Metadata, citation and similar papers at core.ac.uk

Provided by University of Birmingham Research Portal

UNIVERSITYOF
BIRMINGHAM

Research at Birmingham

Exploring Design Space For An Integrated
Intelligent System

Hawes, Nicholas; Wyatt, Jeremy; Sloman, Aaron

Citation for published version (Harvard):
Hawes, N, Wyatt, J & Sloman, A 2009, 'Exploring Design Space For An Integrated Intelligent System' Paper
presented at Research and Development in Intelligent Systems Xxv, 1/01/09, pp. 177-190.

Link to publication on Research at Birmingham portal

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

» Users may freely distribute the URL that is used to identify this publication.

» Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.

» User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
« Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 01. Feb. 2019

https://core.ac.uk/display/185459333?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.birmingham.ac.uk/portal/en/publications/exploring-design-space-for-an-integrated-intelligent-system(aa782d70-ae4e-43b9-bde4-252846d6cbbc).html

Exploring Design Space For An Integrated
Intelligent System

Nick Hawes and Jeremy Wyatt and Aaron Sloman

Abstract Understanding the trade-offs available in the design space of intelligent
systems is a major unaddressed element in the study of Artificial Intelligence. In this
paper we approach this problem in two ways. First, we discuss the development of
our integrated robotic system in terms of its trajectory through design space. Second,
we demonstrate the practical implications of architectural design decisions by using
this system as an experimental platform for comparing behaviourally similar yet
architecturally different systems. The results of this show that our system occupies
a “sweet spot” in design space in terms of the cost of moving information between
processing components.

1 Introduction

Intelligent systems (e.g. intelligent service robots) are a product of the many design
decisions taken to ensure that the final system meets the requirements necessary
to fit in its particular niche [1]. In nature, evolution creates behaviours and bodies
that suit an animal’s ecological niche. In the field of intelligent artifacts, choices
about the design and implementation of hardware and software may be taken by a
designer, or enforced by project or resource constraints. Few, if any, of these choices
are truly independent; using a particular solution for one part of the system will
constrain the space of solutions available for other parts of the system. For example,
the number of degrees of freedom of an effector will restrict the design of the control
software and behaviours required to use the effector, and the choice of middleware

Nick Hawes
School of Computer Science, University of Birmingham, UK e-mail: n.a.hawes @cs.bham.ac.uk

Jeremy Wyatt
School of Computer Science, University of Birmingham, UK e-mail: j.l.wyatt@cs.bham.ac.uk

Aaron Sloman
School of Computer Science, University of Birmingham, UK e-mail: a.sloman@cs.bham.ac.uk

Nick Hawes and Jeremy Wyatt and Aaron Sloman

for software components will restrict the communication patterns that components
can use. Understanding the trade-offs available in the design space of intelligent
artifacts is a major open issue in the understanding of integrated intelligent systems,
and thus AL

In this paper we focus on the design space of architectures for intelligent robots.
We discuss the design of, and the trade-offs created by, an architecture schema for
intelligent agents based on a model of shared working memories. Following this
we present a novel exploration of the design space of information sharing models
for architectures for integrated intelligent systems based on this schema. This explo-
ration uses an intelligent robot as an experimental platform. The robot’s architecture
is varied in principled ways to generate quantitative information demonstrating the
costs and benefits of the different designs.

2 Background

In the field of intelligent systems, the term ‘“‘architecture” is still used to refer to
many different, yet closely related, aspects of a system’s design and implementation.
Underlying all of these notions is the idea of a collection of units of functionality,
information (whether implicitly or explicitly represented) and methods for bring-
ing these together. At this level of description there is no real difference between the
study of architectures in Al and software architectures in other branches of computer
science. However, differences appear as we specialise this description to produce
architectures that integrate various types of functionality to produce intelligent sys-
tems. Architectures for intelligent systems typically include elements such as fixed
representations, reasoning mechanisms, and functionaly or behavioural component
groupings. Once such elements are introduced, the trade-offs between different de-
signs become important. Such trade-offs include the costs of dividing a system up to
fit into a particular architecture design, and the costs of using a particular representa-
tion. Such trade-offs have been ignored by previous work on integrated systems, yet
these factors are directly related to the efficacy of applying an architecture design
to a particular problem. Our research studies architectures for integrated, intelligent
systems in order to inform the designers of these systems of the trade-offs available
to them.

