531 research outputs found

    Analyzing CUDA workloads using a detailed GPU simulator

    Full text link

    FTCS finite difference scheme GPGPU parallel computing for the heat conduction equation = Programación en paralelo GPGPU del método en diferencias finitas FTCS para la ecuación del calor

    Full text link
    En el presente artículo se muestran las ventajas de la programación en paralelo resolviendo numéricamente la ecuación del calor en dos dimensiones a través del método de diferencias finitas explícito centrado en el espacio FTCS. De las conclusiones de este trabajo se pone de manifiesto la importancia de la programación en paralelo para tratar problemas grandes, en los que se requiere un elevado número de cálculos, para los cuales la programación secuencial resulta impracticable por el elevado tiempo de ejecución. En la primera sección se describe brevemente los conceptos básicos de programación en paralelo. Seguidamente se resume el método de diferencias finitas explícito centrado en el espacio FTCS aplicado a la ecuación parabólica del calor. Seguidamente se describe el problema de condiciones de contorno y valores iniciales específico al que se va a aplicar el método de diferencias finitas FTCS, proporcionando pseudocódigos de una implementación secuencial y dos implementaciones en paralelo. Finalmente tras la discusión de los resultados se presentan algunas conclusiones. In this paper the advantages of parallel computing are shown by solving the heat conduction equation in two dimensions with the forward in time central in space (FTCS) finite difference method. Two different levels of parallelization are consider and compared with traditional serial procedures. We show in this work the importance of parallel computing when dealing with large problems that are impractical or impossible to solve them with a serial computing procedure. In the first section a summary of parallel computing approach is presented. Subsequently, the forward in time central in space (FTCS) finite difference method for the heat conduction equation is outline, describing how the heat flow equation is derived in two dimensions and the particularities of the finite difference numerical technique considered. Then, a specific initial boundary value problem is solved by the FTCS finite difference method and serial and parallel pseudo codes are provided. Finally after results are discussed some conclusions are presented

