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Abstract— Nowadays, high performance microprocessors are 
demanded in many fields, including those with high reliability 
requirements. Commercial microprocessors present a good trade-
off between cost, size and performance, albeit they must be adapted 
to satisfy the reliability requirements when they are used in harsh 
environments. This work presents a high-end multiprocessor 
hardened with a macro synchronized lockstep and additional 
protections. A commercial dual core ARM cortex A9 has been used 
as case study and a complete hardened system has been developed. 
Evaluation of the proposed hardened system has been accomplished 
with exhaustive fault injection campaigns and proton irradiation. 
The hardening approach has been accomplished for both baremetal 
applications and OS-based. The hardened system has demonstrated 
high reliability in all performed experiments with error coverage up 
to 99.3% in the irradiation experiments. Experimental irradiation 
results demonstrate a cross-section reduction of two orders of 
magnitude. 
 

Index Terms—Microprocessors, ARM, FreeRTOS, fault tolerance, 
lockstep, proton, soft error. 
 

I. INTRODUCTION 

ELIABLE high-end microprocessors are currently 
required in many fields. Aerospace applications are 

demanding increased computational capacity that cannot be 
provided by radhard microprocessors. The problem is not only 
performance but also, size, weight and power consumption. 
COTS (Commercial Off The Shelf) microprocessors are a 
suitable alternative but their reliability must be evaluated. In 
fact, COTS microprocessors are playing an important role in the 
New Space era, in which a growing number of actors apart from 
Space Agencies and Governments are involved. Increased 
efforts are being taken to study commercial parts to test and 
improve, if possible, their reliability [1-2]. 

In a harsh environment, electronic circuits are exposed to 
radiation that can lead to a misbehavior of the electronics. 
Usually, the type of errors we can observe are classified into 
hard errors, or non-recoverable errors, and soft errors. Soft 
errors are recoverable errors, in this case the electronic circuit 
is not permanently damaged and the system may be recovered. 
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When microprocessors are considered, there exist different 
kinds of techniques that can provide protection against soft 
errors. On the one hand, we can highlight the software-based 
techniques that do not require architectural modification but 
imply overheads in memory and execution time [3-4]. 
Commonly, software techniques utilize duplication techniques 
[5], signature-based control flow [6] and assertions [7]. On the 
other hand, hardware-based techniques rely on external 
hardware modules that monitor the execution of the instructions 
by means of an available interface, such as a memory buses [8-
9] or the trace interface [10]. This last choice has been 
successfully applied to LEON3 microprocessor [11] and ARM 
A9 [12]. Other Hardware approaches use watchdog processors 
to observe the microprocessor behavior [13-14] 

High-end COTS microprocessors architecture can be 
explored to propose reliable solutions that meet the new 
requirements and provide high computational capability [15]. 
CNES (French National Centre for Space Studies, Centre 
National d'Études Spatiales) hardening architectures based in 
redundancy are a good example of it [16]. They propose two 
different approaches for hardening COTS microprocessors 
based on: temporal redundancy (DMT, Duplex Multiplexed in 
Time) or spatial redundancy (DT2, Dual Duplex Tolerant to 
Transients). Another choice consists in using lockstep 
microprocessors which contains two cores that are micro 
synchronized. In this case, both cores are always in the same 
execution point and in the case a discrepancy is found, an error 
is detected. Micro synchronization requires specific hardware 
support, which is not present in most architectures. ARM 
Cortex-R microprocessors can support this behavior, such as 
the Cortex-R5 used by Texas Instruments in Hercules 
microcontroller [17]. 

In order to explore solutions that are not limited by the usage 
of a microprocessor with lockstep architectural support, we 
present in this work a multiprocessor hardened system with 
self-recovery capabilities. Our approach effectively combines a 
series of techniques that can detect errors and implement 
several levels of recovery actions to optimize availability 
without external intervention. The proposed approach is 

Leganes, 28911 SPAIN (e-mail: paviles@ing.uc3m.es, alindoso@ing.uc3m.es, 
jbelloc@ing.uc3m.es, mgvalder@ing.uc3m.es, entrena@ing.uc3m.es). 