An important distinction to make when studying the information-processing ar-
chitectures used in intelligent systems is the distinction between architectures that
are entirely-specified in advance (e.g. those used in [2, 3]), and architectures that
are partially specified. This latter type can then be specialised to produce different
instantiations of the architecture. We will refer to such partially specificed architec-
tures as architecture schemas as they provide outlines from which many different
concrete instantiations can be designed. Examples of such schemas include cogni-
tive modelling architectures such as ICARUS [4], ACT-R, [5], and Soar [6]; more
general frameworks such as CogAff [1] and APOC [7]; and robotic architectures

Exploring Design Space For An Integrated Intelligent System

such as 3T [8]. It is worth noting that the freedom in specialisation available to the
designer varies greatly across these schemas.

As architecture schemas can be instantiated in various ways, each one provides
a framework for exploring a limited region of design space for possible architec-
ture instantiations: the use of a particular schema restricts the available design space
to be those designs that can be created within the schema. Although instantiations
produced from a schema may vary considerably, they will all share certain charac-
teristics as a consequence of occupying similar regions of design space. It is difficult
to study these characteristics directly, particularly in implemented systems, because
it is difficult to separate the effects of the schema (i.e. the aspects of the architecture
that will exist in all instantiations of the schema) from the effects of the special-
isation (i.e. any additional components and implementation work) in the finished
system.

As we wish to study the effects of variations in architecture schema in imple-
mented systems we need an experimental approach that overcomes the problem of
separating schema effects from specialisation effects. Our approach involves taking
a single task (i.e. a problem requiring a fixed set of known behaviours) and creat-
ing instantiations of a number of different architecture schemas to solve it. In this
way the task-specific elements of the instantiations are invariant (e.g. the algorithms
used to process input and generate output), whilst the schema-level elements change
between instantiations (e.g. the nature of the connections between input and output
modules). Assuming task-specific invariance exists, comparing instantiations of dif-
ferent schemas on a single task will then provide information about the trade-offs
between the different design options offered by the schemas.

Such single-task comparisons could be performed using existing systems. For
example, driving tasks have been tackled in ACT-R [9] and ICARUS [10], spatial
reasoning tasks by SOAR [11] and ACT-R [12], and natural language understand-
ing has been tackled with almost every architecture schema, e.g. in APOC [13]. The
drawback of this approach is that the different instantiations performed by different
researchers using different technology will almost certainly introduce variations in
behaviour that may mask the underlying effects of the various architectures, mak-
ing comparisons worthless. To make comparisons between implemented systems
informative, the variation in instantiations must be controlled. This is an approach
we explore in Section 4. An alternative approach is to perform these comparisons
theoretically (cf. [14]), although this risks overlooking the critical aspects that only
become apparent when building integrated systems.

3 From Requirements to Robots

To further explore the idea of design decisions constraining the design space avail-
able for a particular intelligent system, it is worth considering an example. Our
current research project is studying the problem of building intelligent systems. We
are approaching the problem from various perspectives including hardware control,

Nick Hawes and Jeremy Wyatt and Aaron Sloman

subsystem design (including vision, planning etc.) and architectures. As the project
has progressed we have made strong commitments to particular designs for elements
of the overall system. These design commitments have constrained the space of so-
lutions available for subsequent developments. Although the following description
is anecdotal, it demonstrates one possible type of development trajectory! for an
integrated intelligent system.

Prior to any design or development we analysed our target scenarios. From these
scenarios we extracted a number of requirements for our integrated systems to sat-
isfy, providing some initial constraints on design space. These requirements are too
numerous to explore fully here, but the following proved important for subsequent
developments:

e The system must feature concurrently active elements in order to respond to a
dynamic world whilst processing.

e The system must represent and reason about hypothetical future states, thus re-
quiring explicit representations.

e The system must support specialised reasoning in its subsystems, requiring sup-
port for multiple representations.

Although these requirements do not appear too restrictive, they rule out design ap-
proaches that require a single unified representation and that do not support con-
currency. This prevents the use of many architectures for modelling human-level
intelligence, and logic-based robotics approaches.

