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Abstract

Automatic text summarization is a particularly challenging Natural Language Pro-
cessing (NLP) task involving natural language understanding, content selection and
natural language generation. In this thesis, we concentrate on the content selection
aspect, the inherent problem of summarization which is controlled by the notion of
information Importance.

We present a simple and intuitive formulation of the summarization task as two
components: a summary scoring function # measuring how good a text is as a sum-
mary of the given sources, and an optimization technique O extracting a summary
with a high score according to 6. This perspective offers interesting insights over pre-
vious summarization efforts and allows us to pinpoint promising research directions.
In particular, we realize that previous works heavily constrained the summary sco-
ring function in order to solve convenient optimization problems (e.g., Integer Linear
Programming). We question this assumption and demonstrate that General Purpose
Optimization (GPO) techniques like genetic algorithms are practical. These GPOs
do not require mathematical properties from the objective function and, thus, the
summary scoring function can be relieved from its previously imposed constraints.

Additionally, the summary scoring function can be evaluated on its own based
on its ability to correlate with humans. This offers a principled way of examining the
inner workings of summarization systems and complements the traditional evaluati-
ons of the extracted summaries. In fact, evaluation metrics are also summary scoring
functions which should correlate well with humans. Thus, the two main challenges
of summarization, the evaluation and the development of summarizers, are unified
within the same setup: discovering strong summary scoring functions. Hence, we
investigated ways of uncovering such functions.

First, we conducted an empirical study of learning the summary scoring function
from data. The results show that an unconstrained summary scoring function is bet-
ter able to correlate with humans. Furthermore, an unconstrained summary scoring
function optimized approximately with GPO extracts better summaries than a cons-
trained summary scoring function optimized exactly with, e.g., ILP. Along the way,
we proposed techniques to leverage the small and biased human judgment datasets.
Additionally, we released a new evaluation metric explicitly trained to maximize its
correlation with humans.

Second, we developed a theoretical formulation of the notion of Importance. In
a framework rooted in information theory, we defined the quantities: Redundancy,
Relevance and Informativeness. Importance arises as the notion unifying these con-
cepts. More generally, Importance is the measure that guides which choices to make
when information must be discarded.

Finally, evaluation remains an open-problem with a massive impact on summa-
rization progress. Thus, we conducted experiments on available human judgment
datasets commonly used to compare evaluation metrics. We discovered that these
datasets do not cover the high-quality range in which summarization systems and
evaluation metrics operate. This motivates efforts to collect human judgments for
high-scoring summaries as this would be necessary to settle the debate over which
metric to use. This would also be greatly beneficial for improving summarization
systems and metrics alike.
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Chapter 1

Introduction

Since the seminal work of Luhn (1958), automatic text summarization has received
a lot of attention. Indeed, summarization is directly applicable to many real-world
scenarios (Nenkova and McKeown, 2012) and provides an attractive framework for
developing NLP techniques such as natural language understanding or generation.

While the task appears rather intuitive, different researchers have proposed dif-
ferent formulations. For instance, Sparck Jones (1999) defined summarization as a
“reductive transformation of source texts to summary texts through content reduc-
tion by selection and generalization on what is important in the source”. Allahyari
et al. (2017) and Radev et al. (2002) also focused the task definition around the
identification of important information elements.

A slightly different take is introduced by Mani (1999): “text summarization is
the process of distilling the most important information from a source (or sources)
to produce an abridged version for a particular user (or users) and task (or tasks)”.
Here, the user and the task specificities are acknowledged and influence the infor-
mation selection procedure.

Interestingly, Fiori (2014) adopted an empirical position: “The ideal of automatic
summarization work is to develop techniques by which a machine can generate sum-
maries that successfully imitate summaries generated by human beings”. This more
recent view is inspired by developments in Machine Learning (ML), where summa-
rization systems are trained with datasets of human-written summaries.

With the aim of guiding and structuring summarization research, Sparck Jones
(1999) proposed a general model of the summarization process as three stages:

e I (Interpretation): The input source texts are converted into some useful rep-
resentation, i.e., a mathematical description of the information conveyed by
the sources.

e T (Transformation): The input representation is mapped to a representation
of the desired summary. The critical step of information selection is executed
during this stage.

e G (Generation): The representation of the desired summary is used to actually
produce a human-readable text.
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The interpretation step (I) is a general problem of Natural Language Understand-
ing (NLU): mapping texts to appropriate semantic representations. In practice,
summarization approaches came-up with text representations especially designed
for the task of summarization.

The transformation step T should identify important information elements and
decide which ones to keep. Thus, it is the main challenge of summarization and the
focus of this thesis. It is heavily influenced by the choices made in the previous step
as it operates directly on the representation chosen in step I.

The generation step (G) aims to produce readable and coherent texts. This is a
problem globally shared with the field of Natural Language Generation (NLG). Since
NLG is a particularly hard challenge on its own, most summarization systems relied
on a simplified step G: extraction of elements (e.g., sentences) already present in the
source documents. Such systems belong to the Extractive Summarization (ES) cat-
egory. ES is naturally formalized as a discrete optimization problem where the text
source is considered as a set of sentences and the summary is created by selecting
an optimal subset of the sentences under a length constraint (McDonald, 2007; Lin
and Bilmes, 2011). In order to focus on the task of identifying important elements,
we also follow the ES strategy.

In fact, in this work, we show that summarization is equivalent to the problem
of choosing i) an objective function @ for scoring system summaries, and (ii) an op-
timizer O which search for the subset of sentences maximizing 6. In the ideal case,
this objective function would encode all the relevant quality aspects of a summary,
such that by maximizing this function we would obtain the best possible summary.
Throughout this document, we employ the terms objective function, summary scor-
ing function or @ interchangeably.

The summary scoring component # encompasses step I and T, while the opti-
mizer implements step G by extracting the set of sentences with maximal scores
according to #. Remark that # is doing slightly more than step T because it scores
any candidate summaries instead of simply describing the most desired one. Fig-
ure 1.1 provides a simple illustration of the (0, O) framework in comparison to the
(I, T, G) perspective.

The (6, O) decomposition is the organizing idea of this work and will be discussed
at length in chapter 3. It provides interesting insights into the task of summariza-
tion which allow us to pinpoint several issues with previous works and frame new
research questions.

First, an analysis of previous works reveals that the summary scoring function
and the optimization have been tightly intertwined. In order to efficiently solve the
optimization problem, # is usually constrained to exhibit convenient mathematical
properties, e.g., linearity or submodularity (Gillick and Favre, 2009; Lin and Bilmes,
2011).

We hypothesize that this is greatly limiting as realistic summary scoring func-
tions should account for complex (non-linear) interactions between sub-elements like
sentences. Furthermore, these restrictions come from computational considerations
without conceptual justifications; it is not clear whether the need for efficient opti-
mizers is justified in practice.
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Figure 1.1: Illustration of the (0, O) framework (second line) in comparison to the
(I, T, G) perspective (first line). Here the input representation of step I is a graph
but, in practice, it could be any kind of mathematical representation.

Indeed, conceptually, 8 and O are independent: while the optimization step is
an engineering challenge which can be addressed by the field of discrete optimiza-
tion (Blum and Roli, 2003), the summarization research could focus on crafting and
studying strong summary scoring functions. We discuss this idea in chapter 3

Second, the constraint imposed on the summary scoring function are ensured
by, first, assigning scores to smaller elements like words (Hong and Nenkova, 2014),
n-grams (Gillick and Favre, 2009; Li et al., 2013) or sentences (Conroy and O’leary,
2001; Cao et al., 2015a) and then, defining a combination function for scoring whole
summaries (Carbonell and Goldstein, 1998; Ren et al., 2016).

The combined function is then carefully chosen to be linear or submodular with
respect to the smaller units. Defining, or learning, scores for smaller units is again
limiting the expressiveness power of 6, as interactions between elements are not
easily modeled.

In particular, summarization systems struggle with redundancy, which is a com-
plex interaction between all the elements selected in the summary. If the con-
straint on the summary scoring function is removed, features only computable at
the summary-level become available. Such features could easily capture complex
phenomena, e.g., redundancy or overall similarity between the summary and the
input. We confirm this intuition in chapter 4.

Third, the evaluation of summarization systems remains an open-problem with
a major impact. It guides summarization progress by deciding which summaries
and systems to promote. The evaluation of summaries is notably difficult due to the
vagueness of the task and the lack of true gold standard (Radev et al., 2003).

Ideally, summaries and systems would be evaluated manually by trained human
annotators following a set of carefully designed guidelines, e.g., the Pyramid method
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(Nenkova et al., 2007). Unfortunately, such manual annotations are expensive to
obtain, and not reproducible. Thus, a large body of work has focused on the devel-
opment of automatic evaluation metrics.

Traditionally, automatic evaluations compare the extracted summaries (system
summaries) against a pool of human-written summaries (reference summaries). A
prominent example of such automatic evaluation metric is ROUGE (Lin, 2004b).
It computes an n-gram overlap between the system and reference summaries. De-
spite being heavily criticized for its simplistic assumptions, ROUGE has become the
standard evaluation metric.

However, given recent advances in the automatic evaluation (Lloret et al., 2018),
empirical research could progressively move away from ROUGE towards more mean-
ingful metrics for both evaluating and training systems. We put this idea into prac-
tice in chapter 4.

Our (6, O) framework highlights the importance of the summary scoring function.
Yet, there exists no proper way to study these functions independently from their
optimization methods. Such analysis could be beneficial to understand the inner
workings of summarization systems and guide future work. In Chapter 3, we propose
a way to analyze summary scoring functions using available human judgments.

Finally, there is a lack of abstract and theoretical studies on summarization.
In particular, the notion of Importance is often talked about informally but has
barely received a formal treatment. In fact, summarization research has heavily
focused on empirical developments, crafting summarization systems to perform well
on standard datasets while leaving the formal definition of Importance latent (Das
and Martins, 2010; Nenkova and McKeown, 2012).

Yet, Importance is the key notion guiding the simplification step T. Indeed, sum-
marization is a lossy semantic compression and whenever one compresses with loss
of information one must make choices about what to discard. Importance can be
viewed as the measure that guides these choices. We postulate that establishing
formal theories of Importance has the potential to advance our understanding of the
task and guide future research. In summarization, the lack of efforts to produce
abstract theoretical frameworks might impede the progress. We make initial step
toward mitigating this issue in chapter 5

These challenges give rise to the following research questions, which we want to
approach in the current thesis:

RQ1 Research Question 1: Is it justified to constrain the summary scoring
function 67 Implicitly, this questions whether General Purpose Optimization
(GPO) techniques, which do not make any assumption about the objective
function, are efficient and effective enough to be used in practice.

RQ2 Research Question 2: Is an unconstrained summary scoring function better
able to match human judgments? Does this also translate to better summaries
when such a function is optimized approximately with a GPO?

RQ3 Research Question 3: How to study the inner component 6 of summariza-
tion systems? Such an analysis could be useful to understand systems and
pinpoint potential areas of improvements.
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Figure 1.2: Illustration of the (A, O) framework and some of its consequences. The
green summary is the summary being scored. The gold summaries are the human-
written reference summaries. Summary scoring functions can be trained and evalu-
ated with human judgments (whether they are evaluation metrics or summarizers’
internal scoring functions). Optimizing a 65,5 results in extracted summaries. This
constitutes a summarizer if 6 does not use any evaluation resources. If 6 uses evalu-
ation resources, then it is an evaluation metric and optimizing it means computing
its upper-bound.

RQ4 Research Question 4: When learning 6 from data, what is the impact
of the supervision signal? In particular, can we leverage the existing human
judgment datasets to improve the training?

RQ5 Research Question 5: What is a formal interpretation of the notion of
Importance?

1.1 Contributions

The contributions of this thesis can be divided into (7) a description of the (6, O)

framework (illustrated by figure 1.2) used to interpret previous works and demon-

strate the practicality of GPO for the summarization use-case , (i) an empirical

quest for discovering summary scoring functions from data resulting in new strong

summarization systems and evaluation metrics, and (744) a theoretical path for defin-

ing a summary scoring function via a formal treatment of the notion of Importance.
The following lists provide an overview of these contributions:

Contributions associated to RQ1:

e We introduce and describe formally the (6, O) framework. To further illus-
trate this decomposition, we interpret, within the framework, several existing
summarization systems by identifying their choices of § and O.

e We adapt various GPO techniques which can optimize any arbitrary function
and compare them on summarization datasets. The results show that GPOs
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are both efficient and effective enough for the summarization use-case. This
frees 6 from the previously imposed constraints.

e Several existing summarization systems whose summary scoring functions have
been identified are significantly improved by switching from a greedy algorithm

to a GPO.

e By leveraging the complementarity of several GPOs, one can compute bet-
ter upper-bound estimates for evaluation metrics for which it is impossible to
compute the exact upper-bound efficiently. In practice, we computed upper-
bound estimates for two important example metrics: Jensen-Shannon diver-
gence evaluation metric (Lin et al.; 2006) and PEAK (Yang et al., 2016), an
automatic version of Pyramid.

Contributions associated to RQ2:

e We trained various summary scoring functions with and without linearity con-
straints and observed a much better performance for unconstrained functions.
In particular, unconstrained functions better correlate with human judgments.

e The unconstrained functions optimized approximately by GPOs extract better
summaries than the constrained functions optimized exactly with ILP. This
further confirms the hypothesis that removing the constraints on 6 is beneficial.

e Evaluation metrics and summarizers’ internal scoring functions are both sum-
mary scoring functions and can be learned within the same setup. Thus, the
two main challenges of summarization, evaluation and crafting summarizers,
are unified and framed in the same setup.

e We trained a new evaluation metric S3 and released it for the community. '
Contributions associated to RQ3:

e By analogy with the evaluation of evaluation metrics, we propose to analyze
summary scoring functions based on their ability to correlate with human
judgments. This results in a principled way of studying the inner workings of
summarization systems.

e We observed surprisingly low correlations between existing systems and hu-
mans. This suggests that current summarization systems work without mod-
eling human scores.

