3,006 research outputs found

    Active Discriminative Text Representation Learning

    Full text link
    We propose a new active learning (AL) method for text classification with convolutional neural networks (CNNs). In AL, one selects the instances to be manually labeled with the aim of maximizing model performance with minimal effort. Neural models capitalize on word embeddings as representations (features), tuning these to the task at hand. We argue that AL strategies for multi-layered neural models should focus on selecting instances that most affect the embedding space (i.e., induce discriminative word representations). This is in contrast to traditional AL approaches (e.g., entropy-based uncertainty sampling), which specify higher level objectives. We propose a simple approach for sentence classification that selects instances containing words whose embeddings are likely to be updated with the greatest magnitude, thereby rapidly learning discriminative, task-specific embeddings. We extend this approach to document classification by jointly considering: (1) the expected changes to the constituent word representations; and (2) the model's current overall uncertainty regarding the instance. The relative emphasis placed on these criteria is governed by a stochastic process that favors selecting instances likely to improve representations at the outset of learning, and then shifts toward general uncertainty sampling as AL progresses. Empirical results show that our method outperforms baseline AL approaches on both sentence and document classification tasks. We also show that, as expected, the method quickly learns discriminative word embeddings. To the best of our knowledge, this is the first work on AL addressing neural models for text classification.Comment: This paper got accepted by AAAI 201

    A Multilingual Study of Compressive Cross-Language Text Summarization

    Full text link
    Cross-Language Text Summarization (CLTS) generates summaries in a language different from the language of the source documents. Recent methods use information from both languages to generate summaries with the most informative sentences. However, these methods have performance that can vary according to languages, which can reduce the quality of summaries. In this paper, we propose a compressive framework to generate cross-language summaries. In order to analyze performance and especially stability, we tested our system and extractive baselines on a dataset available in four languages (English, French, Portuguese, and Spanish) to generate English and French summaries. An automatic evaluation showed that our method outperformed extractive state-of-art CLTS methods with better and more stable ROUGE scores for all languages

    TGSum: Build Tweet Guided Multi-Document Summarization Dataset

    Full text link
    The development of summarization research has been significantly hampered by the costly acquisition of reference summaries. This paper proposes an effective way to automatically collect large scales of news-related multi-document summaries with reference to social media's reactions. We utilize two types of social labels in tweets, i.e., hashtags and hyper-links. Hashtags are used to cluster documents into different topic sets. Also, a tweet with a hyper-link often highlights certain key points of the corresponding document. We synthesize a linked document cluster to form a reference summary which can cover most key points. To this aim, we adopt the ROUGE metrics to measure the coverage ratio, and develop an Integer Linear Programming solution to discover the sentence set reaching the upper bound of ROUGE. Since we allow summary sentences to be selected from both documents and high-quality tweets, the generated reference summaries could be abstractive. Both informativeness and readability of the collected summaries are verified by manual judgment. In addition, we train a Support Vector Regression summarizer on DUC generic multi-document summarization benchmarks. With the collected data as extra training resource, the performance of the summarizer improves a lot on all the test sets. We release this dataset for further research.Comment: 7 pages, 1 figure in AAAI 201

    A matter of words: NLP for quality evaluation of Wikipedia medical articles

    Get PDF
    Automatic quality evaluation of Web information is a task with many fields of applications and of great relevance, especially in critical domains like the medical one. We move from the intuition that the quality of content of medical Web documents is affected by features related with the specific domain. First, the usage of a specific vocabulary (Domain Informativeness); then, the adoption of specific codes (like those used in the infoboxes of Wikipedia articles) and the type of document (e.g., historical and technical ones). In this paper, we propose to leverage specific domain features to improve the results of the evaluation of Wikipedia medical articles. In particular, we evaluate the articles adopting an "actionable" model, whose features are related to the content of the articles, so that the model can also directly suggest strategies for improving a given article quality. We rely on Natural Language Processing (NLP) and dictionaries-based techniques in order to extract the bio-medical concepts in a text. We prove the effectiveness of our approach by classifying the medical articles of the Wikipedia Medicine Portal, which have been previously manually labeled by the Wiki Project team. The results of our experiments confirm that, by considering domain-oriented features, it is possible to obtain sensible improvements with respect to existing solutions, mainly for those articles that other approaches have less correctly classified. Other than being interesting by their own, the results call for further research in the area of domain specific features suitable for Web data quality assessment

    All mixed up? Finding the optimal feature set for general readability prediction and its application to English and Dutch

    Get PDF
    Readability research has a long and rich tradition, but there has been too little focus on general readability prediction without targeting a specific audience or text genre. Moreover, though NLP-inspired research has focused on adding more complex readability features there is still no consensus on which features contribute most to the prediction. In this article, we investigate in close detail the feasibility of constructing a readability prediction system for English and Dutch generic text using supervised machine learning. Based on readability assessments by both experts and a crowd, we implement different types of text characteristics ranging from easy-to-compute superficial text characteristics to features requiring a deep linguistic processing, resulting in ten different feature groups. Both a regression and classification setup are investigated reflecting the two possible readability prediction tasks: scoring individual texts or comparing two texts. We show that going beyond correlation calculations for readability optimization using a wrapper-based genetic algorithm optimization approach is a promising task which provides considerable insights in which feature combinations contribute to the overall readability prediction. Since we also have gold standard information available for those features requiring deep processing we are able to investigate the true upper bound of our Dutch system. Interestingly, we will observe that the performance of our fully-automatic readability prediction pipeline is on par with the pipeline using golden deep syntactic and semantic information
    corecore