4 research outputs found

    Parallel Processor Architecture with a New Algorithm for Simultaneous Processing of MIPS-Based Series Instructions

    Get PDF
    Processors are main part of the calculation and decision making of a system. Today, due to the increasing need of industry and technology to faster and more accurate computing power, design and manufacture of parallel processing units, has been very much considered. One of the most important processor families used in various devises is the MIPS processors. This processor family had been considered in the telecom and control industry as a reasonable choice. In this paper, new architecture based on this processor, with new parallel processing design, is provided to allow parallel execution of instructions dynamically. Ultimately, the processor efficiency to several fold will be increased. In this architecture, new ideas for the issuance of instructions in parallel, intelligent detection of conditional jumps and memory management are presented

    Radiation Testing of a Multiprocessor Macrosynchronized Lockstep Architecture With FreeRTOS

    Get PDF
    Nowadays, high-performance microprocessors are demanded in many fields, including those with high-reliability requirements. Commercial microprocessors present a good tradeoff between cost, size, and performance, albeit they must be adapted to satisfy the reliability requirements when they are used in harsh environments. This work presents a high-end multiprocessor hardened with macrosynchronized lockstep and additional protections. A commercial dual-core Advanced RISC Machine (ARM) cortex A9 has been used as a case study and a complete hardened system has been developed. Evaluation of the proposed hardened system has been accomplished with exhaustive fault injection campaigns and proton irradiation. The hardening approach has been accomplished for both baremetal applications and operating system (OS)-based. The hardened system has demonstrated high reliability in all performed experiments with error coverage up to 99.3% in the irradiation experiments. Experimental irradiation results demonstrate a cross-sectional reduction of two orders of magnitude.This work was supported in part by the Spanish Ministry of Science and Innovation under Project PID2019-106455GB-C21 and in part by the Community of Madrid under Project 49.520608.9.18Publicad

    Application-Based Analysis of Register File Criticality for Reliability Assessment in Embedded Microprocessors

    Get PDF
    There is an increasing concern to reduce the cost and overheads during the development of reliable systems. Selective protection of most critical parts of the systems represents a viable solution to obtain a high level of reliability at a fraction of the cost. In particular to design a selective fault mitigation strategy for processor-based systems, it is mandatory to identify and prioritize the most vulnerable registers in the register file as best candidates to be protected (hardened). This paper presents an application-based metric to estimate the criticality of each register from the microprocessor register file in microprocessor-based systems. The proposed metric relies on the combination of three different criteria based on common features of executed applications. The applicability and accuracy of our proposal have been evaluated in a set of applications running in different microprocessors. Results show a significant improvement in accuracy compared to previous approaches and regardless of the underlying architecture.This work was funded in part by the Spanish Ministry of Education, Culture and Sports with the project “Developing hybrid fault tolerance techniques for embedded microprocessors” (PHB2012-0158-PC)

    Exploring the limitations of software-based techniques in SEE fault coverage

    No full text
    This paper presents a detailed analysis of the efficiency of software-based techniques to mitigate SEU and SET in microprocessors. A set of well-known rules is presented and implemented automatically to transform an unprotected program into a hardened one. SEU and SET are injected in all sensitive areas of a MIPS-based microprocessor architecture. The efficiency of each rule and a combination of them are tested. Experimental results show the limitations of the control-flow techniques in detecting the majority of SEU and SET faults, even when different basic block sizes are evaluated. A further analysis on the undetected faults with control flow effect is done and five causes are explained. The conclusions may lead designers into developing more efficient techniques to detect these types of faults
    corecore