Y. Morilla is with the Centro Nacional de Aceleradores (CNA), Centro 
Nacional de Aceleradores, CSIC, JA, Universidad de Seville, E-41092 Seville, 
Spain, SPAIN (e-mail: ymorilla@us.es). 

 

Radiation testing of a multiprocessor macro-
synchronized lockstep architecture with 

FreeRTOS 
Pablo M. Aviles, Almudena Lindoso, Jose A. Belloch, Mario Garcia-Valderas, Yolanda Morilla, and 

Luis Entrena 

R

Authorized licensed use limited to: UNIVERSIDAD CARLOS III MADRID. Downloaded on December 16,2021 at 10:26:03 UTC from IEEE Xplore.  Restrictions apply. 



0018-9499 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNS.2021.3129164, IEEE
Transactions on Nuclear Science

IEEE TRANSACTIONS ON NUCLEAR SCIENCE 
 

2

flexible, providing several levels of rollback capabilities.  
As a case study, we have developed a hardened system based 

on a dual core cortex A9. Cores in this architecture accomplish 
not only verification and rollback processes but also software 
reset when needed. Additional reliability actions have been 
considered at system level such as memory protection, 
watchdog, program delimitation and special exception 
handling, providing a flexible and reliable low-cost COTS-
based architecture. Thanks to this combination of techniques we 
achieve high reliability, with an error coverage up to 99.3% and 
a reduction in cross section of two orders of magnitude.  

In addition, we evaluate the impact of using an operating 
system in comparison to a bare metal implementation of the 
proposed approach. In particular, we implement our technique 
with FreeRTOS operating system [18], which is a market-
leading light weight Real-Time operating system. The 
characteristics of this Operating System make it a good 
candidate for safety critical applications. 

This paper is organized as follows. Section II summarizes the 
related work in this field. Section III describes the proposed 
hardened system. Section IV describes the experiments that 
have been performed to validate this approach and presents the 
experimental results for both fault injection campaign 
(subsection IV.A) and irradiation campaign (subsection IV.B). 
Finally, section V summarizes the conclusions of this work. 

 

II. RELATED WORK  

Redundant execution has been regarded as an effective 
approach for error detection, either by means of time or space 
[19-20]. Solutions based on lockstep are popular and used to 
provide functional correctness. For example, the authors of [21-
22] proposed a lockstep approach to protect the soft-core Leon2 
processor implemented into a Xilinx Virtex device. The 
technique detected and corrected 99% of soft errors injected in 
processor’s pipeline registers, with a time overhead ranging 
from 17% to 54% depending on the amount of data. Dual-core 
Lockstep is proposed in [23] and in [24] using two soft-core 
MicroBlaze processors and two hard-core processors, 
respectively. A non-invasive approach for the implementation 
of processors embedded in FPGAs, using lockstep in 
conjunction with checkpoint and rollback recovery is presented 
in [25]. A modified lockstep scheme that detects and eliminates 
the internal temporary configuration upsets without interrupting 
normal functioning is proposed in [26]. 

We can find works in the literature that try to emulate a lock-
step behavior within architectures that are not specifically 
prepared for it. Specifically, the authors in [27] propose a 
hypervisor-based replication approach that can be applied to 
commodity hardware allowing virtual lockstep execution. In 
[28], the authors utilize spatial redundancy approaches with 
micro synchronization for PowerPC. Moreover, some works 
use external IPs for observing the microprocessor cores 
behavior. This is the case of [29] in which an external IP verifies 
the state of two cores and is able to trigger interrupts in a 
multicore system. In [30] a relaxed synchronization is presented 
to stablish hardening strategy for Cortex-A9. In this case, 

multiple threads with their own stack are used, but without the 
support of an Operating System (OS). Additionally, the 
approach in [30] is hybrid and uses an external IP connected to 
the microprocessor’s trace interface to control the execution 
flow. 

