

This is a postprint version of the following published document:

Aviles, Pablo M.; Lindoso, Almudena; Belloch, Jose A.;
García-Valderas, Mario; Morilla, Yolanda; Entrena, Luis
(2022). Radiation Testing of a Multiprocessor
Macrosynchronized Lockstep Architecture With FreeRTOS.
IEEE Transactions on Nuclear Science, 69(3), pp.: 462-469.

DOI: https://doi.org/10.1109/TNS.2021.3129164

© 2021 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.
See https://www.ieee.org/publications/rights/index.html for more
information.

https://doi.org/10.1109/TNS.2021.3129164
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.ieee.org/publications/rights/index.html

0018-9499 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNS.2021.3129164, IEEE
Transactions on Nuclear Science

IEEE TRANSACTIONS ON NUCLEAR SCIENCE

1

Abstract— Nowadays, high performance microprocessors are
demanded in many fields, including those with high reliability
requirements. Commercial microprocessors present a good trade-
off between cost, size and performance, albeit they must be adapted
to satisfy the reliability requirements when they are used in harsh
environments. This work presents a high-end multiprocessor
hardened with a macro synchronized lockstep and additional
protections. A commercial dual core ARM cortex A9 has been used
as case study and a complete hardened system has been developed.
Evaluation of the proposed hardened system has been accomplished
with exhaustive fault injection campaigns and proton irradiation.
The hardening approach has been accomplished for both baremetal
applications and OS-based. The hardened system has demonstrated
high reliability in all performed experiments with error coverage up
to 99.3% in the irradiation experiments. Experimental irradiation
results demonstrate a cross-section reduction of two orders of
magnitude.

Index Terms—Microprocessors, ARM, FreeRTOS, fault tolerance,
lockstep, proton, soft error.

I. INTRODUCTION

ELIABLE high-end microprocessors are currently
required in many fields. Aerospace applications are

demanding increased computational capacity that cannot be
provided by radhard microprocessors. The problem is not only
performance but also, size, weight and power consumption.
COTS (Commercial Off The Shelf) microprocessors are a
suitable alternative but their reliability must be evaluated. In
fact, COTS microprocessors are playing an important role in the
New Space era, in which a growing number of actors apart from
Space Agencies and Governments are involved. Increased
efforts are being taken to study commercial parts to test and
improve, if possible, their reliability [1-2].

In a harsh environment, electronic circuits are exposed to
radiation that can lead to a misbehavior of the electronics.
Usually, the type of errors we can observe are classified into
hard errors, or non-recoverable errors, and soft errors. Soft
errors are recoverable errors, in this case the electronic circuit
is not permanently damaged and the system may be recovered.

This work was supported in part by the Spanish Ministry of Science and

Innovation under project PID2019-106455GB-C21 and by the Community of
Madrid under project no. 49.520608.9.18.

P. M. Aviles, A. Lindoso, J.A. Belloch, M. Garcia and L. Entrena are with
the Electronic Technology Department, Universidad Carlos III de Madrid,

When microprocessors are considered, there exist different
kinds of techniques that can provide protection against soft
errors. On the one hand, we can highlight the software-based
techniques that do not require architectural modification but
imply overheads in memory and execution time [3-4].
Commonly, software techniques utilize duplication techniques
[5], signature-based control flow [6] and assertions [7]. On the
other hand, hardware-based techniques rely on external
hardware modules that monitor the execution of the instructions
by means of an available interface, such as a memory buses [8-
9] or the trace interface [10]. This last choice has been
successfully applied to LEON3 microprocessor [11] and ARM
A9 [12]. Other Hardware approaches use watchdog processors
to observe the microprocessor behavior [13-14]

High-end COTS microprocessors architecture can be
explored to propose reliable solutions that meet the new
requirements and provide high computational capability [15].
CNES (French National Centre for Space Studies, Centre
National d'Études Spatiales) hardening architectures based in
redundancy are a good example of it [16]. They propose two
different approaches for hardening COTS microprocessors
based on: temporal redundancy (DMT, Duplex Multiplexed in
Time) or spatial redundancy (DT2, Dual Duplex Tolerant to
Transients). Another choice consists in using lockstep
microprocessors which contains two cores that are micro
synchronized. In this case, both cores are always in the same
execution point and in the case a discrepancy is found, an error
is detected. Micro synchronization requires specific hardware
support, which is not present in most architectures. ARM
Cortex-R microprocessors can support this behavior, such as
the Cortex-R5 used by Texas Instruments in Hercules
microcontroller [17].

In order to explore solutions that are not limited by the usage
of a microprocessor with lockstep architectural support, we
present in this work a multiprocessor hardened system with
self-recovery capabilities. Our approach effectively combines a
series of techniques that can detect errors and implement
several levels of recovery actions to optimize availability
without external intervention. The proposed approach is

Leganes, 28911 SPAIN (e-mail: paviles@ing.uc3m.es, alindoso@ing.uc3m.es,
jbelloc@ing.uc3m.es, mgvalder@ing.uc3m.es, entrena@ing.uc3m.es).

Y. Morilla is with the Centro Nacional de Aceleradores (CNA), Centro
Nacional de Aceleradores, CSIC, JA, Universidad de Seville, E-41092 Seville,
Spain, SPAIN (e-mail: ymorilla@us.es).

