4,104 research outputs found

    Heterogeneous Federated Learning: State-of-the-art and Research Challenges

    Full text link
    Federated learning (FL) has drawn increasing attention owing to its potential use in large-scale industrial applications. Existing federated learning works mainly focus on model homogeneous settings. However, practical federated learning typically faces the heterogeneity of data distributions, model architectures, network environments, and hardware devices among participant clients. Heterogeneous Federated Learning (HFL) is much more challenging, and corresponding solutions are diverse and complex. Therefore, a systematic survey on this topic about the research challenges and state-of-the-art is essential. In this survey, we firstly summarize the various research challenges in HFL from five aspects: statistical heterogeneity, model heterogeneity, communication heterogeneity, device heterogeneity, and additional challenges. In addition, recent advances in HFL are reviewed and a new taxonomy of existing HFL methods is proposed with an in-depth analysis of their pros and cons. We classify existing methods from three different levels according to the HFL procedure: data-level, model-level, and server-level. Finally, several critical and promising future research directions in HFL are discussed, which may facilitate further developments in this field. A periodically updated collection on HFL is available at https://github.com/marswhu/HFL_Survey.Comment: 42 pages, 11 figures, and 4 table

    EcoFed : efficient communication for DNN partitioning-based federated learning

    Get PDF
    Funding: This work was sponsored by Rakuten Mobile, Japan.Efficiently running federated learning (FL) on resource-constrained devices is challenging since they are required to train computationally intensive deep neural networks (DNN) independently. DNN partitioning-based FL (DPFL) has been proposed as one mechanism to accelerate training where the layers of a DNN (or computation) are offloaded from the device to the server. However, this creates significant communication overheads since the intermediate activation and gradient need to be transferred between the device and the server during training. While current research reduces the communication introduced by DNN partitioning using local loss-based methods, we demonstrate that these methods are ineffective in improving the overall efficiency (communication overhead and training speed) of a DPFL system. This is because they suffer from accuracy degradation and ignore the communication costs incurred when transferring the activation from the device to the server. This article proposes Eco Fed-a communication efficient framework for DPFL systems. Eco Fed-a eliminates the transmission of the gradient by developing pre-trained initialization of the DNN model on the device for the first time. This reduces the accuracy degradation seen in local loss-based methods. In addition, EcoFed proposes a novel replay buffer mechanism and implements a quantization-based compression technique to reduce the transmission of the activation. It is experimentally demonstrated that EcoFed can reduce the communication cost by up to 133× and accelerate training by up to 21× when compared to classic FL. Compared to vanilla DPFL, EcoFed achieves a 16× communication reduction and 2.86× training time speed-up. EcoFed is available from https://github.com/blessonvar/EcoFed .PostprintPeer reviewe

    Scalable computing for earth observation - Application on Sea Ice analysis

    Get PDF
    In recent years, Deep learning (DL) networks have shown considerable improvements and have become a preferred methodology in many different applications. These networks have outperformed other classical techniques, particularly in large data settings. In earth observation from the satellite field, for example, DL algorithms have demonstrated the ability to learn complicated nonlinear relationships in input data accurately. Thus, it contributed to advancement in this field. However, the training process of these networks has heavy computational overheads. The reason is two-fold: The sizable complexity of these networks and the high number of training samples needed to learn all parameters comprising these architectures. Although the quantity of training data enhances the accuracy of the trained models in general, the computational cost may restrict the amount of analysis that can be done. This issue is particularly critical in satellite remote sensing, where a myriad of satellites generate an enormous amount of data daily, and acquiring in-situ ground truth for building a large training dataset is a fundamental prerequisite. This dissertation considers various aspects of deep learning based sea ice monitoring from SAR data. In this application, labeling data is very costly and time-consuming. Also, in some cases, it is not even achievable due to challenges in establishing the required domain knowledge, specifically when it comes to monitoring Arctic Sea ice with Synthetic Aperture Radar (SAR), which is the application domain of this thesis. Because the Arctic is remote, has long dark seasons, and has a very dynamic weather system, the collection of reliable in-situ data is very demanding. In addition to the challenges of interpreting SAR data of sea ice, this issue makes SAR-based sea ice analysis with DL networks a complicated process. We propose novel DL methods to cope with the problems of scarce training data and address the computational cost of the training process. We analyze DL network capabilities based on self-designed architectures and learn strategies, such as transfer learning for sea ice classification. We also address the scarcity of training data by proposing a novel deep semi-supervised learning method based on SAR data for incorporating unlabeled data information into the training process. Finally, a new distributed DL method that can be used in a semi-supervised manner is proposed to address the computational complexity of deep neural network training

    Federated Learning for Medical Applications: A Taxonomy, Current Trends, Challenges, and Future Research Directions

    Full text link
    With the advent of the IoT, AI, ML, and DL algorithms, the landscape of data-driven medical applications has emerged as a promising avenue for designing robust and scalable diagnostic and prognostic models from medical data. This has gained a lot of attention from both academia and industry, leading to significant improvements in healthcare quality. However, the adoption of AI-driven medical applications still faces tough challenges, including meeting security, privacy, and quality of service (QoS) standards. Recent developments in \ac{FL} have made it possible to train complex machine-learned models in a distributed manner and have become an active research domain, particularly processing the medical data at the edge of the network in a decentralized way to preserve privacy and address security concerns. To this end, in this paper, we explore the present and future of FL technology in medical applications where data sharing is a significant challenge. We delve into the current research trends and their outcomes, unravelling the complexities of designing reliable and scalable \ac{FL} models. Our paper outlines the fundamental statistical issues in FL, tackles device-related problems, addresses security challenges, and navigates the complexity of privacy concerns, all while highlighting its transformative potential in the medical field. Our study primarily focuses on medical applications of \ac{FL}, particularly in the context of global cancer diagnosis. We highlight the potential of FL to enable computer-aided diagnosis tools that address this challenge with greater effectiveness than traditional data-driven methods. We hope that this comprehensive review will serve as a checkpoint for the field, summarizing the current state-of-the-art and identifying open problems and future research directions.Comment: Accepted at IEEE Internet of Things Journa
    • …
    corecore