169 research outputs found

    Exploring potential implementations of PCE in IoT world

    Get PDF
    © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/The recently coined Internet of Things (IoT) paradigm leverages a large volume of heterogeneous Network Elements (NEs) demanding broad connectivity anywhere, anytime and anyhow, fueling the deployment of innovative Internet services, such as Cloud or Fog Computing, Data Center Networks (DCNs), Smart Cities or Smart Transportation. The proper deployment of these novel Internet services is imposing hard connectivity constraints, such as high transmission capacity, reliable communications, as well as an efficient control scheme capable of enabling an agile coordination of actions in large heterogeneous scenarios. In recent years, novel control schemes, such as the so-called Path Computation Element (PCE) has gained momentum in the network research community turning into real PCE implementations. Indeed, there is a wealth of studies assessing the PCE performance, clearly showing the potential benefits of decoupling routing control tasks from the forwarding nodes. Nevertheless, recognized the need for a control solution in IoT scenarios, there is not much published information analyzing PCE benefits in these IoT scenarios. In this paper, we distill how the PCE may gracefully provide for service composition in an agile manner, handling the specific constraints and requirements found in IoT scenarios. To this end, we propose a novel PCE strategy referred to as Service-Oriented PCE (SPCE), which enables network-aware service composition.Peer ReviewedPostprint (author's final draft

    Segment Routing: a Comprehensive Survey of Research Activities, Standardization Efforts and Implementation Results

    Full text link
    Fixed and mobile telecom operators, enterprise network operators and cloud providers strive to face the challenging demands coming from the evolution of IP networks (e.g. huge bandwidth requirements, integration of billions of devices and millions of services in the cloud). Proposed in the early 2010s, Segment Routing (SR) architecture helps face these challenging demands, and it is currently being adopted and deployed. SR architecture is based on the concept of source routing and has interesting scalability properties, as it dramatically reduces the amount of state information to be configured in the core nodes to support complex services. SR architecture was first implemented with the MPLS dataplane and then, quite recently, with the IPv6 dataplane (SRv6). IPv6 SR architecture (SRv6) has been extended from the simple steering of packets across nodes to a general network programming approach, making it very suitable for use cases such as Service Function Chaining and Network Function Virtualization. In this paper we present a tutorial and a comprehensive survey on SR technology, analyzing standardization efforts, patents, research activities and implementation results. We start with an introduction on the motivations for Segment Routing and an overview of its evolution and standardization. Then, we provide a tutorial on Segment Routing technology, with a focus on the novel SRv6 solution. We discuss the standardization efforts and the patents providing details on the most important documents and mentioning other ongoing activities. We then thoroughly analyze research activities according to a taxonomy. We have identified 8 main categories during our analysis of the current state of play: Monitoring, Traffic Engineering, Failure Recovery, Centrally Controlled Architectures, Path Encoding, Network Programming, Performance Evaluation and Miscellaneous...Comment: SUBMITTED TO IEEE COMMUNICATIONS SURVEYS & TUTORIAL

    Towards a proper service placement in combined Fog-to-Cloud (F2C) architectures

    Get PDF
    The Internet of Things (IoT) has empowered the development of a plethora of new services, fueled by the deployment of devices located at the edge, providing multiple capabilities in terms of connectivity as well as in data collection and processing. With the inception of the Fog Computing paradigm, aimed at diminishing the distance between edge-devices and the IT premises running IoT services, the perceived service latency and even the security risks can be reduced, while simultaneously optimizing the network usage. When put together, Fog and Cloud computing (recently coined as fog-to-cloud, F2C) can be used to maximize the advantages of future computer systems, with the whole greater than the sum of individual parts. However, the specifics associated with cloud and fog resource models require new strategies to manage the mapping of novel IoT services into the suitable resources. Despite few proposals for service offloading between fog and cloud systems are slowly gaining momentum in the research community, many issues in service placement, both when the service is ready to be executed admitted as well as when the service is offloaded from Cloud to Fog, and vice-versa, are new and largely unsolved. In this paper, we provide some insights into the relevant features about service placement in F2C scenarios, highlighting main challenges in current systems towards the deployment of the next-generation IoT servicesPostprint (author's final draft