Radiation testing of a multiprocessor macro-
synchronized lockstep architecture with

FreeRTOS
Pablo M. Aviles, Almudena Lindoso, Jose A. Belloch, Mario Garcia-Valderas, Yolanda Morilla, and

Luis Entrena

R

Authorized licensed use limited to: UNIVERSIDAD CARLOS III MADRID. Downloaded on December 16,2021 at 10:26:03 UTC from IEEE Xplore. Restrictions apply.

0018-9499 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNS.2021.3129164, IEEE
Transactions on Nuclear Science

IEEE TRANSACTIONS ON NUCLEAR SCIENCE

2

flexible, providing several levels of rollback capabilities.
As a case study, we have developed a hardened system based

on a dual core cortex A9. Cores in this architecture accomplish
not only verification and rollback processes but also software
reset when needed. Additional reliability actions have been
considered at system level such as memory protection,
watchdog, program delimitation and special exception
handling, providing a flexible and reliable low-cost COTS-
based architecture. Thanks to this combination of techniques we
achieve high reliability, with an error coverage up to 99.3% and
a reduction in cross section of two orders of magnitude.

In addition, we evaluate the impact of using an operating
system in comparison to a bare metal implementation of the
proposed approach. In particular, we implement our technique
with FreeRTOS operating system [18], which is a market-
leading light weight Real-Time operating system. The
characteristics of this Operating System make it a good
candidate for safety critical applications.

This paper is organized as follows. Section II summarizes the
related work in this field. Section III describes the proposed
hardened system. Section IV describes the experiments that
have been performed to validate this approach and presents the
experimental results for both fault injection campaign
(subsection IV.A) and irradiation campaign (subsection IV.B).
Finally, section V summarizes the conclusions of this work.

II. RELATED WORK

Redundant execution has been regarded as an effective
approach for error detection, either by means of time or space
[19-20]. Solutions based on lockstep are popular and used to
provide functional correctness. For example, the authors of [21-
22] proposed a lockstep approach to protect the soft-core Leon2
processor implemented into a Xilinx Virtex device. The
technique detected and corrected 99% of soft errors injected in
processor’s pipeline registers, with a time overhead ranging
from 17% to 54% depending on the amount of data. Dual-core
Lockstep is proposed in [23] and in [24] using two soft-core
MicroBlaze processors and two hard-core processors,
respectively. A non-invasive approach for the implementation
of processors embedded in FPGAs, using lockstep in
conjunction with checkpoint and rollback recovery is presented
in [25]. A modified lockstep scheme that detects and eliminates
the internal temporary configuration upsets without interrupting
normal functioning is proposed in [26].

We can find works in the literature that try to emulate a lock-
step behavior within architectures that are not specifically
prepared for it. Specifically, the authors in [27] propose a
hypervisor-based replication approach that can be applied to
commodity hardware allowing virtual lockstep execution. In
[28], the authors utilize spatial redundancy approaches with
micro synchronization for PowerPC. Moreover, some works
use external IPs for observing the microprocessor cores
behavior. This is the case of [29] in which an external IP verifies
the state of two cores and is able to trigger interrupts in a
multicore system. In [30] a relaxed synchronization is presented
to stablish hardening strategy for Cortex-A9. In this case,

multiple threads with their own stack are used, but without the
support of an Operating System (OS). Additionally, the
approach in [30] is hybrid and uses an external IP connected to
the microprocessor’s trace interface to control the execution
flow.

III. PROPOSED APPROACH

Our hardened system has self-recovery capabilities that are
supported with a software-based macro synchronization
approach. We use spatial redundancy, so that application
execution is running in parallel in several cores but without
micro synchronization (i.e., it is not required that the cores
execute the same instruction at the same time exactly). After the
task or program is completed on all functional cores, the results
must be checked to decide if errors have occurred. Our
approach performs the verification process directly in software
without the utilization of an external verification IP, which
differs from [28-29].

As case study we have selected the dual core ARM Cortex-
A9 microprocessor of the Xilinx Zynq family [31]. The utilized
dual core is a high-end ARM microprocessor [32]. Cortex-A9
is a 32 bits superscalar microprocessor with out of order
execution. Among its characteristics, it stands out the 8 stages
pipeline, 2 level cache for instructions and data and the floating-
point unit and SIMD (Single Instruction Multiple Data)
coprocessor.

Fig. 1. Architecture of the proposed hardened system.

Fig. 1 shows the architecture of the proposed system where
we can appreciate the hard core cortex A9 with its two cores
(Core 0 and Core 1) and 3 external modules located in
Programmable Logic:

- Safe Memory 0 and 1. These blocks are two external
protected memories that store the required information
to recover the system. We have used a dedicated
memory per core.

- Interconnection block. Every core can use this block to
share computation results with all the other cores present
in the architecture. In our architecture, we implement
this module with Xilinx Mailbox [33]. This type of
information interchange is needed to share information
between the cores at certain points of the application
execution.

Authorized licensed use limited to: UNIVERSIDAD CARLOS III MADRID. Downloaded on December 16,2021 at 10:26:03 UTC from IEEE Xplore. Restrictions apply.

