactly supported function

ρH :“ ρ1tρěHu{Mρ pAHq.

Case 1´N ă k ă 0 Proposition 2.5(i) applied to ρH gives the estimate
ż

BAH

|x´ y|kρpyq dy ď C1Mρ pAHq |x|
k , @x P RN ,
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and hence, integrating against ρ on BCAH and using ρ ď H on BCAH ,
ż

BC
AH

ż

BAH

|x´ y|kρpxqρpyq dx dy ď C1Mρ pAHq

ż

BC
AH

|x|kρpxq dx

“ C1Mρ pAHq

˜

ż

BC
AH
XBH´q

|x|kρpxq dx`

ż

BC
AH
zBH´q

|x|kρpxq dx

¸

ď C1Mρ pAHq

˜

H

ż

BC
AH
XBH´q

|x|k dx`H´kq
ż

BC
AH
zBH´q

ρpxq dx

¸

ď C1Mρ pAHq

˜

HσN

ż H´q

AH

rk`N´1 dr `H´kq

¸

ď C1Mρ pAHq

ˆ

σN
k `N

H1´qpk`Nq `H´kq
˙

,

which conludes the proof in that case.

Case ´N ă k ď 1´N In this case, we obtain from Proposition 2.5(ii) applied to ρH the esti-

mate
ż

BAH

|x´ y|kρpyq dy ď C2Mρ pAHqTkp|x|, AHq|x|
k , @x P BCAH ,

and integrating against ρpxq over BCAH , we have
ż

BC
AH

ż

BAH

|x´ y|kρpxqρpyq dx dy ď C2Mρ pAHq

ż

BC
AH

Tkp|x|, AHq|x|
kρpxq dx . (3.15)

We split the integral in the right hand side as I1 ` I2, where

I1 :“
ż

BC
AH
XBH´q

Tkp|x|, AHq|x|
kρpxq dx, I2 :“

ż

BC
AH
zBH´q

Tkp|x|, AHq|x|
kρpxq dx .

Let us first consider I2, where we have |x| ě H´q ě 2AH on the integration domain. Since the

map |x| ÞÑ |x|`AH
|x|´AH

is monotonically decreasing to 1 in pAH ,`8q, it is bounded above by 3 on

p2AH ,`8q. We conclude from (2.11) that Tkp|x|, AHq ď 3 for |x| P pH´q,`8q. This entails

I2 ď 3
ż

BC
AH
zBH´q

|x|kρpxq dx ď 3H´kq, (3.16)

where we used once again |x| ě H´q , recalling that k ă 0.

Concerning I1, we have ρ ď H on BCAH which entails

I1 ď H

ż

BC
AH
XBH´q

Tkp|x|, AHq|x|
k dx “ σNH

ż H´q

AH

Tkpr,AHqr
k`N´1 dr. (3.17)

If ´N ă k ă 1´N , we use (2.11) and pr ` 2AHq{pr `AHq ă 2 for r P p0,`8q, so that

ż H´q

AH

Tkpr,AHqr
k`N´1 dr ď

ż H´q

0

ˆ

r ` 2AH
r `AH

˙1´k´N
rk`N´1 dr ď

21´k´N

k `N
H´qpk`Nq. (3.18)
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4. Diffusion-Dominated Regime

If k “ 1´N we have from (2.11), since 2AH ď H´q ă 1,

ż H´q

AH

Tkpr,AHqr
k`N´1 dr “

ż H´q

AH

ˆ

1` log
ˆ

r `AH
r ´AH

˙˙

dr

ď

ż H´q

0

ˆ

1` log
ˆ

r ` 1
r

˙˙

dr

“ H´q `H´q logp1`Hqq ` logp1`H´qq

ď H´qp2` logp1`Hqqq.

(3.19)

Combining (3.17), (3.18), (3.19) we conclude I1 ď σN21´k`N

k`N H1´qpk`Nq if ´N ă k ă 1 ´ N , and

I1 ď σNH
1´qp2` logp1`Hqqq if k “ 1´N . These information together with the estimate (3.16)

can be inserted into (3.15) to conclude.

We are now in a position to prove that any global minimiser of F is uniformly bounded.

Proposition 3.6. Let χ ą 0, k P p´N, 0q and m ą mc. Then any global minimiser of F over Y is

uniformly bounded and compactly supported.

Proof. Since ρ is radially symmetric decreasing by Proposition 3.4, it is enough to show ρp0q ă 8.

Let us reason by contradiction and assume that ρ is unbounded at the origin. We will show that

Frρs ´ Frρ̃s ą 0 for a suitably chosen competitor ρ̃,

ρ̃pxq “ ρ̃H,rpxq :“ NMρpAHq

σNrN
1Dr pxq ` ρpxq1BCAH

pxq ,

where BAH and q are defined as in Lemma 3.5, BCAH denotes the complement of BAH and 1Dr is

the characteristic function of a ballDr :“ Brpx0q of radius r ą 0, centered at some x0 ‰ 0 and such

thatDr XBAH “ H. Note that AH ď H´q{2 ă H´q0 {2 ă 1{2. Hence, wlog, we can take r ą 1 and

Dr centered at the point x0 “ p2r, 0, . . . , 0q P RN . Notice in particular that since ρ is unbounded,

for any H ą 0 we have that BAH has non-empty interior. On the other hand, BAH shrinks to the

origin as H Ñ8 since ρ is integrable. As Dr Ă BCAH and ρ “ ρ̃ on BCAH zDr, we obtain

Npm´ 1q pHmrρs ´Hmrρ̃sq “

ż

BAH

ρm `

ż

BC
AH

ρm ´

ż

BC
AH

ˆ

ρ`
NMρpAHq

σNrN
1Dr

˙m

“

ż

BAH

ρm `

ż

Dr

„

ρm ´

ˆ

ρ`
NMρpAHq

σNrN

˙m

.
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We bound

εr : “
ż

Dr

„

ρm ´

ˆ

ρ`
NMρpAHq

σNrN

˙m

ďMρpAHq
m
´σN
N

¯1´m
rNp1´mq ,

where we use the convexity identity pa ` bqm ě |am ´ bm| for a, b ą 0. Hence, εr goes to 0 as

r Ñ8. Summarising we have for any r ą 1,

Npm´ 1q pHmrρs ´Hmrρ̃sq “

ż

BAH

ρm ` εr, (3.20)

with εr vanishing as r Ñ8.

To estimate the interaction term, we split the double integral into three parts:

k pWkrρs ´Wkrρ̃sq “

ĳ

RNˆRN

|x´ y|k pρpxqρpyq ´ ρ̃pxqρ̃pyqq dxdy

“

ĳ

BAHˆBAH

|x´ y|kρpxqρpyq dxdy

` 2
ĳ

BAHˆB
C
AH

|x´ y|kρpxqρpyq dxdy

`

ĳ

BC
AH
ˆBC

AH

|x´ y|k pρpxqρpyq ´ ρ̃pxqρ̃pyqq dxdy

“: I1 ` I2 ` I3prq .

(3.21)

Let us start with I3. By noticing once again that ρ “ ρ̃ on BCAH zDr for any r ą 0, we have

I3prq “

ż ż

DrˆDr

|x´ y|k pρpxqρpyq ´ ρ̃pxqρ̃pyqq

` 2
ż ż

DrˆpBCAH
zDrq

|x´ y|k pρpxqρpyq ´ ρ̃pxqρ̃pyqq

“: I31prq ` I32prq .

Since ρ̃ “ ρ`
NMρpAHq
σNrN

on Dr, we have

I32prq “ ´2NMρpAHq

σNrN

ż ż

DrˆpBCAH
zDrq

|x´ y|kρpyq dxdy.

By the HLS inequality (3.21) in Chapter 1, we have

|I32prq| ď2NMρpAHq

σNrN

ż ż

DrˆRN
|x´ y|kρpyq dxdy

ď2CHLS
NMρpAHq

σNrN
}1Dr}a}ρ}b

if a ą 1, b ą 1 and 1{a ` 1{b ´ k{N “ 2. We can choose b P p1,min tm, N{pk `Nquq, which is

possible as ´N ă k ă 0,m ą 1, and then we get a ą 1, ρ P LbpRN q as 1 ă b ă m, and

|I32prq| ď 2CHLS ||ρ||bMρpAHq

ˆ

σNr
N

N

˙

1
a´1

,
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4. Diffusion-Dominated Regime

and the latter vanishes as r Ñ8. For the term I31, we have

I31prq “ ´ 2NMρpAHq

σNrN

ż ż

DrˆDr

|x´ y|kρpyq dxdy

´

ˆ

NMρpAHq

σNrN

˙2 ż ż

DrˆDr

|x´ y|k dxdy .

With the same choice of a, b as above, the HLS inequality implies

|I31prq| ď2NMρpAHq

σNrN

ż ż

DrˆRN
|x´ y|kρpyq dxdy

`

ˆ

NMρpAHq

σNrN

˙2 ż ż

DrˆDr

|x´ y|k dxdy

ďCHLSMρpAHq

˜

2||ρ||b
ˆ

σNr
N

N

˙

1
a´1

`MρpAHq

ˆ

σNr
N

N

˙

1
a`

1
b´2¸

,

which vanishes as r Ñ8 since a ą 1 and b ą 1. We conclude that I3prq Ñ 0 as r Ñ8.

The integral I1 can be estimated using Theorem 3.4 in Chapter 1, and the fact that ρ ě H ą 1

on BAH together withm ą mc,

I1 “

ĳ

BAHˆBAH

|x´ y|kρpxqρpyq dxdy ď C˚MρpAHq
1`k{N

ż

BAH

ρmcpxq dx

ď C˚MρpAHq
1`k{N

ż

BAH

ρmpxq dx . (3.22)

On the other hand, the HLS inequalities (3.21) and (3.23) in Chapter 1 do not seem to give a

sharp enough estimate for the cross-term I2, for which we instead invoke Lemma 3.5, yielding

I2 ď 2Ck,N MρpAHqKk,q,N pHq, (3.23)

for given q P r0,m{Nq and large enough H as specified in Lemma 3.5.

In order to conclude, we join together (3.20), (3.21), (3.22) and (3.23) to obtain for any r ą 1 and

any large enough H ,

Frρs ´ Frρ̃s “ Hmrρs ´Hmrρ̃s ` χ pWkrρs ´Wkrρ̃sq

ě

ˆ

1
Npm´ 1q ` χ

C˚
k
MρpAHq

1`k{N
˙

ż

BAH

ρm ` 2χ Ck,N
k

MρpAHqKs,q,N pHq

`
εr

Npm´ 1q `
χ

k
I3prq . (3.24)

Now we choose q. On the one hand, notice that for a choice η ą 0 small enough such that

m ą mc ` η, we have
2´m` η
k `N

ă
m´ 1´ η
p´kq

. (3.25)

On the other hand, ´N ă k ă 0 implies 1 ´ k{N ą 2N{p2N ` kq. Since m ą mc, this gives the

inequality m ą 2N{p2N ` kq. Hence, for small enough η ą 0 such that m ą Np2 ` ηq{p2N ` kq,

we have
2´m` η
k `N

ă
m

N
. (3.26)
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3. Global minimisers

Thanks to (3.25) and (3.26) we see that we can fix a non-negative q such that

2´m` η
k `N

ă q ă min
"

m

N
,
pm´ 1´ ηq
p´kq

*

. (3.27)

Since q satisfies (3.27), it follows that ´kq ă m ´ 1 ´ η and at the same time 1 ´ qpk ` Nq ă

m ´ 1 ´ η, showing that Kk,q,N pHq from Lemma 3.5 grows slower than Hm´1´η as H Ñ 8 for

k ‰ 1´N . If k “ 1´N , we have that for any C ą 0 there exists H ą H0 large enough such that

CH1´q logp1`Hqq ă Hm´1´η since q ą 2´m` η, and so the same result follows. Hence, for any

large enough H we have

Ck,N MρpAHqKk,q,N pHq ă Ck,NH
m´1´ηMρpAHq ď Ck,NH

´η

ż

BAH

ρm

since ρ ě H on BAH . Inserting the last two estimates in (3.24) we get for some η ą 0

Frρs ´ Frρ̃s ě
ˆ

1
Npm´ 1q ` χ

C˚
k
MρpAHq

1`k{N ` 2χ Ck,NH
´η

k

˙
ż

BAH

ρm

`
εr

Npm´ 1q `
χ

k
I3prq .

for any r ą 1 and any large enoughH . First of all, notice that
ş

BAH
ρm is strictly positive since we

are assuming that ρ is unbounded. We can therefore fixH large enough such that the constant in

front of
ş

BAH
ρm is strictly positive. Secondly, we have already proven that εr and I3prq vanish as

r Ñ8, so we can choose r large enough such that

Frρs ´ Frρ̃s ą 0 ,

contradicting the minimality of ρ. We conclude that global minimisers of F are bounded. Finally,

we can just use the Euler-Lagrange equation (3.14) and the same argument as for Corollary 2.7 to

prove that ρ is compactly supported.

3.3 Regularity properties of global minimisers

This section is devoted to the regularity properties of global minimisers. With enough regularity,

global minimisers satisfy the conditions of Definition 2.1, and are therefore stationary states of

equation (1.1). This will allow us to complete the proof of Theorem 1.1.

We begin by introducing some notation and preliminary results. As we will make use of the

Hölder regularising properties of the fractional Laplacian, see [261, 270], the notation

cN,sp´∆qsSk “ ρ , s P p0, N{2q

is better adapted to the arguments that follow, fixing s “ pk ` Nq{2, and we will therefore state

the results in this section in terms of s.
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4. Diffusion-Dominated Regime

One fractional regularity result that we will use repeatedly in this section follows directly from

the HLS inequality (3.21) in Chapter 1 applied with k “ 2r ´N for any r P p0, N{2q:

p´∆qrf P Lp
`

RN
˘

ñ f P Lq
`

RN
˘

, q “
Np

N ´ 2rp , 1 ă p ă
N

2r , r P p0, N{2q . (3.28)

For 1 ď p ă 8 and s ě 0, we define the Bessel potential space L2s,ppRN q as made by all functions

f P LppRN q such that pI ´ ∆qsf P LppRN q, meaning that f is the Bessel potential of an LppRN q

function (see [272, pag. 135]). Sincewe areworkingwith the operator p´∆qs instead of pI´∆qs, we

make use of a characterisation of the space L2s,ppRN q in terms of Riesz potentials. For 1 ă p ă 8

and 0 ă s ă 1 we have

L2s,ppRN q “
 

f P LppRN q : f “ g ˚W2s´N , g P L
ppRN q

(

, (3.29)

see [264, Theorem 26.8, Theorem 27.3], see also exercise 6.10 in Stein’s book [272, pag. 161]. More-

over, for 1 ď p ă 8 and 0 ă s ă 1{2 we define the fractional Sobolev space W2s,ppRN q by

W2s,p `RN
˘

:“

$

&

%

f P LppRN q :
ĳ

RNˆRN

|fpxq ´ fpyq|p

|x´ y|N`2sp dx dy ă 8

,

.

-

.

We have the embeddings

L2s,ppRN q ĂW 2s,ppRN q for p ě 2, s P p0, 1{2q , (3.30)

W2s,p `RN
˘

Ă C0,β `RN
˘

for β “ 2s´N{p, p ą N{2s, s P p0, 1{2q, (3.31)

see [272, pag. 155] and [126, Theorem 4.4.7] respectively.

Letting s P p0, 1q and α ą 0 such that α ` 2s is not an integer, since cN,sp´∆qsSk “ ρ holds in

RN , then we have from [261, Theorem 1.1, Corollary 3.5] (see also [60, Proposition 5.2] that

}Sk}C0,α`2spB1{2p0qq
ď c

´

}Sk}L8pRN q ` }ρ}C0,αpB1p0qq

¯

, (3.32)

with the convention that if α ě 1 for any open set U inRN , C0,αpUq :“ Cα
1,α2pUq, where α1`α2 “

α, α2 P p0, 1q and α1 is the greatest integer less than α. With this notation, we have C1,0pRN q “

C0,1pRN q “ W1,8pRN q. In particular, using (3.32) it follows that for α ą 0, s P p0, 1q and α ` 2s

not an integer,

}Sk}C0,α`2spRN q ď c
`

}Sk}L8pRN q ` }ρ}C0,αpRN q
˘

. (3.33)

Moreover, rescaling inequality (3.32) in any ball BRpx0qwhere R ‰ 1, we have the estimate
α2
ÿ

`“0
R`}D`Sk}L8pBR{2px0qq `R

α`2srDα1SksC0,α`2s´α2 pBR{2px0qq

ď C

«

}Sk}L8pRN q `
α1
ÿ

`“0
R2s``}D`ρ}L8pBRpx0qq `R

α`2srDα1ρsC0,α´α1 pBRpx0qq

ff (3.34)
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3. Global minimisers

where α1, α2 are the greatest integers less than α and α ` 2s respectively. In (3.34) the quantities

}D`Sk}L8 and rD`ρsC0,α denote the sum of the L8-norms and the α-Hölder semi-norms of the

derivatives DpβqSk of order ` (that is |β| “ `).

Finally, we recall the definition ofmc andm˚ in (1.3)-(1.4):

mc :“ 2´ 2s
N
,

m˚ :“

$

’

&

’

%

2´ 2s
1´ 2s if N ě 1 and s P p0, 1{2q ,

`8 if N ě 2 and s P r1{2, N{2q .

Let us begin by showing that global minimisers of F enjoy the good Hölder regularity in the

most singular range, as long as diffusion is not too slow.

Theorem 3.7. Let χ ą 0 and s P p0, N{2q. If mc ă m ă m˚, then any global minimiser ρ P Y of F

satisfies Sk “Wk ˚ ρ P W1,8pRN q, ρm´1 P W1,8pRN q and ρ P C0,αpRN q with α “ mint1, 1
m´1u.

Proof. Recall that the global minimiser ρ P Y of F is radially symmetric non-increasing and com-

pactly supported by Theorem 3.1 and Proposition 3.6. Since ρ P L1 `RN
˘

X L8
`

RN
˘

by Proposi-

tion 3.6, we have ρ P Lp
`

RN
˘

for any 1 ă p ă 8. Since ρ “ cN,sp´∆qsSk, it follows from (3.28)

that Sk P LqpRN q, q “ Np
N´2sp for all 1 ă p ă N

2s , that is Sk P L
ppRN q for all p P p N

N´2s ,8q. If

s P p0, 1q, by the definition (3.29) of the Bessel potential space, we conclude that Sk P L2s,ppRN q

for all p ą N
N´2s . Let us first consider s ă 1{2, as the cases s ą 1{2 and s “ 1{2 will follow as a

corollary.

0 ă s ă 1{2 In this case, we have the embedding (3.30) and so Sk P W2s,ppRN q for all p ě 2 ą
N

N´2s ifN ě 2 and for all p ą maxt2, 1
1´2su ifN “ 1. Using (3.31), we conclude thatSk P C0,β `RN

˘

with

β :“ 2s´N{p,

for any p ą N
2s ą 2 if N ě 2 and for any p ą maxt 1

2s ,
1

1´2su if N “ 1. Hence ρm´1 P C0,β `RN
˘

for the same choice of β using the Euler-Lagrange condition (3.14) since ρm´1 is the truncation of

a function which is Sk up to a constant.

Note that mc P p1, 2q and m˚ ą 2, and in what follows we split our analysis into the cases

mc ă m ď 2 and 2 ă m ă m˚, still assuming s ă 1{2. If m ď 2, the argument follows along the

lines of Chapter 2 Corollary 3.12 since ρm´1 P C0,αpRN q implies that ρ is in the sameHölder space

for any α P p0, 1q. Indeed, in such case we bootstrap in the following way. Let us fix n P N such

that
1

n` 1 ă 2s ď 1
n

(3.35)
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4. Diffusion-Dominated Regime

and let us define

βn :“ β ` pn´ 1q2s “ 2ns´N{p. (3.36)

Form (3.35) and (3.36) we see that by choosing large enough p there hold 1´2s ă βn ă 1. Note that

Sk P L
8
`

RN
˘

by Lemma 2.2, and if ρ P C0,γ `RN
˘

for some γ P p0, 1q such that γ ` 2s ă 1, then

Sk P C
0,γ`2s `RN

˘

by (3.33), implying ρm´1 P C0,γ`2s `RN
˘

using the Euler-Lagrange conditions

(3.14), therefore ρ P C0,γ`2s `RN
˘

sincem P pmc, 2s. Iterating this argument pn´ 1q times starting

with γ “ β gives ρ P C0,βn
`

RN
˘

. Since βn ă 1 and βn ` 2s ą 1, a last application of (3.33) yields

Sk P W1,8pRN q, so that ρm´1 P W1,8pRN q, thus ρ P W1,8pRN q. This concludes the proof in the

casem ď 2.

Now, let us assume 2 ă m ă m˚ and s ă 1{2. Recall that ρm´1 P C0,γ `RN
˘

for any γ ă 2s,

and so ρ P C0,γ `RN
˘

for any γ ă 2s
m´1 . By (3.33) we get Sk P C0,γ `RN

˘

for any γ ă 2s
m´1 ` 2s, and

the same for ρm´1 by the Euler Lagrange equation (3.14). Once more with a bootstrap argument,

we obtain improved Hölder regularity for ρm´1. Indeed, since
`8
ÿ

j“0

2s
pm´ 1qj “

2spm´ 1q
m´ 2 (3.37)

and since m ă m˚ means 2spm´1q
m´2 ą 1, after taking a suitably large number of iterations we get

Sk P W1,8pRN q and ρm´1 P W1,8pRN q. Hence, ρ P C0,1{pm´1q `RN
˘

.

N ě 2, 1{2 ď s ă N{2 We start with the case s “ 1{2. We have Sk P LppRN q for any p ą N
N´1

as shown at the beginning of the proof. By (3.29) we get Sk P L1,p `RN
˘

for all p ą N
N´1 . Then

we also have Sk P L2r,ppRN q for all p ą N
N´1 and for all r P p0, 1{2q by the embeddings between

Bessel potential spaces, see [272, pag. 135]. Noting that 2 ě N
N´1 for N ě 2, by (3.30) and (3.31)

we get Sk P C0,2r´N{ppRN q for any r P p0, 1{2q and any p ą N
2r . That is, Sk P C0,γpRN q for

any γ P p0, 1q. Since m ă m˚ we may choose γ close enough to 1 such that γ
1^pm´1q ` 2s ą 1.