Contributions associated to RQ)4:

e An important special case of # learning setup is studied: when ROUGE is used
as supervision. In such case, based on the mathematical structure of ROUGE,
we could derive an almost perfect linear approximation provided scores for
sentences are available. Thus, the task of summarization (as evaluated by
ROUGE) reduces itself to the task of learning the sentence scores.

! https://github.com/UKPLab/emnlp-ws-2017-s3
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e We observed that learning solely from available human judgments leads to
summary scoring functions which are ill-behaved under optimization. We pro-
pose a simple regularization strategy to mitigate this issue; the resulting sum-
marizer extracts high-quality summaries.

Contributions associated to RQ)5:

e Within an abstract framework rooted in information theory, we formally de-
fine several summarization quantities: Redundancy, Relevance and Informa-
tiveness. Importance arises as the notion unifying these concepts.

e Under simplifying assumptions, the summary scoring function induced by the
newly defined notion of Importance is shown to correlate well with human
judgments. Furthermore, it is capable of discriminating reference summaries
from system summaries.

Analysis of Human Judgments:

e Several of our experiments hinted that existing human judgment datasets may
have limitations. Thus, we conducted experiments on these datasets commonly
used to compare evaluation metrics. We discovered that they do not cover the
high-scoring range in which summarization systems and evaluation metrics
operate. This casts serious doubts on the trustworthiness of evaluation in the
field of summarization in general.

e Our experiments motivate efforts to collect human judgments for high-scoring
summaries as this would be necessary to settle the debate over which metric
to use. Such data, in combination with the techniques presented in this thesis,
would be greatly beneficial for improving summarization systems and metrics
alike.

1.2 Publication Record

Several parts of this thesis have been previously published in international peer-
reviewed conference and workshop proceedings from major events in natural lan-
guage processing, e.g., ACL, NAACL and COLING. We list these publications below
and indicate the chapters and sections of this thesis which build upon them:

e Peyrard, Maxime. (2019a). A Simple Theoretical Model of Importance
for Summarization, In Proceedings of the 57th Annual Meeting of the Associ-
ation for Computational Linguistics (ACL 2019). Florence, Italy. (chapter 1,
section 5.1, section 5.2 and section 5.3)

e Peyrard, Maxime. (2019b). Studying Summarization Evaluation Metrics
in the Appropriate Scoring Range, In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics (ACL 2019). Florence, Italy.
(chapter 1, chapter 6)
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e Peyrard, Maxime and Gurevych, Iryna. (2018). Objective Function Learn-
ing to Match Human Judgements for Optimization-Based Summarization, In
Proceedings of the 16th Annual Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies
Association for Computational Linguistics. pp. 654—660, New Orleans, USA.
(chapter 1, section 4.1, section 4.3 and section 4.4)

e Peyrard, Maxime and Botschen, Teresa and Gurevych, Iryna. (2017).
Learning to Score System Summaries for Better Content Selection Evaluation,
In Proceedings of the EMNLP workshop "New Frontiers in Summarization”
Association for Computational Linguistics. pp 74-84, Copenhagen, Denmark.
(chapter 1, section 4.1, section 4.3 and section 4.4)

e Peyrard, Maxime and Eckle-Kohler Judith. (2017a). A Principled Frame-
work for Evaluating Summarizers: Comparing Models of Summary Quality
against Human Judgments, In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (ACL 2017). pp 26-31. Vancouver,
Canada. (chapter 1, section 3.1, section 3.2 and section 4.4)

e Peyrard, Maxime and Eckle-Kohler Judith. (2017b). Supervised Learn-
ing of Automatic Pyramid for Optimization-Based Multi-Document Summa-
rization, In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (ACL 2017). pp 1084-1094. Vancouver, Canada.
(chapter 1, section 3.3, section 4.1 and section 4.4)

e Peyrard, Maxime and Eckle-Kohler Judith. (2016a). A General Opti-
mization Framework for Multi-Document Summarization Using Genetic Algo-
rithms and Swarm Intelligence, In Proceedings of the 26th International Con-
ference on Computational Linguistics (COLING 2016). pp 247-257. Osaka,
Japan. (chapter 1, section 3.1, section 3.2 and section 4.4)

e Peyrard, Maxime and Eckle-Kohler Judith. (2016b). Optimizing an Ap-
proximation of ROUGE - a Problem-Reduction Approach to Extractive Multi-
Document Summarization, In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (ACL 2016). pp 1825-1836. Berlin,
Germany. (section 4.2 and section 4.4)

1.3 Thesis Organization

This thesis is structured in seven chapters. We provide a brief overview of the or-
ganization of this document and the content of each chapter:

Chapter 2: “Summarization’

In order to contextualize the contributions of this thesis, a broad discussion of previ-
ous works in summarization is proposed. Applications of summarization, datasets,
prominent approaches and evaluation challenges are presented.
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Chapter 3 “A Framework for Optimization-based Summarization’:

This chapter introduces the (f, O) framework and uses it to interpret previous
works. The summary scoring functions from these previous works are compared
against human judgments. Furthermore, various GPO techniques are adapted to
summarization and their performances are compared on summarization datasets.

Chapter 4 “Learning the Summary Scoring Function

This chapter investigates empirical approaches to discover strong summary scor-
ing functions from data. Several variants of the learning scenario are compared.
The results confirm the hypothesis that freeing 6 from constraints is beneficial for
summarization. Techniques to incorporate human judgments in the training are
presented. New summarization systems and evaluation metrics are introduced.

Chapter 5 “ Theoretical Approach’

This chapter steps back from the empirical approach and adopts a theoretical path
to craft summary scoring functions. Several concepts intuitively connected to sum-
marization are formally described: Redundancy, Relevance, Informativeness and
Importance.

Chapter 6 “Limitations of Human Judgment Datasets’:

This chapter discusses the limitations of existing human judgment datasets. In
particular, they do not cover the high-scoring range in which current systems and
metrics operate. Furthermore, existing evaluation metrics do not correlate in this
high-scoring range. Improvements cannot be measured reliably because metrics dis-
agree and it is not clear which one to trust. This motivates the collection of human
judgments for high-quality summaries

Chapter 7 “Conclusion’
Finally, we summarize the main contributions of this thesis. Potential future research
directions are proposed from both the empirical and theoretical perspectives.






Chapter 2

Summarization

In this chapter, we discuss relevant previous works in the field of summarization.
This means presenting the diversity of summarization tasks, describing existing
datasets, introducing prominent approaches and discussing proposed evaluation
methodologies. More detailed information about the summarization field in gen-
eral can be found in Nenkova and McKeown (2011), Torres-Moreno (2014b), Yogan
et al. (2016) or Lloret et al. (2018).

2.1 Task Specifications

2.1.1 Many Tasks, Many Applications

According to Nenkova and McKeown (2012) and Saggion and Poibeau (2013) auto-
matic text summarization tasks can be organized along three dimensions:

e Input type: single, multi-document, etc.
e Purpose: generic, query-based, etc.
e Output type: extractive, abstractive

Input Type:

Single document summarization produces a summary for one source (Torres-Moreno,
2014b). In contrast, multi-document summarization takes as input a set of related
documents.

Different input types offer different challenges and opportunities (Yogan et al.,
2016). For example, multi-document summarization relies heavily on redundancy as
important information elements are likely to be repeated across documents (Nenkova
and McKeown, 2011). Even though redundancy generally correlates with Impor-
tance, there may be non-redundant yet important information elements. Such ele-
ments are difficult to discover without a better modeling of the notion of Importance
(Zopf et al., 2016a).

The input documents can be drawn from various domains. For example, web
pages (Amitay and Paris, 2000; Delort et al., 2003), blogs (Hu et al., 2007; Sharifi
et al., 2010), emails (Newman and Blitzer, 2003; Nenkova and Bagga, 2003), scientific
articles (Mei and Zhai, 2008; Qazvinian and Radev, 2008), biomedical documents
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(Elhadad et al., 2005; Khelif et al., 2007), online live-blogs (P.V.S. et al., 2018),
finance articles (Filippova et al., 2009) or streams of articles (Kedzie et al., 2016; Lin
et al., 2017). In general, different input domains require domain-specific knowledge
to derive more adapted notions of Importance (Allahyari et al., 2017).

In practice, most of the research focused on news summarization (Mckeown and
Radev, 1995; White et al., 2001). Indeed, news texts exhibit standard language and
discuss common topics. Thus, news summarization constitutes a convenient testbed
for new approaches.

Purpose:

The majority of existing works operate under the generic assumption, where the
summary is targeted at a hypothetical average user. In practice, this assumes the
summary is intended to a wide audience without further information about individ-
ual preferences of the users.

In contrast, query-based summarization produces summaries that contain only
information relevant to a query submitted by the user. The query can be a set of
keywords or a statement in natural language. This task is related to information
retrieval (e.g., snippets produced by search engines (Nenkova and McKeown, 2011)).

Similarly, personalized summarization tailors summaries to a specific and well-
identified user. Personalized and query-based summarization are ways of biasing
the summarization task and forcing the system to consider external information
(Saggion and Poibeau, 2013).

Finally, update summarization addresses another goal of potential interest to
end-users. An update summary must convey the important development of an event
beyond what the user has already seen (Dang and Owczarzak, 2008). Informally, it
can be understood as summarization with memory.

Output Type:

Until recently (Yao et al., 2017), the vast majority of research focused on extractive
summarization, which outputs a selection of important sentences or phrases available
in the input sources (Ko and Seo, 2008; Nenkova and McKeown, 2012). By selecting
already grammatical elements, extractive summarization reduces to a combinatorial
optimization problem (McDonald, 2007). To solve such combinatorial problems,
summarization systems have leveraged powerful techniques like Integer Linear Pro-
gramming (ILP) or submodular maximization. These approaches are discussed in
more details in section 2.3.

In contrast, abstractive summarization aims to produce new and original texts
(Khan et al., 2016) either from scratch (Rush et al., 2015; Chopra et al., 2016),
by fusion of extracted parts (Barzilay and McKeown, 2005; Filippova and Strube,
2008; Filippova, 2010a), or by combining and compressing sentences from the input
documents (Knight and Marcu, 2000; Radev et al., 2002). Intuitively, abstractive
systems have more degrees of freedom. Indeed, careful word choices, reformulation
and generalization should allow condensing more information in the final summary.
This should give better abilities to match the desired content expressed by step T
(the specification of what is wanted in the final summary).
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We remind the three stages of summarization laid out by Sparck Jones (1999):
I is to the input representation, T refers to the content selection and G is the final
generation step. Then, abstractive and extractive summarization seem to differ only
in the final step G. However, in practice, extractive and abstractive systems tend
to use different text representations and different information selection procedures
(Yao et al., 2017). For instance, modern abstractive summarization techniques pro-
mote end-to-end encoder-decoder approaches, which merge the three steps (I, T
and G) into one single trainable model (Rush et al.; 2015; Nallapati et al., 2016).
Section 2.3 discusses these topics in more detail.

Applications:

The variability of the summarization tasks offers a lot of flexibility to accommodate a
wide range of applications. For instance, Mani (1999) discussed headline generation,
outlines (notes for students), meeting minutes, movie synopses, reviews (book, CD,
movies, etc.), biography, abridgments, bulletins (weather forecasts, stock market
reports, news reports), etc.

According to Torres-Moreno (2014a), automatic summarization can reduce the
reading time and facilitate information extraction for users. For example, Roussinov
and Chen (2001) reported that automatic summarization of results from a search
engine reduces search time for users.

Mckeown et al. (2005) observed that writing a report from a set of news articles is
faster and easier when automatic summaries are provided as guides. Similarly, in the
experiments of Mana Lopez et al. (2004), users could find relevant information from
document sets in considerably less time when automatic summaries were available.
In particular, Mani et al. (2002) found that “summaries as short as 17% of the
full-text length speed up decision making twice, with no significant degradation in
accuracy’.

Also, Teufel (2001) showed that automatic summaries of scientific articles were
almost as helpful as human-written ones for identifying the scientific concepts men-
tioned in a given paper.

For single document summarization, Sakai and Sparck Jones (2001) observed that
indexing automatic summaries instead of full documents was helpful to information
retrieval systems. Finally, Burstein and Marcu (2000) discussed the benefits of
automatic summarization in automatic essay scoring.

2.1.2 Datasets

The definitions of summarization we have seen previously remained vague to ensure
that a wide spectrum of task variations is covered. Ultimately, the task is defined by
the datasets and their associated annotations. Indeed, they guide the summarization
research by setting concrete targets for summarization systems. Thus, we provide a
brief overview of existing datasets and efforts to construct them automatically.
Table 2.1 summarizes the datasets we present in this section and their properties.

Document Understanding Conference (DUC):

Between 2000 and 2007, the National Institute of Standards and Technology (NIST)
organized the Document Understanding Conference (DUC). The goal was to facili-
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tate progress in summarization by providing datasets and manual evaluation of sys-
tems. This resulted in various datasets and evaluation for single and multi-document
summarization of news articles.

In the first major establishment in 2001, ! a dataset for both single and multi-
document summarization consisting of 60 topics of 10 documents was released. In
2002, ? a similar setup was proposed with abstracts for single document summariza-
tion and extracts for multi-document summarization.

The editions of 2003 (Over, 2003) and 2004 * built on prior years by adding more
topics. For DUC-2005 (Dang, 2005) and 2006 (Dang, 2006), systems had to deliver a
brief answer to a complex question concerning a set of 25 to 50 documents. In 2007,
this query-focused task was continued together with a pilot update summarization
task. In update summarization, the goal is to first generate a summary for a doc-
ument set A (generic summarization). Then the systems should generate another
100-word summary of a subsequent document set B for the same topic, under the
assumption that the reader has already read A.

Text Analysis Conference (TAC):

The summarization track at the Text Analysis Conference (TAC) was a direct con-
tinuation of the DUC series. In particular, the main tasks of TAC-2008 (Dang and
Owczarzak, 2008) and TAC-2009 (Dang and Owczarzak, 2009) were refinements of
the pilot update summarization task of DUC 2007. A dataset of 48 topics was re-
leased as part of the 2008 edition and 44 new topics were created in 2009. TAC-2008
and TAC-2009 became standard benchmark datasets and we use them throughout
the thesis.