 

III. PROPOSED APPROACH 

Our hardened system has self-recovery capabilities that are 
supported with a software-based macro synchronization 
approach. We use spatial redundancy, so that application 
execution is running in parallel in several cores but without 
micro synchronization (i.e., it is not required that the cores 
execute the same instruction at the same time exactly). After the 
task or program is completed on all functional cores, the results 
must be checked to decide if errors have occurred. Our 
approach performs the verification process directly in software 
without the utilization of an external verification IP, which 
differs from [28-29]. 

As case study we have selected the dual core ARM Cortex-
A9 microprocessor of the Xilinx Zynq family [31]. The utilized 
dual core is a high-end ARM microprocessor [32]. Cortex-A9 
is a 32 bits superscalar microprocessor with out of order 
execution. Among its characteristics, it stands out the 8 stages 
pipeline, 2 level cache for instructions and data and the floating-
point unit and SIMD (Single Instruction Multiple Data) 
coprocessor.  

 

 
Fig. 1.  Architecture of the proposed hardened system. 

Fig. 1 shows the architecture of the proposed system where 
we can appreciate the hard core cortex A9 with its two cores 
(Core 0 and Core 1) and 3 external modules located in 
Programmable Logic: 

- Safe Memory 0 and 1. These blocks are two external 
protected memories that store the required information 
to recover the system. We have used a dedicated 
memory per core. 

- Interconnection block. Every core can use this block to 
share computation results with all the other cores present 
in the architecture. In our architecture, we implement 
this module with Xilinx Mailbox [33]. This type of 
information interchange is needed to share information 
between the cores at certain points of the application 
execution. 
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It must be noted that the 3 external modules are located in 

Programmable Logic of the Zynq device, but the hardening 
strategy could have used other memory resources that are inside 
the hard core. In such a case, we have to assign specific 
dedicated memory sections for each of the modules. 

In the following subsections are described in detail the 
hardening approaches that our technique uses. 

A. Safe recovery data storage 

We implement a secure memory in programmable logic to 
store microprocessor contexts using the Xilinx IP logic core: 
Memory Block Generator [34]. This memory supports the built-
in Hamming Error Correction Capability (ECC), soft Hamming 
Error Correction (Soft ECC) for data widths of 64 bits or 
smaller and Hsiao for data width of 128, 64 and 32 bits. With 
this capability enabled, memory automatically detects single 
and double errors and corrects single errors.  

In our system, each core has a dedicated safe memory, 
located in the programmable logic. This memory is used to store 
the core current context (relevant information that defines the 
core state) and recover it when needed. In our system, the 
context contains registers and local variables. Cache or external 
memories are not included in the context. Our memory blocks 
have ECC enabled with Hsiao algorithm [35]. 

B. Verification  

To perform macro synchronization, application code is 
divided in blocks in both cores. After the completion of each 
block, the verification process checks whether the context of the 
cores is the same. Additionally, when the output of both cores 
presents no inconsistencies, verification process stores the 
context of each core in the corresponding safe memory. Our 
technique requires access to registers in privileged mode that is 
not available in regular application execution. In ARM 
microprocessors, interrupts and exceptions are executed in 
privileged mode. To overcome this situation, our technique 
triggers software interrupts to perform verification and rollback 
with privileged mode. 

Moreover, our verification scheme uses a signature as 
proposed in one of the methods of [29]. At each verification 
point, a signature of the values to be compared is computed. 
This way, verification overheads can be reduced. Both cores are 
interconnected to provide the necessary data to complete the 
verification process, which differs from other approaches. The 
work presented in [29] uses an external IP which controls 
multicore CPUs execution and checks the correctness of the 
system, all the processes are handled with interrupts triggered 
by the external IP. 

