7,574 research outputs found

    Bringing tabletop technologies to kindergarten children

    Get PDF
    Taking computer technology away from the desktop and into a more physical, manipulative space, is known that provide many benefits and is generally considered to result in a system that is easier to learn and more natural to use. This paper describes a design solution that allows kindergarten children to take the benefits of the new pedagogical possibilities that tangible interaction and tabletop technologies offer for manipulative learning. After analysis of children's cognitive and psychomotor skills, we have designed and tuned a prototype game that is suitable for children aged 3 to 4 years old. Our prototype uniquely combines low cost tangible interaction and tabletop technology with tutored learning. The design has been based on the observation of children using the technology, letting them freely play with the application during three play sessions. These observational sessions informed the design decisions for the game whilst also confirming the children's enjoyment of the prototype

    CGAMES'2009

    Get PDF

    Full-body motion-based game interaction for older adults

    Get PDF
    Older adults in nursing homes often lead sedentary lifestyles, which reduces their life expectancy. Full-body motion-control games provide an opportunity for these adults to remain active and engaged; these games are not designed with age-related impairments in mind, which prevents the games from being leveraged to increase the activity levels of older adults. In this paper, we present two studies aimed at developing game design guidelines for full-body motion controls for older adults experiencing age-related changes and impairments. Our studies also demonstrate how full-body motion-control games can accommodate a variety of user abilities, have a positive effect on mood and, by extension, the emotional well-being of older adults. Based on our studies, we present seven guidelines for the design of full-body interaction in games. The guidelines are designed to foster safe physical activity among older adults, thereby increasing their quality of life. Copyright 2012 ACM

    A Data-driven Approach Towards Human-robot Collaborative Problem Solving in a Shared Space

    Full text link
    We are developing a system for human-robot communication that enables people to communicate with robots in a natural way and is focused on solving problems in a shared space. Our strategy for developing this system is fundamentally data-driven: we use data from multiple input sources and train key components with various machine learning techniques. We developed a web application that is collecting data on how two humans communicate to accomplish a task, as well as a mobile laboratory that is instrumented to collect data on how two humans communicate to accomplish a task in a physically shared space. The data from these systems will be used to train and fine-tune the second stage of our system, in which the robot will be simulated through software. A physical robot will be used in the final stage of our project. We describe these instruments, a test-suite and performance metrics designed to evaluate and automate the data gathering process as well as evaluate an initial data set.Comment: 2017 AAAI Fall Symposium on Natural Communication for Human-Robot Collaboratio

    Agents for educational games and simulations

    Get PDF
    This book consists mainly of revised papers that were presented at the Agents for Educational Games and Simulation (AEGS) workshop held on May 2, 2011, as part of the Autonomous Agents and MultiAgent Systems (AAMAS) conference in Taipei, Taiwan. The 12 full papers presented were carefully reviewed and selected from various submissions. The papers are organized topical sections on middleware applications, dialogues and learning, adaption and convergence, and agent applications

    Supporting Collaborative Learning in Computer-Enhanced Environments

    Full text link
    As computers have expanded into almost every aspect of our lives, the ever-present graphical user interface (GUI) has begun facing its limitations. Demanding its own share of attention, GUIs move some of the users\u27 focus away from the task, particularly when the task is 3D in nature or requires collaboration. Researchers are therefore exploring other means of human-computer interaction. Individually, some of these new techniques show promise, but it is the combination of multiple approaches into larger systems that will allow us to more fully replicate our natural behavior within a computing environment. As computers become more capable of understanding our varied natural behavior (speech, gesture, etc.), the less we need to adjust our behavior to conform to computers\u27 requirements. Such capabilities are particularly useful where children are involved, and make using computers in education all the more appealing. Herein are described two approaches and implementations of educational computer systems that work not by user manipulation of virtual objects, but rather, by user manipulation of physical objects within their environment. These systems demonstrate how new technologies can promote collaborative learning among students, thereby enhancing both the students\u27 knowledge and their ability to work together to achieve even greater learning. With these systems, the horizon of computer-facilitated collaborative learning has been expanded. Included among this expansion is identification of issues for general and special education students, and applications in a variety of domains, which have been suggested
    • …
    corecore