Our first design for a system to satisfy the scenario’s requirements was con-
structed using the Open Agent Architecture (OAA) [15]. It featured concurrent
components for language interpretation and generation, object category recogni-
tion using a modified variant of SIFT, generation of multiple forms of spatial rep-
resentations, and cross-modal information fusion. The use of OAA constrained us
to design the system as a network of exhaustively pair-wise connected components
that exchanged information directly. Although the resulting system satisfied our re-
quirements and demonstrated the desired behaviour, the architecture structure had
a number of drawbacks. The main drawback was that the direct exchange of infor-
mation made it difficult to share the same information between more than two com-
ponents in a system, making it difficult to explore the consequences of component
collaboration (e.g. using scene information to incrementally reduce the hypothesis
space during parsing [13]). This is a clear of example of a design choice (the connec-
tion model enforced by the architecture) limiting the subsequently available design
space (the design space of information sharing models). It is worth noting that in
theory we could have implemented a different information sharing model on top of
OAA, but this would not have been a natural fit with the underlying architecture.
These kinds of specialisation costs (i.e. the cost of implementing one system given
the constraints of another) are hard to measure, but typically very important in the
design and implementation of intelligent systems.

! It is arguable that this development trajectory has much in common with a large number of
intelligent and integrated system projects.

Exploring Design Space For An Integrated Intelligent System

Because of the drawbacks of our OAA-based system, we decided to explore de-
signs for architectures based on commonly accessible information stores. This led to
the development of the CoSy Architecture Schema (CAS) [16, 17, 18], a schema that
groups concurrently active processing components into separate subarchitectures
via limited connections to shared working memories. In CAS all communication be-
tween components occurs via these working memories (rather than directly between
components), enforcing the requirement of data sharing (see Figure 1(a)). However,
the separation of components into groups around working memories brings its own
set of design constraints, and these have become apparent in the systems we have
built on top of CAS.

The systems we have built with CAS feature subarchitectures designed around
particular representations, e.g. a visual subarchitecture containing 3D representa-
tions of objects, and a communication subarchitecture containing logical interpre-
tations of utterances. Although these representations are shared, they are only intel-
ligible by the components in the same subarchitecture. To obtain a complete view
of all the information in the system, our instantiations have had to include a bind-
ing subarchitecture, which abstracts from other subarchitectures to provide a single
amodal representation of the current state [19]. It is arguable that a system based
on a single unified data store would not require such augmentation (although such a
design would not meet our requirements). This again demonstrates how a design de-
cision (separating information is into different memories) influences the subsequent
design choices for a system. In this instance, choices were not completely ruled out,
but additional mechanisms were required to support functionality that would have
been more easily obtained in an alternative design.

4 Exploring Information Sharing Designs

The preceding discussion presents insights into system design in an entirely qualita-
tive manner. To further the principled exploration of the design space of integrated
intelligent systems, we want to generate quantitative data that describes possible
trade-offs between designs. Given our experience with information sharing in dif-
ferent architectures, we chose to explore this area of design space using the compar-
ative methodology described in Section 2.

There is a space of possible models for information sharing between components,
ranging from point-to-point communication in which components share information
only with directly connected components (i.e. the model used by the OAA-based
system described in Section 3), to a broadcast model where components share in-
formation with every component in a system. Between these two extremes exist a
range of possible systems in which components share information with a designer-
defined subset of components. Which model is chosen can have a great impact on
the behaviour of the final system, but little information is available to designers of
intelligent systems about the trade-offs associated with this dimension of design
space. In the remainder of this paper we make an initial attempt at filling this void.

Nick Hawes and Jeremy Wyatt and Aaron Sloman

4.1 Experimental System

Task Push —
| Manager Pull —<
A '| : .
\I;?U'/ompm E Working
T Memory
>
Managed
Processing
.. Gomponents
1 Unmanaged E
E Processing '
+ Components

(a) The CAS subarchitecture design (b) A CAS architecture based on three sub-
schema. All information passes via the architectures. Cross-subarchitecture com-
working memory. munication occurs via connections between

working memories.

Fig. 1 Two views of the CoSy Architecture Schema.

The system which we have used to explore the effects of information sharing
is derived from an intelligent robot cable of object manipulation and human-robot
interaction [17]. It is based on the CAS architecture schema. This schema was briefly
described in Section 3, and is pictured in Figure 1. This schema has a number of
features relevant to developing integrated systems, but here we will focus on the
approach it takes to passing information between components?.