Therefore (3.33) implies Sk P W1,8pRN q. By the Euler-Lagrange equation (3.14), we obtain again

ρm´1 P W1,8pRN q.

If 1{2 ă s ă N{2 on the other hand, we obtain directly that Sk P W1,8pRN q by Lemma 2.2, and so

ρm´1 P W1,8pRN q.

We conclude that ρ P C0,αpRN qwith α “ mint1, 1
m´1u for any 1{2 ď s ă N{2.

Remark 3.8. Ifm ě m˚ and s ă 1{2, we recover some Hölder regularity, but it is not enough to show that

global minimisers of F are stationary states of (1.1). More precisely,m ě m˚ means 2spm´1q
m´2 ď 1, and so

it follows from (3.37) that ρ P C0,γ `RN
˘

for any γ ă 2s
m´2 . Note thatm ě m˚ also implies 2s

m´2 ď 1´2s,

and we are therefore not able to go above the desired Hölder exponent 1´ 2s.

Remark 3.9. In the proof of Theorem 3.7 one may choose to bootstrap on the fractional Sobolev space

W2s,p `RN
˘

directly, making use of the Euler-Lagrange condition (3.14) to show that ρ P Wr,p
`

RN
˘

ñ
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3. Global minimisers

Sk P Wr`2s,p `RN
˘

with r P p0, 1q for p large enough depending only on N . This is possible since

ρ P L1 X L8pRN q, so we can use the regularity properties of the Riesz potential see [272, Chapter V].

Further, for mc ă m ď 2, we have that ρ has the same Sobolev regularity as ρm´1. If m ą 2 on the other

hand, we can make use of the fact that ρm´1 P W2s,p implies ρ P W
2s
m´1 ,ppm´1q as suggested by Mironescu

in [236]. Indeed, let α ă 1 and u P W2s,p, where 0 ă s ă 1{2 and p P r1,8q. By the algebraic inequality

||a|α ´ |b|α| ď C|a´ b|α we have
ĳ

||upxq|α ´ |upyq|α|p{α

|x´ y|N`α2spp{αq dx dy ď C

ĳ

|upxq ´ upyq|p

|x´ y|N`2sp dx dy

thus |u|α P Wαs,p{α. This property is also valid for Sobolev spaces with integer order, see [236].

We are now ready to show that global minimisers possess the good regularity properties to be

stationary states of equation (1.1) according to Definition 2.1.

Theorem 3.10. Let χ ą 0, s P p0, N{2q and mc ă m ă m˚. Then all global minimisers of F in Y are

stationary states of equation (1.1) according to Definition 2.1.

Proof. Note that m ă m˚ means 1 ´ 2s ă 1{pm ´ 1q, and so thanks to Theorem 3.7, Sk and

ρ satisfy the regularity conditions of Definition 2.1. Further, since ρm´1 P W1,8 `

RN
˘

, we can

take gradients on both sides of the Euler-Lagrange condition (3.14). Multiplying by ρ and writ-

ing ρ∇ρm´1 “ m´1
m ∇ρm, we conclude that global minimisers of F in Y satisfy relation (2.1) for

stationary states of equation (1.1).

In fact, we can show that global minimisers have even more regularity inside their support.

Theorem 3.11. Let χ ą 0, mc ă m and s P p0, N{2q. If ρ P Y is a global minimiser of F , then ρ is C8

in the interior of its support.

Proof. By Theorem 3.7 and Remark 3.8, we have ρ P C0,αpRN q for some α P p0, 1q. Since ρ is

radially symmetric non-increasing, the interior of supp pρq is a ball centered at the origin, which

we denote by B. Note also that ρ P L1pRN q XL8pRN q by Proposition 3.6, and so Sk P L8pRN q by

Lemma 2.2.

Assume first that s P p0, 1q X p0, N{2q. Applying (3.34) with BR centered at a point within B

and such that BR ĂĂ B, we obtain Sk P C0,γpBR{2q for any γ ă α ` 2s. It follows from the

Euler-Langrange condition (3.14) that ρm´1 has the same regularity as Sk on BR{2, and since ρ is

bounded away from zero on BR{2, we conclude ρ P C0,γpBR{2q for any γ ă α` 2s. Repeating the

previous step now onBR{2, we get the improved regularity Sk P C0,γpBR{4q for any γ ă α` 4s by

(3.34), whichwe can again transfer onto ρ using (3.14), obtaining ρ P C0,γpBR{4q for any γ ă α`4s.

Iterating, any order ` of differentiability for Sk (and then for ρ) can be reached in a neighbourhood

of the center of BR. We notice that the argument can be applied starting from any point x0 P B,

209



4. Diffusion-Dominated Regime

and hence ρ P C8pBq.

When N ě 3 and s P r1, N{2q, we take numbers s1, . . . , sl such that si P p0, 1q for any i “ 1, . . . , l

and such that
řl
i“1 si “ s. We also let

Sl`1
k :“ Sk , Sjk :“ Πl

i“jp´∆qsjSk , @ j P t1, . . . , lu .

Then S1
k “ ρ. Note that Lemma 2.2(i) can be restated as saying that ρ P Y X L8pRN q implies

p´∆q´δρ P L8pRN q for all δ P p0, N{2q. Taking δ “ s ´ r for any r P p0, sq, we have p´∆qrSk “

p´∆qr´sρ P L8. In particular, this means Sjk P L8pRN q for any j “ 1, . . . , l ` 1. Moreover, there

holds

p´∆qsjSj`1
k “ Sjk , @ j P t1, . . . , lu .

Therefore we may recursively apply (3.34), starting from S1
k “ ρ P C0,αpBRq, where the ball BR is

centered at a point within B such that BR ĂĂ B, and using the iteration rule

Sjk P C
0,γpBσq ñ Sj`1

k P C0,γ`2sj
`

Bσ{2
˘

@ j P t1, . . . , lu , @ γ ą 0 s.t. γ ` 2sj is not an integer, @Bσ ĂĂ B.

We obtain Sl`1
k “ Sk P C0,γpBR{p2lqq for any γ ă α ` 2s, and as before, the Euler-Lagrange

equation (3.14) implies that ρ P C0,γpBR{p2lqq for any γ ă α ` 2s. If we repeat the argument, we

gain 2s in Hölder regularity for ρ each time we divide the radiusR by 2l. In this way, we can reach

any differentiability exponent for ρ around any point of B, and thus ρ P C8pBq.

The main result Theorem 1.1 follows from Theorem 2.4, Corollary 2.7, Theorem 3.1, Proposi-

tion 3.4, Proposition 3.6, Theorem 3.14 and Theorem 3.11.

4 Uniqueness in one dimension

4.1 Optimal transport tools

Optimal transport is a powerful tool for reducing functional inequalities onto pointwise inequal-

ities. In other words, to pass from microscopic inequalities between particle locations to macro-

scopic inequalities involving densities. This sub-section summarises the main results of optimal

transportation we will need in the one-dimensional setting. They were already used in [62] and

in Chapter 3, where we refer for detailed proofs.

Let ρ̃ and ρ be two probability densities. According to [53, 233], there exists a convex function

ψ whose gradient pushes forward the measure ρ̃paqda onto ρpxqdx: ψ1# pρ̃paqdaq “ ρpxqdx. This

convex function satisfies the Monge-Ampère equation in the weak sense: for any test function
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ϕ P CbpRq, the following identity holds true
ż

R
ϕpψ1paqqρ̃paq da “

ż

R
ϕpxqρpxq dx .

The convex map is unique a.e. with respect to ρ and it gives a way of interpolating measures

using displacement convexity [234]. The convexity of the functionals involved can be summarised

as follows [234, 85]:

Theorem 4.1. Let N “ 1. The functional Hmrρs is displacement-convex provided that m ě 0. The

functional Wkrρs is displacement-concave if k P p´1, 1q.

Thismeanswe have to dealwith convex-concave compensations. On the other hand, regularity

of the transport map is a complicatedmatter. Here, as it was already done in [62], we will only use

the fact that ψ2paqda can be decomposed in an absolute continuous part ψ2acpaqda and a positive

singular measure [295, Chapter 4]. In one dimension, the transport map ψ1 is a non-decreasing

function, therefore it is differentiable a.e. and it has a countable number of jump singularities. The

singular part of the positive measure ψ2paq da corresponds to having holes in the support of the

density ρ. For any measurable function U , bounded below such that Up0q “ 0 we have [234]
ż

R
Upρ̃pxqq dx “

ż

R
U

ˆ

ρpaq

ψ2acpaq

˙

ψ2acpaq da . (4.38)

The following Lemma proved in [62] will be used to estimate the interaction contribution in the

free energy.

Lemma 4.2. Let K : p0,8q Ñ R be an increasing and strictly concave function. Then, for any a, b P R

K
ˆ

ψ1pbq ´ ψ1paq

b´ a

˙

ě

ż 1

0
K
`

ψ2acpra, bssq
˘

ds , (4.39)

where the convex combination of a and b is given by ra, bss “ p1´ sqa` sb. Equality is achieved in (4.39)

if and only if the distributional derivative of the transport map ψ2 is a constant function.

4.2 Functional inequality in one dimension

In what follows, we will make use of a characterisation of stationary states based on some integral

reformulation of the necessary condition stated in Proposition 3.4. This characterisation was also

the key idea in [62] and in Chapter 3 to analyse the asymptotic stability of steady states and the

functional inequalities behind.

Lemma 4.3 (Characterisation of stationary states). Let N “ 1, χ ą 0 and k P p´1, 0q. If m ą mc

withmc “ 1´ k, then any stationary state ρ̄ P Y of system (1.1) can be written in the form

ρ̄ppqm “ χ

ż

R

ż 1

0
|q|kρ̄pp´ sqqρ̄pp´ sq ` qq dsdq . (4.40)
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The proof follows the same methodology as for the fair-competition regime (see Chapter 3

Lemma 2.8) and we omit it here. If m “ mc, then it follows from Lemma 4.3 that any stationary

state ρ̄ P Y satisfies Frρ̄s “ 0 by simple substitution.

Theorem 4.4. Let N “ 1, χ ą 0, k P p´1, 0q and m ą mc. If (1.1) admits a stationary density ρ̄ in Y ,

then

Frρs ě Frρ̄s, @ρ P Y

with equality if and only if ρ “ ρ̄.

Proof. For a given stationary state ρ̄ P Y and solution ρ P Y of (1.1), we denote by ψ the convex

function whose gradient pushes forward the measure ρ̄paqda onto ρpxqdx: ψ1# pρ̄paqdaq “ ρpxqdx.

Using (4.38), the functional Frρs rewrites as follows:

Frρs “ 1
m´ 1

ż

R

ˆ

ρ̄paq

ψ2acpaq

˙m´1
ρ̄paq da

`
χ

k

ĳ

RˆR

ˇ

ˇ

ˇ

ˇ

ψ1paq ´ ψ1pbq

a´ b

ˇ

ˇ

ˇ

ˇ

k

|a´ b|kρ̄paqρ̄pbq dadb

“
1

m´ 1

ż

R

`

ψ2acpaq
˘1´m

ρ̄paqm da

`
χ

k

ĳ

RˆR

@

ψ2pra, bsq
Dk
|a´ b|kρ̄paqρ̄pbq dadb ,

where
@

upra, bsq
D

“
ş1
0 upra, bssq ds and ra, bss “ p1´ sqa` bs for any a, b P R and u : RÑ R`. By

Lemma 4.3, we can write for any a P R,

pψ2acpaqq
1´mρ̄paqm “ χ

ż

R

@

ψ2acpra, bsq
1´mD|a´ b|kρ̄paqρ̄pbq db ,

and hence

Frρs “ χ

ĳ

RˆR

"

1
pm´ 1q

@

ψ2acpra, bsq
1´mD`

1
k

@

ψ2pra, bsq
Dk
*

|a´ b|kρ̄paqρ̄pbq dadb .

Using the concavity of the power function p¨q1´m and and Lemma 4.2, we deduce

Frρs ě χ

ĳ

RˆR

"

1
pm´ 1q

@

ψ2pra, bsq
D1´m

`
1
k

@

ψ2pra, bsq
Dk
*

|a´ b|kρ̄paqρ̄pbq dadb .

Applying characterisation (4.40) to the energy of the stationary state ρ̄, we obtain

Frρ̄s “ χ

ĳ

RˆR

ˆ

1
pm´ 1q `

1
k

˙

|a´ b|kρ̄paqρ̄pbq dadb .

Since
z1´m

m´ 1 `
zk

k
ě

1
m´ 1 `

1
k

(4.41)
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for any real z ą 0 and for m ą mc “ 1 ´ k, we conclude Frρs ě Frρ̄s. Equality in the convexity

inequality (4.39) arises if and only if the derivative of the transport map ψ2 is a constant function,

i.e. when ρ is a dilation of ρ̄. In agreement with this, equality in (4.41) is realised if and only if

z “ 1.

In fact, the result in Theorem 4.4 implies that all critical points of F in Y are global minimisers.

Further, we obtain the following uniqueness result:

Corollary 4.5 (Uniqueness). Let χ ą 0 and k P p´1, 0q. If mc ă m, then there exists at most one

stationary state in Y to equation (1.1). Ifmc ă m ă m˚, then there exists a unique global minimiser for F

in Y .

Proof. Assume there are two stationary states to equation (1.1), ρ̄1, ρ̄2 P Y . Then Theorem 4.4

implies that Frρ̄1s “ Frρ̄2s, and so ρ̄1 “ ρ̄2.

By Theorem 3.1, there exists a global minimiser of F in Y , which is a stationary state of equation

(1.1) ifmc ă m ă m˚ by Theorem 3.10, and so uniqueness follows.

Theorem 4.4 and Corollary 4.5 complete the proof of the main result Theorem 1.2.

A Appendix: Properties of the Riesz potential

The estimates in Proposition 2.5 are mainly based on the fact that the Riesz potential of a radial

function can be expressed in terms of the hypergeometric function

F pa, b; c; zq :“ Γpcq
ΓpbqΓpc´ bq

ż 1

0
p1´ ztq´ap1´ tqc´b´1tb´1 dt,

whichwedefine for z P p´1, 1q, with the parameters a, b, c being positive. Notice thatF pa, b, c, 0q “

1 and F is increasing with respect to z P p´1, 1q. Moreover, if c ą 1, b ą 1 and c ą a` b, the limit

as z Ò 1 is finite and it takes the value

ΓpcqΓpc´ a´ bq
Γpc´ aqΓpc´ bq , (A.42)

see [214, §9.3]. We will also make use of some elementary relations. Let c ą a_ b ą 0, then there

holds

F pa, b; c; zq “ p1´ zqc´a´bF pc´ a, c´ b; c; zq, (A.43)

see [214, §9.5], and it is easily seen that

d

dz
F pa, b; c; zq “ ab

c
F pa` 1, b` 1; c` 1; zq.

Inserting (A.43) we find

d

dz
F pa, b; c; zq “ ab

c
p1´ zqc´a´b´1F pc´ a, c´ b; c` 1; zq. (A.44)
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To simplify notation, let us define

Hpa, b; c; zq :“ ΓpbqΓpc´ bq
Γpcq F pa, b; c; zq “

ż 1

0
p1´ ztq´ap1´ tqc´b´1tb´1 dt . (A.45)

Proof of Proposition 2.5. For a given radial function ρ P Y we use polar coordinates, still denoting

by ρ the radial profile of ρ, and compute as in [269, Theorem 5], see also [10], [138] or [140, §1.3],

|x|k ˚ ρpxq “ σN´1

ż 8

0

ˆ
ż π

0

`

|x|2 ` η2 ´ 2|x|η cos θ
˘k{2 sinN´2θ dθ

˙

ρpηqηN´1 dη . (A.46)

Then we need to estimate the integral

Θkpr, ηq :“ σN´1

ż π

0

`

r2 ` η2 ´ 2rη cospθq
˘k{2 sinN´2pθq dθ “

$

’

&

’

%

rkϑk pη{rq , η ă r ,

ηkϑk pr{ηq , r ă η ,

(A.47)

with

ϑkpsq :“ σN´1

ż π

0

`

1` s2 ´ 2s cospθq
˘k{2 sinN´2pθq dθ

“ σN´1 p1` sqk
ż π

0

ˆ

1´ 4 s

p1` sq2 cos2
ˆ

θ

2

˙˙k{2
sinN´2pθq dθ .

Using the change of variables t “ cos2 ` θ
2
˘

, we get from the integral formulation (A.45),

ϑkpsq “ 2N´2σN´1 p1` sqk
ż 1

0

ˆ

1´ 4 s

p1` sq2 t
˙k{2

t
N´3

2 p1´ tq
N´3

2 dt

“ 2N´2σN´1 p1` sqkH pa, b; c; zq (A.48)

with

a “ ´
k

2 , b “
N ´ 1

2 , c “ N ´ 1 , z “
4s

p1` sq2 .

The function F pa, b; c; zq is increasing in z and then for any z P p0, 1q there holds

F pa, b; c; zq ď lim
zÒ1

F pa, b; c; zq. (A.49)

Note that c´ a´ b “ pk`N ´ 1q{2 changes sign at k “ 1´N , and the estimate of Θk depends on

the sign of c´ a´ b:

Case k ą 1´N The limit (A.49) is finite if c ´ a ´ b ą 0 and it is given by the expression

ΓpcqΓpc´ a´ bq{rΓpc´ aqΓpc´ bqs, thanks to (A.42). Therefore we get from (A.47)-(A.48) and

(A.45)

Θkp|x|, ηq ď C1p|x| ` ηq
k ď C1|x|

k if 1´N ă k ă 0

with C1 :“ 2N´2σN´1ΓpbqΓpc´ a´ bq{Γpc´ aq. Inserting this into (A.46) concludes the proof of

(i).
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Case k ă 1´N If c´ a´ b ă 0 we use (A.43),

F pa, b; c; zq “ p1´ zqc´a´bF pc´ a, c´ b; c; zq,

where now the right hand side, using (A.49) and (A.42), can be bounded from above by p1 ´

zqc´a´bΓpcqΓpa ` b ´ cq{rΓpaqΓpbqs for z P p0, 1q. This yields from (A.47)-(A.48) and (A.45) the

estimate

Θkp|x|, ηq ď C2|x|
k

ˆ

|x| ` η

|x| ´ η

˙1´k´N
if k ă 1´N (A.50)

with C2 :“ 2N´2σN´1Γpc´ bqΓpa` b´ cq{Γpaq.

Case k “ 1´N If on the other hand c´ a´ b “ 0, we use (A.44) with c “ 2a “ 2b “ N ´ 1,

integrating it and obtaining, since F “ 1 for z “ 0,

F pa, b; c; zq “ 1` N ´ 1
4

ż z

0

F pc´ a, c´ b; c` 1; tq
1´ t dt,

and the latter right hand side is bounded above, thanks to (A.49) and (A.42), by

1` pN ´ 1qΓpNq
4pΓpN{2` 1{2qq2 log

ˆ

1
1´ z

˙

for z P p0, 1q. This leads from (A.47)-(A.48) to the new estimate

Θkp|x|, ηq ď C2|x|
k

ˆ

1` log
ˆ

|x| ` η

|x| ´ η

˙˙

if k “ 1´N , (A.51)

with C2 :“ 2N´2σN´1
ΓpN{2´1{2q2

ΓpN´1q max
!

1, pN´1qΓpNq
2ΓppN`1q{2q2

)

.

Now, if ρ is supported on a ball BR, the radial representation (A.46) reduces to

|x|k ˚ ρpxq “

ż R

0
Θkp|x|, ηqρpηqη

N´1 dη, x P RN . (A.52)

If |x| ą R, we have p|x| ` ηqp|x| ´ ηq´1 ď p|x| `Rqp|x| ´Rq´1 for any η P p0, Rq, therefore we can

put R in place of η in the right hand side of (A.50) and (A.51), insert into (A.52) and conclude.
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Ein Tag mit dem Zigeunergelehrten

(One Day with the Gipsy Scholar)

Stöckel tragend Gestalten hinken,

verwischte Schminken,

glitzernde Roben

mit Matsch betrogen,

verrutschte Fliegen,

oh wie die Bäuche wiegen,

so voll mit Kamel am Stil,

oder auch mit Krokodil,

betrunken mit Glück und Wunderlichkeit,

eine Nacht der Unvergesslichkeit.

Die Sonne geht über den Baumwipfeln auf,

unberührt nimmt der Tag seinen Lauf

als die Blitze des tüchtigen Hoffotografen

die singendeMasse der Überlebenden trafen.

Was kann es besseres geben

als nach einer St John’s May Ball Nacht

Herz und Geist zu beleben

inmitten reiner natürlicher Pracht.

Ahoi Matrosen!

Wie die großen

Seeentdecker,

Freiheitsschmecker,

Selbstentzwecker

stechen wir in Fluss.

Oh, Genuss!

Alsbald die Türme

von Cambridge entschwinden,

zwischen Wiesen und Weiden

wir uns befinden,

Vögel zwitschern, Reiher stacksen,

Libellen flattern, Rebhühner gacksen,

lieblich leise die Wellen schlagen,

wie mühelos sie den Kutter tragen!

Drinnen hört man es rappern und klappern,

sausen und brausen,

denn bald gibt’s zu schmausen,

gebackene Bohnen, Schinken und Eier,

was für eine Frühstücksfeier,

Orangensaft

gibt neue Kraft,

und das wichtigste, ich seh’

ist der gute englische Tee.

Für die Verdauungspause

geht’s auf’s Dach vom Hause.

Fröhlich keck die Noten entschwinden

in den rauen Morgenwinden.
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Die Schifffahrtsleute staunten sehr,

Wo kommen diese Klänge her?

Näher und näher kommt unser Kahn

und als sie sah’n

erst die Flöte,

dann die Tröte,

und den fröhlichen Gesang,

der vom Deck des Kutters erklang,

da schmunzelten und lachten sie sehr,

und winkten und grüßten mehr und mehr.

Oh, Happy Day!

What can I say?

Das Zigeunerleben ist komplett

mit improvisiertem Jazzquartett.

Nach einem May Ball, das muss sein,

die Seelen waschen wir uns rein.

Dafür nehmen wir Station

um nach alter Tradition

Eiseskälte zu inhalieren

und die Cam zu schamponieren.

