143,828 research outputs found

    Exploring Design Space For An Integrated Intelligent System

    Get PDF
    Understanding the trade-offs available in the design space of intelligent systems is a major unaddressed element in the study of Artificial Intelligence. In this paper we approach this problem in two ways. First, we discuss the development of our integrated robotic system in terms of its trajectory through design space. Second, we demonstrate the practical implications of architectural design decisions by using this system as an experimental platform for comparing behaviourally similar yet architecturally different systems. The results of this show that our system occupies a "sweet spot" in design space in terms of the cost of moving information between processing components

    Part 2: pushing the envelope. A process perspective for architecture, engineering and construction

    Get PDF
    In this article, I am building on an emerging 'process view of nature' and how biological membranes emerge through the combined action of (locally) autonomous construction agents. In Part 1, we considered the simultaneous aggregation and disaggregation of matter around embedded processes, used to create, sustain and regulate matter, energy and information gradients from which 'work' is derived for the benefit of the agents or organisms present in the system. In Part 2, I intend to demonstrate that emerging digital design, simulation and fabrication techniques, when linked to sensory and effector feedback, memory and actions, directed by pre-encoded objectives (as rules or algorithms), produce the same fundamental unit of 'agency' as biological agents possess. By understanding how biological membranes emerge in nature, as the outcome of 'negotiated agency', to regulate matter, energy and information exchange between adjacent spaces, we can begin to consider the building envelope as a biological interface or membrane from which 'work' can be derived from the environment we inhabit, as a physiological extension of ourselves

    Motion planning with dynamics awareness for long reach manipulation in aerial robotic systems with two arms

    Get PDF
    Human activities in maintenance of industrial plants pose elevated risks as well as significant costs due to the required shutdowns of the facility. An aerial robotic system with two arms for long reach manipulation in cluttered environments is presented to alleviate these constraints. The system consists of a multirotor with a long bar extension that incorporates a lightweight dual arm in the tip. This configuration allows aerial manipulation tasks even in hard-to-reach places. The objective of this work is the development of planning strategies to move the aerial robotic system with two arms for long reach manipulation in a safe and efficient way for both navigation and manipulation tasks. The motion planning problem is addressed considering jointly the aerial platform and the dual arm in order to achieve wider operating conditions. Since there exists a strong dynamical coupling between the multirotor and the dual arm, safety in obstacle avoidance will be assured by introducing dynamics awareness in the operation of the planner. On the other hand, the limited maneuverability of the system emphasizes the importance of energy and time efficiency in the generated trajectories. Accordingly, an adapted version of the optimal Rapidly-exploring Random Tree algorithm has been employed to guarantee their optimality. The resulting motion planning strategy has been evaluated through simulation in two realistic industrial scenarios, a riveting application and a chimney repairing task. To this end, the dynamics of the aerial robotic system with two arms for long reach manipulation has been properly modeled, and a distributed control scheme has been derived to complete the test bed. The satisfactory results of the simulations are presented as a first validation of the proposed approach.Unión Europea H2020-644271Ministerio de Ciencia, Innovación y Universidades DPI2014-59383-C2-1-

    The 1990 progress report and future plans

    Get PDF
    This document describes the progress and plans of the Artificial Intelligence Research Branch (RIA) at ARC in 1990. Activities span a range from basic scientific research to engineering development and to fielded NASA applications, particularly those applications that are enabled by basic research carried out at RIA. Work is conducted in-house and through collaborative partners in academia and industry. Our major focus is on a limited number of research themes with a dual commitment to technical excellence and proven applicability to NASA short, medium, and long-term problems. RIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at JPL and AI applications groups at all NASA centers

    Part 1: a process view of nature. Multifunctional integration and the role of the construction agent

    Get PDF
    This is the first of two linked articles which draw s on emerging understanding in the field of biology and seeks to communicate it to those of construction, engineering and design. Its insight is that nature 'works' at the process level, where neither function nor form are distinctions, and materialisation is both the act of negotiating limited resource and encoding matter as 'memory', to sustain and integrate processes through time. It explores how biological agents derive work by creating 'interfaces' between adjacent locations as membranes, through feedback. Through the tension between simultaneous aggregation and disaggregation of matter by agents with opposing objectives, many functions are integrated into an interface as it unfolds. Significantly, biological agents induce flow and counterflow conditions within biological interfaces, by inducing phase transition responses in the matte r or energy passing through them, driving steep gradients from weak potentials (i.e. shorter distances and larger surfaces). As with biological agents, computing, programming and, increasingly digital sensor and effector technologies share the same 'agency' and are thus convergent

    Factors shaping the evolution of electronic documentation systems

    Get PDF
    The main goal is to prepare the space station technical and managerial structure for likely changes in the creation, capture, transfer, and utilization of knowledge. By anticipating advances, the design of Space Station Project (SSP) information systems can be tailored to facilitate a progression of increasingly sophisticated strategies as the space station evolves. Future generations of advanced information systems will use increases in power to deliver environmentally meaningful, contextually targeted, interconnected data (knowledge). The concept of a Knowledge Base Management System is emerging when the problem is focused on how information systems can perform such a conversion of raw data. Such a system would include traditional management functions for large space databases. Added artificial intelligence features might encompass co-existing knowledge representation schemes; effective control structures for deductive, plausible, and inductive reasoning; means for knowledge acquisition, refinement, and validation; explanation facilities; and dynamic human intervention. The major areas covered include: alternative knowledge representation approaches; advanced user interface capabilities; computer-supported cooperative work; the evolution of information system hardware; standardization, compatibility, and connectivity; and organizational impacts of information intensive environments
    corecore