When information is operated on (added, overwritten or deleted) in a CAS work-
ing memory a change event is generated. This event structure contains information
on the operation performed, the type (i.e. class name) of the information, the com-
ponent which made the change, and the location of the information in the system.
Components use this change event data to decide whether to perform some pro-
cessing task with the changed information. To restrict the change events that are
received, each component is able to filter the event stream based on change event
contents. Components typically subscribe to relevant change information by reg-
istering callbacks on combinations of the fields in the change event. For example,
a vision component may subscribe to additions of regions of interests. This filter
would refer to the change event’s operation type (addition) and data type (region of
interest).

2 For a more complete description of CAS, please see previous previous work, e.g. [16, 17, 18].

Exploring Design Space For An Integrated Intelligent System

CAS groups components into subarchitectures around a working memory. These
subarchitecture groupings influence the flow of change events, and thus the flow
of information between components. Within a subarchitecture components a sent
all the of change events generated by operations on that subarchitecture’s working
memory. They then use their filters to select the relevant events from this stream.
Change events that describe operations on other working memories (i.e. those out-
side of the subarchitecture) are first checked against the union of all of the filters
registered by components in a subarchitecture. If an event passes these filters then
it is forwarded to all of the subarchitecture’s components via the same mechanism
used for local changes. This reuse of the existing filter mechanism adds redundancy
to the change propagation mechanisms, but reduces the complexity of the system.

When a component reads information from, or writes information to, a working
memory, or a change event is broadcast, a communication event occurs. A commu-
nication event abstracts away from the underlying communications infrastructure,
hiding whether the information is being moved in memory, over a network or trans-
lated between programming languages. Within subarchitectures any operation re-
quires a single communication event. When communication happens between two
subarchitectures an additional communication event is required due to the separa-
tion (this is equivalent to the information passing over one of the dark lines in Figure
1(b)).

Change and communication events are implemented as part of our CoSy Archi-
tecture Schema Tookit (CAST) which realises the CAS schema in an open source,
multi-language software framework [18]. In CAST the change event system is im-
plemented as a callback mechanism modelled on event driven programming. The
communication events are implemented as procedure calls or remote procedure calls
depending on the languages and distribution methods used in the instantiation.

Using CAST we have built an integrated intelligent robot which featuring subar-
chitectures for vision, qualitative spatial reasoning (QSR), communication, contin-
ual planning, binding, manipulation and control [17]. To provide a simpler system
useful for exploring the design space of information sharing mechanisms, reduced
this system to a smaller number of subarchitectures: vision, binding, and QSR. This
reduction was chosen because it provides a simpler system which still integrates
two modalities with distinct representations (quantitative vision and qualitative spa-
tial reasoning). For the experimental runs we replaced some of the components in
the visual subarchitecture with simulated components. These not only simulated the
results of visual processing, but also the interactions of the components via shared
working memories (the important aspect of this study). This allowed us to fully
automate interactions with the system in order to perform a large number of exper-
imental runs. Aside from these alterations, the remaining components were taken
directly from our original robotic system.

When presented with an object after a change to the visual scene, the system first
determines its 3D position and then extracts some visual attributes. This information
is abstracted into the binding subarchitecture where it become available in a simpli-
fied form to the rest of the system. The presence of object information in the binding
subarchitecture triggers the QSR subarchitecture which computes spatial relations

Nick Hawes and Jeremy Wyatt and Aaron Sloman

between the new object and any other known objects. This relational information is
transmitted back to the binding subarchitecture where the relations are introduced
between the existing object representations.

4.2 Methodology

We can use the shared memory-based design of CAS to explore the effects of vary-
ing information sharing patterns between components in our experimental system.
We do this by altering the ratio of components to subarchitectures.

We start with an n-m design where n components are divided between m subar-
chitectures, where n > m > 1. This is our original system described above, in which
components are assigned to subarchitectures based on functionality (vision, binding
or QSR), although for this experimental work arbitrary n-m assignments are also
possible (and would explore a wider area of design space). We then reconfigure this
system to generate architectures at two extremes of the design space for information
sharing models. At one extreme we have an n-1 design in which all » components
from the original system are in the same subarchitecture. At the other extreme of
design space we have an n-n design in which every component is in a subarchitec-
ture of its own. Each of these designs can be considered a schema specialisation of
the CAS schema from which a full instantiation can be made.

These various designs are intended to approximate, within the constraints of
CAS, various possible designs used by existing systems. The n-1 design represents
systems with a single shared data store to which all components have the same ac-
cess. The n-m design represents systems in which a designer has imposed some
modularity which limits how data is shared between components. The n-n design
represents a system in which a no data is shared, but is instead transmitted directly
between components. In the first two designs a component has do to extra work to
determine what information it requires from the available shared information. In the
latter two designs a component must do extra work to obtain information that is
not immediately available to it (i.e. information that is not in it’s subarchitecture’s
working memory).