0018-9499 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNS.2021.3129164, IEEE
Transactions on Nuclear Science

IEEE TRANSACTIONS ON NUCLEAR SCIENCE

3

It must be noted that the 3 external modules are located in

Programmable Logic of the Zynq device, but the hardening
strategy could have used other memory resources that are inside
the hard core. In such a case, we have to assign specific
dedicated memory sections for each of the modules.

In the following subsections are described in detail the
hardening approaches that our technique uses.

A. Safe recovery data storage

We implement a secure memory in programmable logic to
store microprocessor contexts using the Xilinx IP logic core:
Memory Block Generator [34]. This memory supports the built-
in Hamming Error Correction Capability (ECC), soft Hamming
Error Correction (Soft ECC) for data widths of 64 bits or
smaller and Hsiao for data width of 128, 64 and 32 bits. With
this capability enabled, memory automatically detects single
and double errors and corrects single errors.

In our system, each core has a dedicated safe memory,
located in the programmable logic. This memory is used to store
the core current context (relevant information that defines the
core state) and recover it when needed. In our system, the
context contains registers and local variables. Cache or external
memories are not included in the context. Our memory blocks
have ECC enabled with Hsiao algorithm [35].

B. Verification

To perform macro synchronization, application code is
divided in blocks in both cores. After the completion of each
block, the verification process checks whether the context of the
cores is the same. Additionally, when the output of both cores
presents no inconsistencies, verification process stores the
context of each core in the corresponding safe memory. Our
technique requires access to registers in privileged mode that is
not available in regular application execution. In ARM
microprocessors, interrupts and exceptions are executed in
privileged mode. To overcome this situation, our technique
triggers software interrupts to perform verification and rollback
with privileged mode.

Moreover, our verification scheme uses a signature as
proposed in one of the methods of [29]. At each verification
point, a signature of the values to be compared is computed.
This way, verification overheads can be reduced. Both cores are
interconnected to provide the necessary data to complete the
verification process, which differs from other approaches. The
work presented in [29] uses an external IP which controls
multicore CPUs execution and checks the correctness of the
system, all the processes are handled with interrupts triggered
by the external IP.

In our case, when a core finishes the execution of one
application block, shares the signature and halts execution,
waiting for the other core to finish and share the signature.
Verification takes place when all cores have finished and shared
their signature.

C. Rollback

When errors are detected, the rollback process restores the
microprocessor from a previous error free state. In contrast to

other approaches, our hardening approach permits consecutive
rollbacks with flexible depth. If a rollback process is not able to
restore the system correctness, it will be tried another rollback
to the previous verification point (consecutive rollback). The
number of consecutive rollbacks is flexible and can be
stablished according to the application needs. For our
experiments described in section IV, we have determined
experimentally the maximum number of consecutive rollbacks
allowed. As described in verification, rollback requires
privileged mode and it is obtained with software interrupts.

D. Watchdog Timer

We use a watchdog timer to control the microprocessor
architecture. In the case of a hang, the watchdog will restart the
system. The used watchdog is associated to core 0 but due to
the macro synchronization technique, it controls the whole
system. If core 1 hangs, core 0 will be stuck waiting for data to
complete the next verification point. After a predetermined
amount of time, watchdog timer will trigger the system restart.

E. Additional protections

Our hardened system is able to detect incorrect behaviors and
trigger Software reset if needed. For instance, if the maximum
selected rollback depth is reached without success, the system
will be restored by triggering a software reset.

Additionally, the proposed system is able to restore the
system from exceptions. We have modified the exception table
in order to handle all exceptions and be able to recover the
system from any possible event. When an exception occurs, we
try first to recover the system with rollback. If the maximum
number of rollbacks is not successful, software reset is
triggered. With this modification, the system also implements a
rollback from the exception handlers.

To increase the system capabilities, we have also delimited
the memory areas in use by the applications, so illegal access
will trigger exceptions.

F. Operating System usage

The hardening mechanism based in macro-synchronized
lockstep has been implemented for two different versions:
baremetal (without operating system) and with the operating
system FreeRTOS [18]. This OS (Operating System) is a light
real time operating system that has the main advantage of being
able to work with threads and pseudo parallelism in a single
core processor. FreeRTOS provides separate stacks for each
task. The stacks, and each kernel object in general, are located
within a memory space defined as heap. FreeRTOS has five
sample implementations of memory allocation. FreeRTOS
applications can use one of the sample implementations or
provide their own. Our system uses Heap 1, which is
recommended for commercially critical and safety critical
systems. Critical systems often prohibit dynamic memory
allocation due to uncertainties associated with non-
determinism, memory fragmentation, and failed allocations, but
heap 1 is always deterministic and does not fragment memory.

When OS in in use, we use the same architecture described
in Fig. 1 but we apply software changes. The application is run
in one thread. The verification process is implemented in a

Authorized licensed use limited to: UNIVERSIDAD CARLOS III MADRID. Downloaded on December 16,2021 at 10:26:03 UTC from IEEE Xplore. Restrictions apply.