In our case, when a core finishes the execution of one 
application block, shares the signature and halts execution, 
waiting for the other core to finish and share the signature. 
Verification takes place when all cores have finished and shared 
their signature. 

C. Rollback  

When errors are detected, the rollback process restores the 
microprocessor from a previous error free state. In contrast to 

other approaches, our hardening approach permits consecutive 
rollbacks with flexible depth. If a rollback process is not able to 
restore the system correctness, it will be tried another rollback 
to the previous verification point (consecutive rollback). The 
number of consecutive rollbacks is flexible and can be 
stablished according to the application needs. For our 
experiments described in section IV, we have determined 
experimentally the maximum number of consecutive rollbacks 
allowed. As described in verification, rollback requires 
privileged mode and it is obtained with software interrupts. 

D. Watchdog Timer  

We use a watchdog timer to control the microprocessor 
architecture. In the case of a hang, the watchdog will restart the 
system. The used watchdog is associated to core 0 but due to 
the macro synchronization technique, it controls the whole 
system. If core 1 hangs, core 0 will be stuck waiting for data to 
complete the next verification point. After a predetermined 
amount of time, watchdog timer will trigger the system restart. 

E. Additional protections 

Our hardened system is able to detect incorrect behaviors and 
trigger Software reset if needed. For instance, if the maximum 
selected rollback depth is reached without success, the system 
will be restored by triggering a software reset.  

Additionally, the proposed system is able to restore the 
system from exceptions. We have modified the exception table 
in order to handle all exceptions and be able to recover the 
system from any possible event. When an exception occurs, we 
try first to recover the system with rollback. If the maximum 
number of rollbacks is not successful, software reset is 
triggered. With this modification, the system also implements a 
rollback from the exception handlers. 

To increase the system capabilities, we have also delimited 
the memory areas in use by the applications, so illegal access 
will trigger exceptions. 

F. Operating System usage 

The hardening mechanism based in macro-synchronized 
lockstep has been implemented for two different versions: 
baremetal (without operating system) and with the operating 
system FreeRTOS [18]. This OS (Operating System) is a light 
real time operating system that has the main advantage of being 
able to work with threads and pseudo parallelism in a single 
core processor. FreeRTOS provides separate stacks for each 
task. The stacks, and each kernel object in general, are located 
within a memory space defined as heap. FreeRTOS has five 
sample implementations of memory allocation. FreeRTOS 
applications can use one of the sample implementations or 
provide their own. Our system uses Heap 1, which is 
recommended for commercially critical and safety critical 
systems. Critical systems often prohibit dynamic memory 
allocation due to uncertainties associated with non-
determinism, memory fragmentation, and failed allocations, but 
heap 1 is always deterministic and does not fragment memory.  

When OS in in use, we use the same architecture described 
in Fig. 1 but we apply software changes. The application is run 
in one thread. The verification process is implemented in a 
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lower priority task than the main tasks associated with the 
application code. For OS implementations, verification and 
rollback processes are also implemented with software 
interrupts. When a verification point is reached in the main task, 
the OS will execute the verification process task, and once this 
task is completed, it will return to the main task.  
 

IV. EXPERIMENTAL RESULTS  

For the experiments, we have used a Zybo development 
board [36], which contains a Zynq 7010 device [10] with a hard-
core Cortex-A9 [32]. In the experiments, the DUT (Device 
Under Test) is connected serially to an external host used to 
collect the results and observe constantly the system behavior. 
All the information gathered during the experiments is analyzed 
when the experiments end. 

The experiments have been performed with both versions of 
the proposed macro synchronized lockstep technique: 
baremetal and OS-based version (using FreeRTOS). Moreover, 
we have used two benchmarks:  
 Matrix multiplication (Mmult). We used matrices of 

20x20 elements and data size of 16 bits. 
 AES encryption [37] (AES, Advanced Encryption 

Standard). AES algorithm encrypted a data value of 16 
bytes, the utilized key length was of 128 bits and the 
algorithm was performed with 10 iterations.  