In order to isolate the effects of the architectural alterations from the other run-
time behaviours of the resulting systems, it is important that these architectural dif-
ferences are the only differences that exist between the final CAS instantiations. It is
critical that the systems are compared on the same task using the same components.
CAST was designed to support this kind of experimentation: it allows the structure
of instantiations to be changed considerably, with few, if any, changes to component
code. This has allowed us to take the original implementation described above and
create the n-1, n-m, and n-n instantiations without changing component code. This
means that we can satisfy our original aim of comparing near-identical systems on
the same tasks, with the only variations between them being architectural ones.

To measure the effects of the architecture variations, we require metrics that can
be used to highlight these effects. We previously presented a list of possible metrics

Exploring Design Space For An Integrated Intelligent System

that could be recorded in an implemented CAS system to demonstrate the trade-offs
in design space [20]. Ultimately we are interested in measuring how changes to the
way information is shared impacts on the external behaviour of the systems, e.g.
how often it successfully completes a task. However, given the limited functionality
of our experimental system, these kind of behaviour metrics are relatively uninfor-
mative. Instead we have chosen to focus on lower-level properties of the system. We
have compared the systems on:

1. variations in the number of filtering operations needed to obtain the change
events necessary to get information to components as required by the task.

2. variations in the number of communication events required to move information
around the system.

As discussed previously communication and change events underlie the behaviour
of almost all of the processing performed by a system. Therefore changes in these
metrics demonstrate how moving through the space of information sharing models
supported by CAS influences the information processing profile of implemented
systems.

We studied the three different designs in two configurations: one with vision and
binding subarchitectures, and the second with these plus the addition of the QSR
subarchitecture. This resulted in six final instantiations which we tested on three
different simulated scenes: scenes containing one object, two objects and three ob-
jects. Each instantiation was run twenty times on each scene to account for variations
unrelated to the system’s design and implementation.

4.3 Results

The results for the filtering metric are based around the notion of a relevant event. A
relevant event is a change event that a component is filtering for (i.e. an event that it
has subscribed to). Figure 2 demonstrates the percentage of relevant events received
per component in each instantiation. 100% means that a component only receives
change events it is listening for. A lower percentage means that the connectivity of
the system allows more than the relevant change events to get the component, which
then has to filter out the relevant ones. This is perfectly natural in a shared memory
system. The results demonstrate that a component in an n-1 instantiation receives
the lowest percentage of relevant events. This is because within a subarchitecture,
all changes are broadcast to all components, requiring each component to do a lot of
filtering work. A component in an n-n instantiation receives the greatest percentage
of relevant changes. This is because each component is shielded by a subarchitec-
ture working memory that only allows change events that are relevant to the attached
components to pass. In the n-n case because only a single component is in each sub-
architecture this number is predictably high?. This figure demonstrates the benefits

3 The events required by the manager component in each subarchitecture mean the relevant per-
centage for the n-n instantiations is not 100%.

Nick Hawes and Jeremy Wyatt and Aaron Sloman

Relevant Changes Notified to Components
100 T T T

% of notified changes that were relevant

M:1 I: M
Components © # Sub-architectures

Fig. 2 Average number of relevant change events received per component.

of a directly connected instantiation: components only receive the information they
need.

Filtering work per relevant change
25 T

Total Filtering Operations / # Relevant Changes

M:1 It MM
Companents : # Subarchitectures

Fig. 3 Average filtering effort per relevant change event received.

However, this increase in the percentage of relevant changes received comes at
a cost. If we factor in the filtering operations being performed at a subarchitecture
level (which could be considered as “routing” operations), we can produce a figure
demonstrating the total number of filtering operations (i.e. both those at a subarchi-
tecture and a component level) per relevant change received. This is presented in
Figure 3. This shows a striking similarity between the results for the n-1 and n-n
instantiations, both of which require a larger number of filtering operations per rel-

Exploring Design Space For An Integrated Intelligent System

How filtering effort changes with scene complexity

SF —— -1 object
———2 ohjects
3 objects

hean # Filtering operations per relevant event (20 runs)

1
1 I: KM
Compaonents : # Subarchitectures

Fig. 4 Average filtering effort per relevant event compared to scene complexity.