    RF energy harvesters for wireless sensors, state of the art, future prospects and challenges: a review

    Get PDF
    The power consumption of portable gadgets, implantable medical devices (IMDs) and wireless sensor nodes (WSNs) has reduced significantly with the ongoing progression in low-power electronics and the swift advancement in nano and microfabrication. Energy harvesting techniques that extract and convert ambient energy into electrical power have been favored to operate such low-power devices as an alternative to batteries. Due to the expanded availability of radio frequency (RF) energy residue in the surroundings, radio frequency energy harvesters (RFEHs) for low-power devices have garnered notable attention in recent times. This work establishes a review study of RFEHs developed for the utilization of low-power devices. From the modest single band to the complex multiband circuitry, the work reviews state of the art of required circuitry for RFEH that contains a receiving antenna, impedance matching circuit, and an AC-DC rectifier. Furthermore, the advantages and disadvantages associated with various circuit architectures are comprehensively discussed. Moreover, the reported receiving antenna, impedance matching circuit, and an AC-DC rectifier are also compared to draw conclusions towards their implementations in RFEHs for sensors and biomedical devices applications

    Mechanisms for service-oriented resource allocation in IoT

    Get PDF
    Albeit several IoT applications have been recently deployed in several fields, including environment and industry monitoring, Smart Home, Smart Hospital and Smart Agriculture, current deployments are mostly host-oriented, which is undoubtedly limiting the attained benefits brought up by IoT. Indeed, future IoT applications shall benefit from service-oriented communications, where the communication establishment between end-points is not dependent on prior knowledge of the host devices in charge of providing the service execution. Rather, an end-user service execution request is mapped into the most suitable resources able to provide the requested service. Furthermore, this model is a key enabler for the design of future services in Smart Cities, e-Health, Intelligent Transportation Systems, among other smart scenarios. Recognized the benefits of this model in future applications, considerable research effort must be devoted for addressing several challenges yet unsolved, such as the ones brought up by the high dynamicity and heterogeneity inherent to these scenarios. In fact, service-oriented communication requires an updated view of available resources, mapping service requests into the most suitable resources taking several constraints and requirements into account, resilience provisioning, QoS-aware service allocation, just to name a few. This thesis aims at proposing and evaluating mechanisms for efficient resource allocation in service-oriented IoT scenarios through the employment of two distinct baseline technologies. In the first approach, the so-called Path Computation Element (PCE), designed to decouple the host-oriented routing function from GMPLS switches in a centralized element, is extended to the service-oriented PCE (S-PCE) architecture, where a service identifier (SID) is used to identify the service required by an end-user. In this approach, the service request is mapped to one or a set of resources by a 2-steps mapping scheme that enables both selection of suitable resources according to request and resources characteristics, and avoidance of service disruption due to possible changes on resources¿ location. In the meantime, the inception of fog computing, as an extension of the cloud computing concept, leveraging idle computing resources at the edge of the network through their organization as highly virtualized micro data centers (MDC) enabled the reduction on the network latency observed by services launched at edge devices, further reducing the traffic at the core network and the energy consumption by network and cloud data center equipment, besides other benefits. Envisioning the benefits of the distributed and coordinated employment of both fog and cloud resources, the Fog-to-Cloud (F2C) architecture has been recently proposed, further empowering the distributed allocation of services into the most suitable resources, be it in cloud, fog or both. Since future IoT applications shall present strict demands that may be satisfied through a combined fog-cloud solution, aligned to the F2C architecture, the second approach for the service-oriented resource allocation, considered in this thesis, aims at providing QoS-aware resource allocation through the deployment of a hierarchical