Stop!

Und Hop!

Die Geister erweckt geht’s weiter voran

auf der geschlungenen silbernen Bahn.

Jeder wird mal angeheuert.

Ach, so wird also ein Kahn gesteuert!

Gar nicht so hart.

Was für eine Fahrt!

Völlig außer Rand und Band,

gehen wir in Ely an Land.

Kapitäns Judge, wir danken sehr

für Haus und Schmaus und vieles mehr,

denn die beste Glückseligkeit

ist voll genossene Lebenszeit.

for the Captains Judge (Junior and Senior)

by Franca Hoffmann

Kortrijk, 21. Juli 2014
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Chapter5

A fibre lay-down model

for non-woven textile production

This chapter follows in most parts the article “Exponential decay to equilibrium for a fibre lay-

down process on a moving conveyor belt” written in collaboration with Emeric Bouin1 and Clé-

ment Mouhot2, and accepted for publication in SIAM Journal on Mathematical Analysis.

Chapter Summary

We show existence and uniqueness of a stationary state for a kinetic Fokker-Planck equa-

tion modelling the fibre lay-down process in the production of non-woven textiles. Following

a micro-macro decomposition, we use hypocoercivity techniques to show exponential conver-

gence to equilibrium with an explicit rate assuming the conveyor belt moves slow enough. This

chapter is an extension of [134], where the authors consider the case of a stationary conveyor

belt. Adding the movement of the belt, the global Gibbs state is not known explicitly. We thus

derive a more general hypocoercivity estimate from which existence, uniqueness and exponen-

tial convergence can be derived. To treat the same class of potentials as in [134] we make use of

an additional weight function following the Lyapunov functional approach in [206].

1CEREMADE - Université Paris-Dauphine, UMR CNRS 7534, Paris, France
2DPMMS, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK.
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When will it stop moving,

When will it stop changing,

Never,

For we are forever moving along.

Ileana N. Kraus-Nikitakis
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1. Introduction

1 Introduction

The mathematical analysis of the fibre lay-down process in the production of non-woven textiles

has seen a lot of interest in recent years [230, 231, 172, 203, 205, 134, 206]. Non-woven materials

are produced in melt-spinning operations: hundreds of individual endless fibres are obtained by

continuous extrusion through nozzles of a melted polymer. The nozzles are densely and equidis-

tantly placed in a row at a spinning beam. The visco-elastic, slender and in-extensible fibres lay

down on a moving conveyor belt to form a web, where they solidify due to cooling air streams.

Before touching the conveyor belt, the fibres become entangled and form loops due to highly tur-

bulent air flow. In [230] a general mathematical model for the fibre dynamics is presented which

enables the full simulation of the process. Due to the huge amount of physical details, these simu-

lations of the fibre spinning and lay-down usually require an extremely large computational effort

and high memory storage, see [231]. Thus, a simplified two-dimensional stochastic model for the

fibre lay-down process, together with its kinetic limit, is introduced in [172]. Generalisations of

the two-dimensional stochastic model [172] to three dimensions have been developed by Klar et

al. in [203] and to any dimension d ě 2 by Grothaus et al. in [177].

We nowdescribe themodelwe are interested in, which comes from [172]. We track the position

xptq P R2 and the angle αptq P S1 of the fibre at the lay-down point where it touches the conveyor

belt. Interactions of neighbouring fibres are neglected. If x0ptq is the lay-down point in the coordi-

nate system following the conveyor belt, then the tangent vector of the fibre is denoted by τpαptqq

with τpαq “ pcosα, sinαq. Since the extrusion of fibres happens at a constant speed, and the fibres

are in-extensible, the lay-down process can be assumed to happen at constant normalised speed

}x10ptq} “ 1. If the conveyor belt moves with constant speed κ in direction e1 “ p1, 0q, then

dx
dt “ τpαq ` κe1.

Note that the speed of the conveyor belt cannot exceed the lay-down speed: 0 ď κ ď 1. The fibre

dynamics in the deposition region close to the conveyor belt are dominated by the turbulent air

flow. Applying this concept, the dynamics of the angle αptq can be described by a deterministic

force moving the lay-down point towards the equilibrium x “ 0 and by a Brownian motion mod-

elling the effect of the turbulent air flow. We obtain the following stochastic differential equation

for the random variable Xt “ pxt, αtq on R2 ˆ S1,
$

’

’

&

’

’

%

dxt “ pτpαtq ` κe1qdt,

dαt “
“

´τKpαtq ¨∇xV pxtq
‰

dt`AdWt ,

(1.1)

whereWt denotes a one-dimensional Wiener process, A ą 0 measures its strength relative to the

deterministic forcing, τKpαq “ p´ sinα, cosαq, and V : R2 Ñ R is an external potential carrying
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information on the coiling properties of the fibre. More precisely, since a curved fibre tends back

to its starting point, the change of the angle α is assumed to be proportional to τKpαq ¨ ∇xV pxq.

It has been shown in [206] that under suitable assumptions on the external potential V , the fi-

bre lay down process (1.1) has a unique invariant distribution and is even geometrically ergodic

(see Remark 1.2). The stochastic approach yields exponential convergence in total variation norm,

howeverwithout explicit rate. Wewill showhere that a stronger result can be obtainedwith a func-

tional analysis approach. Our argument uses crucially the construction of an additional weight

functional for the fibre lay-down process in the case of unbounded potential gradients inspired

by [206, Proposition 3.7].

The probability density function fpt, x, αq corresponding to the stochastic process (1.1) is gov-

erned by the Fokker-Planck equation

Btf ` pτ ` κe1q ¨∇xf ´ Bα
`

τK ¨∇xV f
˘

“ DBααf (1.2)

with diffusivity D “ A2{2. We state below assumptions on the external potential V that will be

used regularly throughout the chapter:

(H1) Regularity and symmetry: V P C2pR2q and V is spherically symmetric outside some ball

Bp0, RV q.

(H2) Normalisation:
ş

R2 e
´V pxq dx “ 1.

(H3) Spectral gap condition (Poincaré inequality): there exists a positive constant Λ such that

for any u P H1pe´V dxqwith
ş

R2 ue
´V dx “ 0,

ż

R2
|∇xu|

2
e´V dx ě Λ

ż

R2
u2e´V dx.

(H4) Pointwise regularity condition on the potential: there exists c1 ą 0 such that for any x P R2,

the Hessian ∇2
xV of V pxq satisfies

|∇2
xV pxq| ď c1p1` |∇xV pxq|q.

(H5) Behaviour at infinity:

lim
|x|Ñ8

|∇xV pxq|

V pxq
“ 0, lim

|x|Ñ8

|∇2
xV pxq|

|∇xV pxq|
“ 0 .

Remark 1.1. Assumptions (H2-3-4) are as stated in [134]. Assumption (H1) assumes regularity of the po-

tential that is stronger and included in that discussed in [134] since (H1) implies V PW 2,8
loc pR

2q. Assump-

tion (H5) is only necessary if the potential gradient |∇xV | is unbounded. Both bounded and unbounded

potential gradients may appear depending on the physical context, and we will treat these two cases sepa-

rately where necessary. A typical example for an external potential satisfying assumptions (H1-2-3-4-5) is

given by

V pxq “ K
`

1` |x|2
˘s{2 (1.3)
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for some constantsK ą 0 and s ě 1 [135, 206]. The potential (1.3) satisfies (H3) since

lim inf
|x|Ñ8

`

|∇xV |
2 ´ 2∆xV

˘

ą 0 ,

see for instance [298, A.19. Some criteria for Poincaré inequalities, page 135]. The other assumptions are

trivially satisfied as can be checked by direct inspection. In this family of potentials, the gradient ∇xV is

bounded for s “ 1 and unbounded for s ą 1.

Remark 1.2. The proof of ergodicity in [206] assumes that the potential satisfies

lim
|x|Ñ8

|∇xV pxq|

V pxq
“ 0 , lim

|x|Ñ8

|∇2
xV pxq|

|∇xV pxq|
“ 0 , lim

|x|Ñ8
|∇xV pxq| “ 8 . (1.4)

Under these assumptions, there exists an invariant distribution ν to the fibre lay-down process (1.1), and

some constants Cpx0q ą 0, λ ą 0 such that

}Px0,α0 pXt P ¨q ´ ν}TV ď Cpx0qe
´λt ,

where Px0,α0 is the law of Xt starting at X0 “ px0, αq, and where }¨}TV denotes the total variation norm.

The stochastic Lyapunov technique applied in [206] however does not give any information on how the con-

stant Cpx0q depends on the initial position x0, or how the rate of convergence λ depends on the conveyor

belt speed κ, the potential V and the noise strengthA. This can be achieved using hypocoercivity techniques,

proving convergence in a weighted L2-norm, which is slightly stronger than the convergence in total vari-

ation norm shown in [206]. Conceptually, the conditions (1.4) ensure that the potential V is driving the

process back inside a compact set where the noise can be controlled. Our framework (H1-2-3-4-5) is more

general than conditions (1.4) in some aspects (including bounded potential gradient) and more restrictive in

others (assuming a Poincaré inequality). The proof in [206] relies on the strong Feller property which can be

translated in some cases into a spectral gap; it also uses hypoellipticity to deduce the existence of a transition

density, and concludes via an explicit Lyapunov function argument. With our framework (H1-2-3-4-5),

and adapting the Lyapunov function argument presented in [206] to control the effect of κBx1 , we derive an

explicit rate of convergence in terms of κ, D and V .

To set up a functional framework, rewrite (1.2) as

Btf “ Lκf “ pQ´ Tq f ` Pκf , (1.5)

where the collision operator Q :“ DBαα acts as a multiplicator in the space variable x, Pκ is the

perturbation introduced by the moving belt with respect to [134]:

Pκf :“ ´κe1 ¨∇xf ,

and the transport operator T is given by

Tf :“ τ ¨∇xf ´ Bα
`

τK ¨∇xV f
˘

.
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We consider solutions to (1.5) in the space L2pdµκq :“ L2pR2 ˆ S1,dµκqwith measure

dµκpx, αq “
´

eV pxq ` ζκgpx, αq
¯ dxdα

2π .

We denote by x¨, ¨yκ the corresponding scalar product and by } ¨ }κ the associated norm. Here,

ζ ą 0 is a free parameter to be chosen later. The construction of the weight g depends on the

boundedness of ∇xV . When it is bounded, no additional weight is needed to control the pertur-

bation, and so we simply set g ” 0 in that case. When the gradient is unbounded, the weight is

constructed thanks to the following proposition:

Proposition 1.3. Assume that V satisfies (H1) and (H5) and that

lim
|x|Ñ8

|∇xV | “ `8.

If κ ă 1{3 holds true, then there exists a function gpx, αq, a constant c “ cpκ,Dq ą 0 and a finite radius

R “ Rpk,D, V q ą 0 such that

@ |x| ą R, @α P S1, Lκpgqpx, αq ď ´c |∇xV pxq|gpx, αq , (1.6)

where Lκ is defined by

Lκphq :“ DBααh` pτ ` κe1q ¨∇xh´
`

τK ¨∇xV
˘

Bαh´ pτ ¨∇xV qh . (1.7)

The weight g is of the form

gpx, αq :“ exp
ˆ

βV pxq ` |∇xV pxq|Γ
ˆ

τpαq ¨
∇xV pxq

|∇xV pxq|

˙˙

,

where the parameter β ą 1 and the function Γ P C1 pr´1, 1sq, Γ ą 0 are determined along the proof and

only depend on κ.

We show in Section 3 the existence of such a weight function g under appropriate conditions

following ideas from [206].

We denote C :“ C8c
`

R2 ˆ S1˘, and define the orthogonal projection Π on the set of local equi-

libria KerQ

Πf :“
ż

S1
f

dα
2π ,

and the massMf of a given distribution f P L2pdµκq,

Mf :“
ż

R2ˆS1
f

dxdα
2π .

Integrating (1.2) over R2 ˆ S1 shows that the mass of solutions of (1.2) is conserved over time,

and standard maximum principle arguments show that it remains non-negative for non-negative

initial data. The collision operator Q is symmetric and satisfies

@ f P C, xQf, fy0 “ ´D }Bαf}20 ď 0 ,
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i.e. Q is dissipative in L2pdµ0q. Further, we have TΠf “ e´V τ ¨∇xuf for f P C, with uf :“ eV Πf ,

which implies ΠTΠ “ 0 on C. Since the transport operator T is skew-symmetric with respect to

x¨ , ¨y0,

xLκf, fy0 “ xQf, fy0 ` xPκf, fy0

for any f in C. In the case κ “ 0, if the entropy dissipation ´xQf, fy0 was coercive with respect

to the norm } ¨ }0, exponential decay to zero would follow as t Ñ 8. However, such a coercivity

property cannot hold since Q vanishes on the set of local equilibria. Instead, Dolbeault et al. [135]

applied a strategy called hypocoercivity (as theorised in [298]) and developed by several groups in

the 2000s, see for instance [185, 178, 225, 129, 130]. The full hypocoercivity analysis of the long

time behaviour of solutions to this kinetic model in the case of a stationary conveyor belt, κ “ 0,

is completed in [134]. For technical applications in the production process of non-wovens, one is

interested in a model including the movement of the conveyor belt, and our aim is to extend the

results in [134] to small κ ą 0.

We follow the approach of hypocoercivity for linear kinetic equations conserving mass devel-

oped in [135], with several new difficulties. Considering the case κ “ 0, Q and T are closed op-

erators on L2pdµ0q such that Q´ T generates the C0-semigroup epQ´Tqt on L2pdµ0q. When κ ą 0,

we use the additional weight function g ą 0 to control the perturbative term Pκ in the case of

unbounded potential gradients; and show the existence of a C0-semigroup for Lκ “ Q ´ T ` Pκ
(see Section 4.1). Unless otherwise specified, all computations are performed on the operator core

C, and can be extended to L2pdµκq by density arguments.

When κ “ 0, the hypocoercivity result in [135, 134] is based on: microscopic coercivity, which

assumes that the restriction of Q to pKerQqK is coercive, and macroscopic coercivity, which is a

spectral gap-like inequality for the operator obtainedwhen taking a parabolic drift-diffusion limit,

in other words, the restriction of T to KerQ is coercive. The two properties are satisfied in the case

of a stationary conveyor belt:

• The operator Q is symmetric and the Poincaré inequality on S1,

1
2π

ż

S1
|Bαf |

2 dα ě 1
2π

ż

S1

ˆ

f ´
1

2π

ż

S1
f dα

˙2
dα,

implies that ´xQf, fy0 ě D }p1´ Πqf}20.

• The operatorT is skew-symmetric and for anyh P L2pdµ0q such thatuh “ eV Πh P H1pe´V dxq

and
ş

R2ˆS1 hdµ0 “ 0, (H3) implies

}TΠh}20 “
1

4π

ż

R2ˆS1
e´V |∇xuh|

2 dxdα ě Λ
4π

ż

R2ˆS1
e´V u2

h dxdα “ Λ
2 }Πh}20 .
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5. Fibre lay-down model

In the case κ “ 0, the unique global normalised equilibrium distribution F0 “ e´V lies in the

intersection of the null spaces of T and Q. When κ ą 0, F0 is not in the kernel of Pκ and we are not

able to find the global Gibbs state of (1.5) explicitly. However, the hypocoercivity theory is based

on a priori estimates [135] that are, as we shall prove, to some extent stable under perturbation.

Our main result reads:

Theorem 1.4. Let fin P L2pdµκq and let (H1-2-3-4-5) hold. For 0 ă κ ă 1 small enough (with a

quantitative estimate) and ζ ą 0 large enough (with a quantitative estimate), there exists a unique non-

negative stationary state Fκ P L2pdµκq with unit massMFκ “ 1. In addition, for any solution f of (1.2)

in L2pdµκq with massMf and subject to the initial condition fpt “ 0q “ fin, we have

}fpt, ¨q ´MfFκ}κ ď C }fin ´MfFκ}κ e
´λκt , (1.8)

where the rate of convergence λκ ą 0 depends only on κ, D and V , and the constant C ą 0 depends only

on D and V .

In the case of a stationary conveyor belt κ “ 0 considered in [134], the stationary state is char-

acterised by the eigenpair pΛ0, F0q with Λ0 “ 0, F0 “ e´V , and so Ker L0 “ xF0y. This means that

there is an isolated eigenvalue Λ0 “ 0 and a spectral gap of size at least r´λ0, 0s with the rest of

the spectrum ΣpL0q to the left of´λ0 in the complex plane. Adding the movement of the conveyor

belt, Theorem 1.4 shows that Ker Lκ “ xFκy and the exponential decay to equilibrium with rate

λκ corresponds to a spectral gap of size at least r´λκ, 0s. Further, it allows to recover an explicit

expression for the rate of convergence λ0 for κ “ 0 (see Step 5 in Section 2.1). In general, we are not

able to compute the stationary state Fκ for κ ą 0 explicitly, but Fκ converges to F0 “ e´V weakly

as κ Ñ 0 (see Remark 4.2). Let us finally emphasize that a specific contribution of this work is to

introduce two (and not one as in [135, 134]) modifications of the entropy: 1) we first modify the

space itself with the coercivity weight g, then 2) we change the norm with an auxiliary operator

following the hypocoercivity approach.

The rest of the chapter deals with the case κ ą 0 and is organised as follows. In Section 2,

we prove the main hypocoercivity estimate. This allows us to establish the existence of solutions

to (1.2) using semigroup theory and to deduce the existence and uniqueness of a steady state in

Section 4 by a contraction argument. In Section 3, we give a detailed definition of the weight

function g that is needed for the hypocoercivity estimate in Section 2.
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2. Hypocoercivity estimate

2 Hypocoercivity estimate

Following [135] we introduce the auxiliary operator

A :“ p1` pTΠq˚pTΠqq´1pTΠq˚ ,

and a modified entropy, i.e. a hypocoercivity functional G on L2pdµκq:

Grf s :“ 1
2}f}

2
κ ` ε1xAf, fy0 , f P L2pdµκq

for some suitably chosen ε1 P p0, 1q to be determined later. It follows from [135] that |xAf, fy0| ď

}f}20. Also, }f}20 ď }f}2κ by construction of µκ, and hence Gr¨s is norm-equivalent to } ¨ }2κ:

@ f P L2pdµκq,
ˆ

1´ ε1

2

˙

}f}2κ ď Grf s ď
ˆ

1` ε1

2

˙

}f}2κ , (2.9)

In this section, we prove the following hypocoercivity estimate:

Proposition 2.1. Assume that hypothesis (H1-2-3-4-5) hold and that 0 ă κ ă 1 is small enough (with a

quantitative estimate). Let fin P L2pdµκq and f “ fpt, x, αq be a solution of (1.2) in L2pdµκq subject to

the initial condition fpt “ 0q “ fin. Then f satisfies the following Grönwall type estimate:

d
dtGrfpt, ¨qs ď ´γ1Grfpt, ¨qs ` γ2M

2
f , (2.10)

where γ1 ą 0, γ2 ą 0 are explicit constants only depending on κ, D and V .

Note that the estimate (2.10) is stronger than what is required for the uniqueness of a global

Gibbs state, and represents an extension of the estimate given in [134]. When applied to the differ-

ence of two solutions with the same mass, (2.10) gives an estimate on the exponential decay rate

towards equilibrium.

2.1 Proof of Proposition 2.1

Differentiate in time Grf s to get

d
dtGrf s “ D0rf s ` D1rf s ` D2rf s ` D3rf s ,

where the entropy dissipation functionals D0, D1, D2 and D3 are given by

D0rf s :“ xQf, fy0 ´ ε1 xATΠf,Πfy0 ´ ε1 xATp1´ Πqf,Πfy0

` ε1 xTAf, p1´ Πqfy0 ` ε1 xAQf,Πfy0 ,

D1rf s :“ ε1 xAPκf,Πfy0 ` ε1 xP˚κAf,Πfy0 ,

D2rf s :“ xPκf, fy0 ,

D3rf s :“ κζ

ż

R2ˆS1
Lκpfqfg

dxdα
2π .
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5. Fibre lay-down model

Note that the term xLAf, fy0 vanishes since it has been shown in [135] that A “ ΠA and hence

Af P KerQ. Further, xTf, fy “ 0 since T is skew-symmetric. We estimate the entropy dissipation

of the case κ “ 0 as in [134]:

# Step 1: Estimation of D0rf s.

Wewill show the boundedness of D0, which is in fact the dissipation functional for a stationary

conveyor belt. We thus recall without proof in the following lemma some results from [134].

Lemma 2.2 (Dolbeault et al. [134]). The following estimates hold:

xQf, fy0 ď ´}p1´ Πqf}20 , }ATp1´ Πqf}0 ď CV }p1´ Πqf}0 ,

}AQf}0 ď
D

2 }p1´ Πqf}0 , }TAf}0 ď }p1´ Πqf}0 .

In order to control the contribution xATΠf,Πfy0 in D0, we note that

ATΠ “ p1` pTΠq˚TΠq´1
pTΠq˚TΠ

shares its spectral decomposition with pTΠq˚TΠ, and by macroscopic coercivity

xpTΠq˚TΠf, fy0 “ }TΠf}20 “
›

›TΠpf ´Mfe
´V q

›

›

2
0 ě

Λ
2
›

›Πpf ´Mfe
´V q

›

›

2
0 .

Hence,

xATΠf, fy0 ě
Λ{2

1` Λ{2
›

›Πpf ´Mfe
´V q

›

›

2
0 .

Now, recalling Lemma 2.2 and using
›

›Πpf ´Mfe
´V q

›

›

2
0 “ }Πf}

2
0 ´M

2
f , we estimate

D0rf s ďpε1 ´Dq }p1´ Πqf}20 ` ε1λ2 }p1´ Πqf}0 }Πf}0 ´ ε1γ2

´

}Πf}20 ´M
2
f

¯

,

with λ2 :“ CV `D{2 ą 0 and γ2 :“ Λ{2
1`Λ{2 ą 0.

# Step 2: Estimation of D1rf s.

We now turn to the entropy dissipation functional D1, which we will estimate using elliptic

regularity. Instead of bounding APκ, we apply an elliptic regularity strategy to its adjoint, as for

ATp1´Πq in [134]. Let f P L2pdµ0q and define h :“ p1` pTΠq˚TΠq´1
f so that uh “ eV Πh satisfies

Πf “ e´V uh ` ΠT˚T
`

e´V uh
˘

“ e´V uh ´
1
2∇x ¨

`

e´V ∇xuh
˘

.