TAC-2010 (Owczarzak and Dang, 2010) and TAC-2011 (Owczarzak and Dang,
2011) put emphasis on the guided summarization scenario. The goal is to write a
100-word summary of a set of 10 newswire articles for a given topic from a prede-
fined category. Different categories may have different requirements. For example,
biographies and news articles should be summarized differently. This can be under-
stood as an instance of query-focused summarization. In these editions, the update
setup was extended to model a scenario where a user is interested in a particular
news story and wants to keep track of its development. The user reads some news
articles but can’t monitor all available newswires. Many of the articles repeat the
same information, so she would like a summary of the important points of the arti-
cles, that she has not already read.

MultiLing:*

During the 2011 (Giannakopoulos et al., 2011) edition of TAC, the MultiLing pilot
task was organized to measure the performance of multi-document summarization
systems in a multi-lingual setup. In the first edition, 700 documents covering 7
languages (Arabic, Czech, English, French, Hebrew, Hindi, Greek) were clustered
in 10 topics to be summarized in about 250 words. In the following 2013 edition
(Giannakopoulos, 2013), 5 topics and 3 languages (Chinese, Romanian and Spanish)

https://www-nlpir.nist.gov/projects/duc/pubs/2001slides/pauls_slides/index.htm
https://www-nlpir.nist.gov/projects/duc/pubs/2002slides/overview.02.pdf
https://duc.nist.gov/pubs/2004slides/duc2004. intro.pdf
http://multiling.iit.demokritos.gr

N
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were added.

In 2015 (Giannakopoulos et al., 2015) and 2017 (Giannakopoulos et al., 2017),
new datasets were proposed to cover new tasks: multilingual single document sum-
marization of Wikipedia featured articles in about 40 different languages, Online Fo-
rum Summarization (OnForumS) crawled from major online news publishers such as
The Guardian or Le Monde, and Call Centre Conversation Summarization (CCCS)
for transcribed speech summarization.

Also for multilingual multi-document summarization, it is worth mentioning that
Turchi et al. (2010) released a set of documents related to 4 topics in seven languages
(Arabic, Czech, English, French, German, Russian and Spanish). This dataset has
the particularity that the relevant sentences of each document are manually anno-
tated.

Large and automatically generated dataset:

The DUC and TAC datasets are small, high-quality and manually created datasets.
With the development of successful ML techniques, collecting potentially noisy but
large-scale data becomes a valid option. Hence, there have been efforts to automat-
ically collect larger corpora.

For instance, the Gigaword Corpus (Napoles et al., 2012) is an archive of nearly
10 million texts from various newswire sources. Even if it does not contain explicit
summaries, some works considered headlines as one-sentence summaries (Rush et al.,
2015; Chopra et al., 2016).

The New York Times Annotated Corpus (Sandhaus, 2008) counts as one of the
largest summarization datasets currently available. It contains nearly 1 million
carefully selected articles from the New York Times, each with summaries written
by humans.

Also, the CNN/Daily Mail dataset (Hermann et al., 2015) has been decisive in
the recent development of neural abstractive summarization (See et al., 2017; Paulus
et al., 2017; Cheng and Lapata, 2016). It contains CNN and Daily Mail articles
together with bullet point summaries.

Such large training data made possible end-to-end abstractive summarization
with sequence-to-sequence models for single documents. However, Grusky et al.
(2018) and Chen et al. (2016) observed that these datasets were biased toward
extractive summaries. Therefore, Grusky et al. (2018) proposed the NewsRoom
dataset crawled from the Internet Archive. It contains 1.3 million news articles with
the summaries extracted from the HTML metadata. According to their analysis,
the summaries combine both abstractive and extractive strategies.

Several dataset construction methods leveraged the vast amount of textual data
available in Wikipedia. For example, MultiLing (Giannakopoulos et al., 2015, 2017)
proposed to summarize Wikipedia featured articles. Zopf (2018) also viewed the
high-quality Wikipedia featured articles as summaries, for which potential sources
were automatically searched on the web. This process resulted in a large-scale multi-
document summarization dataset. This was the automated version of the hMDS
corpus (Zopf et al., 2016b) previously created manually. Similarly, (Liu et al., 2018)
automatically constructed a multi-document summarization dataset by combining
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Wikipedia citations and results of search engines.

Others have taken advantage of the easily accessible micro-blogging services to
assemble datasets. For example, the TGSum dataset (Cao et al., 2016a) is based
on Twitter. The authors observed that tweets containing hyperlinks to a document
(like a news article) often highlight key points in the corresponding document. Then
hashtags are used to cluster documents, which produces a multi-document summa-
rization dataset.

Similarly, Lloret and Sanz (2013) collected 200 news articles with their associated
tweets. Here again, the tweet written by the journalist is regarded as a summary
of the article. We also mention the Large Scale Chinese Short Text Summarization
(LCSTS) dataset (Hu et al., 2015) constructed from the Chinese micro-blogging
website Sina Weibo. This corpus consists of over 2 million Chinese texts from major
newswires together with short summaries provided by the journalists.

Examples of other domains/tasks:
As stated previously, there exist many variations of the summarization task. Here,
we provide examples of datasets focused on specific tasks or domains.

One may require real-time updates when new information is rapidly created,
like during the development of unexpected news events. To this end, the TREC
Temporal Summarization track ran shared-tasks from 2013 to 2015. Systems should
detect useful and new sentence-length updates about an on-going event. In the
following two years, this track was merged with the microblog track to become
the new Real-Time Summarization (RTS) (Lin et al., 2016, 2017). In the same
spirit, (P.V.S. et al., 2018) recently crawled the live-blog archives from the BBC
and The Guardian together with some bullet-point summaries reporting the main
developments of the event covered.

Recently, Li et al. (2017) proposed the task of reader-aware multi-document
summarization in which the readers’ comments should be taken into account to
generate personalized summaries. To promote this task, they released a dataset
together with the paper.

To evaluate their opinion-oriented summarization system, Ganesan et al. (2010)
constructed the Opinosis dataset. It contains 51 articles discussing the features of
commercial products (e.g., iPod’s Battery Life).

Hasler et al. (2003) collected a dataset of popular science texts, which contains
annotations about the importance of each sentence in the sources. It also contains
indications about which fragments of a sentence can be removed without affecting
the sense.

Interestingly, several works tried to explicitly generate datasets containing het-
erogeneous sources (Nakano et al., 2010; Benikova et al., 2016; Zopf et al., 2016b).
As an example, the DBS dataset (Benikova et al., 2016) contains 30 topics about the
educational domain in German together with manually created coherent extracts.

Falke and Gurevych (2017) proposed a slight modification of the summarization
scenario where the output should be a graph, called a concept map (Villalon and
Calvo, 2010; Valerio and Leake, 2006). They released a dataset created with a mix
of automatic techniques, crowdsourcing and expert annotations.

Finally, some datasets have also been developed for summarizing: email threads
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Dataset Creation Input Purpose Output Size
Man./Auto. Type Genre Lang Type Length Topics Doc/Topic
DUC-2001 M SDS, MDS News en Gen. Abs. 50-400 60 ~10
DUC-2002 M SDS, MDS News en Gen. Abs. 10-400 60 ~10
DUC-2003 M SDS, MDS News en Gen. Abs. /Ext. 10, 100 30 ~10
DUC-2004 M SDS, MDS News en, ar Gen. Abs. 10, 100 50 ~10
DUC-2005 M MDS News en Query Abs. 250 50 25-50
DUC-2006 M MDS News en Query Abs. 250 50 25
DUC-2007 M MDS News en Query Upd. Abs. 250 45 25
TAC-2008 M MDS News en Gen. Upd. Opi. Abs. 100 48 10
TAC-2009 M MDS News en Gen. Upd. Abs. 100 44 10
TAC-2010 M MDS News en Query Upd. Abs. 100 44 10
TAC-2011 M MDS News en Query Upd. Abs. 100 44 10
MultiLing-2011 M MDS News 7 Gen. Abs. 240-250 10 10
MultiLing-2013 M MDS News 10 Gen. Abs. 240-250 15 10
MultiLing-2015 A SDS, MDS  News, Forum, Speech 38 Gen. Abs. 240-250 15 10
MultiLing-2017 A SDS, MDS  News, Forum, Speech 41 Gen. Abs. 240-250 15 10
TREC(2013-2015) M Temporal News, Blogs en Upd. Ext. - ~200 Stream
TREC(2016-2017) A Temporal News, Emails en Upd. Ext. - ~200 Stream
CL-SciSumm-2016 A MDS Sci. en Gen. Abs. 250 30 ~10
CL-SciSumm-2017 A MDS Sci. en Gen. Abs. 250 40 ~10
ACL anthology A SDS Sci. en Gen. Abs. paragraph | >10K 1
CNN/Daily Mail A SDS News en Gen. Abs. ~56 ~300K 1
LCSTS A SDS News zh Gen. Abs. paragraph | ~2M 1
Gigaword A SDS News en Headline Abs. sentence | ~10M 1
NYT Corpus A SDS News en Gen. Abs. paragraph | ~1M 1
Newsroom Dataset A SDS News en Gen. Abs. Ext. Length 1.3M 1
Opinosis M MDS Review en Opi. Abs. ~20 51 ~100 sentences
(Goldstein et al., 2000) M MDS News en Gen. Ext. paragraph 25 10
(Ulrich et al., 2008) M MDS Emails en Gen. Abs. Ext. 250 30 ~11
(Zechner, 2002a) M MDS Dialog en Gen. Ext. paragraph 23 -
(Loupy et al., 2010) M MDS News fr Gen. Abs. 200 20 20
(Carenini et al., 2007) M MDS Emails en Gen. Abs. 30% 20 >4
(Lloret and Sanz, 2013) A SDS News en, es Gen. Abs. 140 char. 200 1
TGSum A MDS News en Gen. Abs. 140 char. 204 ~20
(P.V.S. et al., 2018) A Temporal Snippets en Gen. Struct. Abs. ~60 ~2K ~70
(Li et al., 2017) M MDS News, Comments en Pers. Abs. 100 45 10
(Liu et al., 2018) A MDS Heter. en Gen. Abs. paragraph | ~2M 1-1K
(Nakano et al., 2010) M MDS Heter. en Gen. Ext. paragraph 24 352
hMDS M MDS Heter. en, de Gen. Abs. paragraph 91 ~14
auto-hMDS A MDS Heter. en, de Gen. Abs. paragraph | ~7K ~8
(Benikova et al., 2016) M MDS Heter. de Gen. Ext. ~500 30 4-14
(Falke and Gurevych, 2017) Mix. MDS Heter. en Gen. Struct. - 30 ~40

Table 2.1: Description of existing datasets

(Ulrich et al., 2008; Carenini et al., 2007), transcribed dialogues (Zechner, 2002a)
and meeting recordings (McCowan et al., 2005).

2.2 Evaluation

Evaluating the quality of summaries extracted by systems is a crucial part of sum-
marization research. Unfortunately, the evaluation of summaries is notably difficult
due to the vagueness of the task and the lack of true gold standard (Radev et al.,
2003).

Ideally, summaries should be assessed by trained human annotators. Hence,
several annotation methodologies have been proposed to manually measure various
aspects of summary quality. However, there is some degree of subjectivity (Fiori,
2014), reflected by low inter-annotator agreements (Jones and Galliers, 1995).

Furthermore, manual evaluations are expensive and not reproducible. Since the
progress in summarization is intertwined with the capability of measuring improve-
ments, a significant body of research was dedicated to the development of automatic
metrics. Yet, this remains an open problem (Rankel et al., 2013). Indeed, even if
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the human-written reference summaries are considered gold, an ideal automatic
metric requires perfect semantic similarity capabilities to effectively assess system
summaries in comparison to references.

DUC, TAC and later MultiLing were testbeds for new ways of evaluating sum-
maries. Both manual and automatic evaluation methodologies were investigated. In
particular, TAC held the AESOP (Automatically Evaluating Summaries of Peers)
track between 2009 and 2011. Its purpose was to promote research in the automatic
evaluation of summaries.

Not only it is difficult to craft robust and reliable automatic metrics, but there
is also no consensus on which metric to use or even which methodology should be
adopted to determine the best metric (Graham, 2015). This is the subject of meta-
evaluation, the evaluation of evaluation metrics.

In this section, we will focus on the progress made in developing both manual
and automatic intrinsic evaluation metrics and briefly discuss issues raised by meta-
evaluation. For a general, detailed and recent overview of the evaluation progress in
summarization, we recommend Lloret et al. (2018), which also contains a discussion
of extrinsic evaluation methodologies.

2.2.1 Manual Annotations

When humans are involved in the evaluation process, we expect the results to be
trustworthy. However, reliable manual evaluation with low resource requirements is
a challenging problem (Over, 2003). Here, we discuss several annotations strategies
developed to mitigate these issues (Lin and Hovy, 2002).

Early developments:

In the early establishments of DUC, the evaluation of candidate summaries was done
manually by trained annotators. Evaluators read candidate summaries and then
make overall judgments about content, grammaticality, cohesion, and organization.
In later DUC and TAC editions, other properties like non-redundancy, referential
clarity, focus and coherence were measured. These quality aspects were measured
on a 5-point LIKERT scale (sometimes, a 10-point LIKERT scale was used (Dang
and Owczarzak, 2009)).

Apart from these intrinsic qualities, simulated extrinsic manual evaluations method-
ologies were proposed: Usefulness and Responsiveness. For example, annotators
judged the Responsiveness of each summary by assessing the amount of information
in the summary that actually helps to answer the need expressed in the topic state-
ment (Dang, 2005). In these methodologies, candidate summaries were also graded
on a LIKERT scale.

Strategies to assess content selection:

More detailed attention was given to assessing the particular aspect of content se-
lection as it appeared to be less subjective (Lin and Hovy, 2002). For example,
DUC experimented with model units: basic nuggets of information in the reference
summaries identified by the annotators. For a given system summary, annotators
identified which model units were selected and estimated the strength of the match.
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Then, the weighted recall of model units gave the final score of the candidate sum-
mary (Lin and Hovy, 2002).