0018-9499 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNS.2021.3129164, IEEE
Transactions on Nuclear Science

IEEE TRANSACTIONS ON NUCLEAR SCIENCE

4

lower priority task than the main tasks associated with the
application code. For OS implementations, verification and
rollback processes are also implemented with software
interrupts. When a verification point is reached in the main task,
the OS will execute the verification process task, and once this
task is completed, it will return to the main task.

IV. EXPERIMENTAL RESULTS

For the experiments, we have used a Zybo development
board [36], which contains a Zynq 7010 device [10] with a hard-
core Cortex-A9 [32]. In the experiments, the DUT (Device
Under Test) is connected serially to an external host used to
collect the results and observe constantly the system behavior.
All the information gathered during the experiments is analyzed
when the experiments end.

The experiments have been performed with both versions of
the proposed macro synchronized lockstep technique:
baremetal and OS-based version (using FreeRTOS). Moreover,
we have used two benchmarks:
 Matrix multiplication (Mmult). We used matrices of

20x20 elements and data size of 16 bits.
 AES encryption [37] (AES, Advanced Encryption

Standard). AES algorithm encrypted a data value of 16
bytes, the utilized key length was of 128 bits and the
algorithm was performed with 10 iterations.

Table I summarizes the memory overhead of the proposed

system considering non-hardened and hardened versions of all
benchmarks. The reported information demonstrates that the
proposed technique does not incur in additional overhead in
terms of program and data size. However, it must be pointed
out that two additional memories are added to the hard-core
microprocessor (safe memory 1 and 2, both of 64KB) and
execution is performed simultaneously in two cores. Reported
data also shows a slightly larger overhead for core 0, this core
can be considered as the primary core because it controls the
watchdog and also handles the communication with the external
host. Results also show the considerable increase in size of the
benchmarks for OS versions.

Table II summarizes the performance overhead required for
the hardening technique taking in consideration the utilized
benchmarks. The microprocessor frequency is 650MHz. The
first row reports the overhead in execution time for the
verification and rollback processes. We can observe that for all
benchmarks execution time of verification & rollback is slightly
increased for OS versions, being Mmult execution time much
longer than AES. This occurs because of the amount of data
used by the two benchmarks, Mmult is using matrices of 20x20
elements.

The second and third rows of Table II show respectively the
medium time and the maximum time to restart the system
during irradiation experiments. Part of this time, around 13 ms,
are devoted to serial communication data transfer that
acknowledges the system restart. We have this information only

for the benchmarks that were utilized in the irradiation
experiments. The last row shows the execution time of one
iteration of each benchmark. It must be noted that the system
boot has not been considered for the execution time reported in
Table II.

TABLE I

MEMORY OVERHEAD

Benchmark
NH Total size

(bits)
Hardened Total

size (bits)
Overhead

Mmult
Baremetal

Core 0 69,540 72,924 1.05
Core 1 65,752 66,572 1.01

AES
Baremental

Core 0 63,000 68,320 1.08
Core 1 59,212 61,996 1.05

Mmult OS
Core 0 201,748 206,324 1.02
Core 1 197,332 199,996 1.01

AES OS
Core 0 197,100 201,684 1.02

Core 1 192,692 195,420 1.01

TABLE II

PERFORMANCE OVERHEAD

Mmult

Baremetal
AES

Baremetal
Mmult

OS
AES
OS

Verification & Rollback (µs) 207 5 215 13
SW Reset (ms) 637 - 594 -
Tmax (3 Rollback+SW Reset)
(ms)

661 - 604 -

Execution Time (ms) 6.9 6.8 7.2 7

In both benchmarks the code is divided in 10 blocks which

corresponds with 10 verification points. An additional
verification point is added at the beginning of the code, which
results in a total of 11 verification points for all utilized
benchmarks.
 The safe memories that store the context of each core have a
size of 64KB. We have selected a maximum consecutive
rollback depth of 3. This depth has been determined
experimentally and it is described in subsection IV.A.
 OS benchmarks use Heap 1. Two tasks are created before
starting the scheduler: the higher priority task for the
application code, and another lower priority task for verification
process. Each task has its own unique stack that is set by the
programmer when the task is created. We set a stack depth of
1,400 that means a 5,600 bytes stack.

The proposed approach has been evaluated with injection and
irradiation campaigns that are described respectively in
subsections IV.A and IV.B.

A. Injection campaign

Firstly, an injection campaign was made to study in detail
and adjust the system for a subsequent irradiation campaign.

Our injector is based in [38] and generates a random bit-flip
in a random register of the register file. It also selects the core
and the injection instant randomly. In these experiments, the
external host is a computer that is collecting the results, which
will be analyzed when the injection campaign ends.

Table III shows the injection campaign results for each
version (baremetal and OS) of both benchmarks, Mmult and
AES128.

Authorized licensed use limited to: UNIVERSIDAD CARLOS III MADRID. Downloaded on December 16,2021 at 10:26:03 UTC from IEEE Xplore. Restrictions apply.