We have used here the fact that in the space L2pdµ0q:
$

’

&

’

%

T “ τ ¨∇x ´ Bα
“`

τK ¨∇xV
˘‰

,

T˚ “ ´τ ¨∇x `
`

τK ¨∇xV
˘

Bα ´ pτ ¨∇xV q .
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2. Hypocoercivity estimate

Then

A˚f “ TΠh “ e´V τ ¨∇xuh ,

and since the adjoint for x¨, ¨y0 of the perturbation operator Pκ is given by

P˚κ “ ´Pκ ´ PκV ,

it follows that

}pAPκq˚f}20 “
›

›κ τ ¨∇xpe1 ¨∇xuhqe
´V

›

›

2
0

“
κ2

2

ż

R2ˆS1
e´V |τ ¨∇x pe1 ¨∇xuhq |

2 dµ0

“
κ2

2

ż

R2
e´V |∇x pe1 ¨∇xuhq |

2 dx

ď
κ2

2
›

›∇2
xuh

›

›

2
L2pe´V dxq

ď
κ2

2 C
2
V }Πf}

2
0 ,

where in the last inequality we have used an elliptic regularity estimate. This estimate turns out

to be a particular case of [134, Proposition 5 and Sections 2-3], where the positive constant CV is

the same as in Lemma 2.2 reproduced from [134]. This concludes the boundedness of APκ,

}APκf}0 ď κ
CV
?

2
}Πf}0 ď κ

CV
?

2
}f}0 . (2.11)

Using a similar approach for the operator P˚κA, we rewrite its adjoint as

A˚Pκf “ TΠh̃ ,

where we define h̃ :“ p1` pTΠq˚TΠq´1Pκf for a given f P L2pdµ0q, or equivalently

e´V uh̃ ´
1
2∇x ¨

`

e´V ∇xuh̃
˘

“ ΠPκf “ PκΠf .

Multiplying by uh̃ and integrating over R2, we have

}uh̃}
2
L2pe´V dxq `

1
2 }∇xuh̃}

2
L2pe´V dxq “ ´κ

ż

R2
e1 ¨∇x pΠfquh̃ dx

“ κ

ż

R2
pΠfq e1 ¨∇xuh̃ dx

ď κ

ż

R2

ˇ

ˇ

ˇ
∇xuh̃e

´V {2
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ΠfeV {2

ˇ

ˇ

ˇ
dx

ď κ }∇xuh̃}L2pe´V dxq }Πf}0

ď
1
4 }∇xuh̃}

2
L2pe´V dxq ` κ

2 }Πf}20 .

This inequality is a H1pe´V dxq Ñ H´1pe´V dxq elliptic regularity result. Hence,

}A˚Pκf}20 “ }TΠh}20 “
1
2 }∇xuh̃}

2
L2pe´V dxq ď 2κ2 }Πf}20 ,
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and so we conclude

}P˚κAf}0 ď
?

2κ }p1´Πqf}0 ď
?

2κ }f}0 . (2.12)

Combining (2.11) and (2.12), the entropy dissipation functional D1 is bounded by

D1rf s ď κε1

ˆ

CV
?

2
`
?

2
˙

}f}
2
0 “ 2κλ1 }f}

2
0,

where we defined λ1 :“ 1
2

´

CV?
2 `

?
2
¯

.

# Step 3: Estimation of D2rf s.

Using integration by parts, we have

xPκf, fy0 “
κ

2

ż

R2ˆS1
pe1 ¨∇xV q f

2eV
dxdα

2π .

The estimation of this term goes differently depending on the boundedness of ∇xV .

If ∇xV is bounded, we write

D2rf s ď |xPκf, fy0| ď
κ

2 }∇xV }8}f}
2
0 “

κ

2 }∇xV }8}f}
2
κ,

where we have used }f}κ “ }f}0, since g ” 0.

Assume now that |∇xV | Ñ 8 as |x| Ñ 8. Thanks to the choice of g, we have the estimate

D2rf s ď |xPκf, fy0| ď
κ

2

ż

R2ˆS1
|∇xV |f

2eV
dx dα

2π ď
κ

2C3

ż

R2ˆS1
f2g

dxdα
2π , (2.13)

with

C3 :“ sup
xPR2

`

|∇xV |e
V g´1˘ ,

which is finite by (H5).

# Step 4: Estimation of D3rf s.

We start by recalling that this estimate is only relevant when ∇xV is unbounded. Indeed, in

the opposite case, D3rf s “ 0 since g ” 0 by definition. By the identity
ż

R2ˆS1
Lκpfqfg dx dα “ 1

2

ż

R2ˆS1
Lκpgqf2 dxdα´D

ż

R2ˆS1
|Bαf |

2
g dxdα

with Lκ as defined in (1.7), we have

D3rf s ď κζ

ˆ

1
2

ż

R2ˆS1
Lκpgqf2 dxdα

2π

˙

. (2.14)
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Proposition 1.3 allows us to control the g-weighted L2-norm outside some fixed ball. More pre-

cisely, take R ą 0 in (1.6) large enough s.t. |∇xV | ě 1 for all |x| ą R, then
ż

R2ˆS1
Lκpgqf2 dxdα

2π

ď

ż

S1

ż

|x|ăR

Lκpgqf2 dx dα
2π ´ c

ż

S1

ż

|x|ąR

|∇xV |f
2g

dxdα
2π

ď

ż

S1

ż

|x|ăR

`

pLκpgq ` cgq e´V
˘

f2eV
dxdα

2π ´ c

ż

R2ˆS1
f2g

dxdα
2π

ď C4pRq}f}
2
0 ´ c

ż

R2ˆS1
f2g

dxdα
2π , (2.15)

where C4pRq :“ sup|x|ďR
`

|Lκpgq ` cg|e´V
˘

.

Remark 2.3. Observe here that one could take advantage of the growth of ∇xV by playing with the cut-

off parameter R and keeping track of min|x|ěR |∇xV | in the negative term. It could lead to more optimal

constants but we chose instead to vary the parameter ζ in front of the coercivity weight g in the measure µκ
for simplicity.

# Step 5: Putting the four previous steps together.

Combine the previous steps into

D0rf s ` D1rf s ďpε1 ´Dq }p1´ Πqf}20 ` ε1λ2 }p1´ Πqf}0 }Πf}0

´ ε1γ2

´

}Πf}20 ´M
2
f

¯

` 2κλ1 }f}
2
0

“´ pD ´ ε1 ´ 2κλ1q }p1´ Πqf}20 ` ε1λ2 }p1´ Πqf}0 }Πf}0

´ pε1γ2 ´ 2κλ1q }Πf}20 ` ε1γ2M
2
f

ď´

ˆ

D ´ ε1 ´ 2κλ1 ´
ε1λ2b

2

˙

}p1´ Πqf}20

´

ˆ

ε1γ2 ´ 2κλ1 ´
ε1λ2

2b

˙

}Πf}20 ` ε1γ2M
2
f

ď´ 2ξpκq}f}20 ` ε1γ2M
2
f ,

by Young’s inequality with the choice b “ λ2{γ2, and where we used the fact that }p1 ´ Πqf}20 `

}Πf}20 “ }f}20. Here, ξpκq is explicit, and given by

ξpκq :“1
2 min

"

D ´ ε1

ˆ

1` λ2
2

2γ2

˙

,
ε1γ2

2

*

´ κλ1

“
Dγ2

2
2 pγ2

2 ` 2γ2 ` λ2
2q
´ κλ1 ,

since the minimum in the first term is realised when the two arguments are equal, fixing ε1 “

2Dγ2{
`

γ2
2 ` 2γ2 ` λ

2
2
˘

. Note that this choice of ε1 satisfies ε1 ă D and ε1 ă 1. Choosing κ small

233



5. Fibre lay-down model

enough ensures ξpκq ą 0. From this analysis we conclude

D0rf s ` D1rf s ď ´2ξpκq}f}20 ` ε1γ2M
2
f . (2.16)

Let us now add the control of D2 ` D3. If ∇xV is bounded, g ” 0 and D3 “ 0:

d
dtGrf s “ D0rf s ` D1rf s ` D2rf s

ď ´ p4ξpκq ´ κ}∇xV }8q
1
2}f}

2
κ ` ε1γ2M

2
f

ď ´γ1Grf s ` ε1γ2M
2
f

by the norm equivalence (2.9). Here, we defined

γ1 :“ 4ξpκq ´ κ}∇xV }8
1` ε1

ą 0 .

When ∇xV is unbounded, (2.13)-(2.14)-(2.15)-(2.16) imply

d
dtGrf s “D0rf s ` D1rf s ` D2rf s ` D3rf s

ď ´ 2ξpκq}f}20 ` ε1γ2M
2
f `

κ

2C3

ż

R2ˆS1
f2g

dxdα
2π

`
κζ

2

ˆ

C4pRq}f}
2
0 ´ c

ż

R2ˆS1
f2g

dxdα
2π

˙

“´
1
2 p4ξpκq ´ κζC4pRqq }f}

2
0 ´

κζ

2

ˆ

c´
C3

ζ

˙
ż

R2ˆS1
f2g

dxdα
2π ` ε1γ2M

2
f

ď´
1
2 min

"

4ξpκq ´ κζC4pRq, c´
C3

ζ

*

}f}2κ ` ε1γ2M
2
f

ď´ γ1 Grf s ` ε1γ2M
2
f

again by norm equivalence (2.9), and where we defined

γ1 :“ 1
1` ε1

min
"

4ξpκq ´ κζC4pRq, c´
C3

ζ

*

ą 0 .

This requires ζ ą 0 to be large enough, and the upper bound for κ should be chosen accordingly:

ζ ą
C3

c
, 4ξpκq ´ κζC4pRq ą 0 .

In order to maximise the rate of convergence to equilibrium given κ, D and V , one can optimise

γ1 over ζ whilst respecting the above constraints.

Remark 2.4. The condition γ1 ą 0 translates into an explicit upper bound on κ. More precisely, we require

ξpκq ą κu{4 where u :“ }∇xV }8 in the case of a bounded potential gradient, and u :“ ζC4pRq otherwise.

This condition is satisfied for small enough κ:

0 ď κ ă
ε1γ2

p4λ1 ` uq
“

2Dγ2
2

p4λ1 ` uqpγ2
2 ` 2γ2 ` λ2

2q

which also implies ξpκq ą 0. Recall that Proposition 1.3 requires κ ă 1{3 in the case of unbounded potential

gradients. These conditions provide a range of κ for which Proposition 2.1 holds.
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3. The coercivity weight g

3 The coercivity weight g

In this section, we define the function g in such a way that it allows us to control the loss of weight

in the perturbation operator Pκ. When ∇xV is bounded, we do not need any extra weight since

then we may control the perturbation thanks to the stationary weight eV , and so we set g ” 0 in

that case. When it is not, Proposition 1.3 provides a suitable weight function g by constructive

methods.

3.1 Proof of Proposition 1.3

The proof is strongly inspired from [206], however our weight is different since we work in an

L2-framework rather than in an L1 one. Assuming ∇xV is unbounded, we seek a weight g of the

form

gpx, αq “ exp
ˆ

βV pxq ` |∇xV pxq|Γ
ˆ

τpαq ¨
∇xV pxq

|∇xV pxq|

˙˙

,

where the parameter β ą 1 and the function Γ P C1 pr´1, 1sq, Γ ą 0 are to be determined. We

define

Y px, αq :“ τpαq ¨
∇xV pxq

|∇xV pxq|
, Y Kpx, αq :“ τKpαq ¨

∇xV pxq

|∇xV pxq|
,

and split the proof into four steps: 1) we rewrite statement (1.6) using the explicit expression

of the weight g, 2) we simplify the obtained expression using assumption (H5), 3) we prove the

equivalent statement obtained in Step 2 by defining a suitable choice of Γp¨q and β, and 4) we

demonstrate that it is indeed possible to choose suitable parameters for the calculations in Step 3

to hold, fixing explicit expressions where possible.

# Step 1: Rewriting the weight estimate (1.6).

Applying the operator Lκ defined in (1.7) to g, we can compute explicitly

Lκpgq
g

“D
`

|∇xV |BααΓpY q ` |∇xV |
2|BαΓpY q|2

˘

` pτpαq ` κe1q ¨ pβ∇xV `∇x p|∇xV |ΓpY qqq

´ |∇xV |
2Y KBαΓpY q ´ |∇xV |Y .

Since

BαΓ “ Y KΓ1pY q and BααΓ “ Bα
`

Y KΓ1pY q
˘

“ ´Y Γ1pY q ` |Y K|2Γ2pY q ,

235
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we get

Lκpgq
g

“D
´

|∇xV |
`

´Y Γ1pY q ` |Y K|2Γ2pY q
˘

` |∇xV |
2|Y K|2

`

Γ1pY q
˘2
¯

` pτpαq ` κe1q ¨ pβ∇xV `∇x p|∇xV |ΓpY qqq

´ |∇xV |
2|Y K|2Γ1pY q ´ |∇xV |Y

“pβ ´ 1´DΓ1pY qq|∇xV |Y ` κβe1 ¨∇xV ` pτpαq ` κe1q ¨∇x p|∇xV |ΓpY qq

` |Y K|2
´

D|∇xV |Γ2pY q ` |∇xV |
2
”

D
`

Γ1pY q
˘2
´ Γ1pY q

ı¯

.

In order to see which Γ to choose, let us divide by |∇xV | and denote the diffusion and transport

part by

diffpx, αq :“ pτpαq ` κe1q ¨
∇x p|∇xV |ΓpY qq

|∇xV |
, tranpxq :“ e1 ¨∇xV

|∇xV |
.

Now, we can rewrite the statement of Proposition 1.3: we seek a positive constant c ą 0 and a

radius R ą 0 such that for any α P S1 and |x| ą R,

pβ ´ 1´DΓ1pY qqY ` κβtranpxq ` diffpx, αq

` |Y K|2
´

DΓ2pY q ` |∇xV |
”

D
`

Γ1pY q
˘2
´ Γ1pY q

ı¯

ď ´c .

To achieve this bound, note that |Y | ď 1 and |tran| ď 1 for all px, αq P R2 ˆ S1.

# Step 2: Simplifying the weight estimate.

Further, the diffusion term diffp¨q can be made arbitrarily small outside a sufficiently large ball.

Indeed,

diffpx, αq “ pτ ` κe1q ¨

„

Γ1 pY q∇xY ` Γ pY q ∇xp|∇xV |q

|∇xV |



,

and both |∇xY | and |∇xp|∇xV |q|{|∇xV | converge to zero as |x| Ñ 8 by assumption (H5), and Γ

is bounded. In other words, using the fact that the potential gradient is unbounded, it remains to

show that we can find constants γ ą κβ ą 0 and a radius r1 ą 0 such that

@|x| ą r1, pβ ´ 1´DΓ1qY ` |Y K|2
´

DΓ2 ` |∇xV |
”

D
`

Γ1
˘2
´ Γ1

ı¯

ď ´γ . (3.17)

Then we can choose r2 ą 0 such that

|x| ą r2 ùñ @α P S1, diffpx, αq ď γ ´ κβ

2 ,

and we conclude for the statement of Proposition 1.3 withR :“ maxtr1, r2u and c :“ pγ´κβq{2 ą

0.

# Step 3: Proof of the weight estimate.

Proving (3.17) can be done by an explicit construction. We define Γ1 P C0pr´1, 1sq piecewise,
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Γ1pY q “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

δ` if Y ą ε0 ,

δ`´δ´

2ε0
pY ` ε0q ` δ

´ if |Y | ď ε0 ,

δ´ if Y ă ´ε0 ,

-1 +1´ε0 ε0

1
D

δ`

δ´

Γ1pY q

Y

Figure 5.1: Derivative of Γ

where 0 ă δ´ ă δ` ă 1{D and ε0 P p0, 1q are to be determined. With this choice of Γ1, we can

ensure that Γ is strictly positive in the interval r´1, 1s. Now, let us show that there exist suitable

choices of γ and β for the bound (3.17) to hold. More precisely, we choose a suitable β such that

pβ ´ 1q{D P pδ´, δ`q and 0 ă γ ă γ̃, defining γ :“ ε0 p1`Dδ` ´ βq and γ̃ :“ ε0 pβ ´ 1´Dδ´q.

We split our analysis into cases:

• Assume Y ą ε0. Then the LHS of (3.17) can be bounded as follows:

pβ ´ 1´Dδ`qY ` δ`
`

Dδ` ´ 1
˘

|∇xV ||Y
K|2 ă pβ ´ 1´Dδ`qε0 “ ´γ .

• Assume Y ă ´ε0. Then the LHS of (3.17) can be bounded as follows:

pβ ´ 1´Dδ´qY ` δ´
`

Dδ´ ´ 1
˘

|∇xV ||Y
K|2 ă ´pβ ´ 1´Dδ´qε0 “ ´γ̃ .

• Assume |Y | ď ε0. Since 1 “ |Y |2 ` |Y K|2, we have |Y K|2 ě 1´ ε2
0. Further, setting

h “ aY ` b P pδ´, δ`q , a :“ δ` ´ δ´

2ε0
, b :“ δ` ` δ´

2 ,

we have Γ1 “ h and Dh2 ´ h ď Dδ´pδ` ´ 1{Dq. Now, using the fact that the potential

gradient is unbounded, we can find a radius r1 ą 0 large enough such that for all |x| ą r1,

Dpδ` ´ δ´q

2ε0
´Dδ´

ˆ

1
D
´ δ`

˙

|∇xV | ă ´
2γ̃

p1´ ε2
0q
.

Putting these estimates together, we obtain for |x| ą r1:

pβ ´ 1´DhqY ` |Y K|2
ˆ

Dpδ` ´ δ´q

2ε0
` |∇xV |

“

Dh2 ´ h
‰

˙

ď pβ ´ 1´Dδ´qε0 ` |Y
K|2

ˆ

Dpδ` ´ δ´q

2ε0
` |∇xV |

„

Dδ´
ˆ

δ` ´
1
D

˙˙

ď γ̃ ` p1´ ε2
0q

ˆ

Dpδ` ´ δ´q

2ε0
` |∇xV |

„

Dδ´
ˆ

δ` ´
1
D

˙˙

ď ´γ̃ .
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# Step 4: Choice of parameters.

We now come back to the choice of δ´, δ`, ε0, β such that κβ ă γ and 0 ă γ ă γ̃ hold true.

More precisely, these two constraints translate into the following bound on β:

1`D
ˆ

δ` ` δ´

2

˙

ă β ă

ˆ

ε0

κ` ε0

˙

`

1`Dδ`
˘

. (3.18)

It is easy to see that this bound also implies 1 ` Dδ´ ă β ă 1 ` Dδ` as required. However, for

this to be possible we need to choose ε0 such that LHS ă RHS, in other words,

κ

ˆ

2`D pδ` ` δ´q
D pδ` ´ δ´q

˙

ă ε0 . (3.19)

Since ε0 has to be less than 1 andDpδ`´ δ´q{p2`D pδ` ` δ´qq ă 1{3, this bound is only possible

if κ P p0, 1{3q; then it remains to choose 0 ă δ´ ă δ` ă 1{D such that

κ ă
D pδ` ´ δ´q

2`D pδ` ` δ´q P
ˆ

0, 1
3

˙

. (3.20)

To satisfy all these constraints, we make the choice of parameters (for κ ă 1{3):

δ` :“ 3p1` κq
4D , δ´ :“ p1´ 3κq

4D .

Then (3.20) holds true, and we can fix ε0 P p0, 1q to satisfy (3.19):

ε0 :“ 1
2

ˆ

1` κ
ˆ

2`D pδ` ` δ´q
D pδ` ´ δ´q

˙˙

“
1
2

ˆ

1` 9κ
1` 3κ

˙

.

Finally, we choose β satisfying (3.18) as follows:

β :“ 1
2

„

1`D
ˆ

δ` ` δ´

2

˙

`

ˆ

ε0

κ` ε0

˙

`

1`Dδ`
˘



“
3
4 `

p1` 9κqp7` 3κq
8p6κ2 ` 11κ` 1q P p1, 2q .

4 Existence and uniqueness of a steady state

4.1 Existence of a C0-semigroup

Proving existence of solutions to the perturbed equation (1.2) relies on the a priori estimates from

Section 2:

Theorem 4.1. The linear operator Lκ : DpLκq Ñ L2pdµκq defined in (1.5) is the infinitesimal generator

of a C0-semigroup pStqtě0 on L2pdµκq.

Proof. Let us denote by L˚κ the adjoint of Lκ in L2pdµκq. Both domains D pLκq and D pL˚κq contain

the core C and are dense. The operator Lκ is closable in L2pdµκq. To see this, take a sequence
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pfnqnPN P DpLκq converging to zero in L2pdµκq such that the sequence pLκfnqnPN converges to

some limit h P L2pdµκq. Then for any test function ϕ P C,

@

ϕ , Lκfn
D

κ
“
@

L˚κϕ , fn
D

κ
Ñ 0 as nÑ8 .

Since the left-hand side converges to
@

ϕ , h
D

κ
for all ϕ P C, we conclude h ” 0 a.e., and so Lκ is

closable. Similarly, L˚κ is closable. We denote by L̃κ and L̃˚κ some closed extensions of Lκ and L˚κ,

respectively. Lumer-Phillips Theorem in the form [254, Corollary 4.4] states that an operator L̃

generates a C0-semigroup if L̃ is closed and both L̃ and L̃˚ are dissipative. Since the core C is dense

in both DpQ̃κq and DpQ̃˚κq, which in turn are both dense in L2pdµκq, then for any constant C ą 0,

L̃κ ´ CId is dissipative if and only if L̃˚κ ´ CId is dissipative. Therefore, it remains to show that

L̃κ ´ CId is dissipative for some C ą 0. Since the restriction of L̃κ to C is Lκ, it is enough to prove

that Lκ ´ CId is dissipative on C for some constant C ą 0. The estimates in Section 2 show that

there exists C ą 0 s.t.

@f P C,
@

Lκf , f
D

κ
ď C}f}2κ

for some explicit constant C ą 0, which concludes the proof.