F2C topology, where resource are logically distributed into layers providing distinct characteristics in terms of network latency, disruption probability, IT power, etc. Therefore, distinct strategies for service distribution in F2C architectures, taking into consideration features such as service transmission delay, energy consumption and network load. Concerning the need for failure recovery mechanisms, distinct demands of heterogeneous services are considered in order to assess distinct strategies for allocation of protection resources in the F2C hierarchy. In addition, the impact of the layered control topology on the efficient allocation of resources in F2C is further evaluated. Finally, avenues for future work are presented.Aunque son ya varias las aplicaciones que se han desarrollado en el área de IoT, especialmente en el campo ambiental, Smart Home o Smart Health, las implementaciones actuales son en su mayoría ¿host-oriented¿, lo que sin duda limita sus potenciales beneficios. Una posible estrategia para reducir esos efectos negativos se centra en que las futuras aplicaciones se beneficien de las comunicaciones orientadas a servicios, ¿service-oriented¿, donde el establecimiento de comunicación entre puntos finales no depende del conocimiento previo de los hosts a cargo de proporcionar la ejecución del servicio. En este escenario, una solicitud de ejecución de servicio se asigna a los recursos más adecuados capaces de proporcionar el servicio solicitado. Este modelo se considera clave para el despliegue de futuros servicios en Smart Cities, e-Health, Intelligent Transportation Systems, etc. Reconocidos los beneficios de este modelo en las aplicaciones futuras, un substancial esfuerzo de investigación es necesario para abordar varios desafíos aún no resueltos, como los surgidos por la alta dinámica y heterogeneidad inherente a estos escenarios. De hecho, la comunicación service-oriented requiere una vista actualizada de los recursos disponibles, así como la asignación de solicitudes de servicio en los recursos más adecuados teniendo en cuenta varias restricciones y requisitos. Esta tesis tiene como objetivo proponer y evaluar mecanismos para la asignación eficiente de recursos en escenarios IoT orientados a servicios a través del empleo de dos tecnologías básicas distintas. En el primer enfoque, el llamado Path Computation Element (PCE), diseñado para desacoplar la función de enrutamiento de los conmutadores GMPLS hacia un elemento centralizado, se extiende generando la arquitectura service-oriented PCE (S-PCE). En S-PCE se utiliza un identificador de servicio (SID) para identificar el servicio requerido por un usuario final, y la solicitud se asigna, bien a uno o bien a un conjunto de recursos, mediante un esquema de asignación de 2 pasos que permite la selección de los recursos adecuados, evitando la interrupción del servicio debido a posibles cambios en la ubicación de los recursos. Mientras tanto, el inicio de Fog computing, como una extensión de Cloud computing, basado conceptualmente en aprovechar la infraestructura y los recursos inactivos en el extremo de la red a través de su organización como micro data centers (MDC), ha supuesto la reducción de la latencia de la red para los servicios lanzados por dispositivos localizados en el extremo de la red, reduciendo el tráfico en el centro de la red (backbone) así como el consumo de energía, además de otros beneficios. Asumiendo las ventajas de la utilización distribuida y coordinada de los recursos fog y cloud, la arquitectura Fog-to-Cloud (F2C) ha sido recientemente propuesta, destinada a potenciar la asignación distribuida de servicios en los recursos más adecuados, sea en cloud, fog o ambos. Dado que las futuras aplicaciones IoT deben presentar demandas que podrían ser satisfechas a través de una solución alineada con la arquitectura F2C, el segundo enfoque para la asignación de recurso orientado a servicio, considerado en esta tesis, tiene como objetivo proporcionar una asignación de recursos mediante el despliegue de una topología F2C, donde los recursos se distribuyen lógicamente en capas que proporcionan características distintas en términos de latencia de red, probabilidad de interrupción, etc. Así, se proponen distintas estrategias para la distribución de servicios, teniendo en cuenta características tales como QoS y consumo de energía. Con respecto a la necesidad de mecanismos de recuperación de fallos, se evalúan distintas estrategias para la asignación de recursos de protección en la jerarquía F2C. Además, se evalúa el impacto de la topología de control en capas sobre la asignación eficiente de recursos en F2C. Finalmente, las sugerencias para trabajos futuros son presentadas