 
Table I summarizes the memory overhead of the proposed 

system considering non-hardened and hardened versions of all 
benchmarks. The reported information demonstrates that the 
proposed technique does not incur in additional overhead in 
terms of program and data size. However, it must be pointed 
out that two additional memories are added to the hard-core 
microprocessor (safe memory 1 and 2, both of 64KB) and 
execution is performed simultaneously in two cores. Reported 
data also shows a slightly larger overhead for core 0, this core 
can be considered as the primary core because it controls the 
watchdog and also handles the communication with the external 
host. Results also show the considerable increase in size of the 
benchmarks for OS versions. 

Table II summarizes the performance overhead required for 
the hardening technique taking in consideration the utilized 
benchmarks. The microprocessor frequency is 650MHz. The 
first row reports the overhead in execution time for the 
verification and rollback processes. We can observe that for all 
benchmarks execution time of verification & rollback is slightly 
increased for OS versions, being Mmult execution time much 
longer than AES. This occurs because of the amount of data 
used by the two benchmarks, Mmult is using matrices of 20x20 
elements. 

The second and third rows of Table II show respectively the 
medium time and the maximum time to restart the system 
during irradiation experiments. Part of this time, around 13 ms, 
are devoted to serial communication data transfer that 
acknowledges the system restart. We have this information only 

for the benchmarks that were utilized in the irradiation 
experiments. The last row shows the execution time of one 
iteration of each benchmark. It must be noted that the system 
boot has not been considered for the execution time reported in 
Table II.  

 
TABLE I 

MEMORY OVERHEAD 

Benchmark   
NH Total size 

(bits) 
Hardened Total 

size (bits) 
Overhead 

Mmult 
Baremetal 

Core 0 69,540 72,924 1.05 
Core 1 65,752 66,572 1.01 

AES 
Baremental 

Core 0 63,000 68,320 1.08 
Core 1 59,212 61,996 1.05 

Mmult OS 
Core 0 201,748 206,324 1.02 
Core 1 197,332 199,996 1.01 

AES OS 
Core 0 197,100 201,684 1.02 

Core 1 192,692 195,420 1.01 

 
TABLE II 

PERFORMANCE OVERHEAD 

  
Mmult 

Baremetal 
AES 

Baremetal 
Mmult 

OS 
AES 
OS 

Verification & Rollback (µs) 207 5 215 13 
SW Reset (ms) 637 - 594 - 
Tmax (3 Rollback+SW Reset) 
(ms) 

661 - 604 - 

Execution Time (ms) 6.9 6.8 7.2 7 

 
In both benchmarks the code is divided in 10 blocks which 

corresponds with 10 verification points. An additional 
verification point is added at the beginning of the code, which 
results in a total of 11 verification points for all utilized 
benchmarks.  
 The safe memories that store the context of each core have a 
size of 64KB. We have selected a maximum consecutive 
rollback depth of 3. This depth has been determined 
experimentally and it is described in subsection IV.A. 
 OS benchmarks use Heap 1. Two tasks are created before 
starting the scheduler: the higher priority task for the 
application code, and another lower priority task for verification 
process. Each task has its own unique stack that is set by the 
programmer when the task is created. We set a stack depth of 
1,400 that means a 5,600 bytes stack. 

The proposed approach has been evaluated with injection and 
irradiation campaigns that are described respectively in 
subsections IV.A and IV.B. 

A. Injection campaign 

Firstly, an injection campaign was made to study in detail 
and adjust the system for a subsequent irradiation campaign.  

Our injector is based in [38] and generates a random bit-flip 
in a random register of the register file. It also selects the core 
and the injection instant randomly. In these experiments, the 
external host is a computer that is collecting the results, which 
will be analyzed when the injection campaign ends. 