4.2 Proof of Theorem 1.4

Proposition 2.1 is the key ingredient to deduce existence of a unique steady state. The set

B :“
"

f P L2pdµκq : Grf s ď γ2

γ1
, f ě 0, Mf “ 1

*

is convex and bounded in L2pdµκq by the norm equivalence (2.9). By Theorem 4.1, the operator Lκ
generates a C0-semigroup pStqtě0. Then let us show that B is invariant under the action of pStqtě0.

Integrating in time the hypocoercivity estimate (2.10) in Proposition 2.1 for any fin P L2pdµκqwith

mass 1, we obtain the bound

Grfptqs ď Grfinse´γ1t `
γ2

γ1

`

1´ e´γ1t
˘

,

and thus

@ t ą 0, Grfptqs ď max
"

Grfins,
γ2

γ1

*

.

Since in addition, pStqtě0 conserves mass and positivity, we conclude StpBq Ă B for all times.

Integrate again the hypocoercivity estimate (2.10) in Proposition 2.1, now for the difference of

two solutions with same mass, to get

GrStf ´ Sths ď e´γ1tGrf ´ hs

for any t ą 0 and f, h P B. It follows by Banach’s fixed-point theorem that there exists a unique

ut P B such that Stputq “ ut for each t ą 0. Let tn :“ 2´n, n P N, and un :“ utn . Then S2´npunq “
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un, and by repeatedly applying the semigroup property,

@ k P N, @m ď n P N, Sk2´mpunq “ un . (4.21)

Let us prove that B is weakly compact in L2pdµκq. Consider a sequence pfnqnPN P B. It has a

cluster point f for the weak convergence since B is bounded in L2pdµκq, and the corresponding

subsequence is still denoted fn for simplicity. By lower semi-continuity of the equivalent norm G:

Grf s ď lim inf
nÑ8

Grfns ď γ2{γ1 .

Further, since fn ě 0 for all n P N, it follows that f ě 0 (the set of non-negative functions is a

strongly closed convex set, hence weakly closed). It remains to show that the limit f has mass 1 by

preventing loss of mass at infinity. Use Cauchy-Schwarz’s inequality and the norm equivalence

(2.9) to get for r ą 0

p1` κζq
˜

ż

|x|ąr

Πfn dx
¸2

ď

˜

ż

|x|ąr

ż

S1
f2
n e

V dxdα
2π

¸˜

ż

|x|ąr

ż

S1
e´V

dxdα
2π

¸

` κζ

˜

ż

|x|ąr

ż

S1
f2
n g

dxdα
2π

¸˜

ż

|x|ąr

ż

S1
g´1 dxdα

2π

¸

ď }fn}
2
κ

˜

ż

|x|ąr

ż

S1

`

e´V ` g´1˘ dxdα
2π

¸

ď

ˆ

2
1´ ε1

˙

γ2

γ1

˜

ż

|x|ąr

ż

S1
2e´V dxdα

2π

¸

.

This shows that

sup
nPN

˜

ż

|x|ąr

Πfn dx
¸

ď

ˆˆ

4
p1´ ε1qp1` κζq

˙ˆ

γ2

γ1

˙˙1{2
˜

ż

|x|ąr

ż

S1
e´V

dxdα
2π

¸1{2

Ñ 0 as r Ñ8 ,

since
ş

R2ˆS1 e
´V dxdα

2π “ 1. Together with Mfn “ 1 for all n P N, it follows that Mf “ 1. Hence

f P B. The weak compactness of B implies the existence of a subsequence unj of un and a function

u P B such that unj converges weakly to u in L2pdµκq. Letting nj Ñ8 in (4.21) implies that (since

St is a continuous operator)

@m P N, @ k P N, Sk2´mpuq “ u .

Finally the density of the dyadic rationals tk2´m : k P N,m P Nu in p0,`8q and continuity of Stpuq

in t for all u P B imply that

@ t ě 0, Stpuq “ u .

This shows the existence and uniqueness of a global stationary state Fκ :“ u P B.
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To complete the proof of Theorem 1.4, we apply the hypocoercivity estimate Proposition 2.1 to

the difference between a solution f P L2pdµκq and the unique stationary state of the same mass,

MfFκ, to show exponential convergence to equilibrium in } ¨ }κ: first of all, we deduce from the

contraction estimate (2.10) that

Grfptq ´MfFκs ď Grfin ´MfFκs e
´γ1t ,

which allows then to estimate the difference to equilibrium in theL2pdµκq-norm. Indeed, by norm

equivalence, we obtain

}fptq ´MfFκ}
2
κ ď

1` ε1

1´ ε1
}fin ´MfFκ}

2
κ e
´γ1t .

Hence, we obtain (1.8) with rate of convergence λκ :“ γ1{2.

Remark 4.2. From our previous estimates, we have that GpFkq is uniformly bounded in κ for κ sufficiently

small. As a consequence, pFκqκą0 is a relatively weakly compact family in L2pdµκq, and by uniqueness of

the stationary state in the case κ “ 0, we deduce that Fκ Ñ F0 as κ Ñ 0. It could also be proved with

further work that the optimal (spectral gap) relaxation rate is continuous as κÑ 0.
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Scaling Approaches for Social Dynamics
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Thinking Fluids

Do you remember the last time you saw birds in the sky?

Thousands of birds, moving in coordinated patterns?

Often, each bird can only see the birds right next to it,

and yet they manage to create an emerging collective behaviour.

How do they do it?

What if we consider that each bird is reacting according to 3 simple rules:

1. Repulsion – they don’t want to be too close to each other,

2. Attraction – they don’t want to loose the group,

3. Alignment – they want to go in the same direction as their neighbours.

If we put these 3 simple rules into a mathematical model,

we can recreate the same patterns that we observe in nature.

Now, why should we care about birds?

In fact, what matters is

how we can predict the behaviour of a large group of individuals

by knowing only how each one of them reacts to its neighbours.

Imagine zooming out and looking at many many birds from far away,

it looks like a continuous fluid.

Mathematically,

this can be described by a partial differential equation,

or PDE.

PDEs encode the physical laws about how a quantity changes with

time, position and velocity.

Often, these models are so complicated,

that there is no hope of finding explicit solutions.

However, sometimes,

we are able to read the important properties from the model itself.

My research is about proving these properties

and trying to explain the longterm behaviour of solutions

without knowing these solutions explicitly.

The exact same PDE that models the behaviour of birds

can also model many other organisms

from schools of fish, to colonies of bacteria.

245



But what about us humans?

You would think that

human communication is far too complicated

to be reduced into function,

right?

Well, actually, in certain situations,

people react instinctively,

and we can use the same type of PDE

to model the motion of pedestrian crowds.

A famous example of dangerous overcrowding

is the Jamarat Bridge in Saudi-Arabia,

where hundreds died during pilgramage.

We can model these disasters

by treating the crowd as a thinking fluid,

just like birds, fish or bacteria.

This will allow us to make predictions for panic situations

such as earthquakes and fire escapes,

and hopefully it will help us

to prevent crowd disasters in the future.

What is so fascinating

is that all these different applications

are just special cases of the same class of PDEs.

If we understand more about the general structure of these models,

we will have added a timeless piece of wisdom

to our understanding of the world.

Text for 3-Minute-Thesis Competition

by Franca Hoffmann

Imperial College London, April 2016
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Chapter6

Non-local models for

self-organised animal aggregation

This chapter follows in most parts the article “Non-local kinetic and macroscopic models for self-

organised animal aggregations” written in collaboration with José A. Carrillo1 and Raluca Ef-

timie2, and published in Kinetic and Related Models 8 (2015), no. 3, 413 - 441. Section 2.2 was

contributed by Raluca Eftimie and Section 3.2 was contributed by José A. Carrillo. Some of the

results presented in this chapter were already part of my master thesis, namely: (1) a special case

of the parabolic scaling for the kinetic 1D model (2.1) under assumption (2.14) with λ1 “ 0 (Re-

mark 2.2), (2) the parabolic drift-diffusion limit of the 2D kinetic model (3.18) with λ1 “ 0 (Section

3.1), and (3) a theoretical development of the AP scheme (Section 4) for the 1D kinetic model (2.1)

under scaling assumption (2.14) with λ1 “ 0. These parts have been included here to allow for a

comprehensive and self-contained presentation of the chapter.

Chapter Summary

The last two decades have seen a surge in kinetic and macroscopic models derived to inves-

tigate the multi-scale aspects of self-organised biological aggregations. Because the individual-

level details incorporated into the kinetic models (e.g., individual speeds and turning rates)

make them somewhat difficult to investigate, one is interested in transforming these models

into simpler macroscopic models, by using various scaling techniques that are imposed by the

biological context. However, not many studies investigate how the dynamics of the initial mod-

els are preserved via these scalings. Here, we consider two scaling approaches (parabolic and

grazing collision limits) that can be used to reduce a class of non-local 1D and 2D models for

biological aggregations to simpler models existent in the literature. Then, we investigate how

some of the spatio-temporal patterns exhibited by the original kinetic models are preserved via

1Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
2Division of Mathematics, University of Dundee, Dundee, UK.
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these scalings. To this end, we focus on the parabolic scaling for non-local 1Dmodels and apply

asymptotic preserving numerical methods, which allow us to analyse changes in the patterns as

the scaling coefficient ε is varied from ε “ 1 (for 1D transport models) to ε “ 0 (for 1D parabolic

models). We show that some patterns (describing stationary aggregations) are preserved in the

limit ε Ñ 0, while other patterns (describing moving aggregations) are lost. To understand the

loss of these patterns, we construct bifurcation diagrams.

Chapter Content
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1. Introduction

1 Introduction

Over the past 10-20 years a multitude of kinetic and macroscopic models have been introduced

to investigate the formation and movement of various biological aggregations: from cells [22, 5]

and bacteria [257] to flocks of birds, schools of fish and even human aggregations (see, for exam-

ple, [290, 83, 251, 86, 124, 27, 112] and the references therein). The use of kinetic or macroscopic

approaches is generally dictated by the problem under investigation: (i) kinetic (transport) mod-

els focus on changes in the density distribution of individuals that have a certain spatial position,

speed and movement direction (or are in some activity state [24]); (ii) macroscopic models focus

on changes in the averaged total density of individuals [87, 144].

Generally, these kinetic and macroscopic models assume that individuals, particles, or cells

can organise themselves in the absence of a leader. The factors that lead to the formation of self-

organised aggregations are the interactions among individuals as a result of various social forces:

repulsion from nearby neighbours, attraction to far-away neighbours (or to roosting areas [93])

and alignment/orientation with neighbours positioned at intermediate distances. These interac-

tion forces are usually assumed to act on different spatial ranges, depending on the communica-

tion mechanisms used by individuals; e.g., via acoustic long-range signals, or via chemical/visual

short-range signals. The non-locality of the attractive and alignment/orientation interactions is

supported by radar tracking observations of flocks of migratory birds, which can move with the

same speed and in the same direction despite the fact that individuals are 200-300 meters apart

from each other [209]. For the repulsive forces some models consider non-local effects gener-

ated by decaying interactions with neighbours positioned further and further away [146], while

other models consider only local effects [282]. In the case of continuous mesoscopic and macro-

scopic models, the non-local interactions are modelled by interaction kernels (see Figure 6.1 for

2D and 1D kernels). The most common choices for these kernels are Morse potential-type ker-

nels [87, 83, 86, 91] (see Figure 6.1(b)) and Gaussian kernels [147, 146, 144, 237] (see Figure 6.1(c)).

Due to their complex structure, kinetic models are difficult to investigate. Although progress

has been made in recent years, mainly regarding the existence and stability of various types of

solutions and the analytic asymptotic methods that allow transitions from kinetic (mesoscopic) to

macroscopic models (see, for example, [189, 190, 23, 83, 59, 124, 123, 42, 28, 179] and the references

therein), it is still difficult to study analytically and numerically the spatial and spatio-temporal

aggregation patterns exhibited by the kinetic models. For example, there are very few studies that

investigate the types of spatio-temporal patterns obtained with 2D and 3D kinetic models (see the

review in [144]). Moreover, the presence of non-local interaction terms increases the complexity

of the models, leading to a larger variety of patterns that are more difficult to analyse. While
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6. Self-organised animal aggregation

numerical and analytical studies have been conducted to investigate the patterns in 1D non-local

models [146, 145, 56], such an investigation is still difficult in the 2D non-local case (see [153]).

repulsion range (r)

(a)

x

(c)(b)

x

alignment range (al) attraction range (a)

Figure 6.1: 2D and 1D spatial kernels for social interactions. (a) 2D: Attractive (Ka), repulsive (Kr) and alignment
(Kal) kernels described by equation (3.21); (b) 1D: Morse-type kernels: Kr,apxq “ e´|x|{sr,a . (c) 1D: Translated Gaussian
kernelsKj as defined in (2.3) with j “ r, al, a.

The first goal of this chapter is to start with a class of 1D and 2D non-local kinetic models for

self-organised aggregations that incorporate all three social interactions, and to show, through

different parabolic scaling approaches, that these models can be reduced to known non-local

parabolic models for swarming; see Figure 6.2 for a diagram illustrating this approach. For the 1D

case, similar analytical scalings have been done in the context of bacterial chemotaxis [265] and

for the kinetic model (2.1) for individuals moving along a line [143].

The next aim is to investigate the numerical preservation of patterns between the mesoscopic

and macroscopic scales. We use asymptotic preserving numerical methods [201, 202, 88, 102], to

obtain a better understanding of what happens with the 1D patterns via the parabolic scaling.

With the help of these methods, we investigate numerically the preservation of stationary ag-

gregations (that arise via steady-state bifurcations) and moving aggregations (that arise via Hopf

bifurcations), as the scaling parameter ε is varied from large positive values (ε “ 1) corresponding

to the kinetic models to zero values corresponding to the limiting parabolic models. To visualise

the transitions between different patterns as εÑ 0, we construct bifurcation diagrams for the am-

plitude of the solutions. For the 2D kinetic models, we focus on two analytical scalings that lead

to two different non-local parabolic models. Our final target is to show that by considering such

scaling approaches, we may lose certain aspects of the model dynamics - as emphasised by the

numerical simulations in the 1D case.

The chapter is structured as follows. Section 2 contains a detailed description of the 1D non-

local models for animal aggregations, followed by the parabolic scaling of these models. We also
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2. Description of 1D models
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1D FokkerïPlank
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Figure 6.2: Schematic diagram of the scaling and reductionist approaches taken here.

investigate analytically the steady states of the kinetic and corresponding parabolic models. Sec-

tion 3 contains a description of the 2D non-local models, followed by a parabolic limit and a “graz-

ing collision” limit, which lead to different types of macroscopic models of parabolic type. Section

4 focuses on asymptotic preserving methods for 1D models, and shows the spatial and spatio-

temporal patterns obtained with the parabolic and kinetic models, for some specific parameter

values. Here, we come back to the steady states of the 1D kinetic and parabolic models, and inves-

tigate them numerically. We conclude in Section 5 with a summary and discussion of the results.

2 Description of 1D models

The following one-dimensional model was introduced in [147, 146] to describe the movement of

the densities of left-moving (u´) and right-moving (u`) individuals that interact with conspecifics

via social interactions:

Bu`

Bt
` γ

Bu`

Bx
“ ´u`λ`ru`, u´s ` u´λ´ru`, u´s, (2.1a)

Bu´

Bt
´ γ

Bu´

Bx
“ u`λ`ru`, u´s ´ u´λ´ru`, u´s, (2.1b)

u˘px, 0q “ u˘0 pxq. (2.1c)

Here γ is the constant speed and λ` is the rate at which right-moving individuals turn left. Sim-

ilarly λ´ is the rate at which left-moving individuals turn right. To model the turning rates, we

recall the observationmade by Lotka [227]: “the type of motion presented by living organisms [...]

can be regarded as containing both a systematically directed and also a randomcomponent”. Since

the rates λ˘ are related to the probability of turning (see the derivation of model (2.1) in [144]),
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6. Self-organised animal aggregation

they are positive functions defined as:

λ˘ru`, u´s “λ1 ` λ2fpyN ru
`, u´sq ` λ3fpy

˘
Dru

`, u´sq (2.2)

“λ1 ` λ3

´

λ0
2fpyN ru

`, u´sq ` fpy˘Dru
`, u´sq

¯

,

where we denote by u “ u` ` u´ the total population density and all other terms will be defined

below. In this chapter, we generalise the turning rates in [147, 146, 144] and assume that:

• individuals can turn randomly at a constant rate approximated by λ1 [147];

• individuals can turn randomly in response to the perception of individuals inside any of

the repulsive/attractive/alignment ranges (and independent of the movement direction of

their neighbours). These non-directed interactionswith neighbours are described by the term

yN ru
`, u´swith turning rate λ2;

• individuals can turn in response to interactions with neighbours positioned within the re-

pulsive (r), attractive (a) and alignment (al) zones, respectively (see Figure 6.1(a)) [147]. This

turning is directed towards or away from neighbours, depending on the type of interaction (at-

tractive or repulsive). For alignment interactions, individuals turn to move in the same di-

rection as their neighbours. The non-local directed interactionswith neighbours are described

by terms y˘Dru`, u´swith turning rate λ3.

If λ3 ‰ 0, we denote by λ0
2 the quotient of the turning rates λ2{λ3. This choice of notation is

motivated by the corresponding 2Dmodel (Section 3). The connection between the 1Dmodel (2.1)

and the 2Dmodel (3.18) will be made clearer in Remarks 3.1, 3.2, 3.3 and 3.4. The turning function

fp¨q is a non-negative, increasing, bounded functional of the interactions with neighbours. An

example of such function is fpY q “ 0.5`0.5 tanhpY ´y0q (see [146]), where y0 is chosen such that

when Y “ 0 (i.e., no neighbours around), then fp0q « 0 and the turning is mainly random.

To model the long-distance social interactions that lead to turning behaviours, we define the

interaction kernels in 1D, see Figure 6.1, as decreasing functions of the distance between the ref-

erence position x (of the population density) and the mid of the interaction ranges sj , j “ r, al, a,

Kjpxq “
1

b

2πm2
j

e´px´sjq
2
{p2m2

j q, (2.3)

for x ą 0 and zero otherwise, with j “ r, al, a denoting short-range repulsion (Kr), medium-range

alignment (Kal) and long-range attraction (Ka) interaction kernels. Here, mj “ sj{8 controls the

width of the interaction range j.

For the non-directeddensity-dependent turningwedefine the turning kernel,KN pxq “ K̂N pxq`

K̂N p´xqwith K̂N “ qrKr` qalKal` qaKa obtained by superimposing the kernelsKj , j “ r, al, a.
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2. Description of 1D models

Here qr, qal and qa represent the magnitudes of the repulsive, alignment and attractive social in-

teractions. Note that in [146], λ0
2 “ 0 and the density-dependent non-directed turning term does

not exist. However, in 2D, this term appears naturally when we incorporate random turning be-

haviour (as discussed in Section 3). With these notations we may define

yN rus “ KN ˚ u, with u “ u` ` u´,

for the non-directed turning mechanisms. We assume here that individuals turn randomly when-

ever theyperceive other neighbours around (within the repulsive, alignment and attractive ranges).

For the directed density-dependent turning, we define

y˘Dru
`, u´s “ y˘r ru

`, u´s ´ y˘a ru
`, u´s ` y˘alru

`, u´s. (2.4)

Here, y˘j ru`, u´s, j “ r, al, a, describe the directed turning in response to neighbours within the

repulsive (r), alignment (al) and attractive (a) social ranges (as in [147]). Aswewill explain shortly,

the direction of the turning will be given by incorporating movement direction towards or away

conspecifics. For this reason, y˘a and y˘r enter equation (2.4) with opposite signs.

The density-dependent turnings depend greatly on how individuals communicate with each

other, namely whether they can emit (perceive) signals to (from) all or some of their neighbours.

Two particular situations, described by models called M2 and M4 as in [146] (see Figure 6.3) are

considered:

• Model M2: Individuals communicate via omni-directional communication signals, and thus

they can perceive all their neighbours positioned around them within all social interaction

ranges. For instance, the majority of mammals communicate via a combination of visual,

chemical and auditory signals, which allows them to receive/send information from/to all

their neighbours. With this assumption (see Figure 6.3(a)), the terms y˘r,a,al are defined as

follows:

y˘r,aru
`, u´s “ qr,a

ż 8

0
Kr,apsq

`

upx˘ sq ´ upx¯ sq
˘

ds, (2.5a)

y˘alru
`, u´s “ qal

ż 8

0
Kalpsq

`

u¯px¯ sq ` u¯px˘ sq (2.5b)

´u˘px¯ sq ´ u˘px˘ sq
˘

ds.

Here, qj describe the magnitudes of the social interactions associated to the interaction ker-

nels defined in (2.3). To understand the effect of these terms on the turning rates, let us focus

on y`r , for example. If upx ` sq ą upx ´ sq, then y`r enters λ` with positive sign, suggest-

ing a higher likelihood of turning, to avoid collision with neighbours ahead at x ` s. If, on
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6. Self-organised animal aggregation

the other hand, upx ` sq ă upx ´ sq, then y`r enters λ` with a negative sign, suggesting a

lower likelihood of turning. In this case, the individuals at x will keep moving in the same

direction, to avoid collision with neighbours behind at x ´ s. Note that the directionality

of neighbours influences only the alignment interactions (the attractive and repulsive inter-

actions being defined in terms of the total density u). Also, for this particular model, the

random density-dependent terms are given by

yN rus “

ż 8

0
K̂N psq

`

upx` sq ` upx´ sqqds. (2.6)

• Model M4: Individuals communicate via unidirectional communication signals, and thus

they can perceive only those neighbours moving towards them. For example, birds commu-

nicate via directional sound signals, and to ensure an effective transmission of their signals

they orient themselves towards their targeted receivers [52]. With this assumption (see Fig-

ure 6.3(b)), the terms y˘r,a,al are defined as follows:

y˘r,a,alru
`, u´s “ qr,a,al

ż 8

0
Kr,a,alpsq

`

u¯px˘ sq ´ u˘px¯ sq
˘

ds. (2.7)

Here, the directionality of neighbours influences all three social interactions. Moreover, for

this model, the random density-dependent terms are given by

yN ru
`, u´s “

ż 8

0
K̂N psq

`

u´px` sq ` u`px´ sqqds. (2.8)

In this equation, we assume that individuals turn randomly in response to u´ and u` in-

dividuals (i.e., in (2.8) we add all perceived individuals; this is in contrast to equation (2.7),

where we subtract individuals positioned ahead from individuals positioned behind, to im-

pose directionality in the turning behaviour). Note that in (2.8), yN does not depend any-

more on u “ u` ` u´ (as in (2.6)), since the individuals at x cannot perceive all their neigh-

bours at x˘ s.