0018-9499 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNS.2021.3129164, IEEE
Transactions on Nuclear Science

IEEE TRANSACTIONS ON NUCLEAR SCIENCE

5

TABLE III
INJECTION CAMPAIGN RESULTS

Category

Baremetal OS

 Mmult AES128 Mmult AES128

Faults
Silent faults 44,092 (80.9%) 42,926 (88.9%) 40,841 (77.0%) 45,909 (90.9%)
Errors 10,413 (19.1%) 5,339 (11.1%) 12,174 (23.0%) 4,573 (9.1%)
Total faults injected 54,505 (100.0%) 48,265 (100.0%) 53,015 (100.0%) 50,482 (100.0%)

Errors
Undetected errors 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Detected errors 10,413 (100.0%) 5,339 (100.0%) 12,174 (100.0%) 4,573 (100.0%)

Detected errors

Corrected errors 5,356 (51.4%) 1,754 (32.9%) 5,429 (44.6%) 1,705 (37.3%)

WDT 1,012 (9.7%) 830 (15.5%) 5,454 (44.8%) 1,722 (37.7%)

SW Reset 4,045 (38.9%) 2,755 (51.6%) 1,291 (10.6%) 1,146 (25.0%)

Table III has three horizontal sections: Faults, Errors and

Detected errors. In each section, data is also provided in
percentage regarding the total number of events per benchmark.
The Faults section provides a summary of each experiment
showing the total number of faults injected and the errors
observed. Table III shows that for each benchmark we injected
around 50,000 faults and the percentage of observed errors
ranged from 9.1% to 23.0%.

Table III has also an Error section which shows a summary
of the detection capabilities of the proposed technique.
Experimental results reported in Table III demonstrate that we
achieved full error coverage for all benchmarks.

Finally, the section of Detected errors of Table III shows an
analysis of the detected errors for each benchmark. We have
used the following error categories:
 Corrected errors: errors in which system is recovered

correctly with one or several rollbacks.
 WDT: Watchdog Timer restarts the system due to an

abnormal behavior in execution.
 SW Reset: SW Reset is triggered by the proposed

technique when it detects that the system cannot be
correctly restored.

Fig. 2 shows the distribution of errors for Baremetal
benchmarks in the injection campaign. The reported percentage
is with respect to the total number of observed errors per
benchmark. Results show a higher quantity of corrected errors
for matrix multiplication benchmark, which correlates with the
benchmark complexity. With AES benchmark we observe a
higher percentage of SW reset, this is due to the decrease of
corrected errors that produce SW resets. The WDT percentage
is similar for both benchmarks.

Fig. 3 shows the distribution of errors for OS benchmarks in
the Injection campaign. We can observe that the correction
capabilities have decreased for OS versions but again Mmult
benchmark behaves better that AES benchmark. Comparing
Fig. 2 and Fig. 3 we can observe that when OS is used, the
number of WDT is considerably increased, and it changes the
trend shown in Fig. 2 having more relevance this effect for
Mmult benchmark. This increase in WDT affects the rest of
error categories and we can observe a clear decrease in SW
Reset for both benchmarks. It must be pointed out that our
baremetal technique has extended recovery capabilities when
exceptions are triggered. This implies an increase of corrected
errors and a decrease of WDT detected errors.

Baremetal SW Resets are more frequent, 3.6 times higher in
percentage than OS version for mmult and 2.1 for AES. In the
case of WDT reset, OS version has a percentage 4.6 times
higher than Baremetal version for mmult and 2.4 for AES.

In order to characterize the utilized benchmark, we did a
preliminar fault injection experiment to decide the maximum
number of rollbacks allowed. We had enabled 10 possible
consecutive rollbacks with their corresponding storage in both
safe memories. This experiment was done with 10,845 and
12,043 injections for Baremetal and OS, respectively.
Analyzing the results, we could observe that the system was
recovered most of the times with up to 3 rollbacks. Only the
0.15% of the total number of rollbacks for baremetal Mmult
benchmark required from 4 to 10 rollbacks. In the case of OS,
the percentage was even smaller (0.13%). Taking into account
this result, we decided to stablish the limit for the utilized
benchmarks in 3 consecutive rollbacks.

TABLE IV

NUMBER OF ROLLBACKS DISTRIBUTION

 1 Rollback 2 Rollback 3 Rollback
Total

 Quantity % Quantity % Quantity %
Mmult
Baremetal

4,838 90.33 355 6.63 163 3.04 5,356

AES
Baremetal

1,418 80.84 282 16.08 54 3.08 1,754

MMmult
OS

5,071 93.41 246 4.53 112 2.06 5,429

AES
OS

1,339 78.53 337 19.77 29 1.70 1,705

Table IV reports the number of rollbacks distribution of the

corrected errors reported in Table III. Percentages are with
respect to the total number of recoveries for each benchmark.
We can observe that most recoveries of the system were
performed with 1 rollback, around 90% per Mmult and around
80% per AES benchmarks. The smallest percentage of
recoveries with one rollback is for the OS version of AES. AES
benchmarks are the ones with highest percentage of recoveries
with 2 rollbacks, ranging from 16% to 19%. In the case of three
rollbacks, figures are similar for baremetal (around 3%) and OS
versions (around 2%). The higher complexity of AES
benchmark and the usage of signatures seems to increase the
required number of rollbacks to accomplish a successful
recovery.

Authorized licensed use limited to: UNIVERSIDAD CARLOS III MADRID. Downloaded on December 16,2021 at 10:26:03 UTC from IEEE Xplore. Restrictions apply.