Later, van Halteren and Teufel (2003) used factoids as basic units. Factoids are
simple facts contained in a text and were decided by humans. Then, van Halteren
and Teufel (2003) proposed to measure the importance of factoids based on their
frequencies in the set of reference summaries. A strong candidate summary should
exhibit most of the important factoids. This was a precursor to the influential Pyra-
med method.

The Pyramid annotation method:

The Pyramid method (Nenkova and Passonneau, 2004; Nenkova et al., 2007) is also
a manual annotation method to assess the content selection of system summaries.
The comparison of a system summary to the content of the reference summaries is
performed on the basis of Semantic Content Units (SCUs) which are semantically
motivated, subsentential units, such as phrases or clauses.

The Pyramid method consists of two steps: first, the creation of a Pyramid set
from reference summaries, and second, the scoring of system summaries based on
the Pyramid set.

In the first step, humans annotate phrasal content units in the reference sum-
maries and group them into clusters of semantically equivalent phrases. The re-
sulting clusters are called SCUs and the annotators assign an SCU label to each
cluster, which is a sentence describing the cluster content in their own words. The
final set of SCUs forms the Pyramid set. Each SCU has a weight corresponding to
the number of reference summaries in which it appears. Since each SCU must not
appear more than once in each reference summary, the maximal weight of an SCU
is the total number of reference summaries.

In the second step, humans annotate phrasal content units in a system summary
and align them with the corresponding SCUs in the Pyramid set. The Pyramid
score of a system summary is then calculated as the sum of the SCU weights for all
Pyramid set SCUs being aligned to annotated system summary phrases. The scores
can be normalized to ensure that the results are between 0 and 1.

Crowdsourcing:

Lloret et al. (2013) performed a study on the use of crowdsourcing for automatic
summarization. Different tasks were proposed for identifying relevant information.
The experiments exposed low quality of crowdsourced annotations even with several
quality control mechanisms. The analysis performed for determining the reason for
these results hinted that “the difficulty of the task itself had more influence than
the amount of money paid for each task”. This undermines the possibility of using
crowdsourcing for evaluation of summarization systems.

2.2.2 Automatic Evaluation Metrics

Even though manual evaluations like Pyramid (Nenkova et al., 2007) are reliable and
involve humans, they are expensive and not reproducible. This makes them unsuit-
able for systematic comparison of summarization approaches. Following the need
for cheap and reproducible metrics, a significant body of research was dedicated to
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crafting automatic evaluation metrics. Most works on automatic evaluation metrics
focused on intrinsic content assessment, while linguistic qualities like readability or
coherence were rarely tackled.

Early work:

One of the simplest approach employed by early researchers to evaluate their sum-
maries (Edmundson, 1969; Kupiec et al., 1995) was to compare the common sen-
tences between the automatic summary and the references. To perform these com-
parisons, one can use recall, precision or F-measure. The recall measures the fraction
of the sentences selected by the humans that are also identified by the candidate
summary. Alternatively, the precision measures the fraction of sentences selected by
the automatic summaries that are also in the references. F-measure is the harmonic
mean between recall and precision.

However, this evaluation is problematic because sentences not selected in the
reference by annotators may still reflect similar information as the ones selected.
A system would receive no credit for extracting such sentences, even though the
summary would be highly similar to the reference summaries. To alleviate this issue,
Jing et al. (1998) proposed to use several reference summaries and therefore collected
more examples of sentences selected by humans. Unfortunately, the problem remains
if there is some systematic bias in the way humans select sentences. Furthermore, it
cannot distinguish between two non-optimal sentences; they are indeed both never
selected and receive a score of 0 even if one is more informative than the other.

As a further improvement, Radev and Tam (2003) proposed the concept of Rel-
atiwe Utility. Multiple judges rank each sentence in the source documents with a
score from 1 to 10. Summaries can then be judged based on the relative utility of
their selected sentences. However, assigning relative utility scores to each sentence
is a tedious and costly annotation effort.

Counting approaches and ROUGE:

Instead of dealing with sentences, further evaluation metrics avoided the issues men-
tioned above by moving to smaller units. The intuition is that even two syntactically
different sentences can still have several smaller units in common (Hovy et al., 2006).
Two syntactically different sentences (or texts) with a significant overlap of small
units are then assumed to be similar. The most popular metric implementing this
strategy is ROUGE (Lin, 2004b) (Recall-Oriented Understudy for Gisting Evalua-
tion).

Actually, there exist several variants of ROUGE which compute slightly differ-
ent quantities. For instance, ROUGE-N computes the n-gram overlap between the
candidate summary and the set of reference summaries. Here, the N in ROUGE-N
stands for the size of the n-grams (i.e., ROUGE-1 uses unigrams and ROUGE-2
uses bigrams). Instead of just considering n-grams, ROUGE-SU computes overlap
between skip-grams. Additionally, ROUGE-L is the number of words in the longest
common subsequence between the references and the evaluated summary divided by
the number of words in the references.

Several other approaches based on counting sub-sentence elements are worth
mentioning. For instance, Lin et al. (2006) used Jensen-Shannon (JS) divergence
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between n-gram distributions of references and candidate summaries. Compared to
ROUGE, they report similar correlations with human judgments in single document
summarization, but a better ones in multi-document summarization. In this thesis,
we refer to this evaluation metric as JS-Eval-N, where N is also the size of the n-
grams. In the following chapters, we will detail the formulation and properties of
ROUGE-N and JS-Eval-N.

AutoSummENG (Giannakopoulos et al., 2008; Giannakopoulos and Karkaletsis,
2011) is a method based on n-gram graphs. System and reference summaries are
each represented by a graph whose vertices are n-grams and edges contain infor-
mation about n-gram co-occurrences within some predefined context window. The
quality of the summary is estimated based on the similarity of its graph representa-
tion to the graph representation of the reference summary. This metric was used in
several shared tasks like MultiLing.

Despite subsequent efforts, ROUGE has become a de-facto standard metric be-
cause of its simplicity and decent correlation with human judgments at the macro-
level (Lin, 2004b). Louis and Nenkova (2008) and Passonneau et al. (2005) reported
that ROUGE correlates with both Pyramid and Responsiveness which pushes Lloret
et al. (2018) to state: “ROUGE is a low-cost choice for obtaining similar results as
manual evaluations”.

Problems with ROUGE:
In general, it is well-known that ROUGE does not capture lexical variations. It
cannot detect paraphrasing (same meaning with different lexical units) and can be
fooled by summaries using same words with a different purpose. Conroy and Dang
(2008) also observe a gap between humans and systems not explained by ROUGE.
Furthermore, Sjobergh (2007) shows that a summarization system which outputs a
bag of words can reach state-of-the-art ROUGE-1 scores despite being unreadable.
Moreover, Hong et al. (2014) reported that state-of-the-art systems get similar
average ROUGE scores even if they produce different summaries. Similarly, Schluter
(2017) observed that, according to ROUGE, “there has been no substantial improve-
ment in performance of summarization systems in the last decade”. This indicates
that more sensitive evaluation measures would be required to distinguish systems
and guide the summarization research.

Efforts to address the limitations of ROUGE:

In order to account for semantics, Ng and Abrecht (2015) extended ROUGE with
word embeddings (ROUGE-WE). Indeed, it has been shown that word vectors en-
capsulate some interesting aspects of semantics (Mikolov et al., 2013b). Instead of
hard lexical matching of n-grams, ROUGE-WE uses soft matching based on the
cosine similarity of word embeddings.

Hovy et al. (2006) computed recall based on small units called Basic Elements
defined as triplets of words (head, modifier, argument) and a predefined list of
paraphrases for matching semantically equivalent phrases. Tratz and Hovy (2008)
refined this idea and automated the paraphrases matching. This resulted in BEwT-E
(Basic Elements with Transformations for Evaluation) which was one of the strongest
competitors during the automatic evaluation track of TAC-2009: AESOP 2009.
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Similarly, Zhou et al. (2006) used the same strategy but obtained paraphrases from
the MOSES statistical machine translation toolkit (Koehn et al., 2007).

Steinberger et al. (2009) proposed a metric measuring the amount of shared
content between two texts based on Resnik’s semantic similarity (Resnik, 1995).

Finally, a line of research aimed at creating strong metrics by automating the
Pyramid scoring scheme (Harnly et al., 2005). Yang et al. (2016) proposed PEAK,
a metric where the components requiring human inputs in the original Pyramid an-
notation scheme are replaced by state-of-the-art NLP tools. We provide a detailed
presentation of PEAK in section 3.3 where we estimate its upper-bound. It is more
semantically motivated than ROUGE and approximates correctly the manual Pyra-
mid scores but it is computationally expensive making it difficult to use in practice.
Recently, an improvement of PEAK was proposed by Gao et al. (2018).

Learning the metric:

Since evaluation metrics are usually compared based on their ability to correlate
well with humans on available human judgment datasets (see section 2.2.3), some
works have trained evaluation metrics on these datasets.

For instance, Conroy and Dang (2008) investigated the performances of ROUGE
metrics in comparison with human judgments and proposed ROSE (ROUGE Opti-
mal Summarization Evaluation), a linear combination of ROUGE variants to max-
imize correlation with human Responsiveness. It was later refined (Conroy et al.,
2010, 2011) as part of the CLASSY system to include linguistic features and was
well ranked in TAC AESOP 2010 and 2011. Similarly, Rankel et al. (2012) combined
content-oriented features like ROUGE with linguistic features to produce a metric
that correlates well with human judgments.

Also, Hirao et al. (2007) developed a voting based regression to score summaries
with human judgments as the target.

Giannakopoulos and Karkaletsis (2013) introduced MeMog, an extension of the
previously discussed AutoSummENG (Giannakopoulos and Karkaletsis, 2011) with
other standard features and trained with linear regression on human judgments.

Evaluation without references:

Surprisingly, some metrics do not make use of the reference summaries or any other
evaluation resources. They compute a score based only on the candidate summary
and the source documents.

For example, He et al. (2008) ran the standard ROUGE-N between the source
documents and the candidate summaries (as if the candidate summaries were the
reference summaries). The resulting scores correlate surprisingly well with methods
using human-written summaries. Similarly, Steinberger and Jezek (2012) proposed
LSA metrics as proxies for summary quality. These are topic models based on factor-
izing the document-term matrix co-occurrences with Singular Value Decomposition
(SVD). The most frequent topics are expected to appear in good summaries.

Also, Louis and Nenkova (2013) observed that the JS divergence between n-gram
distributions of the source documents and the candidate summary strongly corre-
lates with manual Pyramid and Responsiveness scores. Furthermore, Torres-Moreno
et al. (2010) and Saggion et al. (2010) used the FRESA framework to study whether
such divergence based content measures independent of references can be used in
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various summarization contexts. Louis and Nenkova (2013) also investigated evalu-
ation methodologies based on the consensus of several system summaries.

Such metrics seem to be useful for developing summarization systems. Indeed,
they only use information also available to the systems at test time and are able
to correlate with humans. In fact, within the (¢, O) framework, such metrics can
directly be optimized by a GPO to result in strong summarizers. This also hints
at some connections between evaluation metrics and summarization systems via the
notion of summary scoring functions. We will extensively discuss this question in
the following chapters.

Automatic evaluation of linguistic qualities:

While most metrics aimed at measuring content selection, some works developed
ways of assessing quality aspects such as coherence (Nenkova, 2006). For example,
interest in the topic of sentence ordering and referential cohesion motivated Lapata
and Barzilay (2005) to produce an automatic evaluation of cohesion.

2.2.3 Meta-Evaluation

The comparison of available automatic evaluation metrics is crucial if we wish to
trust the evaluation results and develop stronger metrics. It is also important to
study and understand them, in order to know their strengths, limitations, and do-
main of validity. Thus, relevant previous works on meta-evaluation, the evaluation
of evaluation metrics, are discussed here.

Lin and Hovy (2003) gave two criteria that any strong evaluation metrics should
meet:

e Criterion 1: Automatic evaluations should correlate highly, positively, and
consistently with human assessments.

e Criterion 2: The statistical significance of automatic evaluations should be a
good predictor of the statistical significance of human assessments.

Later, Owczarzak et al. (2012) re-emphasized the importance of measuring signif-
icant difference (criterion 2). They also pointed out that an automatic evaluation
should be able to tell apart good automatic systems from bad ones. In particular,
the automatic metric should recognize automatic summaries from human-written
ones. According to these principles, the AESOP tracks tested evaluation metrics for
their capacity to detect statistically significant differences between systems.

Generally, metrics are compared based on their ability to rank systems in agree-
ment with human judgments (criterion 1). Donaway et al. (2000) first observed that
content-based measures have strong correlations with humans. However, they also
mentioned that the scores can vary significantly depending on which references are
used. Similarly, Lin and Hovy (2002) reported that the instability of human-written
summaries should be taken into account. Therefore, it has now become standard to
use multiple reference summaries (Lin, 2004a).
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Radev et al. (2003) also observed that the high-scoring range is the most relevant
for comparing evaluation metrics because summarizers aim to extract high-scoring
summaries. They compared several summarization metrics based on the summaries
produced by 6 summarization systems. Similarly, Saggion et al. (2002) compared
evaluation metrics in a multilingual setup, based on summaries generated by several
summarization systems.

The meta-evaluation also suffers from discrepancies. Different methodologies
to compare evaluation metrics lead to different recommendations. For instance,
Owczarzak et al. (2012) used a signed Wilcoxon test to find significant differences
between metrics and recommended to use ROUGE-2 recall with stemming and stop-
words not removed. Rankel et al. (2013) used accuracy and found ROUGE-4 to
perform well. They also hinted that a combination of all ROUGEs can even be
better. Furthermore, when only statistically significant improvements in ROUGE
are reported, 73% of the time this also corresponds to an improvement according
to human judgments. This goes down to 64% when statistical significance is not
taken into account. In a wider study, Graham (2015) found ROUGE-2 precision
with stemming and stopwords removed to be the best.

2.3 Main Approaches

In this thesis, we are interested in the notion of Importance, which is captured by
the step T described by Sparck Jones (1999) and encoded within the summary
scoring function §. With this goal in mind, we organize the discussion of previous
approaches to summarization around the different proxies proposed or discovered
for the notion of Importance.