    멀티 태스킹 환경에서 GPU를 사용한 범용적 계산 응용의 효율적인 시스템 자원 활용을 위한 GPU 시스템 최적화

    Get PDF
    학위논문 (박사) -- 서울대학교 대학원 : 공과대학 전기·컴퓨터공학부, 2020. 8. 염헌영.Recently, General Purpose GPU (GPGPU) applications are playing key roles in many different research fields, such as high-performance computing (HPC) and deep learning (DL). The common feature exists in these applications is that all of them require massive computation power, which follows the high parallelism characteristics of the graphics processing unit (GPU). However, because of the resource usage pattern of each GPGPU application varies, a single application cannot fully exploit the GPU systems resources to achieve the best performance of the GPU since the GPU system is designed to provide system-level fairness to all applications instead of optimizing for a specific type. GPU multitasking can address the issue by co-locating multiple kernels with diverse resource usage patterns to share the GPU resource in parallel. However, the current GPU mul- titasking scheme focuses just on co-launching the kernels rather than making them execute more efficiently. Besides, the current GPU multitasking scheme is not open-sourced, which makes it more difficult to be optimized, since the GPGPU applications and the GPU system are unaware of the feature of each other. In this dissertation, we claim that using the support from framework between the GPU system and the GPGPU applications without modifying the application can yield better performance. We design and implement the frame- work while addressing two issues in GPGPU applications. First, we introduce a GPU memory checkpointing approach between the host memory and the device memory to address the problem that GPU memory cannot be over-subscripted in a multitasking environment. Second, we present a fine-grained GPU kernel management scheme to avoid the GPU resource under-utilization problem in a i multitasking environment. We implement and evaluate our schemes on a real GPU system. The experimental results show that our proposed approaches can solve the problems related to GPGPU applications than the existing approaches while delivering better performance.최근 범용 GPU (GPGPU) 응용 프로그램은 고성능 컴퓨팅 (HPC) 및 딥 러닝 (DL)과 같은 다양한 연구 분야에서 핵심적인 역할을 수행하고 있다. 이러한 응 용 분야의 공통적인 특성은 거대한 계산 성능이 필요한 것이며 그래픽 처리 장치 (GPU)의 높은 병렬 처리 특성과 매우 적합하다. 그러나 GPU 시스템은 특정 유 형의 응용 프로그램에 최저화하는 대신 모든 응용 프로그램에 시스템 수준의 공정 성을 제공하도록 설계되어 있으며 각 GPGPU 응용 프로그램의 자원 사용 패턴이 다양하기 때문에 단일 응용 프로그램이 GPU 시스템의 리소스를 완전히 활용하여 GPU의 최고 성능을 달성 할 수는 없다. 따라서 GPU 멀티 태스킹은 다양한 리소스 사용 패턴을 가진 여러 응용 프로그 램을 함께 배치하여 GPU 리소스를 공유함으로써 GPU 자원 사용률 저하 문제를 해결할 수 있다. 그러나 기존 GPU 멀티 태스킹 기술은 자원 사용률 관점에서 응 용 프로그램의 효율적인 실행보다 공동으로 실행하는 데 중점을 둔다. 또한 현재 GPU 멀티 태스킹 기술은 오픈 소스가 아니므로 응용 프로그램과 GPU 시스템이 서로의 기능을 인식하지 못하기 때문에 최적화하기가 더 어려울 수도 있다. 본 논문에서는 응용 프로그램을 수정 없이 GPU 시스템과 GPGPU 응용 사 이의 프레임워크를 통해 사용하면 보다 높은 응용성능과 자원 사용을 보일 수 있음을 증명하고자 한다. 그러기 위해 GPU 태스크 관리 프레임워크를 개발하여 GPU 멀티 태스킹 환경에서 발생하는 두 가지 문제를 해결하였다. 첫째, 멀티 태 스킹 환경에서 GPU 메모리 초과 할당할 수 없는 문제를 해결하기 위해 호스트 메모리와 디바이스 메모리에 체크포인트 방식을 도입하였다. 둘째, 멀티 태스킹 환 경에서 GPU 자원 사용율 저하 문제를 해결하기 위해 더욱 세분화 된 GPU 커널 관리 시스템을 제시하였다. 본 논문에서는 제안한 방법들의 효과를 증명하기 위해 실제 GPU 시스템에 92 구현하고 그 성능을 평가하였다. 제안한 접근방식이 기존 접근 방식보다 GPGPU 응용 프로그램과 관련된 문제를 해결할 수 있으며 더 높은 성능을 제공할 수 있음을 확인할 수 있었다.Chapter 1 Introduction 1 1.1 Motivation 2 1.2 Contribution . 7 1.3 Outline 8 Chapter 2 Background 10 2.1 GraphicsProcessingUnit(GPU) and CUDA 10 2.2 CheckpointandRestart . 11 2.3 ResourceSharingModel. 11 2.4 CUDAContext 12 2.5 GPUThreadBlockScheduling . 13 2.6 Multi-ProcessServicewithHyper-Q 13 Chapter 3 Checkpoint based solution for GPU memory over- subscription problem 16 3.1 Motivation 16 3.2 RelatedWork. 18 3.3 DesignandImplementation . 20 3.3.1 System Design 21 3.3.2 CUDAAPIwrappingmodule 22 3.3.3 Scheduler . 28 3.4 Evaluation. 31 3.4.1 Evaluationsetup . 31 3.4.2 OverheadofFlexGPU 32 3.4.3 Performance with GPU Benchmark Suits 34 3.4.4 Performance with Real-world Workloads 36 3.4.5 Performance of workloads composed of multiple applications 39 3.5 Summary 42 Chapter 4 A Workload-aware Fine-grained Resource Manage- ment Framework for GPGPUs 43 4.1 Motivation 43 4.2 RelatedWork. 45 4.2.1 GPUresourcesharing 45 4.2.2 GPUscheduling . 46 4.3 DesignandImplementation . 47 4.3.1 SystemArchitecture . 47 4.3.2 CUDAAPIWrappingModule . 49 4.3.3 smCompactorRuntime . 50 4.3.4 ImplementationDetails . 57 4.4 Analysis on the relation between performance and workload usage pattern 60 4.4.1 WorkloadDefinition . 60 4.4.2 Analysisonperformancesaturation 60 4.4.3 Predict the necessary SMs and thread blocks for best performance . 64 4.5 Evaluation. 69 4.5.1 EvaluationMethodology. 70 4.5.2 OverheadofsmCompactor . 71 4.5.3 Performance with Different Thread Block Counts on Dif- ferentNumberofSMs 72 4.5.4 Performance with Concurrent Kernel and Resource Sharing 74 4.6 Summary . 79 Chapter 5 Conclusion. 81 요약. 92Docto