    Millimeter-wave power harvesting: a review

    Get PDF
    The broad spectrum available at millimeter-wave (mmWave) bands has attracted significant interest for a breadth of applications, with 5G communications being the main commercial drive for mmWave networks. Wireless power transmission and harvesting at mmWave bands have attracted significant attention due to the potential for minimizing the harvesting antenna size, allowing for more compact rectennas. For a fixed antenna size, the received power increases with frequency. Nevertheless, several challenges lie in realizing high efficiency antennas and rectifiers at mmWave bands. This article reviews the recent advances in mmWave rectenna design at a component- and system-level. Low-cost antennas and components for mmWave power harvesting, such as high efficiency scalable rectifiers on polymers and high radiation efficiency antennas on textiles, are reviewed. Both the antenna and rectifier can be realized using low-cost fabrication methods such as additively-manufactured circuits and packages, in addition to digital integrated circuits (ICs) for the rectifiers. Finally, this article provides an overview of future antenna design challenges and research directions for mmWave power harvesting

    Roadmap on Photovoltaic Absorber Materials for Sustainable Energy Conversion

    Full text link
    Photovoltaics (PVs) are a critical technology for curbing growing levels of anthropogenic greenhouse gas emissions, and meeting increases in future demand for low-carbon electricity. In order to fulfil ambitions for net-zero carbon dioxide equivalent (CO2eq) emissions worldwide, the global cumulative capacity of solar PVs must increase by an order of magnitude from 0.9 TWp in 2021 to 8.5 TWp by 2050 according to the International Renewable Energy Agency, which is considered to be a highly conservative estimate. In 2020, the Henry Royce Institute brought together the UK PV community to discuss the critical technological and infrastructure challenges that need to be overcome to address the vast challenges in accelerating PV deployment. Herein, we examine the key developments in the global community, especially the progress made in the field since this earlier roadmap, bringing together experts primarily from the UK across the breadth of the photovoltaics community. The focus is both on the challenges in improving the efficiency, stability and levelized cost of electricity of current technologies for utility-scale PVs, as well as the fundamental questions in novel technologies that can have a significant impact on emerging markets, such as indoor PVs, space PVs, and agrivoltaics. We discuss challenges in advanced metrology and computational tools, as well as the growing synergies between PVs and solar fuels, and offer a perspective on the environmental sustainability of the PV industry. Through this roadmap, we emphasize promising pathways forward in both the short- and long-term, and for communities working on technologies across a range of maturity levels to learn from each other.Comment: 160 pages, 21 figure

    Smart transportation systems (STSs) in critical conditions

    Get PDF
    In the context of smart transportation systems (STSs) in smart cities, the use of applications that can help in case of critical conditions is a key point. Examples of critical conditions may be natural-disaster events such as earthquakes, hurricanes, floods, and manmade ones such as terrorist attacks and toxic waste spills. Disaster events are often combined with the destruction of the local telecommunication infrastructure, if any, and this implies real problems to the rescue operations.The quick deployment of a telecommunication infrastructure is essential for emergency and safety operations as well as the rapid network reconfigurability, the availability of open source software, the efficient interoperability, and the scalability of the technological solutions. The topic is very hot and many research groups are focusing on these issues. Consequently, the deployment of a smart network is fundamental. It is needed to support both applications that can tolerate delays and applications requiring dedicated resources for real-time services such as traffic alert messages, and public safety messages. The guarantee of quality of service (QoS) for such applications is a key requirement.In this chapter we will analyze the principal issues of the networking aspects and will propose a solution mainly based on software defined networking (SDN). We will evaluate the benefit of such paradigm in the mentioned context focusing on the incremental deployment of such solution in the existing metropolitan networks and we will design a "QoS App" able to manage the quality of service on top of the SDN controller
    • …
    corecore