In practice, the step T is heavily influenced by the choice of the input represen-
tation (I) because it operates directly on this representation. In fact, we observe
that most systems can be understood as computing Importance as a general topical
frequency. Different approaches differ in their definition of topics (i.e., the input
representation) and in their counting heuristic.

Thus, we start by discussing the different choices made by previous works with
respect to what counts as a topic and how its Importance is estimated. Then, we dis-
cuss machine learning approaches which focus on producing high-scoring summaries.
There, the notion of Importance usually remains latent. This simple classification
is summarized in table 2.2.

Whether obtained by supervised or unsupervised techniques, the step T was
usually constrained to exhibit mathematical properties useful for the extraction
step (G). Indeed, especially for extractive summarization, the step G is a com-
binatorial optimization problem which can be solved efficiently provided that the
scoring function derived in step T exhibits some convenient mathematical properties
(McDonald, 2007).
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I T G
Generate/Extract

i Defi / i
Unsupervised efine topics Counts topics frequent topics

Extract

Supervised ext. | Define features score sub-elements | . )
high-scoring sentences

Maximize scores of

End-to-end abs. | Define features latent .
Generated summaries

Table 2.2: Rough classification of existing summarization approaches. The unsu-
pervised approaches typically rely on a notion of topic frequency which is to be
maximized in the final summary. Statistical learning approaches which use extrac-
tive summarization usually learn scores for sub-elements like sentences and extract a
set of high-scoring sentences. Recently, end-to-end abstractive summarization sim-
ply use a loss function on the final summary to maximize its similarity with the
reference.

2.3.1 Observed Correlates of Importance

In this part, we briefly present approaches from the first line of table 2.2: the un-
supervised approaches. Researchers have proposed several possible representations
for input sources and defined various proxies for Importance based on these repre-
sentations. The most effective approaches have then been selected after repeated
comparisons on existing summarization datasets. We observe that the notion of Im-
portance was mostly modeled by topical frequency. It usually involves a definition
of topics and a heuristic to compute the associated frequency.

Word frequencies:

Initially, Luhn (1958) introduced the simple but influential idea that sentences con-
taining the most important words are most likely to embody the original document.
He further suggested word frequency as a proxy for Importance. In this case, the
input source is viewed as a bag of words (/). Then, the frequency of each word
is computed and the final summary is a set of sentences which contains a lot of
frequent words. In practice, he used a threshold to discard stopwords: frequent but
unimportant words like the or a.

Later, Nenkova et al. (2006) provided an experimental justification of this idea.
They interpreted the frequency distribution of words in the sources as a probabil-
ity distribution. In their study, human-written summaries have a higher-likelihood
than system summaries, i.e., humans tend to use words appearing frequently in the
sources to produce their summaries. Thus, the frequency of words seems to correlate
empirically with Importance.

Building on these observations, Vanderwende et al. (2007) developed the system
SumBasic, which scores each sentence by the average probability of its words. A
greedy selection ensures that the sentence containing the most probable next words
is chosen. After a sentence is selected, the probabilities are adjusted to reduce the
chance of words occurring multiple times in the summary. This objective has also
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been solved with a global optimization algorithm (Yih et al., 2007). This relies on
the same assumptions and input representation as Luhn (1958) with the difference
that the frequency distributions are updated during the extraction of the summary.

The problem of identifying stopwords originally faced by Luhn (1958) could be
addressed by developments in the field of information retrieval. Indeed, Sparck Jones
(1972) introduced an effective heuristic to distinguish stopwords from informative
content words: TF-IDF.

For a given word w, TF(w) is the frequency of w in the sources. The Inverse
Document Frequenc, IDF(w) = log(+), is based on the number of documents n
in which w appears in a background corpus. Intuitively, stopwords are frequent in
all texts, while content words are only frequent in the sources. TF-IDF was a key
component in many summarization systems (FErkan and Radev, 2004; Filatova and
Hatzivassiloglou, 2004; Fung and Ngai, 2006; Hovy and Lin, 1999).

Based on the same intuition, Dunning (1993) outlined an alternative way of iden-
tifying highly descriptive words: the log-likelihood ratio test. It is also comparing
the frequency of a word in the source to its frequency in a background corpus. For
a given word w, it measures the likelihood that the observed difference between the
frequency of w in the sources and in the background corpus is due to chance. The
descriptive (or content) words are the ones which are significantly more frequent in
the sources than in the background corpus. Words identified with such techniques
are usually referred to as topic signatures (Lin and Hovy, 2000) and are known to
be useful in news summarization (Harabagiu and Lacatusu, 2005).

Finally, the same approaches can be easily generalized to n-grams instead of
words. A prominent example is the ICSI system (Gillick and Favre, 2009) which
simply aims to extract frequent bigrams. Despite its simple objective function, ICSI
has been identified as one of the state-of-the-art models in a study by Hong et al.
(2014).

Topic modeling;:

Words serve as a proxy to represent the topics discussed in the sources. However,
different but similar words may refer to the same topic and should not be counted
separately. This observation gave rise to a set of important techniques based on
topic models (Allahyari et al., 2017). These approaches can be divided into: topic
word approaches (previous paragraph), sentence clustering, Latent Semantic Analy-
sis (LSA) and Bayesian topic models (Nenkova and McKeown, 2012). The previous
paragraph already presented topic word approaches, we now discuss the three latter
categories.

A simple way to discover topics is to gather similar sentences in the same cluster
and view each cluster as one topic of the documents (Radev et al., 2000). In general,
this has the disadvantage that topics (clusters) cannot overlap and sentences which
discuss different ideas cannot span different clusters. However, many works used
this idea and refined the similarity computation or sentence extraction procedure
(Ji, 2006; McKeown et al., 1999; Siddharthan et al., 2004; Zhang et al., 2015). Alter-
natively, one can gather similar words or n-grams instead of full sentences. This is
the idea behind lexical chains (Barzilay and Elhadad, 1999) discussed in a following
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paragraph.

Latent Semantic Analysis (LSA) is an unsupervised technique which yields a
representation of texts from the co-occurrence patterns of words (Deerwester et al.,
1990). It first constructs a term-sentence matrix, where each row corresponds to
a word from the input and each column corresponds to a sentence. The entry
of the matrix can be the word frequency or its TF-IDF (Gong and Liu, 2001).
Singular Value Decomposition (SVD) is used to project the matrix on a smaller
set of rows while preserving the similarity structure. The resulting rows are the
latent dimensions, which represent the topics discussed in the sources. Gong and
Liu (2001) initially proposed to select sentences covering many of the most frequent
topics discovered by LSA.

This idea was refined by several subsequent works (Hachey et al.; 2006; Stein-
berger et al., 2007). For example, Davis et al. (2012) derived word weights via LSA
and then selected the set of sentences with maximum weights.

Bayesian topic models are powerful probabilistic models uncovering the latent
topics of a text (Allahyari et al., 2017). Latent Dirichlet Allocation (LDA) is one of
the most prominent example (Blei et al., 2003). The document is represented as a
random mixture of latent topics, where each topic is a probability distribution over
words. A detailed overview of LDA can be found in Blei (2012).

Several summarization systems have used LDA to uncover the topics discussed
in the sources (Daumé III and Marcu, 2006; Wang et al., 2009). A hierarchical
extension of LDA, hL DA, has been used to organize content in a hierarchy of topic
vocabulary (Haghighi and Vanderwende, 2009).

Graph-based approaches:

Approaches like hLDA can exploit repetitions both at the word and at the sentence
level (Celikyilmaz and Hakkani-Tur, 2010). Graph-based methods form another
powerful class of approaches which combine repetitions at the word and at the
sentence level. They were developed to estimate sentence Importance based on
word and sentence similarities (Mani and Bloedorn, 1997, 1999; Mihalcea and Tarau,
2004).

One of the most prominent examples is LexRank (Erkan and Radev, 2004): A
similarity graph G(V, E) is constructed where V' is the set of sentences and an edge
e;;j is drawn between sentences v; and v; if and only if the similarity between them
is above a given threshold. Then, sentences are scored according to their PageRank
score in G.

A significant body of research was dedicated to tweak and improve various com-
ponents of graph-based approaches. For example, one can investigate different sim-
ilarity measures (Chali and Joty, 2008). Also, different weighting schemes between
sentences have been investigated (Leskovec et al., 2005; Wan and Yang, 2006).

Discourse-based approaches:

Until now, the approaches we saw derived scores for sentences based on some sta-
tistical properties like frequency and co-occurrence patterns. In order to provide
richer representations of input texts, some approaches have investigated discourse-
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based techniques. In this line of work, linguistic knowledge or external information
is inputted in the representations (e.g., WordNet information (Miller et al., 1990)).

For instance, lexical chains model the topic progression in input texts. They
are sequences of related words, independent from the grammatical structure. In
general, they can provide context for disambiguating terms (Hirst et al., 1998). To
find topically related words, the approach usually relies on external resources like
WordNet (Miller et al., 1990). In summarization, a chain can be viewed as a topic,
where longer chains are more important (Barzilay and Elhadad, 1999). This also
fits within the idea of topic frequency. It builds on the intuition that topics are
expressed by several related words. Silber and McCoy (2002) and later Galley and
McKeown (2003) demonstrated ways of efficiently computing the lexical chains of
texts.

Another interesting approach is an analysis of the discourse structure of the in-
put document via Rhetorical Structure Theory (RST) (Mann and Thompson, 1988),
which represents the text as a tree. The smallest units, called elementary discourse
units (EDUs), are clauses. Larger units are created by identifying relations be-
tween smaller units, which yields the hierarchical tree structure. Discourse units are
classified as nuclei or satellites, where nuclei are the central concepts.

Intuitively, a summarization system should identify and extract the nuclei. For
example, Ono et al. (1994) proposed to extract summaries by penalizing the extrac-
tion of satellite units. In contrast, Marcu (1997) rewards the selection of nuclei.
Later, Marcu (1998) also took into account the length of the selected units. More
generally, Wolf and Gibson (2004) discussed the idea of building a graph represen-
tation of text based on semantic properties instead of similarities. This amounts to
counting topics in a semantic space rather than relying on statical properties of the
lexical units in the sources.

Abstract Meaning Representation (AMR) is an effort to provide a standardized
and rich sentence-level semantic representation. The sentence is represented by a
rooted, directed, acyclic graph whose nodes are concepts and edges are relations
(Banarescu et al., 2013). For summarization, Liu et al. (2015a) proposes to first
merge the graph representation of each sentence in the sources. They then propose
to learn Importance scores for concepts and relations in a structured supervised
learning setup. The final summary should maximize the Importance scores while
remaining a valid AMR graph, which can be converted back to texts.

2.3.2 Learned Correlates of Importance

In the previous subsection, the correlates for importance were mostly inferred by
the researchers and empirically tested afterward. Thus, in these studies, the notion
of Importance remained fairly simple as being modeled by frequent topics. Topics
could be words, clusters of sentences, latent components from LSA / LDA, or a
mixture of them with hLDA and graph-based representations. The most frequent
topics were then targeted for extraction.
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As it is common with difficult and vaguely defined tasks, researchers stepped-
back from the hope of inferring simple criteria to capture the notion of Importance
and shifted to Machine Learning (ML). In such approaches, the notion of Importance
remains latent and hardly interpretable. However, ML offers great flexibility in the
input representation I. Indeed, a large feature set can be used and later reduced
to its most useful components. Moreover, irrelevant features should be discarded
automatically by the learning algorithms.

In this part, we are mainly focusing on techniques from the second line of ta-
ble 2.2. ML approaches have learned scores for simple textual units like words, but
also for more complex units like sentences and whole summaries.

Learning scores for sub-elements:
Already in one of the first approaches to summarization, Edmundson (1969) hinted
at supervised learning by proposing an automatic search for features correlating
with Importance. He computed the final score of sentences as a linear combination
of several features whose weights are learned from data. As features, he consid-
ered: frequency of words, overlap between the title and the sentence, position of the
sentence and the number of words matching a list of cue-words indicating summary-
worthy content (like “to summarize”).

Additionally, the frequency computation of words or n-grams can be replaced
with learned weights (Hong and Nenkova, 2014; Li et al., 2013). This usually results
in better systems.

More generally, many indicators for sentence importance were proposed (as it
can be seen in the previous subsection) and therefore the idea of combining them to
develop stronger indicators emerged (Aone et al., 1995). For instance, Kupiec et al.
(1995) suggested that statistical analysis of summarization corpora would reveal
the best combination of features. In practice, they used a Naive Bayes learning
algorithm to learn a combination of indicators derived in previous works (Luhn,
1958; Edmundson, 1969).

A variety of works proposed to learn Importance scores for sentences (Yin and
Pei, 2015; Cao et al., 2015a). This started a huge body of research comparing
different learning algorithms, features and training data (Hakkani-Tur and Tur, 2007;
Hovy and Lin, 1999; Osborne, 2002; Wong et al., 2008; Zhou and Hovy, 2003).

Usually, the target score of a sentence is given by computing its ROUGE score
against reference summaries (Yao et al., 2017). While this is only a proxy for sentence
Importance, this has been shown to be effective (Cao et al., 2015b, 2016b).

Also, it is worth noting that Fuentes et al. (2007) used Pyramid data to train
a system. Alternatively, ranking sentences instead of scoring them has also been
investigated (Metzler and Kanungo, 2008; Shen and Li, 2011)

An interesting line of work is based on the assumption that the most important
sentences are the ones that permit the best reconstruction of the input document
(He et al., 2012). It was refined by a stream of works using distributional similarities
(Li et al., 2015; Liu et al., 2015b; Ma et al., 2016).
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Learning scores for summaries:

When scoring individual elements (like sentences), one faces the problem of account-
ing for interactions between the selected elements. For example, two relevant but
similar sentences are redundant and should not be extracted together.

To achieve this, instead of predicting sentence scores independently, more com-
plex learning algorithms have been proposed. For instance, sequence labeling going
over the list of sentences and indicating whether or not the current sentence should
be kept can model dependencies between sentences. Hidden Markov models (Con-
roy and O’leary, 2001) or Conditional Random Fields (Shen et al., 2007) are simple
sequence labelling techniques. With the Markov assumption, the probability of se-
lecting the current sentence depends on whether the previous sentence was selected
or not. Nowadays, sequence-to-sequence methods are usually employed (Nallapati
et al., 2017).