We focus on these two particular models because: (i) the model (2.1)+(2.2)+(2.5)+(2.6) assum-

ing λ1 “ 0 has been generalised to 2D; (ii) the model (2.1)+(2.2)+(2.7)+(2.8) assuming λ2 “ 0 has

been investigated analytically and numerically, and showed that it can exhibit Hopf bifurcations

(even when qal “ 0), which give rise to spatio-temporal patterns such as rotating waves and mod-

ulated rotating waves [56]. In contrast, model (2.1)+(2.2)+(2.5)+(2.6) with λ2 “ 0 does not seem to

exhibit rotating waves when qal “ 0, see [146].

To complete the description of themodel, we need to specify the domain size and the boundary

conditions. Throughout most of this chapter, we will consider an infinite domain. However, for

the purpose of numerical simulations, in Sections 2.2 and 4 we will consider a finite domain of

length L (i.e., r0, Ls) with periodic boundary conditions: u`pL, tq “ u`p0, tq, u´p0, tq “ u´pL, tq.
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(a) model M2: (b) model M4:
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Figure 6.3: Diagram describing the mechanisms through which a reference individual positioned at x (right-moving –
top; left-moving – bottom) perceives its neighbours positioned at x ´ s and x ` s. The reference individual can perceive
(a) all its neighbours (model M2 in [146]); (b) only its neighbours moving towards it (model M4 in [146]).

This assumptionwill also require wrap-around conditions for the kernels describing the non-local

social interactions, see Section 4. For large L, this assumption approximates the dynamics on an

infinite domain.

In the following, we show how this hyperbolic 2-velocity model can be reduced to a parabolic

equation by considering suitable scalings, which depend on the biological assumptions. Of course,

to be useful in practice, these parameters have to be calibrated and adapted to particular species as

in [183, 188]. The scaling arguments are classically obtained by writing a dimensionless formula-

tion of the problem. We refer to [265] in bacterial chemotaxis and [6] in semiconductor modelling

for a detailed description. After this dimensionless rescaling, we typically end up with two dif-

ferent time scales whose balance determines our small parameter: the drift time and the diffusion

time.

We start in Subsection 2.1 with a parabolic scaling, which describes the situation where the

drift time of a population is much smaller than its diffusion time. To this end, we discuss two

separate cases (i.e., social interactions described by non-linear or linear functions fpyq in (2.2)),

which lead to two different parabolic equations.

2.1 Parabolic limit for non-linear interactions

Next, we focus only onmodelM2 (i.e., equations (2.1)+(2.2)+(2.5)+(2.6)), since the results formodel

M4 are similar. The scaling argument applied in [189] transforms the hyperbolic system (2.1) into

a parabolic equation. One can scale the space and time variables (x “ x˚{ε, t “ t˚{ε2, with ε ! 1),

or can scale the speed (γ) and the turning rates (λ1,2,3). In both cases, we consider the rescaled

interaction kernels K˚j px˚q “ 1
εKjp

x˚

ε q in the expressions for y˘j , j “ r, al, a. Here, we scale the

time and space variables to be consistent with the approach in Section 3.1. As mentioned above,
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6. Self-organised animal aggregation

the scaling parameter ε depends on the biological problem modelled. For example, in [189] the

authors connect ε to the ratio of the drift (τdrift) and diffusion (τdiff ) times observed in bacteria

such as E. coli, where τdrift « 100 seconds and τdiff « 104 seconds, and thus ε « Op10´2q.

Similar scaling arguments are used in [265, Appendix] to analyse the ability of parabolic scalings

to describe travelling pulses.

To perform the scaling, let us re-write model (2.1) in terms of the total density upx, tq and the

flux vpx, tq “ γpu`px, tq ´ u´px, tqq of individuals (see also [189, 192]):

ε2 Bu

Bt
` ε

Bv

Bx
“ 0, (2.9a)

ε2 Bv

Bt
` εγ2 Bu

Bx
“ γu

`

λ´ru, vs ´ λ`ru, vs
˘

´ v
`

λ`ru, vs ` λ´ru, vs
˘

, (2.9b)

with initial conditions upx, 0q “ u0pxq, vpx, 0q “ v0pxq. For clarity, here we dropped the ˚ from

the rescaled space (x˚) and time (t˚) variables. In addition, we assume that individuals have a

reduced perception of the surrounding neighbours for small values of ε, [143]:

fε

´

y˘Dru, vs
¯

“ εf
´

y˘D
“

u,

ż

x˚

ε

ε
Bu

Bt˚
‰

¯

, fε

´

yN rus
¯

“ εf
´

yN rus
¯

, (2.10)

where f enters the turning functions λ˘ (2.2):

λ`r¨s ` λ´r¨s “ 2λ1 ` 2λ2 εfpyN r¨sq ` ε λ3

´

fpy`Dr¨sq ` fpy
´
Dr¨sq

¯

,

λ´r¨s ´ λ`r¨s “ λ3ε
´

fpy´Dr¨sq ´ fpy
`
Dr¨sq

¯

.

By eliminating v “ ε
ş

x
Bu
Bt from equations (2.9), and taking the limit εÑ 0, we obtain the following

parabolic equation
Bu

Bt
“
γ2

2λ1

B

Bx

ˆ

Bu

Bx

˙

´
λ3γ

2λ1

B

Bx

``

fpy´Drusq ´ fpy
`
Drusq

˘

u
˘

. (2.11)

We note here that the non-local terms fpy˘Drusq now depend only on the repulsive and attractive

interactions. The reason for this is that the alignment interactions are defined in terms of u˘ “

pu ˘ 1
γ vq{2 “ 0.5pu ˘ 1

γ

ş

x{ε
ε2Bu{Btq. As ε Ñ 0, the u terms in (2.5) cancel out, and the integrals

approach zero. Equation (2.11) can be re-written as
Bu

Bt
“
B

Bx

ˆ

D0
Bu

Bx

˙

´
B

Bx

´

S0 uV puq
¯

, (2.12)

with diffusion rateD0 “ γ2{p2λ1q and drift rate S0 “ λ3γ{p2λ1q. The velocity V puq depends on the

communication mechanism incorporated. For example, for model M2 we have y˘Drus “ ˘K ˚ u,

and so the velocity is given by

V rus “ f
`

´K ˚ u
˘

´ f
`

K ˚ u
˘

where we define

K ˚ u “ K̄` ˚ u´ K̄´ ˚ u, K̄˘ ˚ u “

ż 8

0
K̄psqupx˘ sqds,

K̄ “ qrKr ´ qaKa. (2.13)
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2. Description of 1D models

For model M4, we have y˘Drus “ ˘0.5K ˚u, and so the velocity is quite similar: V rus “ f
`

´0.5K ˚

u
˘

´ f
`

0.5K ˚ u
˘

, the factor 0.5 appearing from u˘ “ 0.5pu˘ 1
γ vq.

Remark 2.1. We observe that the random density-dependent turning fpyN rusq does not appear in this

parabolic limit. This is the result of the scaling assumptions (2.10).

Remark 2.2. Here, the turning functions fp¨q were chosen to be bounded, since individuals cannot turn

infinitely fast when subject to very strong interactions with neighbours [146, 145]. However, for simplicity,

many models consider linear functions: fpzq “ z (see, for example, [237, 239, 153]). The choice of having

bounded or non-bounded turning functions fp¨q has further implications on the models. In particular, for

linear functions, the argument y˘D “ y˘r ´ y˘a ` y˘al can be either positive or negative (depending on

the magnitudes of the social interactions), with y`D “ ´y
´
D. For very small constant and non-directional

turning rates (λ1, λ2 « 0), this can lead to λ` ă 0 and λ´ ą 0, or vice versa. Now the u`λ` terms add to

the u´λ´ terms, causing both u` and u´ populations to decide very fast to move in the same direction (in

fact, one of the populations is reinforced to keep its moving direction). This is different from the case with

bounded turning functions, where if y`D “ ´y
´
D ! 0, then 0 ă λ` « λ1 ` λ2f pyN ru

`, u´sq ă λ´. So if

λ1, λ2 « 0, then u`λ` « 0 and hence population u` is not reinforced to keep its movement direction.

Because the 2D kinetic model that we will investigate in Section 3 assumes f to be a linear function, with a

very weak directed turning behaviour (ελ3), we now consider the case fpyN rusq “ yN rus “ KN ˚ u and

fpy˘Drusq “ εy˘Drus, and so the turning rates can be written as

λ˘ru`, u´s “ λ1 ` λ2K
N ˚ u` ε λ3y

˘
Drus . (2.14)

By taking the limit ε Ñ 0 in (2.9), we obtain the following parabolic equation with density-dependent

coefficients:

Bu

Bt
“
B

Bx

ˆ

Drus
Bu

Bx

˙

´
B

Bx

´

Srusu
`

y´Drus ´ y
`
Drus

˘

¯

, (2.15a)

Drus “
γ2

2pλ1 ` λ2KN ˚ uq
and Srus “

λ3γ

2pλ1 ` λ2KN ˚ uq
. (2.15b)

This expression is similar to the asymptotic parabolic equation (3.30) for the 2D model. We will return to

this aspect in Section 3.1.

2.2 The preservation of steady states and their stability as ε Ñ 0

The spatially homogeneous steady states describe the situationwhere individuals are evenly spread

over the whole domain. In the following we investigate how these steady states and their linear

stability are preserved in the parabolic limit. To this end, we focus on the more general case of

non-linear social interactions (the case with linear interactions is similar). For simplicity we as-

sume here that λ2 “ 0 and qal “ 0. To calculate these spatially homogeneous states we need to
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6. Self-organised animal aggregation

define A “
şL

0 pu
` ` u´q dx the total population density. For simplicity, throughout this section

we assume that A “ 2; similar results can be obtained for different values of A.
σ

( 
 )k

u*=A/2u*=A/2
j=1,...,7

ε=0.2ε=0.5ε=0.9ε=1Reσ(  )k

σ(  )kIm

ε     0ε     0

σ
( 

 )k

j j=1,...,7
(c)

j

ε=1

ε=0.02

ε=0.2

ε=0.5

(b)

(a)

Figure 6.4: (a) Spatially homogeneous steady states u˚ formodel (2.9) with communication signals
(2.7) and (2.8) (communication mechanism M4), for different values of ε. The small inset figure
shows the 5 possible steady states occurring for ε “ 1 and qr´qa P p2, 3.7q (see the black continuous
curve); (b) Dispersion relation σpkjq for M4 (given by (2.16)), showing the stability of the spatially
homogeneous steady state u˚ “ A{2, for different values of ε; (c) Dispersion relation σpkjq for
M2, for the stability of the spatially homogeneous steady state u˚ “ A{2, for different values of
ε. The continuous curves describe Re σpkjq, while the dotted curves describe Im σpkjq. The small
diamond-shaped points show the discrete wavenumbers kj , j “ 1, ..., 7, with kj “ 2πj{L (and
thus kj P p0, 5q for j “ 1, .., 7 and L “ 10). The parameter values are: (b) qa “ 1.545, qr “ 2.779;
(c) qa “ 1.5, qr “ 0.93. The rest of parameters are: qal “ 0, λ1 “ 0.2, λ2 “ 0, λ3 “ 0.9, A “ 2.

Figure 6.4(a) shows the number andmagnitude of the steady states u˚ displayed by (2.9)-(2.10)

with communication mechanism M4, for different values of ε, as one varies the difference in the

magnitude of the repulsive and attractive social interactions, qr´qa. For medium ε, the model can

display up to 5 different steady states: one “unpolarised” state pu`, u´q “ pu˚, u˚q “ pA{2, A{2q

(where half of the individuals are facing left and half are facing right), and two or four ”polarised“

states pu˚, A´ u˚q, pA´ u˚, u˚q characterised by u˚ ă A{2 or u˚ ą A{2. Two of these ”polarised“
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2. Description of 1D models

states exist only in a very narrow parameter range: e.g., for ε “ 1, they exist when qr´qa P p2, 3.7q.

The other two ”polarised“ states exist for any qr´qa ą 2. For a calculation of the threshold values

of qr ´ qa that ensure the existence of 3 or 5 steady states see [147]. As ε decreases, the magnitude

of the polarised states decreases (i.e., the differences between the number of individuals facing

right and those facing left are decreasing). Moreover, for small ε, these polarised states appear

only when repulsion becomes much stronger than attraction (i.e., qr ´ qa " 10). When ε “ 0

there is only one steady state u˚ “ A{2. Since this state exists for all ε ě 0, from now on we will

focus our attention only on this state. Note that for qal “ 0 and for the communicationmechanism

M2 (not shown here), the non-local attractive-repulsive terms vanish, and there is only one steady

state, u˚ “ A{2 “ 1, which does not depend on ε.

Models (2.1) and (2.9) do exhibit a large variety of local bifurcations: codimension-1 Steady-

state and Hopf bifurcations [145] as well as codimension-2 Hopf/Hopf, Hopf/Steady-state and

Steady-state/Steady-state bifurcations [56]. Next we focus on the parameter region where two

such bifurcations can occur. We choose a Hopf/steady-state bifurcation for M4 (Figure 6.4(b))

and a steady-state bifurcation for M2 (Figure 6.4(c)), and investigate what happens when ε Ñ 0.

To identify the parameter regions where these bifurcations occur, we consider a finite domain of

length L, and investigate the growth of small perturbations of spatially homogeneous solutions.

We assume u˘9u˚` a˘exppσt` ikjxq, with kj “ 2πj{L, j P N`, the discrete wave-numbers, and

|a˘| ! 1. We substitute these solutions into the linearised system (2.9), and by imposing that the

determinant of this system is zero, we obtain the following dispersion relation, which connects σ

(the growth/decay of the perturbations) with the wave-numbers kj :

ε2σ2 ` σp2Lε1 ´Rε2RepK̂`qq ` γ2k2
j ´ γkjR2ImpK̂`q “ 0, (2.16)

whereLε1 “ λ1`ελ3fp0q,Rε2 “ 2εu˚λ3f
1p0q, and K̂` “ RepK̂`q`iImpK̂`q the Fourier transforms

of K̄` ˚u described in equations (2.13). Note that the wave numbers kj that become unstable (i.e.,

for which Repσpkjqq ą 0) determine, at least for a short time, the number of ”peaks“ j that emerge

in the spatial distribution of the density.

Figure 6.4(b) shows the stability of the spatially homogeneous steady state u˚ “ A{2 for model

M4 as given by the dispersion relation (2.16). Even if the wave-numbers kj are discrete (see the

diamond-shaped points on the x-axis of Figure 6.4(b)), we plot σpkjq, j ą 0 as a continuous func-

tion of kj for clarity. To discuss what happens with a Hopf bifurcation as ε Ñ 0, we focus in

Figure 6.4(b) on a parameter space where such a bifurcation occurs (i.e., where Repσpkjqq “ 0

in (2.16)): qa “ 1.545, qr “ 2.779, λ1 “ 0.2, λ2 “ 0, λ3 “ 0.9 and ε “ 1 (see also [57]). For

these parameter values, three modes become unstable at the same time: a steady-state mode k1

(Impσpk1qq “ 0; associated with stationary patterns with 1 peak) and two Hopf modes k4 and k5

(Impσpk4,5qq ą 0; associated with travelling patterns with 4 or 5 peaks). As εÑ 0, the steady-state
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6. Self-organised animal aggregation

mode persists while the Hopf modes disappear (i.e., 0 ă Repσpk1qq ! 1 and Repσpk4,5qq ă 0; see

Figure 6.4(b).) This can be observed also from equation (2.16): as εÑ 0, we have σ P R. A similar

investigation of the local stability of the spatially homogeneous steady states associated with the

non-local parabolic equation (2.12) shows that this equation cannot have complex eigenvalues (i.e.,

Impσpkjqq “ 0 for all j ą 0), and thus cannot exhibit local Hopf bifurcations [58].

Figure 6.4(c) shows the stability of the spatially homogeneous steady state u˚ “ A{2, for model

M2, as given by the dispersion relation σpkjq:

ε2σ2 ` σp2Lε1q ` γ2k2
j ´ 2γkjR2ImpK̂`q “ 0. (2.17)

For qa “ 1.5, qr “ 0.93, λ1 “ 0.2, λ2 “ 0, λ3 “ 0.9 and ε “ 1, model M2 exhibits a steady-

state bifurcation, i.e., Repσpkjqq “ Impσpkjqq “ 0 in (2.17). In particular, two steady-state modes

are unstable at the same time: k1 and k2 (both associated with stationary patterns). As ε Ñ 0,

the two modes remain unstable. Hence, we expect that the spatial patterns generated by these

modes will persist as εÑ 0. We will return to this aspect in Section 4.4, when we will investigate

numerically themechanisms that lead to the disappearance of theHopfmodes and the persistence

of the steady-state modes, as εÑ 0.

3 Description of 2D models

x

x

x+s

u(   ,   ) u(      ,   )x+s
φ

The 2D equivalent of model M2 

θ

Figure 6.5: Caricature description of the M2 mechanism in 2D (where individuals can perceive
all their neighbours within a certain interaction range). We assume that a reference individual
is positioned at x “ px, yq and moves in direction φ. Its neighbours are at various spatial posi-
tions x` s within a certain interaction range (e.g., alignment range). The interaction ranges are
described by the 2D kernels (3.21); see also Figure 6.1(a).
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3. Description of 2D models

An attempt to generalise a specific case of the 1Dmodel (2.1)-(2.2)-(2.5)-(2.6) to two dimensions

was made by Fetecau [153]. The Boltzman-type model described in [153] incorporates the non-

local social interactions in the re-orientation terms:

Bu

Bt
` γeφ ¨∇xu “ ´λpx, φqu`

ż π

´π

T px, φ1, φqupx, φ1, tqdφ1. (3.18)

Here, upx, φ, tq is the total population density of individuals located at x “ px, yq, moving at a

constant speed γ ą 0 in direction φ. The term eφ “ pcospφq, sinpφqq gives the movement direction

of individuals. The re-orientation terms, λpx, φq and T px, φ1, φq depend on the non-local interac-

tions with neighbours, which can be positioned in the repulsive, attractive, and alignment ranges

depicted in Fig. 6.1(a). Thus, these terms have three components each, corresponding to the three

social interactions:

T px, φ1, φq “ Talpx, φ1, φq ` Tapx, φ1, φq ` Trpx, φ1, φq.

In contrast to the model in [153], here we assume that the re-orientation terms

λjpx, φ1q “
ż π

´π

Tjpx, φ1, φqdφ, j “ r, a, al

have both a constant and a density-dependent component:

T alpx, φ1, φq “
ηal
2π` (3.19a)

λ3 qal

ż π

´π

ż

R2
Kd
alpx´ sqKo

alpθ, φ
1qωalpφ

1 ´ φ, φ1 ´ θqups, θ, tqdsdθ,

T r,apx, φ1, φq “
ηr,a
2π ` (3.19b)

λ3 qr,a

ż π

´π

ż

R2
Kd
r,apx´ sqKo

r,aps,x, φ1qωr,apφ1 ´ φ, φ1 ´ ψqups, θ, tqdsdθ.

Therefore, the turning rate λpx, φq “ λalpx, φq ` λapx, φq ` λrpx, φq is defined by

λ “ λ1 ` λ3λ̄rupx, φqs , (3.20)

with λ1 “ ηr`ηal`ηa and with λ̄rupx, φqs being given as the integral over φ1 P r´π, πs of the sum

of non-local terms in (3.19) with φ and φ1 interchanged.

Remark 3.1. By defining the constant basic turning rate to be λ1 “ ηr`ηal`ηa, we generalised the model

in [153] (where λ1 “ 0). Note that the turning rates here are linear functions of the non-local interactions

with neighbours. This is in contrast to the more general non-linear turning function f we considered in

Section 2.1 for the 1D hyperbolic model. In what follows, we are interested in non-constant turning rates

λjpx, φ1q, j “ r, a, al, and so we will henceforth assume λ3 ‰ 0.

As in [153], λj , j “ r, a, al, are defined in terms of both distance kernels and orientation kernels.

The 2D distance kernelsKd
j , j “ r, a, al are given by

Kd
j pxq “

1
Aj
e´p
?
x2`y2´djq{m

2
j , j “ r, a, al, (3.21)
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6. Self-organised animal aggregation

where constants Aj are chosen such that the kernels integrate to one. The orientation kernels

Ko
j measure the likelihood of turning in response to the movement direction of neighbours (for

alignment interactions) or in response to the position of neighbours (for repulsive and attractive

interactions):

Ko
alpθ, φq “

1
2π p1´ cospφ´ θqq ,

Ko
r ps,x, φq “

1
2π p1` cospφ´ ψqq ,

Ko
aps,x, φq “

1
2π p1´ cospφ´ ψqq ,

where ψ is the angle between the positive x-axis and the relative location s´ x of the neighbours

at s with respect to the reference individual at x. Finally, ω describes the tendency to turn from

direction φ1 to direction φ, as a result of interactions with individuals moving in direction θ:

ωpφ1 ´ φ, φ1 ´ θq “ gpφ1 ´ φ´Rpφ1 ´ θqq ,

for some suitable choice of g. Note that in the case λ1 “ 0, the function ω describes the probability

of re-orientation in the sense discussed in [167] and thus we require
ş

ωpφ1´φ, φ1´ θq dφ “ 1. For

example, g could be a periodic function that integrates to one:

gpθq “
1
?
πσ

ÿ

zPZ
e´p

θ`2πz
σ q

2
, θ P p´π, πq ,

with σ a parameter measuring the uncertainty of turning (with small σ leading to exact turn-

ing) [153, 167]. Another typical choice could be the vonMises distribution, as in Vicsek-type mod-

els [120].

On the other hand, when λ1 ą 0, then g can be interpreted as a small re-orientation perturbation

from the random turning behaviour and so ω satisfies
ş

ωpφ1 ´ φ, φ1 ´ θq dφ “ 0 and therefore g is

required to be odd.