    IMPROVING THE PERFORMANCE AND TIME-PREDICTABILITY OF GPUs

    Get PDF
    Graphic Processing Units (GPUs) are originally mainly designed to accelerate graphic applications. Now the capability of GPUs to accelerate applications that can be parallelized into a massive number of threads makes GPUs the ideal accelerator for boosting the performance of such kind of general-purpose applications. Meanwhile it is also very promising to apply GPUs to embedded and real-time applications as well, where high throughput and intensive computation are also needed. However, due to the different architecture and programming model of GPUs, how to fully utilize the advanced architectural features of GPUs to boost the performance and how to analyze the worst-case execution time (WCET) of GPU applications are the problems that need to be addressed before exploiting GPUs further in embedded and real-time applications. We propose to apply both architectural modification and static analysis methods to address these problems. First, we propose to study the GPU cache behavior and use bypassing to reduce unnecessary memory traffic and to improve the performance. The results show that the proposed bypassing method can reduce the global memory traffic by about 22% and improve the performance by about 13% on average. Second, we propose a cache access reordering framework based on both architectural extension and static analysis to improve the predictability of GPU L1 data caches. The evaluation results show that the proposed method can provide good predictability in GPU L1 data caches, while allowing the dynamic warp scheduling for good performance. Third, based on the analysis of the architecture and dynamic behavior of GPUs, we propose a WCET timing model based on a predictable warp scheduling policy to enable the WCET estimation on GPUs. The experimental results show that the proposed WCET analyzer can effectively provide WCET estimations for both soft and hard real-time application purposes. Last, we propose to analyze the shared Last Level Cache (LLC) in integrated CPU-GPU architectures and to integrate the analysis of the shared LLC into the WCET analysis of the GPU kernels in such systems. The results show that the proposed shared data LLC analysis method can improve the accuracy of the shared LLC miss rate estimations, which can further improve the WCET estimations of the GPU kernels

    Doctor of Philosophy

    Get PDF
    dissertationAs the base of the software stack, system-level software is expected to provide ecient and scalable storage, communication, security and resource management functionalities. However, there are many computationally expensive functionalities at the system level, such as encryption, packet inspection, and error correction. All of these require substantial computing power. What's more, today's application workloads have entered gigabyte and terabyte scales, which demand even more computing power. To solve the rapidly increased computing power demand at the system level, this dissertation proposes using parallel graphics pro- cessing units (GPUs) in system software. GPUs excel at parallel computing, and also have a much faster development trend in parallel performance than central processing units (CPUs). However, system-level software has been originally designed to be latency-oriented. GPUs are designed for long-running computation and large-scale data processing, which are throughput-oriented. Such mismatch makes it dicult to t the system-level software with the GPUs. This dissertation presents generic principles of system-level GPU computing developed during the process of creating our two general frameworks for integrating GPU computing in storage and network packet processing. The principles are generic design techniques and abstractions to deal with common system-level GPU computing challenges. Those principles have been evaluated in concrete cases including storage and network packet processing applications that have been augmented with GPU computing. The signicant performance improvement found in the evaluation shows the eectiveness and eciency of the proposed techniques and abstractions. This dissertation also presents a literature survey of the relatively young system-level GPU computing area, to introduce the state of the art in both applications and techniques, and also their future potentials

    Polymorphic computing abstraction for heterogeneous architectures

    Get PDF
    Integration of multiple computing paradigms onto system on chip (SoC) has pushed the boundaries of design space exploration for hardware architectures and computing system software stack. The heterogeneity of computing styles in SoC has created a new class of architectures referred to as Heterogeneous Architectures. Novel applications developed to exploit the different computing styles are user centric for embedded SoC. Software and hardware designers are faced with several challenges to harness the full potential of heterogeneous architectures. Applications have to execute on more than one compute style to increase overall SoC resource utilization. The implication of such an abstraction is that application threads need to be polymorphic. Operating system layer is thus faced with the problem of scheduling polymorphic threads. Resource allocation is also an important problem to be dealt by the OS. Morphism evolution of application threads is constrained by the availability of heterogeneous computing resources. Traditional design optimization goals such as computational power and lower energy per computation are inadequate to satisfy user centric application resource needs. Resource allocation decisions at application layer need to permeate to the architectural layer to avoid conflicting demands which may affect energy-delay characteristics of application threads. We propose Polymorphic computing abstraction as a unified computing model for heterogeneous architectures to address the above issues. Simulation environment for polymorphic applications is developed and evaluated under various scheduling strategies to determine the effectiveness of polymorphism abstraction on resource allocation. User satisfaction model is also developed to complement polymorphism and used for optimization of resource utilization at application and network layer of embedded systems

    GPU devices for safety-critical systems: a survey

    Get PDF
    Graphics Processing Unit (GPU) devices and their associated software programming languages and frameworks can deliver the computing performance required to facilitate the development of next-generation high-performance safety-critical systems such as autonomous driving systems. However, the integration of complex, parallel, and computationally demanding software functions with different safety-criticality levels on GPU devices with shared hardware resources contributes to several safety certification challenges. This survey categorizes and provides an overview of research contributions that address GPU devices’ random hardware failures, systematic failures, and independence of execution.This work has been partially supported by the European Research Council with Horizon 2020 (grant agreements No. 772773 and 871465), the Spanish Ministry of Science and Innovation under grant PID2019-107255GB, the HiPEAC Network of Excellence and the Basque Government under grant KK-2019-00035. The Spanish Ministry of Economy and Competitiveness has also partially supported Leonidas Kosmidis with a Juan de la Cierva Incorporación postdoctoral fellowship (FJCI-2020- 045931-I).Peer ReviewedPostprint (author's final draft
    corecore