0018-9499 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNS.2021.3129164, IEEE
Transactions on Nuclear Science

IEEE TRANSACTIONS ON NUCLEAR SCIENCE

6

Fig. 2. Distribution of observed errors for Baremetal benchmarks (Injection

Campaign).

Fig. 3. Distribution of observed errors for OS benchmarks (Injection

Campaign).

B. Irradiation campaign

The proposed approach was also evaluated in an irradiation
campaign that was performed at Centro Nacional de
Aceleradores (CNA) in Seville, in January 2021. We have used
protons with an energy of 15 MeV.

For the irradiation experiments, an external host was used to
control the DUT. This host is connected to the DUT through
serial connection and collects the results and information about
the system state: data about successful verification points,
detected errors and recoveries. In these experiments, the
external host can force a power cycle in the case the DUT is not
responding and cannot be restarted or recovered by the
proposed hardening approach (undetected errors). Fig. 4 shows
the experimental setup for the Irradiation experiments.

Fig. 4. Experimental setup (Irradiation campaign)

Thanks to the benchmark characterization described in

subsection IV.A, we have set a maximum of 3 consecutive
rollbacks in all irradiation experiments. This way we can avoid
unnecessary delays in the system recovery process. In addition,
it allows to reduce the memory space for data redundancy, since
only the context of the last 3 verification points is stored.

Experiments were performed with baremetal and OS-based
implementations of matrix multiplication benchmark. We have
used a fluence of 4.9·1011 p/cm2 for baremetal version and
5.5·1011 p/cm2 for OS-based version. The experimental results
are shown in Table V, which follows a similar structure to Table
III, having three sections: Errors, Detected errors and cross-
section. The Errors section reports a summary of the irradiation
experiment showing the total errors, detected and undetected
errors. Experimental irradiation results demonstrate the high
error coverage of the hardened system (up to 99.3%) in
accordance with the results of the injection campaign reported
in Table III. The following section of Table V, Detected errors,
shows an analysis of the detected errors with the same error
categories used in Table I. Finally, Table V shows the cross-
section for both benchmarks taking into consideration the total
number of observed errors (Total errors) and the undetected
errors. Cross-section section also reports the confidence
interval for all the reported data. Results show an improvement
of cross-section up to two orders of magnitude.

In Fig. 5 is shown the cross-section regarding the error
categories for both benchmarks.

Authorized licensed use limited to: UNIVERSIDAD CARLOS III MADRID. Downloaded on December 16,2021 at 10:26:03 UTC from IEEE Xplore. Restrictions apply.

0018-9499 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNS.2021.3129164, IEEE
Transactions on Nuclear Science

IEEE TRANSACTIONS ON NUCLEAR SCIENCE

7

TABLE V
IRRADIATION CAMPAIGN RESULTS

Category

Mmult

 Baremetal OS

Errors
Undetected errors 2 (0.7%) 5 (2%)
Detected errors 273 (99.3%) 248 (98%)
Total errors 275 (100.0%) 253 (100.0%)

Detected
errors

Corrected errors 142 (52%) 65 (26.2%)
WDT 64 (23.4%) 118 (47.6%)
SW Reset 67 (24.6%) 65 (26.2%)

Cross-
section
(cm2)

Total errors
5.6·10-10

(4.9·10-10-6.2·10-10)
4.6·10-10

(4.0·10-10-5.2·10-10)

Undetected errors
4.0·10-12

(4.9·10-13-1.5·10-11)
9.1·10-12

(2.9·10-12-2.1·10-11)

Fig. 5. Cross-section per error category (Irradiation Campaign).

The hardening approach presented in [29] reports an

improvement of cross-section of one order of magnitude. Our
hardened system achieves a larger improvement in cross-
section, being up to two orders of magnitude.

Baremetal results of Table III and Table V are in agreement.
The percentage of corrected errors is similar in both
experiments, but we can observe a variation for the other two
categories of around 10% (with increasing number of WDT
Reset and decreased number of SW Reset in radiation
experiments).

For baremetal version, 209 rollbacks were made, of which
142 were successful (52%). Of the 142 corrected errors, 134
were with one rollback and 8 with two consecutive rollbacks.
In baremetal version, WDT Reset is reduced approximately by
a factor of 2 with respect to OS version.

OS version results report a total number of 130 rollbacks, half
of which were correctly recovered. Of the 65 corrected errors,
51 were with one rollback and 14 with two consecutive
rollbacks. WDT Reset is the most common error for this
version, and it is in agreement with injection results. It must be
noted that for this benchmark, the usage of 2 rollbacks is
effective and contributes in around 21% to the successful
recoveries of the system.

Comparing Tables III and V, we can observe a negligible
decrease in the error coverage for irradiation experiments (up
to 2% smaller). If we analyze the different categories for
detected errors in both tables, we can observe that the behavior
of baremetal version is similar in percentage for corrected errors
category, but slightly increased for WDT reset and decreased
for unsuccessful recoveries for irradiation experiments. In the
case of OS, results in the injection campaign differ from
irradiation results in percentage. Correct recoveries decrease
considerably, with the corresponding increase of other ways of
restarting the system. This difference in the experimental results
could be due to the limitations of the injection technique that
only affects to the register file. The complexity of the Operating
System could also be related to the increased number of non-
recoverable errors for irradiation experiments.