Remark 3.2. Fetecau [153] showed that by imposing the turning angle to have only two possible values

φ “ ˘π, the 2D model (3.18) can be reduced to the 1D model (2.1) for a specific choice of turning rates

λ˘ru`, u´s. More precisely, considering the more general turning operators (3.19a) and (3.19b), we recover

(2.2) with λ1, λ3 ě 0, λ2 “ 0 for a linear turning function fpzq “ z, and with the communication

mechanism

y˘Dru
`, u´s “

1
π
qal

ż 8

´8

Kalpx´ sq
`

u¯ps, tq
˘

ds

`
1
π
qa

ż x

´8

Kapx´ sq
`

u`ps, tq ` u´ps, tq
˘

ds

`
1
π
qr

ż 8

x

Krpx´ sq
`

u`ps, tq ` u´ps, tq
˘

ds. .
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3. Description of 2D models

This is a similar turning behaviour tomodelM2 in [146], since individuals receive and emit omni-directional

communication signals, but with the function f linear. Moreover, as we will show in the next section,

even if the 2D model (3.18) can be reduced to a special case of the 1D model (2.1) without λ2 in (2.2),

the parabolic scaling of the 2D model reduces to a special case of the parabolic scaling of the 1D model,

which includes a λ2 term for non-directed turning. As we will see shortly, this 2D parabolic scaling leads

to the natural appearance of a non-directed interaction contribution, suggesting that there are more subtle

differences between the 1D and 2D models.

The diffusion limit (i.e., x “ x˚{ε, t “ t˚{ε2) of a transport model similar to (3.18), but with

constant turning rates λ was discussed in [189, 190]. In the following we consider the parabolic

limit for model (3.18) with density-dependent turning rates.

3.1 Parabolic drift-diffusion limit

We focus on the casewhere individuals are only influenced slightly by the presence of neighbours,

i.e., the turning mechanism can be assumed to be a small perturbation of a uniform turning prob-

ability. In this case, we will show that the Boltzmann-type equation (3.18) can be reduced to a

drift-diffusion equation in the macroscopic regime.

We consider the scaling t “ t˚{ε2, x “ x˚{ε, where ε ! 1 is a small parameter. Since the veloc-

ity in the new variables is of order 1{ε, then we make the scaling assumption that an individual’s

turning behaviour is only influenced slightly by the presence of neighbours:

T ruspx, φ1, φq “ λ1

2π `
λ2

2π K
d ˚ ρpx, tq ` ε λ3Bruspx, φ1, φq , (3.22)

with ρpx, tq “
şπ

´π
upx, φ, tqdφ, and where we define

Kdpxq :“ qalK
d
alpxq ` qaKd

apxq ` qrKd
r pxq

to be the social distance kernel. As we have done in the 1D case, we have separated the non-directed

and directed turning rates.

If λ3 ‰ 0, we factorise again the turning rate λ3 corresponding to the directed interactions

and write λ0
2 “ λ2{λ3 the quotient of turning rates. With this notation, λ̄rupx, φqs in (3.20) can be

written as

λ̄rupx, φqs “ λ0
2K

d ˚ upx, φ, tq ` ε yDrupx, φ, tqs , (3.23)

with yDrus “
ş

Bruspx, φ1, φqdφ1. Note that the turning rate λ given by (3.20)-(3.23) corresponds to

the 1D turning rates (2.14) with this specific choice of yDrus. The scaling assumption (3.22) can be

derived by introducing reduced perception of directionality of neighbours into the re-orientation
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6. Self-organised animal aggregation

function ω and into the orientation kernelsKo
j ,

gjpϑq “ λ0
2 ` εGjpϑq ,

Ko
alpθ, φq “

1
2π p1´ ε cos pφ´ θqq ,

Ko
r ps,x, φq “

1
2π p1` ε cos pφ´ ψqq ,

Ko
aps,x, φq “

1
2π p1´ ε cos pφ´ ψqq ,

where Gjpϑq, j “ r, a, al are signal response functions to be chosen according to the biological con-

text. Substituting these expressions into the re-orientation terms (3.19), we define λ1 “ ηal`ηr`ηa

and we obtain (3.22) with a precise expression for the social response function Brus.

If λ1 “ 0, we further have λ2 “ λ3{2π and
şπ

´π
Gjpφ

1 ´ φ ´ Rpφ1 ´ θqqdφ “ 0, j “ r, a, al as

the probability to turn to any new angle is 1. In addition, we want the turning function Rpϑq to

be close to an unbiased turning mechanism. This can be expressed by taking Rpϑq “ εϑ, which

indeed corresponds to weak interaction between individuals, [167]. We obtain Brus “ Balrus `

Barus `Brruswith

Balruspφ
1, φq “

1
2π qalGalpφ

1 ´ φqKd
al ˚ ρpx, tq (3.24)

´
λ0

2
2π qal

ż

R2
Kd
alpx´ sq

ż π

´π

cos
`

φ1 ´ θ
˘

ups, θ, tqdθ ds ,

Br,aruspφ
1, φq “

1
2π qr,aGr,apφ

1 ´ φqKd
r,a ˚ ρpx, tq (3.25)

˘
λ0

2
2π qr,a

ż

R2
Kd
r,apx´ sq cos

`

φ1 ´ ψ
˘

ρps, tqds .

Remark 3.3. Note that in 2D, λ0
2 is introduced as the relative strength of non-directed and directed turning

kernels. This is part of the scaling assumption in 2D, whereas in 1D, we introduced it as part of the model

(2.1)-(2.2) before rescaling. Note that λ0
2 “ 1{2π in Fetecau’s model where no distinction is made between

directed and non-directed turning.

Let us introduce

Kd
˚px˚q “

1
ε
Kd

ˆ

x˚

ε

˙

, B˚px˚, φ1, φq “
1

2πB
ˆ

x˚

ε
, φ1, φ

˙

.

Simplifying the notation by dropping ˚, system (3.18) writes in the new variables as

ε2Btu` ε γ eφ ¨∇xu “
1

2π
`

λ1 ` λ2K
d ˚ ρ

˘

pρ´ 2πuq (3.26)

` ε λ3 2π
ż π

´π

Bpx, φ1, φqupx, φ1, tqdφ1

´ ε λ3 2π upx, φ, tq
ż π

´π

Bpx, φ, φ1qdφ1 .

Using a Hilbert expansion approach, u “ u0 ` εu1 ` ε2u2 ` ..., and defining the macroscopic

densities ρi “
şπ

´π
ui dφ for i P N0, we obtain at leading oder a relaxation towards a uniform
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3. Description of 2D models

angular distribution at each position:

u0px, φ, tq “ ρ0px, tqF pφq, (3.27)

F pφq “
1

2π1φPp´π,πs.

Integrating (3.26) with respect to the direction of motion φ, we obtain the continuity equation

Btρ0 ` γ

ż π

´π

eφ ¨∇x u1dφ “ 0. (3.28)

Comparing orders of ε and using (3.27), we can derive an expression for u1 in terms of u0, ρ0, ρ1,

u1 “
1

2πρ1 ´ γ
eφ ¨∇xu0

λ1 ` λ2Kd ˚ ρ0

`ρ0
λ3

λ1 ` λ2Kd ˚ ρ0

ż π

´π

Brρ0spx, φ1, φq ´Brρ0spx, φ, φ1qdφ1.

Substituting into (3.28), we arrive at a macroscopic drift-diffusion equation of the form

Btρ0 “ ∇x . pDrρ0s∇xρ0 ´ ρ0krρ0sq ,

where the macroscopic diffusion coefficient Drρ0s “ γ2{p2pλ1 ` λ2K
d ˚ ρ0qq and the social flux

krρ0s “
λ3 γ

λ1 ` λ2Kd ˚ ρ0

ż π

´π

ż π

´π

peφ ´ eφ1qBrρ0spx, φ1, φqdφ1dφ (3.29)

are both described in terms of microscopic quantities. In the context of collective behaviour of

animal groups, we make two further assumptions:

(i) Individuals can process information in a similar manner for all three types of social interac-

tions:

Galpϑq “ Grpϑq “ Gapϑq “: Gpϑq @ϑ .

(ii) Individuals have symmetric perception, in otherwords, they can process information equally

well from left and right. Then the turning probability function ω is bisymmetric,

ωp´α,´βq “ ωpα, βq ,

which implies symmetry of the signal response function G.

Under these assumptions, the first term of the social response functions Bjrus in (3.24) and (3.25)

cancels when substituted into the social flux (3.29). The second term contains the factor λ0
2 which

cancels with λ3 in (3.29), leaving us with a factor of λ2 in the social flux. Using (3.27), we can

simplify the social flux even further and obtain the drift-diffusion equation

Btρ “ ∇x . pD0rρs∇xρq ´∇x . pρkrρsq , (3.30a)

D0rρs “
γ2

2pλ1 ` λ2Kd ˚ ρq
, (3.30b)

krρspx, tq “ λ2πγ

λ1 ` λ2Kd ˚ ρ

ˆ

qrK
d
r pxq

x
|x| ´ qaK

d
apxq

x
|x|

˙

˚ ρ . (3.30c)
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6. Self-organised animal aggregation

For notational convenience, we dropped the zero in ρ0. Note that this equation is similar to the

1D drift-diffusion equation (2.15) obtained via the parabolic limit for linear social interactions.

Remark 3.4. Integrating the 2D scaling assumption (3.22), we have

λpx, φ1q “ λ1 ` λ2K
d ˚ ρpx, tq ` ε λ3

ż

Bruspx, φ1, φqdφ ,

which is a particular case of the 1D scaling assumption (2.14). More precisely, the 2D turning rate λpx, φ1q

corresponds to (2.2) on the projected velocity set t0, πu, with a linear turning function fpzq “ z and with

the non-directed and directed communication mechanisms given by

yN rus “K
d ˚ ρpx, tq,

y˘Dru
`, u´s “

Gp0q `Gpπq
2 Kd ˚ ρpx, tq (3.31)

¯ λ0
2

ż

R
qalK

d
alpx´ sq

`

u`ps1, tq ´ u
´ps1, tq

˘

ds1

¯ λ0
2

ż x1

´8

`

qrK
d
r px´ sq ´ qaKd

apx´ sq
˘

ρps, tqds1

˘ λ0
2

ż 8

x1

`

qrK
d
r px´ sq ´ qaKd

apx´ sq
˘

ρps, tqds1 ,

where x “ px1, 0q, ρpx, tq “ u`px1, tq ` u´px1, tq “ upx1, tq, and where we used assumptions (i) and

(ii). Hence, model (2.1)-(2.14) with communication mechanism (3.31) corresponds exactly to the 2D non-

local kinetic model (3.18)-(3.22)-(3.24)-(3.25). This means, for instance, that the macroscopic 2D model

(3.30) reduces to the heat equation for λ2 “ 0, which is not the case in the parabolic limit (2.15) of the

corresponding 1D hyperbolic model (2.1) with the turning rates given by (2.2). In fact, our 2D scaling

assumption gjpϑq “ λ0
2 ` εGjpϑq, j “ al, r, a, introduces the relative strength of directed and non-

directed turning kernels into the expression of the social response function Brus, which is responsible for

the appearance of a factor λ2 in the drift of the macroscopic 2D model (3.30).

Remark 3.5. For some particular choices of distance kernels, the limiting parabolic model (3.30) can be

reduced to well known equations. Let us assume, for example, that the distance kernels are constant on the

whole domain,

Kd
j pxq “ 1, j “ al, a, r . (3.32)

This assumption corresponds to a setting in which individuals interact equally well with all other individuals

present in the entire domain. This is true locally for example if we have many individuals packed in little

space. Under assumption (3.32) together with λ1 “ 0, model (3.30) simplifies to

Btρ “
C0

λ2
∆ρ` C1 ∇ .

ˆ

ρ

ż

R2
eψρpsqds

˙

,

where

eψ “
s´ x
|s´ x| ,
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3. Description of 2D models

and C0, C1 are constants depending only on γ, qal, qa, qr and the total mass
ş

ρdx. If qa “ qr, then the

attraction and repulsion forces cancel out (C1 “ 0) and we obtain the heat equation. Let us henceforth

assume qa ‰ qr. Furthermore, we can write the social flux as

krρs “ ∇W ˚ ρ , (3.33)

where the interaction potential W : R2 ÝÑ R is given by W pxq “ C1|x|. In fact, for the more general

distance kernels (3.21) the social flux can also be written in the form (3.33), with the interaction potential

W behaving like |x| close to zero and decaying exponentially fast as |x| ÝÑ 8 (e.g. Morse potentials).

Therefore, we recover the diffusive aggregation equation

Btρ “ ∆ρ`∇ . pρ p∇W ˚ ρqq , (3.34)

which models the behaviour of particles interacting through a pairwise potential while diffusing with Brow-

nian motion. This type of equation has received a lot of attention in recent years because of its ubiquity in

modelling aggregation processes, such as collective behaviour of animals [237, 240, 28, 114] and bacterial

chemotaxis [41] (see also the references therein). In fact, model (3.34) is part of the family of aggregation-

diffusion equations presented in Part I. Here, we have linear diffusionm “ 1 and a non-singular interaction

kernel with power k “ 1 (using the notation of Part I). This means (3.34) falls into the diffusion-dominated

regime discussed in Chapter 4, see Definition 3.1 in Chapter 1.

3.2 Grazing collision limit

In the following, we consider another type of scaling that leads to parabolic equations, by focusing

on the case where individuals turn only a small angle upon interactions with neighbours. This

is biologically realistic as, for example, many migratory birds follow favourable winds or mag-

netic fields [244] and social interactions with neighbours might not have a considerable impact on

directional changes of individuals. The so-called grazing collisions, i.e. collisions with small de-

viation, correspond to this assumption. In this case, we show that the Boltzmann-type equation

(3.18) can be reduced to a Fokker–Planck equation with non-local advective and diffusive terms

in the orientation space.

For simplicity, the 2D kinetic model (3.18) can be re-written as

Bu

Bt
` γeφ∇xu “ ´Q

´rus `Q`ru, us

with

Q´rus “ Q´r rus `Q
´
a rus `Q

´
alrus, Q`ru, us “ Q`r ru, us `Q

`
a ru, us `Q

`
alru, us ,

Q´j rus “ λjpx, φqu, Q`j ru, us “

ż π

´π

Tjpx, φ
1, φqupx, φ1, tqdφ1 , for j “ r, al, a.
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6. Self-organised animal aggregation

Let us focus for now only on the alignment interactions, the analysis of attraction and repulsion in-

teractions is similar. The grazing collision assumption suggests that we can rescale the probability

of re-orientation as follows:

ωεal
`

φ´ φ1, φ´ θ
˘

“
1
ε
gε

´φ´ φ1 ´ εRpφ´ θq

ε

¯

.

Here, the parameter ε is related to the small re-orientation angle following interactionswith neigh-

bours moving in direction θ. If we denote by εβ “ φ´ φ1 ´ εRpφ´ θq, then since ωε integrates to

1, we obtain:

1 “
ż π

´π

ωεalpφ´ φ
1, φ´ θqdφ1 “

ż π`φ´Rpφ´θq

´π`φ´Rpφ´θq

gεpβqdβ “

ż π

´π

gεpβqdβ ,

by periodicity of gε.

Generally, when an interaction kernel in the Boltzmann equation presents a singularity point,

the troubles are avoided by considering a weak formulation of the Boltzmann operator [173, 87].

Expanding Qalrus :“ ´Q´alrus `Q
`
alru, us, we obtain for all ψ P C8c pr´π, πsq,

ż π

´π

Qalrusψpφqdφ “ ηal

ż π

´π

ˆ

1
2πρpx, tq ´ upx, φ, tq

˙

ψpφqdφ

`

ż π

´π

ż π

´π

ż

R2
λ3qalK

d
alpx´ sqK

0
alpθ, φqupx, φ, tqups, θ, tq¨

ż π

´π

ωεalpφ´ φ
1 , φ´ θq

“

ψpφ1q ´ ψpφq
‰

dφ1dsdθdφ . (3.36)

By substituting φ1 “ φ´ εβ´ εRpφ´θq into the ψpφ1q term in (3.36), and then expanding in Taylor

series about φwe obtain:
ż π

´π

ωεalpφ´ φ
1, φ´ θq

”

ψpφ1q ´ ψpφq
ı

dφ1 «

ż π

´π

gεpβq
”

`

´ εβ ´ εRpφ´ θq
˘Bψ

Bφ
`
ε2

2
`

β `Rpφ´ θq
˘2 B2ψ

Bφ2

ı

dβ .

Equation (3.36) can thus be approximated by
ż π

´π

Qalrusψpφqdφ “ ηal

ż π

´π

ˆ

1
2πρpx, tq ´ upx, φ, tq

˙

ψpφqdφ

´

ż π

´π

B

Bφ

”

upx, φ, tqCεalru, x, φs
ı

ψpφqdφ

`

ż π

´π

B2

Bφ2

”

upx, φ, tqDε
alru, x, φs

ı

ψpφqdφ

with the definitions

Cεalru, x, φs :“
ż π

´π

ż

R2
λ3qalK

d
alpx´ sqK

0
alpθ, φqA

ε
alpφ´ θqups, θ, tqdθds,

Dε
alru, x, φs :“

ż π

´π

ż

R2
λ3qalK

d
alpx´ sqK

0
alpθ, φqB

ε
alpφ´ θqups, θ, tqdθds ,
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where

Aεalpφ´ θq :“´ ε
`

M1pεq `M0pεqRpφ´ θq
˘

,

Bεalpφ´ θq :“ε
2

2
`

M2pεq ` 2M1pεqRpφ´ θq `M0pεqRpφ´ θq
2˘ ,

andMnpεq :“
şπ

´π
βngεpβq dβ, n “ 0, 1, 2, denote the moment generating functions of gεpβq. In a

similar manner we can approximate the attractive and repulsive non-local terms:
ż π

´π

Qr,arusψpφqdφ “ ηr,a

ż π

´π

ˆ

1
2πρpx, tq ´ upx, φ, tq

˙

ψpφqdφ

´

ż π

´π

B

Bφ

´

upx, φ, tqCεr,aru, x, φs
¯

ψpφqdφ

`

ż π

´π

B2

Bφ2

´

upx, φ, tqDε
r,aru, x, φs

¯

ψpφqdφ ,

where

Cεr,aru, x, φs “

ż π

´π

ż

R2
λ3qr,aK

d
r,apx´ sqK

0
r,aps, x, φqA

ε
r,aps, x, φqups, θ, tqdsdθ ,

Dε
r,aru, x, φs “

ż π

´π

ż

R2
λ3qr,aK

d
r,apx´ sqK

0
r,aps, x, φqB

ε
r,aps, x, φqups, θ, tqdsdθ ,

Aεr,aps, x, φq “ ´ εpM1pεqM0pεqRpφ´ ψsqq,

Bεr,aps, x, φq “
ε2

2

”

M2pεq ` 2M1pεqRpφ´ ψsq `M0pεqRpφ´ ψsq
2
ı

.

Therefore, the kinetic model (3.18) in the strong formulation can be approximated (when individ-

uals turn only by a small angle upon interactions with their neighbours) by the following Fokker–

Planck model that contains all three social interactions:

Bu

Bt
` γeφ ¨∇xu “λ1

ˆ

1
2πρpx, tq ´ upx, φ, tq

˙

(3.37)

`
B

Bφ

”

´ uCεru, x, φs `
B

Bφ
puDεru, x, φsq

ı

,

with λ1 “ ηa ` ηal ` ηr, and

Cεru, x, φs “ Cεalru, x, φs ` C
ε
r ru, x, φs ` C

ε
aru, x, φs ,

Dεru, x, φs “ Dε
alru, x, φs `D

ε
rru, x, φs `D

ε
aru, x, φs .

While non-local 2D Fokker–Planck models have been introduced in the past years in connection

with self-organised aggregations, themajority of thesemodels consider local diffusion [123, 12]. If

we neglect the ε2 terms (i.e., Bε « 0) and assume λ1 “ 0, equation (3.37) reduces to a Vlasov-type

flocking equation:
Bu

Bt
` γeφ ¨∇xu`

B

Bφ

”

uCεru, x, φs
ı

“ 0 .

These type of models have been previously derived from individual-based models (Vicsek or

Cucker–Smale models) with or without noise [123, 179, 87].
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6. Self-organised animal aggregation

4 Asymptotic preserving methods for 1D models

The kind of diffusion asymptotics we employed in the previous sections have been numerically

investigated in [88] using so-called asymptotic preserving (AP) schemes. The AP methods, which

improve the scheme already proposed in [169], are a fully explicit variation of the methods in-

troduced in [201, 202]. They are a powerful tool to investigate how patterns are preserved in the

parabolic limit by providing numerical schemes for all intermediate models of a scaling process

given some scaling parameter ε ą 0, and naturally produce a suitable numerical method for the

limiting model as ε Ñ 0. Here, we apply these schemes only to the 1D models introduced in

Section 2, since the numerics become much more complex in two dimensions. Taking advan-

tage of our understanding of the limit process, we base our scheme on a splitting strategy with

a convective-like step involving the transport part of the operator and an explicitly solvable ODE

step containing stiff sources (see Section 4.2).

4.1 Odd and even parity

We consider the 1D kinetic model (2.1) written as an odd-even decomposition,
$

’

&

’

%

Btr ` γBxj “ 0 ,

Btj ` γBxr “ ´2λ`rr, jspr ` jq ` 2λ´rr, jspr ´ jq ,

with the equilibrium part (macro part/even part) r and the non-equilibrium part (micro part/odd

part) j given by

rpx, tq “
1
2
`

u`px, tq ` u´px, tq
˘

, jpx, tq “
1
2
`

u`px, tq ´ u´px, tq
˘

.

Under scaling assumption (2.10) for (2.2), this model reads in the new variables x “ x̃{ε, t “ t̃{ε2

as follows:

εBt̃r̃ ` γBx̃j̃ “0

εBt̃j̃ ` γBx̃r̃ “ r̃λ3pf rỹ
´s ´ f rỹ`sq

´
1
ε
j̃
`

2λ1 ` 4ελ2f
`

K̃N ˚ r̃
˘

` ελ3pf rỹ
`s ` f rỹ´sq

˘

,

where K̃N px̃q “ 1
εK

N p x̃ε q. Rearranging the terms and dropping ”„“ for notational convenience,

we obtain for r and J :“ 1
ε j:

$

’

’

’

’

’

&

’

’

’

’

’

%

Btr ` γBxJ “0

BtJ ` γBxr “
1
ε2 rλ3pf ry

´s ´ f ry`sq `

ˆ

1´ 1
ε2

˙

γBxr

´
1
ε2 J

`

2λ1 ` 4ελ2f
`

KN ˚ r
˘

` ελ3pf ry
`s ` f ry´sq

˘

.