Table III shows the injection campaign results for each 
version (baremetal and OS) of both benchmarks, Mmult and 
AES128. 
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TABLE III 
INJECTION CAMPAIGN RESULTS 

  
Category 

Baremetal OS 

  Mmult AES128 Mmult AES128 

Faults 
Silent faults 44,092 (80.9%) 42,926 (88.9%) 40,841 (77.0%) 45,909 (90.9%) 
Errors 10,413 (19.1%) 5,339 (11.1%) 12,174 (23.0%) 4,573 (9.1%) 
Total faults injected 54,505 (100.0%) 48,265 (100.0%) 53,015 (100.0%) 50,482 (100.0%) 

Errors 
Undetected errors 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 
Detected errors 10,413 (100.0%) 5,339 (100.0%) 12,174 (100.0%) 4,573 (100.0%) 

Detected errors 

Corrected errors 5,356 (51.4%) 1,754 (32.9%) 5,429 (44.6%) 1,705 (37.3%) 

WDT 1,012 (9.7%) 830 (15.5%) 5,454 (44.8%) 1,722 (37.7%) 

SW Reset 4,045 (38.9%) 2,755 (51.6%) 1,291 (10.6%) 1,146 (25.0%) 

 
Table III has three horizontal sections: Faults, Errors and 

Detected errors. In each section, data is also provided in 
percentage regarding the total number of events per benchmark. 
The Faults section provides a summary of each experiment 
showing the total number of faults injected and the errors 
observed. Table III shows that for each benchmark we injected 
around 50,000 faults and the percentage of observed errors 
ranged from 9.1% to 23.0%. 

Table III has also an Error section which shows a summary 
of the detection capabilities of the proposed technique. 
Experimental results reported in Table III demonstrate that we 
achieved full error coverage for all benchmarks.  

Finally, the section of Detected errors of Table III shows an 
analysis of the detected errors for each benchmark. We have 
used the following error categories: 
 Corrected errors: errors in which system is recovered 

correctly with one or several rollbacks. 
 WDT: Watchdog Timer restarts the system due to an 

abnormal behavior in execution. 
 SW Reset: SW Reset is triggered by the proposed 

technique when it detects that the system cannot be 
correctly restored. 

Fig. 2 shows the distribution of errors for Baremetal 
benchmarks in the injection campaign. The reported percentage 
is with respect to the total number of observed errors per 
benchmark. Results show a higher quantity of corrected errors 
for matrix multiplication benchmark, which correlates with the 
benchmark complexity. With AES benchmark we observe a 
higher percentage of SW reset, this is due to the decrease of 
corrected errors that produce SW resets. The WDT percentage 
is similar for both benchmarks. 

Fig. 3 shows the distribution of errors for OS benchmarks in 
the Injection campaign. We can observe that the correction 
capabilities have decreased for OS versions but again Mmult 
benchmark behaves better that AES benchmark. Comparing 
Fig. 2 and Fig. 3 we can observe that when OS is used, the 
number of WDT is considerably increased, and it changes the 
trend shown in Fig. 2 having more relevance this effect for 
Mmult benchmark. This increase in WDT affects the rest of 
error categories and we can observe a clear decrease in SW 
Reset for both benchmarks. It must be pointed out that our 
baremetal technique has extended recovery capabilities when 
exceptions are triggered. This implies an increase of corrected 
errors and a decrease of WDT detected errors. 

Baremetal SW Resets are more frequent, 3.6 times higher in 
percentage than OS version for mmult and 2.1 for AES. In the 
case of WDT reset, OS version has a percentage 4.6 times 
higher than Baremetal version for mmult and 2.4 for AES.  