Additionally, structured output learning permits to score smaller units while
providing supervision at the summary level (Li et al.; 2009). For example, Sipos
et al. (2012) employed structured prediction to train an end-to-end system with a
large-margin loss to optimize a convex relaxation of ROUGE. Furthermore, indirect
supervision like reinforcement learning (Rioux et al., 2014) and learning to search
(Kedzie et al., 2016) have also been studied.

Some works have investigated distributed representations of sources and sum-
maries, with the objective of maximizing the semantic similarity between the ex-
tracted summary and the sources (Kobayashi et al., 2015; Kagebick et al., 2014).
While these methods are not explicitly training a correlate for importance, they
use pre-trained distributed representations like word embeddings (Mikolov et al.,
2013b).

Finally, akin to the development of hLDA and graph-based methods, hierar-
chical document representations have been learned for the task of summarization.
For example, Zhong et al. (2015) used deep Boltzmann machines for hierarchical
representations of the input.

2.3.3 Extraction and Generation

In this part, we discuss the last column of table 2.2 which concerns the extraction/-
generation step G. We also briefly discuss recent end-to-end abstractive summariza-
tion (last lign of table 2.2).

The step T outputs the desired properties that the final summary should meet.
The optimization step consists in finding a summary which matches these require-
ments. In extractive summarization, this is a combinatorial optimization problem,
where a subset of sentences is chosen (McDonald, 2007). Since the extraction is
NP-hard, researchers constrained the scoring function to have simple mathematical
properties. Otherwise, greedy optimization techniques have been applied. In this
section, we briefly describe these developments.
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Even if this thesis does not focus on the production of readable and original
text, we briefly describe some techniques involved in abstractive summarization. To
get more control over the output summary, a large body of work produced post-
processing mechanisms like sentence compression or sentence fusion. Finally, the
generation of original texts remains a particularly challenging task, for which recur-
rent neural networks have recently proved to be helpful (Chopra et al., 2016).

Extraction and combinatorial optimization:
Extractive summarization can be formulated as the problem of selecting a subset of
textual units from a document collection such that the overall score of the created
summary is maximal under some length constraint (McDonald, 2007). In fact,
MecDonald (2007) mentioned that most summarization approaches can be seen as
optimizing a trade-off between minimum Redundancy and maximum Relevance.
Prior summarization systems mostly focus on extracting sentences in a greedy
fashion and, thus, tend to suffer from redundancy. An early attempt to correct
this issue was proposed by Carbonell and Goldstein (1998) with Maximal Marginal
Relevance (MMR). At each selection step, the algorithm extracts the sentence that
is maximally relevant (to the topic or query) and minimally redundant with sen-
tences already extracted. Subsequent works have proposed various improvements
with respect to computation of relevance and redundancy (Radev et al., 2004; Mur-
ray et al., 2005; Xie and Liu, 2008).

Maximizing the relevance scores of the selected units is a global inference problem
which can be solved using Integer Linear Programming (ILP) (McDonald, 2007).
However, the global summary scoring function must be linearly factorizable with
respect to the scored elements, which greatly limits the capability of accounting for
complex interactions like redundancy.

By using indicator of Importance from previous works but replacing the greedy
extraction strategy with an exact global inference with ILP, improvements have been
observed: traditional indicators like position (Yih et al., 2007), TF-IDF (Filatova
and Hatzivassiloglou, 2004) or concept frequency (Ye et al., 2007; Gillick and Favre,
2009; Boudin et al., 2015) used in conjunction with ILP solvers achieved much bet-
ter results. While finding the exact solution of an ILP remains NP-hard (Filatova
and Hatzivassiloglou, 2004), approximate solutions can be found using dynamic pro-
gramming (McDonald, 2007; Ye et al., 2007; Yih et al., 2007).

Redundancy can also be limited by encouraging summaries to cover a large region
of the semantic space (Yogatama et al., 2015). Low redundancy can be enforced
by promoting diversity using determinantal point process (Kulesza et al., 2012) or
submodular optimization (Lin and Bilmes, 2011).

Submodularity is a natural framework for summarization because summaries try
to maximize the coverage of relevant units and coverage functions are submodular
(Lin and Bilmes, 2011). Furthermore, when the summary scoring function is sub-
modular, the greedy optimization algorithm displays mathematical guarantees that
the extracted summaries will be near-optimal (Nemhauser and Wolsey, 1978). Then,
various works have studied potential coverage functions for summarization (Lin and
Bilmes, 2011; Kagebéck et al., 2014; Yin and Pei, 2015).
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Post-processing of extractive summaries:

A general problem of extractive summarization arises when long relevant sentences
are chosen. Such sentences may also contain irrelevant information which includes
noise in the summary. In DUC 2005 (Dang, 2005), “more than half of the summaries
were perceived as not having good referential clarity, focus, structure and coherence”.

Humans tend to perform sentence compression during summarization (Jing and
McKeown, 1999). Hence, rule-based systems using syntactic and discourse knowl-
edge have been proposed to automatically compress the extracted sentences (Jing,
2000; Zechner, 2002b; Zajic et al., 2007). Compression rules can also be learned
from statistical analysis of the data (Knight and Marcu, 2002; Turner and Char-
niak, 2005; Galley and McKeown, 2007). This introduced a large body of work on
sentence compression (Nenkova and McKeown, 2011).

It is known that human summarizers not only compress sentences, they also
merge different sentences (Jing and McKeown, 2000). In clustering-based summa-
rization, Barzilay and McKeown (2005) generated one sentence representing the
whole cluster instead of selecting one sentence from each cluster. Later, Marsi and
Krahmer (2005) and Filippova and Strube (2008) explored the more general idea of
finding the union of two sentences.

Finally, some works were interested in the problem of sentence ordering after
the extraction procedure (Barzilay and Elhadad, 2002; Barzilay and Lapata, 2008).
This helped to improve coherence and readability of the extracted summaries.

Generation and abstractive summarization:

We already mentioned that generating new texts offers the possibility to compress
more information than simply reusing available sentences. This is supported by Che-
ung and Penn (2013) who analyzed human-written and system summaries. They
found that human-written summaries are more abstractive and use more informa-
tion fusion.

Woodsend and Lapata (2012) developed an abstractive generation procedure
relying on a quasi-synchronous tree substitution grammar (QTSG) to induce para-
phrases. Then, an ILP is solved to produce texts covering content selection, surface
realization, paraphrases and stylistic conventions. The idea of solving ILP to select
units based on a syntactic parse tree has been investigated by subsequent works
(Banerjee et al., 2015; Filippova, 2010b). For instance, Bing et al. (2015) generates
new candidate sentences by merging noun-phrases and verb-phrases.

Summarization based on AMR graphs (Liu et al.; 2015a) can also induce ab-
stractive summaries provided a language generation component can convert AMR
graphs back to texts.

Kintsch and Van Dijk (1978) proposed a theory of text comprehension and pro-
duction based on a model of human memory. Later, Fang and Teufel (2016) im-
plemented this idea into an abstractive summarizer, where the textual units are
propositions.
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Recently end-to-end training based on the encoder-decoder framework with LSTMs
(Sutskever et al., 2014) has achieved huge success in sequence transduction tasks like
machine translation. For abstractive summarization, large single-document summa-
rization datasets rendered possible the application of such techniques.

For instance, Rush et al. (2015) introduced a sequence-to-sequence model for
sentence simplification. Later, Chopra et al. (2016) and Nallapati et al. (2016)
extended this work with attention mechanisms. Since words from the summary are
often retained from the original source, copy mechanisms (Gu et al., 2016; Gulcehre
et al., 2016) have been investigated (Nallapati et al., 2016; See et al., 2017).

Furthermore, direct optimization of ROUGE for abstractive summarization has
been attempted with reinforcement learning (Ayana et al., 2016; Paulus et al., 2017).

Interestingly, Kikuchi et al. (2016) studied ways of controlling the output length
of the LSTM decoder. This is particularly relevant for summarization because of
the length constraint.
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CHAPTER 2. SUMMARIZATION

Chapter Summary

Summarization approaches can be categorized depending on their Input
type, Purpose and Output type. This covers many applications for
which automatic summarization is known to be beneficial.

The datasets ultimately guide the summarization progress by defining
what are good summaries.

Collecting gold standard datasets with trained human annotators is ex-
pensive and results in a few data points. Thus, many works tried to
automatically produce large-scale datasets. Indeed, modern ML tech-
niques can benefit from noisy but large-scale data.

Evaluation is an open problem. Despite being criticized, ROUGE re-
mains the default evaluation metric. New and more semantically aware
metrics arise as promising candidates to replace ROUGE.

Most approaches, whether supervised or unsupervised, used a simple
notion of Importance as topical frequency. In modern end-to-end ap-
proaches, the notion of Importance remains latent.

Approaches to extractive summarization heavily constrained the sum-
mary scoring function in order to use convenient optimization proce-
dures. To ensure such properties, when systems are trained on data,
only smaller elements are scored (e.g., words or sentences).
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Chapter 3

A Framework for Optimization-based
Summarization

The organizing idea of this work is to decompose summarization into two compo-
nents: a summary scoring function 6 indicating how good a text is as a summary
of the given sources, and an optimization technique O extracting a summary with
a high score according to 6.

In section 3.1, after describing formally the (6, O) framework, we identify the
summary scoring functions of several existing summarizers.

Furthermore, we notice that 6 can be studied independently from O based on its
ability to correlate with human judgments. This gives a principled way to examine
the inner workings of summarization systems. Such an analysis informs us that
current systems do not model the human scores but employ different strategy. One
possible approach to summarization could be to enforce summarization systems to
mimick human scores. This is explored in the next chapter.

While the (6, O) decomposition is a simple and intuitive formulation of the sum-
marization process, it holds interesting consequences and can shape our perspective
on summarization research. In particular, developing an optimization technique O
is an engineering problem which is not summarization specific.

In contrast, the discovery of summary scoring functions is the central problem
of automatic summarization. By realizing this and by providing a methodology to
evaluate € on its own, we can focus the summarization research on discovering new
and better summary scoring functions.

Hence, unlike previous works, we argue for a study of the summary scoring func-
tions independently from the optimization techniques. Consequently, no particular
constraint should be imposed on #. However, the optimization of such unconstrained
functions is an NP-hard optimization problem (McDonald, 2007).

To extract a summary, we have to rely on existing General Purpose Optimiza-
tion (GPO) techniques which do not make any assumption about €. Section 3.2
describes such GPO algorithms and demonstrates that they are both effective and
efficient enough for maximizing complex summary scoring functions. This renders
the search of unconstrained scoring function possible.
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Another interesting use-case of GPO is the possibility to approximately com-
pute upper-bounds of evaluation metrics for which no exact solution can be found
efficiently. Indeed, evaluation metrics are also complex summary scoring functions
which may be optimized via GPO techniques. This is discussed in section 3.3.

More generally, this framework opens-up many research directions in evaluation,
system design and optimization. Thus, we study some relevant consequences and
discuss important examples along the way. This chapter provides answers to RQ1
and RQ3. The following chapters build upon the groundwork established here.

3.1 Decomposition into Summary Scoring Function
and Optimizer

The task of extractive summarization (ES) can naturally be cast as a discrete op-
timization problem where the text source is considered as a set of sentences and
the summary is created by selecting an optimal subset of sentences under a length
constraint (McDonald, 2007; Lin and Bilmes, 2011).

This view entails defining an objective function (#) which is maximized by the
particular optimization technique being used, e.g., Integer Linear Programming
(ILP) when the objective function is linear (McDonald, 2007). In the ideal case,
this objective function would encode all the relevant quality aspects of a summary,
such that by maximizing them we would obtain the best possible summary.

In this work, we go one step further and prove that ES is equivalent to the
problem of choosing (i) an objective function € for scoring summaries, and (ii) an
optimizer O. We use (6, O) to denote the resulting decomposition of an extractive
summarizer. To illustrate the framework, we interpret several previous works by
identifying their choices of 6.

Furthermore, the decomposition enables a principled analysis of summarizers
based on their summary scoring functions. Indeed, while the task consists in ex-
tracting high-quality summaries, it is often beneficial to evaluate the inner workings
of systems for diagnosing problems and guiding progress.

3.1.1 Universality of the Decomposition

Let D be the set of all possible input sources. We note D € D one input docu-
ment collection. In the context of extractive summarization, D is a document to
summarize and is viewed as a set of elements (e.g., sentences): D = {s;}.

An extractive summary S is then a subset of elements from D, that is to say S
is an element of P(D), the power set of D. Finally, we introduce S, the set of all
possible summaries:

S=JPwD) (3.1)

This simply states that an extractive summary is a set of sentences taken from the
input document D. Now, we define the notions of objective function, optimizer and
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extractive summarizer necessary for stating the (¢, O) decomposition theorem.

Objective function:
An objective function is a function which takes as input a document collection D &€
D, and a possible summary S € P(D) from D, and outputs a score:

0 : DxPD) — R (3.2)
(D,S) ~— 0(D,S) ’
When it is not ambiguous, we can drop the mention of the input considered (D, S)
and simply note 0(S) € R. Intuitively, this score represents the quality of the sum-
mary, i.e., how good the text S is as a summary of the sources D. In the ideal
case, this objective function would encode all relevant quality aspects of a summary;,
such that by maximizing them we would obtain the best possible summary. We also
note O the set of all possible objective functions. In this thesis, we refer to objective
function, summary scoring function or # interchangeably.

Optimizer:
Once an objective function # has been chosen, an extractive summarizer ought to
select the set of sentences S* with maximal score 6(S*) under a length constraint:

S* = argmax 6(S5) (3.3)
SEP(D)
such that, len(S) = Z len(s) < L (3.4)
seS

Here, L is the length constraint imposed on the final summary. Intuitively, the
objective function # measures what constitutes a good summary and the optimizer
searches the set of all possible summaries to select the best one. In general, the
search space is way too large to perform an exhaustive search and approximate op-
timization techniques have to be employed.