V. CONCLUSIONS

This work presents a hardened high-end multiprocessor
system. The proposed hardening approach uses macro
synchronization lockstep technique with recovery capabilities
and additional system protections. Lockstep is performed at
software level without specific hardware support for
verification. We have selected a dual core ARM Cortex-A9 as
a case study and macro synchronization has been implemented
in two different versions: Baremetal and OS-based with
FreeRTOS. Fault injection and irradiation campaigns have been
carried out to validate the reliability of the system.
Experimental results demonstrate the high effectiveness of the
proposed approach with full error coverage for injection and up
to 99.3% for proton irradiation experiments. The hardened
system achieves a reduction in cross-section of two orders of
magnitude, which is higher than other proposed approaches.

REFERENCES

[1] R.F. Hodson et Al, “Recommendations on Use of Commercial-Off-The-

Shelf (COTS) Electrical, Electronic, and Electromechanical (EEE) Parts
for NASA Missions”, NASA/TM−20205011579, NESC-RP-19-01490,
2020.

[2] S. Esposito et al., "COTS-Based High-Performance Computing for Space
Applications," in IEEE Transactions on Nuclear Science, vol. 62, no. 6,
pp. 2687-2694, Dec. 2015.

[3] E. Chielle et al., "Reliability on ARM Processors Against Soft Errors
Through SIHFT Techniques," in IEEE Transactions on Nuclear Science,
vol. 63, no. 4, pp. 2208-2216, Aug. 2016,

[4] J. R. Azambuja, S. Pagliarini, L. Rosa, and F. L. Kastensmidt, “Exploring
the limitations of software-based techniques in SEE fault coverage,”J.
Electron. Test., vol. 27, no. 4, pp. 541–550, Aug. 2011.

[5] M. Rebaudengo, M. S. Reorda, M. Torchiano, and M. Violante, “Soft
error detection through software fault-tolerance techniques,” in Proc.
IEEE Int. Symp. Defect Fault Tolerance VLSI Syst., Nov. 1999, pp.210–
218.

[6] N. Oh, P.P. Shirvani, and E. J. McCluskey, “Control-flow checking by
software signatures,” IEEE Trans. Rel., vol. 51, no. 1, pp. 111–122, Mar.
2002.

[7] Z. Alkhalifa, V. S. S. Nair, N. Krishnamurthy, and J. A. Abraham,
“Design and evaluation of system-level checks for on-line control flow
error detection,” IEEE Trans. Parallel Distributed Syst., vol. 10, no. 6, pp.
627–641, Jun. 1999.

[8] P. Bernardi, L. M. V. Bolzani, M. Rebaudengo, M. S. Reorda, F. L.
Vargas and M. Violante, "A new hybrid fault detection technique for

Authorized licensed use limited to: UNIVERSIDAD CARLOS III MADRID. Downloaded on December 16,2021 at 10:26:03 UTC from IEEE Xplore. Restrictions apply.

0018-9499 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNS.2021.3129164, IEEE
Transactions on Nuclear Science

IEEE TRANSACTIONS ON NUCLEAR SCIENCE

8

systems-on-a-chip," in IEEE Transactions on Computers, vol. 55, no. 2,
pp. 185-198, Feb. 2006

[9] J. R. Azambuja, M. Altieri, J. Becker, and F. L. Kastensmidt, “HETA:
Hybrid error-detection technique using assertions,” IEEE Trans. Nucl.
Sci., vol. 60, no. 4, pp. 2805–2812, Aug. 2013.

[10] Entrena L. et al., “Fault-Tolerance Techniques for Soft-Core Processors
Using the Trace Interface”, in: Kastensmidt F., Rech P. (eds) FPGAs and
Parallel Architectures for Aerospace Applications. Springer, Cham, 2016.

[11] A. Lindoso, L. Entrena, M. García-Valderas and L. Parra, "A Hybrid
Fault-Tolerant LEON3 Soft Core Processor Implemented in Low-End
SRAM FPGA," in IEEE Transactions on Nuclear Science, vol. 64, no. 1,
pp. 374-381, Jan. 2017.

[12] M. Peña-Fernandez, A. Lindoso, L. Entrena, M. Garcia-Valderas, Y.
Morilla and P. Martín-Holgado, "Online Error Detection Through Trace
Infrastructure in ARM Microprocessors," in IEEE Transactions on
Nuclear Science, vol. 66, no. 7, pp. 1457-1464, July 2019.

[13] A. Mahmood and E. McCluskey, “Concurrent error-detection using
watchdog processors,” IEEE Trans. Comput., vol. 37, no. 2, pp. 160–174,
Feb. 1988.

[14] S. Bergaoui, P. Vanhauwaert and R. Leveugle, "IDSM: An improved
disjoint signature monitoring scheme for processor behavioral checking,"
2014 15th Latin American Test Workshop - LATW, 2014, pp. 1-6.

[15] M. Pignol, “Cots-based applications in space avionics,” in 2010 Design,
Automation & Test in Europe Conference & Exhibition (DATE 2010).
IEEE, 2010, pp. 1213–1219.