evant change than the n-m instantiations. In the n-m systems, the arrangement of
components into functionally themed subarchitectures results in both smaller num-
bers of change events being broadcast within subarchitectures (because there are
fewer components in each one), and a smaller number of change events being broad-
cast outside of subarchitectures (because the functional grouping means that some
changes are only required within particular subarchitectures). These facts mean that
an individual component in an n-m instantiation receives fewer irrelevant change
events that must be rejected by its filter. Conversely a component in the other in-
stantiations must filter relevant changes from a stream of changes containing all of
the change events in the system. In the n-1 instantiations this is because all of these
changes are broadcast within a subarchitecture. In the n-n instantiations this is be-
cause all of these changes are broadcast between subarchitectures. Figure 4 shows
that these results are robust against changes in the number of objects in a scene.
Also, the nature of the results did not change between the systems with vision and
binding components, and those with the additional QSR components.

Figure 5 demonstrates the average number of communication events per system
run across the various scenes and configurations for the three different connectiv-
ity instantiations. This shows that an n-n instantiation requires approximately 4000
more communication events on average to perform the same task as the n-1 instan-
tiation, which itself requires approximately 2000 more communication events than
the n-m instantiation. Figure 6 demonstrates that this result is robust in the face of
changes to the number of objects in a scene. The nature of the results also did not
change between the systems with vision and binding components, and those with
the additional QSR components.

This result is due to two properties of the systems. In the n-n system, every in-
teraction between a component a working memory (whether it’s an operation on
information or the propagation of a change event) requires an additional commu-

Nick Hawes and Jeremy Wyatt and Aaron Sloman

« 10% Communication Overhead far Three Architectural Configurations

Connector events during systern run

M:1 I: M
Compaonents : # Subarchitectures

Fig. 5 Average total communication events per instantiation run.

« 10 How Communication overhead changes with scene complexity

Mean # Connector events in & run (averaged over 20 runs)

scene objects

Fig. 6 Average total communication events per instantiation run compared to scene complexity.

nication event. This is because all components are separated by subarchitectures as
well as working memories. In addition to this, the number of change events propa-
gated through the systems greatly effect the amount of communication events that
occur. In the n-n and n-1 instantiations, the fact that they effectively broadcast all
change events throughout the system contributes significantly to the communication
overhead of the system.

Exploring Design Space For An Integrated Intelligent System

5 Conclusions

From these results we can conclude that a functionally-decomposed n-m CAS in-
stantiation occupies a “sweet spot” in architectural design space with reference to
filtering and communication costs. This sweet spot occurs because having too much
information shared between components in a system (the n-1 extreme) means that
all components incur an overhead associated with filtering out relevant informa-
tion from the irrelevant information. At the other extreme, when information is not
shared by default (the n-n extreme) there are extra communication costs due to du-
plicated transmissions between pairs of components, and (in CAS-derived systems
at least) the “routing” overhead of transmitting information to the correct compo-
nents (i.e. the filtering performed by working memories rather than components).

In this simple example the existence of such a sweet spot, subject to well defined
assumptions, could be established mathematically without doing any of these exper-
iments. However, we have shown the possibility of running experiments to test such
mathematical derivations, and also to deal with cases where no obvious mathemati-
cal analysis is available because of the particular features of an implementation.

It is clear that our results are not the end of the story. We have yet to explore
n-m instantiations that are not designed along functional lines; it seems sensible
to expect them not to perform as well as the n-m system presented here. It is also
not clear that n-n instantiations in CAS accurately capture the benefits of a directly
connected system, as CAS’s design is tailored to information sharing as a default.

This observation leads us to consider an open question: what other appropriate
metrics should be considered when evaluating trajectories through design space? In
this paper we considered relatively low-level metrics because they could be captured
and characterised relatively easily. Other relevant metrics include behavioural mea-
sures (e.g. how likely a system is to achieve a goal), expressiveness measures (e.g.
how easy it is to encode a particular solution to a problem in an architecture), and
meta-level measures (e.g. how easy it is for a designer, or the system itself, to re-
configure the architecture or alter its functionality). It is only when this whole space
of possibilities is addressed can we truly start to judge the trade-offs of designing an
architecture in a particular way (with reference to a particular task).