We define an optimizer O as the technique which solves this optimization problem
either exactly or approximately. Formally, O is an operator which outputs a high-
scoring summary S* = {s;} from an input document D € D and a previously chosen
objective function 6 € O:

O : ©xD — S

0.D) — S (3:5)

Here, the optimizer is assumed to be deterministic because each input is associated
to one single summary S*. For a stochastic optimization strategy, we understand
the optimizer O to be the tuple of both the strategy and the random seed. Indeed,
for fixed random seeds, stochastic optimization strategies become deterministic.

Extractive Summarizer:

Conceptually, an eztractive summarizer is a simple mapping between input sources
to summaries. Therefore, an extractive summarizer o is represented by a set function
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mapping a document collection D € D to a summary o(D) = Sp, € P(D):

o : D — S

D — o(D)=Sp, (3.6)
Intuitively, an extractive summarizer is simply a function which maps any input
document D to an extractive summary, i.e., a set of sentences from D.

Again, this defines only a deterministic summarizer: one summary is associated
to each source D by the mapping o. In practice, some summarizers may include
randomness, in particular when stochastic optimization is employed. The determin-
istic assumption remains applicable by including the random seed as part of the
specification of . Thus, two summarizers generating different outputs for the same
inputs are considered different.

Decomposition Theorem:

With the previous definitions, it is clear that every tuple (6, O) uniquely defines a
summarizer (noted oy ) because O(0,-) produces one summary for any document
collection D:

090 D — S
D — O(0,D) = argmax6(S) (3.7)
SeP(D)
This says that, once we have chosen an objective function () and a way to optimize
it (0), we can extract a set of sentences from any document and thus construct an
extractive summarizer.

In fact, this decomposition is universal, i.e., for any extractive summarizer o,
there exists at least one tuple (6, O) which describes perfectly the summarizer:

Theorem 1.

Vo, 3(6,0) such that: (3.8)
VD e D, o(D)=0(0, D) (3.9)

Theorem 1 is quite intuitive but implies that ES is equivalent to the problem of
choosing a tuple (6, O). In particular, even a summarizer that was not crafted with
a scoring function and an optimization method in mind has an implicit definition of
6. In Appendix C.1, we provide a rigorous proof of this theorem. The consequence
is that we do not loose generality by viewing summarization as the components 6

and O.

3.1.2 Interpretation of Previous Works

Theorem 1 states that every summarizer can be thought of as a tuple (6, O). In or-
der to illustrate this theorem, we analyze a range of different summarizers regarding
their (potentially implicit) 6.
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Edmundson: (Edmundson, 1969)
Edmundson (1969) presented a heuristic which scores sentences according to 4 dif-
ferent features:

e Cue-phrases: It is based on the hypothesis that the probable relevance of a
sentence is affected by the presence of certain cue words such as ’significant’ or
‘important’. Bonus words have positive weights, stigma words have negative
weights and all the others have no weight. The final score of the sentence is
the sum of the weights of its words.

e Key: High-frequency content words are believed to be positively correlated
with relevance (Luhn, 1958). Each word receives a weight based on its fre-
quency in the document if it is not a stopword. The score of the sentence is
also the sum of the weights of its words.

e Title: It measures the overlap between the sentence and the title.

e Location: It relies on the assumption that sentences appearing early or late
in the source documents are more relevant.

By combining these scores with a linear combination, we can recognize the ob-
jective function:

Opam.(S) = Zal ~C(s)+ag- K(s)+asg-T(s)+ay - L(s) (3.10)
sesS
The sum runs over sentences and C, K,T and L output the sentence scores for each
method (Cue, Key, Title and Location). The optimizer is greedy.

TF-IDF: (Luhn, 1958; Sparck Jones, 1972)

A simple idea inspired by Luhn (1958) is that high-frequency content words are
important. A useful frequency score for an n-gram can be its TF-IDF (Sparck Jones,
1972), where Term-Frequency (TF) is computed on the source document and the
Inverse Document Frequency (IDF) is estimated from a background corpus. Then,
the scoring function is given by:

Orr.1pr(S) = ZTF(Q) -IDF(g) (3.11)

geSs

The sum runs over n-grams or skip-grams (g) selected in the summary. In the original
paper, Luhn (1958) did not use TF-IDF which was introduced later (Sparck Jones,
1972). The optimizer is also greedy.

ICSI: (Gillick and Favre, 2009)
A global linear optimization that extracts a summary by solving a maximum cover-
age problem of the most frequent bigrams in the source documents. ICSI has been
among the best systems in a classical ROUGE evaluation (Hong et al., 2014). Here,
the identification of 6 is trivial because it was originally formulated as an optimiza-
tion task. If ¢; is the i-th bigram selected in the summary and w; is its weight
computed from D, then:

Orcs1(S) = Z Ci - Wj (3.12)

c; €S
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The extraction strategy is an Integer Linear Program. Note that Li et al. (2013)
have later refined this approach by learning the weights w; instead of using the doc-
ument frequency of the bigram.

LexRank: (Erkan and Radev, 2004)
This is a well-known graph-based approach. A similarity graph G(V, E) is con-
structed where V' is the set of sentences and an edge e;; is drawn between sentences
v; and v; if and only if the cosine similarity between them is above a given threshold.
Sentences are scored according to their PageRank score in G. Thus, 07, renk 1S given
by:

0Lechmk<S> = Z PRG(S) (313)

s€S

Here, PR is the PageRank score of sentence s. The optimizer O is greedy.

KL-Greedy: (Haghighi and Vanderwende, 2009)

In this approach, the summary should minimize the Kullback-Leibler (KL) diver-
gence between the word distribution of the summary S and the word distribution
of the documents D (i.e., O, = —KL):

Ok (S) = —KL(S||D) = ZIP’S (Z)) (3.14)

Py (w) represents the frequency of the word (or n-gram) w in the text X. The
minus sign indicates that KL should be lower for better summaries. Indeed, we
expect a good system summary to exhibit a similar probability distribution of n-
grams as the sources.

Alternatively, the Jensen-Shannon (JS) divergence can be used instead of KL.
Let M be the average word frequency distribution of the candidate summary S and
the source documents D distribution:

Vg € 5, Balg) = 3(Ps(9) + Pol9) (3.15)

ges

Then, the formula for JS is given by:
1
015(8) = =JS(S[|D) = 5 (KL(S||M) + KL(D||M)) (3.16)

JS and KL are examples of summary scoring functions that are neither linear
nor submodular (Louis and Nenkova, 2013). In section 3.2, we show an example of
optimizing KL and JS divergence with GPO strategies.

LSA: (Steinberger and Jezek, 2004)

Latent Semantic Analysis is an approach involving a dimensionality reduction of
the term-document matrix via Singular Value Decomposition (SVD). It belongs to
the class of topic models where the goal is to uncover latent topics. The sentences
extracted should cover the most important latent topics. The importance of the
latent topic ¢ is estimated by its associated singular value ;. This gives the overall
summary scoring function:

Orsa=» A (3.17)

tesS
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Here, t is a latent topic and \; the associated singular value given by SVD. The sum
runs over the topics that have been extracted in the summary. The optimization is
also greedy.

Semantic Similarity: (Kobayashi et al., 2015)

The assumption is that a summary should be similar to the input documents, with
the similarity measured with distributional representations (e.g., word embeddings).
The summary and the input documents are both considered to be the average of
their constituting word embeddings. The score of a summary is given by its semantic
stmalarity with the document, measured by the cosine similarity:

Vs-Vp

sl [lvoll

Ops(S) (3.18)

Here, vx = > w is the vector representing the average of the word vectors from
weX
text X (w is the vector representing the word w). The authors, concerned by ef-

ficient optimization, proposed a submodular approximation of this function. Thus,
the optimization was a greedy algorithm.

In fact, this approach can be generalized: let E(X) be an embedding model
which maps a text X to a metric space equipped with a distance d. Then, we can
define a general scoring function:

0.4(S) = —d(E(S), E(D)) (3.19)

The goal is to minimize the difference between the representation of the summary
and the representation of the sources. For example, Kobayashi et al. (2015) used
the average word embeddings for E and the cosine distance for d. Ma et al. (2016)
used a Bag of Words (BoW) model for £ and the Euclidian distance for d.

ROUGE: (Lin, 2004b)

ROUGE is an evaluation metric, which takes the reference summaries into account.
Even though it cannot form a summarizer when combined with an optimizer, it is
a summary scoring function.

For simplicity, we assume there is only one reference summary noted R*. Let
Ry denote the number of n-gram tokens in R*. Ry is a function of the summary
length in words, in particular, R; is the size of the reference summary R* in words.
Finally, let Fs(g) denote the number of times the n-gram type g occurs in S. For a
single reference summary, ROUGE-N is computed as follows:

Or(S) = 13- 3 minFs(g). Fs-(9) (3.20)
geS*

Lin and Bilmes (2011) showed that ROUGE is a submodular function. This fact
was exploited by many summarization systems, e.g., (Lin and Bilmes, 2011; Sipos
et al., 2012). We will study in more depth the properties of fx in section 4.2.
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JS-Eval: (Lin et al., 2006)

Like ROUGE, JS-Eval is an evaluation metric which uses the reference summary
R*. Let M be the average word frequency distribution of the candidate summary S
and the reference R* distribution:

Vg € 5, Pulg) = 3 (Ps(g) + Fr(9)) (3.21)

Here, Px(g) is the frequency of the n-gram ¢ in the text X.
Then, the formula for JS-Eval is given by:

015 mou(S) = —JS(S||R") = % (KL(S||M) + KL(R'|M))  (3.22)

This is a similar formula as the 6,5 introduced above, but this time the summary
is compared to the references. There is also a negative sign because we expect a
good system summary to exhibit a similar probability distribution of n-grams as the
reference.

We will study this function in section 3.3 and compute an approximation of its
upper-bound. Indeed, unlike ROUGE, it does not possess mathematical properties
convenient for optimization.

Pyramid: (Nenkova et al., 2007)

Another important evaluation we consider is the manual Pyramid method. The
comparison of system summary content to reference summary content is performed
on the basis of SCUs which correspond to semantically motivated, subsentential
units, such as phrases or clauses (see chapter 2).

Each SCU has a weight corresponding to the number of reference summaries in
which the SCU appears. The Pyramid score of a system summary is then calculated
as the sum of the SCU weights for all SCUs in the Pyramid set appearing in the

system summary:
1
Opyr(S) = 7 > w(scu) (3.23)

scues
There, scu represents an SCU identified in the candidate summary S and w(scu) is
its weight from the Pyramid set. M denotes the maximal Pyramid score possible
for this pyramid set, such that p,,(S) is a score between 0 and 1. In section 3.3, we
will study an automatic approximation of this method: PEAK (Yang et al., 2016)
and estimate its upper-bound.

3.1.3 Comparison of Summary Scoring Functions against Hu-
man Judgments

According to theorem 1, every summarizer ¢ induces a summary scoring func-

tion 6, either explicitly or implicitly. Furthermore, since the optimization is not

summarization-specific, all the assumptions about the summarization task are en-
coded in 6#,. Hence, we propose to compare summarizers based on the quality of
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their assumptions encoded by their respective summary scoring functions.

More precisely, we remark that comparing the summary scoring functions of sum-
marizers can be done with the exact same procedure used for comparing automatic
evaluation metrics. Indeed, an evaluation metric is a summary scoring function
which just has access to more resources (e.g., reference summaries).

Generally, high-quality summary scoring functions, whether using evaluation re-
sources or not, should mimic humans as well as possible (Lin and Hovy, 2003).
Therefore, we propose to analyze summary scoring functions based on their ability
to correlate with human judgments. While correlation analyses on human judgment
data have been performed in the context of validating automatic evaluation metrics
(Lin, 2004b; Nenkova et al., 2007; Owczarzak et al., 2012; Louis and Nenkova, 2013),
there is no prior work which uses such data for a principled comparison of summary
scoring functions. This analysis would reveal whether the strategies employed by
systems follow the average summarization strategy of humans.

This analysis has the advantage of being applied directly to human judgment
datasets (with summaries scored by humans). It does not aim to replace the stan-
dard final evaluation of the extracted summary (e.g., manually with Pyramid or
automatically with ROUGE), but may be a valuable complement, especially for di-
agnosing issues and guiding future research efforts. It also puts the focus on the
central question of summarization: discovering strong summary scoring functions.
While it is possible to imagine summarization systems which use different strategies
than humans, it might be a good guide to follow human judgments when crafting
summary scoring functions.

Comparing 0 against human judgments:
Let o be a summarizer induced by the scoring function 6,. We measure the quality
of 6, by measuring its correlation with human scores.

Suppose we have a dataset of human judgments consisting of m topics: {71, ..., Tm},
where each topic 7; contains n scored summaries:

Ti = {(Sit, hin)s -y (Sinshin) } (3.24)

We note h; = [h;1,. .., hi,] the vector of human scores for the i-th topic. Sim-
ilarly, 0,(S;) = [0,(Si1),...,0,(Sin)] is the vector of scores given by 6, to the
summaries of the ¢-th topic. This is illustrated by figure 3.1.

Let ¢ be a correlation measure between two lists of scored elements. Then,
the average correlation between 6, and human judgments is given by the following
formula:

m

Cls) = — Y c(hy, 0,(S3) (3.25)

i=1

In practice, there are 3 common choices for the correlation metric c:

e Pearson’s r: It is a value correlation metric which depicts linear relationships
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Si h; 0(Sy)
—_ 78
— 23
—_— 34

Figure 3.1: Illustration of evaluation setup for one topic 7; for n = 3. The scores
produced by humans and by the summary scoring function are compared with a
correlation measure c. These correlations are averaged over all topics.

between the score progression in the two lists. Formally, the correlation be-
tween two ranked lists x and y is given by:
XT; — T i — 1
r(x,y) = > ( : 2)(y 9) _ (3.26)
V(i — )2/ (i — 9)
The range of Pearson’s r is from —1 to 1, where —1 is total negative linear
correlation, 1 total positive linear correlation and 0 is no linear correlation.

e Kendall’s T: 1t is a rank correlation metric which compares the orders induced
by both scored lists. Intuitively, it is high when both lists exhibit a similar
ordering of items. It is proportional to the number of concordant pairs minus
the number of discordant pairs. A concordant pair is a set of items ordered in
the same way by both lists. The formula is:

%1) Z sgn(xi — x;)sgn(yi — y;) (3.27)

T(x,y) = n(n
1<J

The range of Kendall’s tau is also from —1 to 1 with 0 indicating no correlation
and 1 indicating perfect correlation.

e nDCG: It is a metric that compares ranked lists and puts more emphasis on
the top elements by a logarithmic decay weighting. It uses the scores of one
list to estimate the relevance of items. Then, scores produced by the other list
are compared against the relevance scores from the first one:

DCG(x,y) = 2; bg(?j—H) (3.28)
nDCG(x,y) = %m (3.29)

With IDCG the ideal (maximal) DCG score possible obtain for a perfect
ordering. Thus, nDCG is always between 0 and 1.