[16] M. Pignol, “Dmt and dt2: Two fault-tolerant architectures developed by
cnes for cots-based spacecraft supercomputers,” in 12th IEEE
International On-Line Testing Symposium (IOLTS’06). IEEE, 2006, pp.
1-10, July 2006.

[17] K. Greb and D. Pradhan, “HerculesTM microcontrollers: Real-time mcus
for safety-critical products,” Texas Instruments Inc. white Paper, 2011.

[18] R. Barry, “Mastering the freertos real time kernel,” Real Time Engineers
Ltd, 2016.

[19] E. Rotenberg, “AR-SMT: A microarchitectural approach to fault tolerance
in microprocessors,” in Proc. FTC, Madison, WI, USA, 1999, pp. 84–91.

[20] S. Mukherjee, M. Kontz, and S. Reinhardt, “Detailed design and
evaluation of redundant multithreading alternatives,” in Proc. ISCA,
Anchorage, AK, USA, 2002, pp. 99–110.

[21] M. S. Reorda et al., “A low-cost SEE mitigation solution for
softprocessors embedded in Systems on Programmable Chips”, DATE,
pp. 352-357, April 2009.

[22] M. Violante et al., “A Low-Cost Solution for Deploying Processor Cores
in Harsh Environments”, IEEE Trans. Ind. Electron.I, vol. 58, pp. 2617 -
2626, July 2011.

[23] H.-M. Pham et al., “Low-Overhead Fault-Tolerance Technique for a
Dynamically Recongurable Softcore Processor”, IEEE Trans. Comput.,
vol.62, no. 6, pp.1179-1192, June 2013.

[24] Á. B. de Oliveira, L. A. Tambara and F. L. Kastensmidt, "Applying
lockstep in dual-core ARM Cortex-A9 to mitigate radiation-induced soft
errors," 2017 IEEE 8th Latin American Symposium on Circuits &
Systems (LASCAS), 2017, pp. 1-4.

[25] F. Abate, L. Sterpone, C. A. Lisboa, L. Carro and M. Violante, "New
Techniques for Improving the Performance of the Lockstep Architecture
for SEEs Mitigation in FPGA Embedded Processors," in IEEE
Transactions on Nuclear Science, vol. 56, no. 4, pp. 1992-2000, Aug.
2009.

[26] H. Pham, S. Pillement and S. J. Piestrak, "Low-overhead fault-tolerance
technique for a dynamically reconfigurable softcore processor," in IEEE
Transactions on Computers, vol. 62, no. 6, pp. 1179-1192, June 2013.

[27] C. M. Jeffery and R. J. O. Figueiredo, "A Flexible Approach to Improving
System Reliability with Virtual Lockstep," in IEEE Transactions on
Dependable and Secure Computing, vol. 9, no. 1, pp. 2-15, Jan.-Feb.
2012.

[28] F. Abate, L. Sterpone, and M. Violante, “A new mitigation approach for
soft errors in embedded processors,” IEEE Transactions on Nuclear
Science, vol. 55, no. 4, pp. 2063–2069, 2008.

[29] A. B. de Oliveira, G. S. Rodrigues, F. L. Kastensmidt, N. Added, E. L.
Macchione, V. A. Aguiar, N. H. Medina, and M. A. Silveira, “Lockstep
dual-core arm a9: Implementation and resilience analysis under heavy
ion-induced soft errors,” IEEE Transactions on Nuclear Science, vol. 65,
no. 8, pp. 1783–1790, 2018.

[30] M. Peña-Fernández, A. Serrano-Cases, A. Lindoso, M. García-Valderas,
L. Entrena, A. Martínez-Álvarez, S. Cuenca-Asensi, “Dual-Core
Lockstep enhanced with redundant multithread support and control-flow

error detection”, Microelectronics Reliability, Volumes 100–101, pp.1-5,
September 2019, 113447.

[31] Xilinx Inc., “Zynq-7000 soc data sheet: Overview,” DS190, 2018.
[32] ARM Inc., “Cortex-A9 Technical Reference Manual”, r4p1, 2012.
[33] Xilinx Inc., “Mailbox v2.1 LogiCORE IP Product Guide Vivado Design

Suite,” PG114, 2018.
[34] Xilinx. Inc, “Block memory generator v8.3 logicore ip product guide,”

PG058, 2017.
[35] M. Y. Hsiao, "A Class of Optimal Minimum Odd-weight-column SEC-

DED Codes," in IBM Journal of Research and Development, vol. 14, no.
4, pp. 395-401, July 1970.

[36] Digilent Inc., “Zybo FPGA Board Reference Manual”, 2016.
[37] W. E. Burr, "Selecting the Advanced Encryption Standard," in IEEE

Security & Privacy, vol. 1, no. 2, pp. 43-52, March-April 2003.
[38] R. Velazco, S. Rezgui, and R. Ecoffet, “Predicting error rate for

microprocessor-based digital architectures through C.E.U. (Code
Emulating Upsets) injection,” IEEE Trans. Nucl. Sci., vol. 47, no. 6, pp.
2405–2411, Dec. 2000.

Authorized licensed use limited to: UNIVERSIDAD CARLOS III MADRID. Downloaded on December 16,2021 at 10:26:03 UTC from IEEE Xplore. Restrictions apply.