In order to characterize the utilized benchmark, we did a 
preliminar fault injection experiment to decide the maximum 
number of rollbacks allowed. We had enabled 10 possible 
consecutive rollbacks with their corresponding storage in both 
safe memories. This experiment was done with 10,845 and 
12,043 injections for Baremetal and OS, respectively. 
Analyzing the results, we could observe that the system was 
recovered most of the times with up to 3 rollbacks. Only the 
0.15% of the total number of rollbacks for baremetal Mmult 
benchmark required from 4 to 10 rollbacks. In the case of OS, 
the percentage was even smaller (0.13%). Taking into account 
this result, we decided to stablish the limit for the utilized 
benchmarks in 3 consecutive rollbacks. 

 
TABLE IV 

NUMBER OF ROLLBACKS DISTRIBUTION 
                

 1 Rollback 2 Rollback 3 Rollback 
Total 

  Quantity % Quantity % Quantity % 
Mmult 
Baremetal 

4,838 90.33 355 6.63 163 3.04 5,356 

AES 
Baremetal 

1,418 80.84 282 16.08 54 3.08 1,754 

MMmult 
OS 

5,071 93.41 246 4.53 112 2.06 5,429 

AES 
OS 

1,339 78.53 337 19.77 29 1.70 1,705 

 
Table IV reports the number of rollbacks distribution of the 

corrected errors reported in Table III. Percentages are with 
respect to the total number of recoveries for each benchmark. 
We can observe that most recoveries of the system were 
performed with 1 rollback, around 90% per Mmult and around 
80% per AES benchmarks. The smallest percentage of 
recoveries with one rollback is for the OS version of AES. AES 
benchmarks are the ones with highest percentage of recoveries 
with 2 rollbacks, ranging from 16% to 19%. In the case of three 
rollbacks, figures are similar for baremetal (around 3%) and OS 
versions (around 2%). The higher complexity of AES 
benchmark and the usage of signatures seems to increase the 
required number of rollbacks to accomplish a successful 
recovery. 
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6

 
Fig. 2. Distribution of observed errors for Baremetal benchmarks (Injection 

Campaign). 

 
Fig. 3. Distribution of observed errors for OS benchmarks (Injection 

Campaign). 

B. Irradiation campaign 

The proposed approach was also evaluated in an irradiation 
campaign that was performed at Centro Nacional de 
Aceleradores (CNA) in Seville, in January 2021. We have used 
protons with an energy of 15 MeV.  

For the irradiation experiments, an external host was used to 
control the DUT. This host is connected to the DUT through 
serial connection and collects the results and information about 
the system state: data about successful verification points, 
detected errors and recoveries. In these experiments, the 
external host can force a power cycle in the case the DUT is not 
responding and cannot be restarted or recovered by the 
proposed hardening approach (undetected errors). Fig. 4 shows 
the experimental setup for the Irradiation experiments. 

 
 

 
 

 
Fig. 4. Experimental setup (Irradiation campaign) 

 
Thanks to the benchmark characterization described in 

subsection IV.A, we have set a maximum of 3 consecutive 
rollbacks in all irradiation experiments. This way we can avoid 
unnecessary delays in the system recovery process. In addition, 
it allows to reduce the memory space for data redundancy, since 
only the context of the last 3 verification points is stored. 

Experiments were performed with baremetal and OS-based 
implementations of matrix multiplication benchmark. We have 
used a fluence of 4.9·1011 p/cm2 for baremetal version and 
5.5·1011 p/cm2 for OS-based version. The experimental results 
are shown in Table V, which follows a similar structure to Table 
III, having three sections: Errors, Detected errors and cross-
section. The Errors section reports a summary of the irradiation 
experiment showing the total errors, detected and undetected 
errors. Experimental irradiation results demonstrate the high 
error coverage of the hardened system (up to 99.3%) in 
accordance with the results of the injection campaign reported 
in Table III. The following section of Table V, Detected errors, 
shows an analysis of the detected errors with the same error 
categories used in Table I. Finally, Table V shows the cross-
section for both benchmarks taking into consideration the total 
number of observed errors (Total errors) and the undetected 
errors. Cross-section section also reports the confidence 
interval for all the reported data. Results show an improvement 
of cross-section up to two orders of magnitude. 