Even given these shortcomings, the novel experimental methodology presented
in this paper points to a route forward for the principled study of integrated intelli-
gent systems in Al It is our hope that further work along these lines will provide
system designers with a body of knowledge about the choices and trade-offs avail-
able in architectural design space, allowing them to build systems that satisfy their
requirements in an informed and principled manner.

Acknowledgements This work was supported by the EU FP6 IST Cognitive Systems Integrated
Project “CoSy” FP6-004250-1P, and the EU FP7 IST Cognitive Systems Integrated Project “CogX”
ICT-215181-CogX.

Nick Hawes and Jeremy Wyatt and Aaron Sloman

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. Sloman, A.: The “semantics” of evolution: Trajectories and trade-offs in design space and

niche space. In: IBERAMIA 98, pp. 27-38 (1998)
Mavridis, N., Roy, D.: Grounded situation models for robots: Where words and percepts meet.
In: IROS ’06 (2006)

. Mcguire, P, Fritsch, J., Steil, J.J., Rothling, F., Fink, G.A., Wachsmuth, S., Sagerer, G., Ritter,

H.: Multi-modal human-machine communication for instructing robot grasping tasks. In:
IROS 02 (2002)

Langley, P., Choi, D.: A unified cognitive architecture for physical agents. In: AAAI 06
(2006)

. Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere, C., Qin, Y.: An integrated

theory of the mind. Psychological Review 111(4), 1036-1060 (2004)

Laird, J.E., Newell, A., Rosenbloom, P.S.: Soar: An architecture for general intelligence. AlJ
33(3), 1-64 (1987)

Andronache, V., Scheutz, M.: Integrating theory and practice: The agent architecture frame-
work apoc and its development environment ade. In: AAMAS ’04, pp. 1014-1021 (2004)

. Gat, E.: On three-layer architectures. In: D. Kortenkamp, R.P. Bonnasso, R. Murphy (eds.)

Artificial Intelligence and Mobile Robots (1997)

Salvucci, D.D.: Modeling driver behavior in a cognitive architecture. Human Factors (48),
362-380 (2006)

Choi, D., Morgan, M., Park, C., Langley, P.: A testbed for evaluation of architectures for
physical agents. In: AAAI’07 WS: Evaluating Architectures for Intelligence (2007)
Wintermute, S., Laird, J.E.: Predicate projection in a bimodal spatial reasoning system. In:
AAAI’07, pp. 1572 - 1577 (2007)

Kennedy, W.G., Bugajska, M.D., Marge, M., Adams, W., Fransen, B.R., Perzanowski, D.,
Schultz, A.C., Trafton, J.G.: Spatial representation and reasoning for human-robot collabora-
tion. In: AAAI *07, pp. 1554-1559 (2007)

Brick, T., Scheutz, M.: Incremental natural language processing for hri. In: HRI 07, pp.
263-270 (2007)

Jones, R.M., Wray, R.E.: Comparative analysis of frameworks for knowledge-intensive intel-
ligent agents. Al Mag. 27(2), 57-70 (2006)

Cheyer, A., Martin, D.: The open agent architecture. Autonomous Agents and Multi-Agent
Systems 4(1), 143-148 (2001)

Hawes, N., Wyatt, J., Sloman, A.: An architecture schema for embodied cognitive systems.
Tech. Rep. CSR-06-12, Uni. of Birmingham, School of Computer Science (2006)

Hawes, N., Sloman, A., Wyatt, J., Zillich, M., Jacobsson, H., Kruijff, G.J., Brenner, M.,
Berginc, G., Skocaj, D.: Towards an integrated robot with multiple cognitive functions. In:
AAAIL’07, pp. 1548 — 1553 (2007)

Hawes, N., Zillich, M., Wyatt, J.: BALT & CAST: Middleware for cognitive robotics.
Tech. Rep. CSR-07-1, Uni. of Birmingham, School of Computer Science (2007). URL
ftp://ftp.cs.bham.ac.uk/pub/tech-reports/2007/CSR-07-1.pdf

Jacobsson, H., Hawes, N., Kruijff, G.J., Wyatt, J.: Crossmodal content binding in information-
processing architectures. In: Proceedings of the 3rd ACM/IEEE International Conference on
Human-Robot Interaction (HRI). Amsterdam, The Netherlands (2008)

Hawes, N., Sloman, A., Wyatt, J.: Towards an empirical exploration of design space. In: Proc.
of the 2007 AAAI Workshop on Evaluating Architectures for Intelligence. Vancouver, Canada
(2007)

