6 research outputs found

    Context-Guided Self-supervised Relation Embeddings

    Get PDF
    A semantic relation between two given words a and b can be represented using two complementary sources of information: (a) the semantic representations of a and b (expressed as word embeddings) and, (b) the contextual information obtained from the co-occurrence contexts of the two words (expressed in the form of lexico-syntactic patterns). Pattern-based approach suffers from sparsity while methods rely only on word embeddings for the related pairs lack of relational information. Prior works on relation embeddings have pre-dominantly focused on either one type of those two resources exclusively, except for a notable few exceptions. In this paper, we proposed a self-supervised context-guided Relation Embedding method (CGRE) using the two sources of information. We evaluate the learnt method to create relation representations for word-pairs that do not co-occur. Experimental results on SemEval-2012 task2 dataset show that the proposed operator outperforms other methods in representing relations for unobserved word-pairs

    A Study on Learning Representations for Relations Between Words

    Get PDF
    Reasoning about relations between words or entities plays an important role in human cognition. It is thus essential for a computational system which processes human languages to be able to understand the semantics of relations to simulate human intelligence. Automatic relation learning provides valuable information for many natural language processing tasks including ontology creation, question answering and machine translation, to name a few. This need brings us to the topic of this thesis where the main goal is to explore multiple resources and methodologies to effectively represent relations between words. How to effectively represent semantic relations between words remains a problem that is underexplored. A line of research makes use of relational patterns, which are the linguistic contexts in which two words co-occur in a corpus to infer a relation between them (e.g., X leads to Y). This approach suffers from data sparseness because not every related word-pair co-occurs even in a large corpus. In contrast, prior work on learning word embeddings have found that certain relations between words could be captured by applying linear arithmetic operators on the corresponding pre-trained word embeddings. Specifically, it has been shown that the vector offset (expressed as PairDiff) from one word to the other in a pair encodes the relation that holds between them, if any. Such a compositional method addresses the data sparseness by inferring a relation from constituent words in a word-pair and obviates the need of relational patterns. This thesis investigates the best way to compose word embeddings to represent relational instances. A systematic comparison is carried out for unsupervised operators, which in general reveals the superiority of the PairDiff operator on multiple word embedding models and benchmark datasets. Despite the empirical success, no theoretical analysis has been conducted so far explaining why and under what conditions PairDiff is optimal. To this end, a theoretical analysis is conducted for the generalised bilinear operators that can be used to measure the relational distance between two word-pairs. The main conclusion is that, under certain assumptions, the bilinear operator can be simplified to a linear form, where the widely used PairDiff operator is a special case. Multiple recent works raised concerns about existing unsupervised operators for inferring relations from pre-trained word embeddings. Thus, the question of whether it is possible to learn better parametrised relational compositional operators is addressed in this thesis. A supervised relation representation operator is proposed using a non-linear neural network that performs relation prediction. The evaluation on two benchmark datasets reveals that the penultimate layer of the trained neural network-based relational predictor acts as a good representation for the relations between words. Because we believe that both relational patterns and word embeddings provide complementary information to learn relations, a self-supervised context-guided relation embedding method that is trained on the two sources of information has been proposed. Experimentally, incorporating relational contexts shows improvement in the performance of a compositional operator for representing unseen word-pairs. Besides unstructured text corpora, knowledge graphs provide another source for relational facts in the form of nodes (i.e., entities) connected by edges (i.e., relations). Knowledge graphs are employed widely in natural language processing applications such as question answering and dialogue systems. Embedding entities and relations in a graph have shown impressive results for inferring previously unseen relations between entities. This thesis contributes to developing a theoretical model to infer a relationship between the connections in the graph and the embeddings of entities and relations. Learning graph embeddings that satisfy the proven theorem demonstrates efficient performance compared to existing heuristically derived graph embedding methods. As graph embedding methods generate representations for only existing relation types, a relation composition task is proposed in the thesis to tackle this limitation

    Principled Approaches to Automatic Text Summarization

    Get PDF
    Automatic text summarization is a particularly challenging Natural Language Processing (NLP) task involving natural language understanding, content selection and natural language generation. In this thesis, we concentrate on the content selection aspect, the inherent problem of summarization which is controlled by the notion of information Importance. We present a simple and intuitive formulation of the summarization task as two components: a summary scoring function θ measuring how good a text is as a summary of the given sources, and an optimization technique O extracting a summary with a high score according to θ. This perspective offers interesting insights over previous summarization efforts and allows us to pinpoint promising research directions. In particular, we realize that previous works heavily constrained the summary scoring function in order to solve convenient optimization problems (e.g., Integer Linear Programming). We question this assumption and demonstrate that General Purpose Optimization (GPO) techniques like genetic algorithms are practical. These GPOs do not require mathematical properties from the objective function and, thus, the summary scoring function can be relieved from its previously imposed constraints. Additionally, the summary scoring function can be evaluated on its own based on its ability to correlate with humans. This offers a principled way of examining the inner workings of summarization systems and complements the traditional evaluations of the extracted summaries. In fact, evaluation metrics are also summary scoring functions which should correlate well with humans. Thus, the two main challenges of summarization, the evaluation and the development of summarizers, are unified within the same setup: discovering strong summary scoring functions. Hence, we investigated ways of uncovering such functions. First, we conducted an empirical study of learning the summary scoring function from data. The results show that an unconstrained summary scoring function is better able to correlate with humans. Furthermore, an unconstrained summary scoring function optimized approximately with GPO extracts better summaries than a constrained summary scoring function optimized exactly with, e.g., ILP. Along the way, we proposed techniques to leverage the small and biased human judgment datasets. Additionally, we released a new evaluation metric explicitly trained to maximize its correlation with humans. Second, we developed a theoretical formulation of the notion of Importance. In a framework rooted in information theory, we defined the quantities: Redundancy, Relevance and Informativeness. Importance arises as the notion unifying these concepts. More generally, Importance is the measure that guides which choices to make when information must be discarded. Finally, evaluation remains an open-problem with a massive impact on summarization progress. Thus, we conducted experiments on available human judgment datasets commonly used to compare evaluation metrics. We discovered that these datasets do not cover the high-quality range in which summarization systems and evaluation metrics operate. This motivates efforts to collect human judgments for high-scoring summaries as this would be necessary to settle the debate over which metric to use. This would also be greatly beneficial for improving summarization systems and metrics alike
    corecore