In Fig. 5 is shown the cross-section regarding the error 
categories for both benchmarks. 
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TABLE V 
IRRADIATION CAMPAIGN RESULTS 

  
Category 

Mmult 

  Baremetal OS 

Errors 
Undetected errors     2 (0.7%)     5 (2%) 
Detected errors 273 (99.3%) 248 (98%) 
Total errors 275 (100.0%) 253 (100.0%) 

Detected 
errors 

Corrected errors 142 (52%)   65 (26.2%) 
WDT   64 (23.4%) 118 (47.6%) 
SW Reset   67 (24.6%)   65 (26.2%) 

Cross-
section 
(cm2) 

Total errors 
5.6·10-10 

(4.9·10-10-6.2·10-10) 
4.6·10-10 

(4.0·10-10-5.2·10-10) 

Undetected errors 
4.0·10-12 

(4.9·10-13-1.5·10-11) 
9.1·10-12 

(2.9·10-12-2.1·10-11) 

 
 

 
 

Fig. 5. Cross-section per error category (Irradiation Campaign). 

 
The hardening approach presented in [29] reports an 

improvement of cross-section of one order of magnitude. Our 
hardened system achieves a larger improvement in cross-
section, being up to two orders of magnitude. 

Baremetal results of Table III and Table V are in agreement. 
The percentage of corrected errors is similar in both 
experiments, but we can observe a variation for the other two 
categories of around 10% (with increasing number of WDT 
Reset and decreased number of SW Reset in radiation 
experiments). 

For baremetal version, 209 rollbacks were made, of which 
142 were successful (52%). Of the 142 corrected errors, 134 
were with one rollback and 8 with two consecutive rollbacks. 
In baremetal version, WDT Reset is reduced approximately by 
a factor of 2 with respect to OS version.  

OS version results report a total number of 130 rollbacks, half 
of which were correctly recovered. Of the 65 corrected errors, 
51 were with one rollback and 14 with two consecutive 
rollbacks. WDT Reset is the most common error for this 
version, and it is in agreement with injection results. It must be 
noted that for this benchmark, the usage of 2 rollbacks is 
effective and contributes in around 21% to the successful 
recoveries of the system. 

Comparing Tables III and V, we can observe a negligible 
decrease in the error coverage for irradiation experiments (up 
to 2% smaller). If we analyze the different categories for 
detected errors in both tables, we can observe that the behavior 
of baremetal version is similar in percentage for corrected errors 
category, but slightly increased for WDT reset and decreased 
for unsuccessful recoveries for irradiation experiments. In the 
case of OS, results in the injection campaign differ from 
irradiation results in percentage. Correct recoveries decrease 
considerably, with the corresponding increase of other ways of 
restarting the system. This difference in the experimental results 
could be due to the limitations of the injection technique that 
only affects to the register file. The complexity of the Operating 
System could also be related to the increased number of non-
recoverable errors for irradiation experiments. 

 

V. CONCLUSIONS 

This work presents a hardened high-end multiprocessor 
system. The proposed hardening approach uses macro 
synchronization lockstep technique with recovery capabilities 
and additional system protections. Lockstep is performed at 
software level without specific hardware support for 
verification. We have selected a dual core ARM Cortex-A9 as 
a case study and macro synchronization has been implemented 
in two different versions: Baremetal and OS-based with 
FreeRTOS. Fault injection and irradiation campaigns have been 
carried out to validate the reliability of the system. 
Experimental results demonstrate the high effectiveness of the 
proposed approach with full error coverage for injection and up 
to 99.3% for proton irradiation experiments. The hardened 
system achieves a reduction in cross-section of two orders of 
magnitude, which is higher than other proposed approaches.  
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