(4.38)
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4. Asymptotic preserving methods for 1D models

4.2 Operator splitting

We can now employ an operator splitting method on (4.38), separating the stiff source part, which

can be treated by an implicit Euler method, and the transport part, which we can solve by an

explicit method such as upwinding:

1. Stiff source part:

Btr “0,

BtJ “
1
ε2 rλ3pf ry

´s ´ f ry`sq `

ˆ

1´ 1
ε2

˙

γBxr (4.39)

´
1
ε2 J

`

2λ1 ` 4 ε λ2f
`

KN ˚ r
˘

` ε λ3pf ry
`s ` f ry´sq

˘

.

2. Transport part:

Btr ` γ BxJ “ 0, (4.40)

BtJ ` γ Bxr “ 0 .

It can easily be verified that, in the limit ε Ñ 0, we recover indeed the macroscopic model (2.11)

for u “ 2r.

4.3 Alternated upwind discretisation

In the following, we are interested in the numerical implementation of model (2.1) with the turn-

ing rates (2.2) depending on a non-linear turning function f without a non-directed density-

dependent turning term (i.e. λ2 “ 0). As shown in Section 2.1, in this case, the parabolic limit

yields the drift-diffusion equation (2.11)

Btu “ D0Bxxu´ S0Bx
`

upf´rus ´ f`rusq
˘

,

with D0 “ γ2{p2λ1q and S0 “ λ3γ{p2λ1q. Note the shorthand f˘rus “ fpy˘Drusq. We propose

an alternated upwind discretisation with the even part r evaluated at full grid points xi “ i∆x,

and the odd part J evaluated at half grid points xi` 1
2
“ pi ` 1

2 q∆x. First, we discretise the stiff

source part (4.39) using an implicit Euler discretisation and respecting the direction of the drift.

We obtain an explicit expression for J˚,

J˚
i` 1

2
“

ε2Jn
i` 1

2
` γ ∆t

∆x
`

ε2 ´ 1
˘ `

rni`1 ´ r
n
i

˘

ε2 ` 2λ1∆t` ελ3∆t pf`rrns ` f´rrnsqi` 1
2

`

λ3∆t
´

pf´rrns ´ f`rrnsq
`

i` 1
2
rni ` pf

´rrns ´ f`rrnsq
´

i` 1
2
rni`1

¯

ε2 ` 2λ1∆t` ελ3∆t pf`rrns ` f´rrnsqi` 1
2

,
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6. Self-organised animal aggregation

with r˚ “ rn. Here, rn and Jn are the numerical solutions of r and J at time tn “ n∆t. We use

the ˚-notation for half steps in time. Since J is evaluated at half grid point, the discretisation of

the transport part (4.40) can be chosen independently of the sign of the drift,

1
∆t

`

rn`1
i ´ r˚i

˘

`
1

∆x

´

J˚
i` 1

2
´ J˚

i´ 1
2

¯

“ 0 ,
1

∆t

´

Jn`1
i` 1

2
´ J˚

i` 1
2

¯

`
1

∆x
`

r˚i`1 ´ r
˚
i

˘

“ 0 .

Taking the limit ε Ñ 0 in the expression for J˚
i` 1

2
and substituting into the first equation of the

transport part, we obtain the following discretisation of the one-dimensional macroscopic model

(2.11):

un`1
i ´ uni

∆t “
D0

p∆xq2
´

Bpcqxxu
n
¯

i

´
S0

∆x

´

uni
`

f´rrns ´ f`rrns
˘`

i` 1
2
´ uni´1

`

f´rrns ´ f`rrns
˘`

i´ 1
2

¯

´
S0

∆x

´

uni`1
`

f´rrns ´ f`rrns
˘´

i` 1
2
´ uni

`

f´rrns ´ f`rrns
˘´

i´ 1
2

¯

.

Here, Bpcqxxun denotes the standard central difference discretisations. This illustrates how the choice

of discretisation for (4.39) directly induces a discretisation of model (2.11). We will now use this

scheme to investigate how some of the patterns observed in model (2.1)-(2.2) change as εÑ 0.

Remark 4.1. The stability restriction for the proposed AP scheme is less clear. We can expect that the time

steps size ∆t needs to be sufficiently small, with an upper stability bound depending on the space step size

∆x, the diffusion coefficient D0, and the social interaction kernels via the termsKN ˚ u and f˘rus.

4.4 Simulation results

In Section 2.2 we have seen that for model M4, the two Hopf bifurcations that occurred for the k4

and k5 modes have disappeared as ε Ñ 0. In this Section, we start with a rotating wave pattern

(i.e., travelling pulses) that arises at ε “ 1 through a Hopf bifurcation (i.e., for the same parameter

values as in Figure 6.4: qa “ 1.545, qr “ 2.779, λ1 “ 0.2, λ2 “ 0, λ3 “ 0.9, γ “ 0.1, A “ 2). Then,

we investigate numerically what happens with this pattern as εÑ 0. The initial conditions for the

simulations are random perturbations of maximum amplitude 0.2 of the spatially homogeneous

steady state u˚ “ A{2 “ 1. We start with ε “ 1, and run the numerical simulations up to t “ 1000.

Then we decrease ε, and choose the new initial condition to be the final solution obtained with

the previous ε value.

Figure 6.6(a) shows the amplitude of the patterns obtainedwhen ε P r0, 1s, for the particular pa-

rameter values mentioned before. Since some of these amplitudes show time-oscillations between

different values, we graph their maximum andminimum values for each ε. As we decrease ε from

1.0 towards 0.64 (region III), the amplitude undergoes some very small temporal oscillations (see
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Figure 6.6: The amplitude and density profile of the patterns obtained for qa “ 1.545, qr “ 2.779,
qal “ 0, λ1 “ 0.2, λ2 “ 0, λ3 “ 0.9 with model M4, as ε is decreased from 1.0 to 0.0. (a) Bifurcation
diagram for the amplitude of the patterns as a function of ε. For ε ď 0.32 (region I), the amplitude
is constant. For ε P p0.32, 0.64q (region II) the amplitude oscillates between two different values.
For ε ě 0.64 (region III) there are some very small oscillations in the amplitude, however due to
the scale of the plot these oscillations are almost unobservable. (b) Amplitude of the patterns for
ε P r0, 0.6s and for t P p0, 50q. We show heremaxxPr0,Lsupx, tq´minxPr0,Lsupx, tq, with u “ u``u´.
(c) Amplitude of the patterns for ε P r0.7, 1.0s and for t P p0, 50q.
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6. Self-organised animal aggregation

also panel (c)), corresponding to the rotatingwave patterns (with a small time-modulation) shown

in Figure 6.7(c). For ε P p0.32, 0.64q (region II), the amplitude oscillates between two large values.

This corresponds to the ”inside-group“ zigzagging behaviour shown in Figure 6.7(b) near x “ 6,

where the group as a whole does not move in space but individuals inside the group move be-

tween the left and right edges of the group. We also note a period-doubling bifurcation at ε “ 0.61

(region II, Figure 6.6(a); see the two dots that appear between the main branches), which leads to

a slight decrease in the amplitude. Finally, as ε is decreased below 0.32 (region I), the movement

inside the group is lost and the pattern is described by stationary pulses with fixed amplitude (see

Figure 6.6(a) and Figure 6.7(a)). Figures 6.6(b),(c) show the time-variation of the amplitudes of the

spatial and spatio-temporal patterns obtained for ε P r0, 1s. Figures 6.7(a’)-(c’) show the density

profiles of the patterns observed in regions I-III.

Because the macro-scale models (ε “ 0) seem to exhibit stationary pulses (as shown in Figure

6.7(a)), we now startwith these stationary pulses (for ε “ 1) and investigatewhether they change in

any way as εÑ 0. We focus here on model M2 (see Figure 6.3). Figure 6.8 shows the amplitude of

the stationary pulses obtainedwithmodelM2 in a particular parameter region (qa “ 2.2, qr “ 0.93,

qal “ 0; see also Figure 6.4), as we decrease the scaling parameter ε. We observe that in this case,

the scaling does not affect the patterns or their amplitudes.

Remark 4.2. Note that the rotating wave pattern shown in Figure 6.7(c) for ε “ 1 is obtained near a

Hopf/steady-state bifurcation (with k5 the Hopf wavenumber), and hence the 5 rotating peaks that form this

pattern. However, as εÑ 0, the wavenumber k3 seems to become unstable (hence the 3 peaks for the patterns

shown in Figure 6.7(a),(b)), even if the dispersion relation shown in Figure 6.4(b) suggests that k3 should

be stable.

5 Summary and discussion

In this chapter, we investigated the connections between a class of 1D and 2D non-local kinetic

models and their limit macroscopic models for self-organised biological aggregations. The non-

locality of thesemodels was the result of the assumptions that individuals can interact with neigh-

bours positioned further away, but still within their perception range. To simplify the kinetic mod-

els that incorporate microscopic-level interactions (such as individuals’ speed and turning rates),

we focused on two types of scalings, namely a parabolic and a grazing collision limit, which lead to

parabolic models described in terms of average speed and average turning behaviour. We showed

that while for the kinetic models the non-local interactions influence the turning rates (i.e., indi-

viduals turn to approach their neighbours, to move away from them or to align with them), for

the limit parabolic models the non-local interactions influence the dispersion and the drift of the
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Figure 6.7: The spatial and spatio-temporal patterns obtained with model M4, for qa “ 1.545,
qr “ 2.779, qal “ 0, λ1 “ 0.2, λ2 “ 0, λ3 “ 0.9, as ε is decreased from 1 to 0, using model M4.
(a) Stationary pulse patterns observed in region I: ε ď 0.32; (b) ”Inside-group“ zigzag patterns
observed in region II: ε P p0.32, 0.64q; (c) Rotating wave (travelling pulse) patterns observed in
region III: ε ě 0.64. Panels (a’)-(c’) show the density profiles corresponding to patterns in panels
(a)-(c), at time t “ 1000.
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Figure 6.8: The amplitude and density of the patterns obtained for model M2 with qa “ 2.2,
qr “ 0.93, qal “ 0, λ1 “ 0.2, λ2 “ 0, λ3 “ 0.9, as ε is decreased from 1 to 0. (a) Bifurcation diagram
for the amplitude of the patterns as a function of ε. (b) Density profile for the stationary patterns.
(c) Time-space plot of the density.

aggregations. In particular, we showed that the assumption that individuals can turn randomly

following the non-directional perception of neighbours around them leads, in the macroscopic

scaling, to density-dependent diffusion. Moreover, this diffusion decreased with the increase in

the population density. Biologically, this means that larger animal groups are less likely to spread

out. This phenomenon has been observed for various species. For example, studies have shown

that aggregations of locusts [55] or ants [21] can persist only if the number of individuals is above

a certain threshold.

The introduction in (2.2) of the term yN describing random non-directional turning (which

generalised the turning rates in [147]) was required by the comparison of the parabolic limit mod-

els in 1D and 2D. In particular, the 2D parabolic limit lead to the natural appearance of this term,

which is absent from the 1D parabolic model. Therefore, to obtain similar parabolic models in 1D

and 2D, we had to explicitly add yN in equation (2.2). This suggests that even if the 2D model

(3.18) can be reduced to a special case of the 1D model (2.1) (as shown in [153]) there are more

subtle differences between these non-local 1D and 2D models. These differences can impact the

types of patterns displayed by the 2Dmodels – an aspect that would be interesting to study in the

future.

Next, we investigated how two types of patterns (i.e., travelling and stationary aggregations)

displayed by the 1D kinetic models, were preserved in the limit to macroscopic parabolic models.

To this end, we first investigated the local stability of spatially homogeneous patterns characterised

by individuals spread evenly over the domain, and showed that local Hopf bifurcations are lost

in the parabolic limit. These Hopf bifurcations give rise to travelling aggregations (i.e., rotating

waves). We then tested this observation numerically, with the help of asymptotic preservingmeth-

ods. We started with a rotating wave pattern obtained near a Hopf/Steady-state bifurcation for

ε “ 1 (1D kinetic model; see Figure 6.7(c)), and studied numerically how does this pattern change
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when εÑ 0 (1D parabolic model; see Figure 6.7(a)). By graphing in Figure 6.6(a) the amplitude of

the resulting patterns as the scaling parameter ε is decreased from ε “ 1 to ε “ 0, we showed that

there were two major transitions. The first transition occurred around ε “ 0.64, when the travel-

ling (rotating) groups stopped moving. We note, however, that while the group as a whole was

stationary, the individuals inside the group were still moving between the left- and right-edges

of the group, leading to an ”inside-group“ zigzagging behaviour. The second transition occurred

around ε “ 0.32, when the individuals inside the groups stopped moving, leading to stationary

pulses.

We emphasise here that this study is one of the first in the literature to investigate numerically

the transitions between different aggregation patterns, as a scaling parameter ε is varied from val-

ues corresponding tomesoscale dynamics (ε “ 1) to values corresponding tomacroscale dynamics

(ε “ 0). Understanding these transitions is important when investigating biological phenomena

that occur on multiple scales, since it allows us to make decisions regarding the models that are

most suitable to reproduce the observed dynamics.

In this study we investigated the preservation of patterns via the 1D parabolic limit, but sim-

ilar investigations could be performed for the grazing collision limit. Moreover, as shown previ-

ously [146], model (2.1) can display many more types of complex spatio-temporal patterns than

the two types of patterns investigated here. We focused on travelling and stationary aggregations

since our aim here was not to investigate how all possible patterns are preserved by all these dif-

ferent scaling approaches. Rather, it was to show that by taking these asymptotic limits, some

patterns could be lost. Therefore, even if the macroscopic models are simpler to investigate, they

might not exhibit the same patterns as the kinetic models. Our analysis aimed at highlighting the

usefulness of asymptotic preserving numerical methods to understand the bifurcation of the so-

lutions as one investigates the transition from mesoscopic-level to macroscopic-level aggregation

dynamics.
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Adding to the conclusions drawn in each of the previous chapters, let me comment on the main

goals, challenges and results of this thesis, as well as interesting questions and perspectives mov-

ing forward.

When tackling the question of long-time asymptotics in Parts I and II, the main challenges we

encounter are structural, and the main goal of this thesis is to develop new methods and analyt-

ical tools that allow to overcome these challenges. The motivation of our approach is not only to

tackle the models considered here, but to derive ideas that can then be applied to different prob-

lems with similar structural challenges.

More precisely, in Part I, the main structural challenge is the interplay between non-linear diffu-

sion and non-local interaction creating a rich set of possible behaviour of solutions. The main goal

is to obtain a complete characterisation for the asymptotic behaviour of solutions in all possible

parameter regimes. This thesis represents a step towards that goal. However, here, we mainly

focus on the fair-competition regime and make some investigations in the diffusion-dominated

regime. In short, for the fair-competition regime, we see that the behaviour of solutions is very

different depending on the sign of k. If k ă 0 (hencem ą 1) we observe a dichotomy similar to the

critical mass phenomenon of the classical Keller-Segel model, whereas for k ą 0 (hencem ă 1), no

such criticality exists. For both the fair-competition regime and the diffusion-dominated regime,

this family of models has not been analysed for the case of smooth potentials k ą 0 despite the

fact that there are interesting applications for this class of potentials.

To obtain the results presented in Part I, we made use of the special gradient flow structure of the

equation, as well as related functional inequalities by making the connection between stationary

states of the equation and global minimisers of the associated free energy functional. Further, in

one dimension, we used tools from optimal transportation to derive suitable functional inequali-

ties and obtain formally convergence to equilibrium in Wasserstein-2 distance.
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Moving forward, I would like to contribute to a more general understanding of the behaviour

of solutions for this class of models, and the methods and tools developed in this thesis are the

necessary ground work to do that. In particular, the natural candidates amongst which to look

for asymptotic profiles are the equilibrium states of the system, and the first logical step towards

understanding the asymptotic behaviour of solutions is therefore to study the stationary problem

instead, which is our focus in Chapters 2, 3 and 4. Thanks to the analysis of the stationary problem

for the fair-competition regime and certain cases of the diffusion-dominated regime presented in

Part I, we are now able to advance a more rigorous analysis of the dynamical problem including

the time evolution of solutions.

Moreover, looking at the results we obtain, the question of the convexity properties of the energy

functionals Fk and Fk,resc arises. In fact, our analysis indicates that the behaviour of Fk or Fk,resc
is that of convex functionals in certain regimes in the sense that existence of a global minimiser

implies its uniqueness (here only proven in one dimension). However, the overall convexity prop-

erties of Fk and Fk,resc are not known and there is certainly a bigger picture to be understood

there.

Finally, another important direction of future research is of course to investigate the parameter

regimes not considered in this thesis, such as the diffusion-dominated regime for k ą 0 and the

aggregation-dominated regime.

Part II is concernedwith a different application and a different equation, however, the question

we seek to answer is the same: What is the asymptotic behaviour of solutions? Themain goal is the

development of a suitable method to show convergence to equilibrium for certain types of kinetic

equationswhere the equilibrium state is not known a priori. We develop such amethod in the con-

text of a specific industrial application: modelling part of the production process of non-woven

textiles. In the case of a stationary conveyor belt κ “ 0, a hypocoercivity strategy has recently

been applied successfully to this kinetic fibre lay-down model to show exponential convergence

to equilibrium. In this case, the equilibrium distribution is known explicitly and the collision and

transport parts of the operator satisfy the necessary assumptions in an L2-framework. Adding the

movement of the belt however, we encounter two new structural challenges. First of all, we do not

know the equilibriumdistribution a priori which is usually the casewhen applying a hypocoerciv-

ity method. Secondly, as the perturbation of the moving belt only acts in one direction, it breaks

the symmetry of the problem. As a result, even if the existence of an equilibrium Fκ, κ ą 0, could

be guaranteed a priori, the collision and transport parts of the operator would not satisfy the good

assumptions in L2pF´1
κ dxdαq, and so the standard hypocoercivity strategy cannot be applied.

The good news however is that hypocoercivity as a method is based on a priori estimates and is

therefore stable under perturbation. Our approach here is therefore to treat the system as a small
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perturbation of the case κ “ 0. In order to control the perturbative term, we introduce not one,

but twomodifications of the ’natural’ entropy: 1) we first modify the space itself with a well-chosen

coercivity weight, then 2) we change the norm with an auxiliary operator following the standard

hypocoercivity approach, recovering the missing decay in the space variable. Further, in order to

overcome the structural difficulty of the hypocoercivity theory when the equilibrium distribution

is not known a priori, we derive a stronger hypocoercivity estimate for the generalised entropy

dissipation which holds on any solution and involving an additional mass term, instead of an

estimate on fluctuations around the equilibrium only. This hypocoercivity estimate is the key in-

gredient from which existence and uniqueness of a stationary state can be derived. Applied to

the difference between this stationary state and a solution of the same mass, it allows to deduce

exponential decay to equilibrium with an explicit rate.

There are several ways in which one could seek to improve the results in Part II. For example, one

could try to push the convergence result to larger values of κ using bifurcation techniques. More

precisely, for a path p : κ ÞÑ Fk mapping κ to the unique stationary state Fκ, our results in Part

II ensure that p is defined on a small interval r0, κ0q for some 0 ă κ0 ! 1. It may be possible to

extend this interval by showing that the implicit equation P pκ, Fκq “ 0 defining the stationary

state Fκ is non-degenerate, i.e. that B2P pκ, Fκq ‰ 0.

Another future avenue would be to apply the techniques developed here to other models where

the global equilibrium is not known a priori.

Finally, Part III is centred around the idea of understanding the relationship between different

kinetic andmacroscopicmodels for collective animal behaviour usingmultiscale analysis. Animal

groups are able to form beautiful patterns in the absence of a leader. We want to understand how

these patterns arrise and which are the driving factors behind the dynamics. In particular, the

goal of Part III is to understand how the different patterns are affected by the choice of modelling

scale. Understanding the transitions is important when investigating biological phenomena that

occur on multiple scales since it allows us to make decisions regarding the choice of models that

are most suitable to reproduce the observed dynamics. To achieve this, we use both analytical and

numerical tools.

Firstly, we develop a common framework for a class of collective animal behaviourmodels, making

the connection between non-local kinetic 1D and 2Dmodels with the corresponding macroscopic

models via parabolic and grazing collision limits. We observe that if we allow individuals to turn

randomly following the non-directional perception of neighbours produces a density-dependent

diffusion in the 1D and 2D parabolic limit. This diffusion decreases with increasing population

density, a phenomenon which makes biological sense since larger groups are less likely to spread

out. Taking a grazing collision limit in 2D, we obtain a Fokker-Planck equation with non-local
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advective and diffusive terms in orientation space, whereas the majority of non-local 2D Fokker-

Planck models concerned with self-organised aggregations consider local diffusion only. A fur-

ther simplification of the limiting equation reduces it to a Vlasov-type flocking equation, a class

of models that have previously been derived from individual-based models directly (Vicsek or

Cucker–Smale models). The analysis of this limiting equation would be another interesting av-

enue for further research.

Secondly, we investigate how some of the kinetic spatio-temporal patterns are preserved via these

scalings using asymptotic preserving numerical methods. We observe that certain patterns such

as stationary aggregations are preserved, while others, e.g. moving aggregations, are lost. There-

fore, even if the macroscopic models are simpler to investigate, they might not exhibit the same

patterns as the kinetic models. This is an important information for choosing a modelling scale

that is well adapted to the dynamics one would like to capture. It also serves to demonstrate the

usefulness of AP schemes in understanding the bifurcation of solutions as εÑ 0 as they are able

to simulate themodels on all the intermediate scales as well using one single scheme. AP schemes

have only recently been applied to investigate multiscale aspects of biological aggregations and

they provide a useful tool for further analysis of pattern formations on different scales.

The process of writing this thesis made me realise that what I am interested in are research

questions leading to the development of newmethods and tools and that allow for a better under-

standing of the bigger picture around a certain problem. It is exciting howmathematical ideas can

draw connections between very different subject areas and can therefore contribute to advances

across disciplines.
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