Example: 6 evaluation of baselines:
We applied this evaluation procedure to several summary scoring functions described
previously:
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O8dm., Orr.1pF, Orcsi, Orexrank, 075 and Ok

For ;5 and 0y, the divergences are based on unigram distributions.
We used the same procedure to compute the correlations of two automatic eval-
uation metrics: ROUGE-N and JS-Eval-N for N =1 and N = 2:

OrovcE-1,0r0UGE-2,015—Evai—1, 075 Evai—2

For reference, we also report the results ofs a random scoring function.

In these experiments, we use the human judgments available in two multi-
document summarization datasets from the Text Analysis Conference (TAC) shared
task: TAC-2008 and TAC-2009.! TAC-2008 and TAC-2009 contain m = 48 and
m = 44 topics, respectively. Each topic consists of 10 news articles to be summa-
rized in a maximum of 100 words. At the time of the shared tasks, 57 systems were
submitted to TAC-2008 and 55 to TAC-2009. We use the manual Pyramid scores
as human scores.

Correlations with human judgments are measured using the 3 metrics described
above: Pearson’s r, Kendall’s 7 and Normalized Discounted Cumulative Gain (nDCG).
The results are reported in table 3.1 for TAC-2008 and TAC-2009.

Example: end-to-end evaluation of baselines:

Furthermore, for comparison, we computed the standard evaluation of the same
summarizers on these datasets. By standard evaluation, we mean the evaluation
of the extracted summaries in comparison against the pool of reference summaries
{R;} using an automatic evaluation metric (e.g., ROUGE or JS-Eval).

For the standard evaluation, the dataset still consists of m topics: {71, ..., Tm},
but a topic consists of pairs of inputs and reference summaries: 7; = (D;, R;). Here
D; is the input documents from topic ¢ and R; are the associated human-written
reference summaries. We note o(D;) the summary extracted by o for the input D;
and its standard evaluation is given by:

R<U) = % Z eeval<0<Di), Rz) (330)

Here, O.pui(0(D;), R;) is the score of the summary extracted by o for the topic i
measured by the evaluation metric .,q. Thus, R(o) is the average score of o over
all topics in the datasets.

We run the summarizers described in the previous paragraph and evaluated
them with several evaluation metrics: ROUGE-1 (R-1), ROUGE-2 (R-2), JS-Eval-1
(JS-1) and JS-Eval-2 (JS-2). The results are reported in table 3.2 for TAC-2008
and TAC-2009. For reference, we optimized the evaluation metrics in order to get
their upper-bound. For ROUGE-N, an ILP can be solved to compute the exact
upper-bound (Takamura and Okumura, 2010). Unfortunately, for JS-Eval there is
no efficient way to compute the exact upper-bound. Therefore, we report the results
of a greedy optimization. In section 3.3, we compute better estimates of the JS-Eval
upper-bound.

! http://tac.nist.gov/2009/Summarization/, http://tac.nist.gov/2008/Summarization/
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TAC-2008 TAC-2009
0 T T nDCG r T nDCG
Random .036 .015 779 .020 .013 735
ICSI 193 129 785 188  .136 772

Edmunds. | .190 .155 .792 385 .276 .804
LexRank 259 152 .826 | .390 .250 .816
TEF-IDF 267 184 824 | 429 271  .830
KL 202 192 781 242 216 764
JS 280 .230  .790 262 220 .760

ROUGE-1 | .748 488 .961 | 806 .547  .965
ROUGE-2 | .718  .490 .960 803 .550 963
JS-Eval-1 | .751 .495 960 | .820 .572 .965
JS-Eval-2 | .714 474 953 775543 .952

Table 3.1: Correlation of # functions with human judgments across various systems
on TAC-2008 and TAC-20009.

TAC-2008 TAC-2009
Summarizer | R-11 R-21t JS-1| JS-2) | R-1T R-21T JS-1] JS-2|
Random 289  .045 543 658 | .291 .051  .551 .658
ICSI 365 .101 460 .619 | .364 .104 477 .618
Edmunds. 325 075 492 637 | 337 .079 474 629
LexRank 347 0 .082 470 630 | .355 .084  .469 = .629
TF-IDF 328 067  .507 645 | .333 .066 .513  .646

(KL,Greedy) | .353 088 457  .624 | .357 .091 .461  .622

(JS,Greedy) | .356 .090 .456  .623 | .358 088 469  .625
(R-1,ILP) 454 147 .388 587 | .474 160 .378 577
(R-2,ILP) 451 .194 387 .552 | 472 .208 381 .543
(JS-1,Greedy) | 418 142 399 584 | 430 .152 .392 573
(JS-2,Greedy) | .417 .168  .407 562 | .427 173 407 557

Table 3.2: Evaluation summaries extracted by O(o, -) for several systems TAC-2008
and TAC-2009.

Analysis:

In table 3.1, we first observe relatively low correlations (< 0.3 Kendall’s 7) between
existing summary scoring functions and human judgments. Even though the cor-
relations are better than random, they remain far from a perfect correlation of 1.
Interestingly, summarization systems do not model the human scores. Some nDCG
scores are higher but the scale of nDCG is different as it can be noticed by looking
at the performance of the random baseline. In contrast to the others, nDCG goes
from 0 to 1.
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In the standard evaluation reported in table 3.2, we see that systems are ranked
differently. In fact, systems with high end-to-end ROUGE scores do not necessarily
have a good model of summary quality. Indeed, the best performing 6 functions
are not extracting the best summaries according to standard evaluation metrics.
For example, ICSI is the best system according to ROUGE in table 3.2, but its
summary scoring function does not model human judgments well. LexRank, TF-IDF
and Edmundson have better correlations with human judgments. This shows that
systems follow a summarization strategy different from the one humans use. In the
next chapter, we propose to develop summarization systems which explicitly aim to
follow the human strategy.

Overall, it seems that JS also exhibits good correlations with humans, which
would support the findings of Louis and Nenkova (2008). We notice that summary
scoring functions like JS or Edmundson correlate well with humans, but are opti-
mized greedily which may explain the lower scores of their extracted summaries. In
section 3.2, we show that just replacing the greedy optimization with more powerful
techniques yields significant improvements.

In table 3.1, evaluation metrics have much higher correlations because they can
use reference summaries. The 4 evaluation metrics considered have similar perfor-
mances, with JS-Eval-1 slightly stronger. This confirms the findings of Lin et al.
(2006).

It is worth noting that systems perform differently on TAC-2009 and TAC-2008.
There are several differences between the two datasets like redundancy level or guide-
lines for annotations. This confirms that, to ensure robustness, claims of improve-
ments over baselines should be verified on several datasets.

3.2 General Purpose Optimization for Summariza-
tion

In chapter 2, we realized that previous approaches solved the optimization prob-
lem using ILP (Schrijver, 1986) or submodular function maximization (Krause and
Golovin, 2014) with constrained summary scoring functions (Gillick and Favre, 2009;
Lin and Bilmes, 2011). When 6 did not exhibit convenient mathematical properties,
it was typically optimized with a greedy algorithm (Haghighi and Vanderwende,
2009).

It is problematic because constraining 6 limits its expressiveness. In fact, we pos-
tulate that realistic summary scoring functions are unlikely to be linear (confirmed
in chapter 4). However, using a greedy algorithm for maximizing unconstrained
summary scoring functions often lead to poor results (Gutin et al., 2002).

In order to solve the NP-hard discrete optimization problem (McDonald, 2007)
in the general case where the objective function does not have specific properties, we
must rely on search heuristics (Blum and Roli, 2003). Fortunately, the well-studied
field of optimization proposes a range of techniques to tackle difficult combinatorial
problems (Schrijver, 2003).
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In this section, we present examples of techniques capable of extracting sum-
maries from non-linear, non-submodular objective functions adapted to summariza-
tion. We refer to such optimization as General Purpose Optimization (GPO). The
pseudo-code of the standard algorithms are described in Appendix B.

Here, we briefly outline the intuitions behind them and present the adaptions
required to apply them to summarization. Finally, we show that they are suited for
the summarization use-case.

More generally, GPO techniques are especially appealing because they enable a
decoupling of # and O which allows the investigation of complex 6 functions. The
search for unconstrained 6 is likely to result in better approximations of human
judgments, which we demonstrate in chapter 4.

3.2.1 Adapting GPO for Summarization

When the objective function does not exhibit any particular mathematical proper-
ties, several heuristics can be applied to still approximately optimize it (Blum and
Roli, 2003). Hence, we present several examples of such techniques adapted to sum-
marization. For each algorithm, the general pseudo-code is available in Appendix B.

After briefly describing simple heuristics such as the greedy algorithm and beam-
search, we move on to discussing stochastic search algorithms, often referred to as
meta-heuristics (Bianchi et al., 2009). In optimization where the search space is
discrete and large (such as summarization), the use of meta-heuristics is often helpful
(Blum and Roli, 2003).

Meta-heuristics are stochastically searching the solution space guided by a heuris-
tic. The heuristic aims to find near-optimal solutions and avoid local optima under
a time or computation budget.

Common meta-heuristics use the neighboorhood of a current candidate solution
as a starting point to further explore the solution space. Although they tend to prefer
better neighbors (with higher fitness score), they can also accept worse neighbors to
escape local optima and explore larger spans of the solution space.

In general, meta-heuristics cannot provide guarantees about the solutions found
because it is always possible to imagine an adversarial optimization problem for any
specific search strategy (Blum and Roli, 2003). However, some heuristics, usually
inspired by nature, tend to work well on real-world problems (Bianchi et al., 2009).

In this section, we discuss several important examples: Simulated Annealing,
Genetic Algorithm and Swarm Intelligence. They mainly differ by the heuristics
they employ to guide the search in solution space.

Greedy:
The class of greedy algorithms forms a well studied algorithmic paradigm following
the strategy of making locally optimal choices at each stage (Cormen et al., 2009).
In general, this does not produce an optimal solution but outputs reasonably good
solutions efficiently.

Nevertheless, making locally optimal but globally bad decisions at early stages
can constrain the search to a poor area of the fitness landscape. Greedy algorithms
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can even produce the worst solution if the search space exhibits some adversarial
properties (Gutin et al.; 2002).

A natural question is to ask for which problems the greedy algorithms work
well. For example, it is known to produce a globally optimal solution whenever the
optimization problem has a Matroid structure (Papadimitriou and Steiglitz, 1982). 2

Another well-known property is that maximization of submodular functions un-
der constraints can be done greedily with a guarantee that the solution is close
to the optimal solution (Nemhauser and Wolsey, 1978). If we note S the sum-
mary extracted by the greedy algorithm and S* the globally optimal summary, then
0(S) > (1—1)-6(5*) ~ 0.632-0(S5). It is particularly relevant for summarization as
ROUGE-N is known to be submodular (Lin and Bilmes, 2011). In general, coverage
functions are submodular.

The simple greedy algorithm selects the sentence with the best score at each step.
We refer to this algorithm as Greedy in the following sections. However, we also use
a slightly better greedy algorithm in practice denoted Greedy-M. Greedy-M selects
the sentences with the best marginal gains. At each stage, it selects the sentence
which yields the best improvements, and its pseudo-code is described in Appendix B
by algorithm 8. Greedy-M is the algorithm used for maximization of submodular
functions (Krause and Golovin, 2014).

Beam Search:
The naive greedy algorithm can easily be stuck in a poor area of the solution space
by taking bad decisions in the early steps. The beam search algorithm proposes an
improvement by allowing some level of backtracking. It keeps track of the top k
best candidates at any time instead of just one.

It is based on the breadth-first search where the decisions are organized in a
tree (Cormen et al., 2009). Beam-search produces a solution at least as good as the
Greedy algorithm. The pseudo-code is described in Appendix B by algorithm 9.

Random Search:

The simplest stochastic search is random search which randomly samples sum-
maries and measures their fitness scores with the objective function. The pseudo-
code for sampling summaries is detailed in the algorithm 1. This is basically the
naive greedy algorithm applied to random (uniform) sentence scores. The function
RandomChoice(C') randomly selects one element from the list C.

Simulated Annealing:

We now present a meta-heuristics approach called Simulated Annealing (SA) where
the search is guided by a stochastic sampling method inspired by the metropolis-
hasting algorithm (Kirkpatrick et al., 1983). In contrast to population-based heuris-
tics like Genetic Algorithm or Artificial Bee Colonies described later, it only consid-
ers one candidate solution at a time.

2 A Matroid is a structure that generalizes the notion of linear independence in vector spaces. For
reference see (Papadimitriou and Steiglitz, 1982).
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Algorithm 1: Sampling Summaries for Extractive Summarization

Input : D = {sy,...,s,}: document as a set of sentences
L: length constraint
Output: S = {s;}: summary as a set of sentences
Function SampleCandidate (D, L):
S ={}
while 1 do
C={seD|s¢S len(SU{s}) <L}
if C' =0 then
‘ return S
end
S = S U RandomChoice(C)
end

© ® N o kA W N =

The heuristic employed by simulated annealing can be understood by the anal-
ogy it draws with thermodynamic properties of physical systems. The system state
is the candidate solution, the energy is the cost function (minus the fitness func-
tion), a state change corresponds to a modification of the candidate solution and
the temperature is a control parameter. The final state of the system reaching ther-
modynamic equilibrium represents the final solution.

At each step, SA considers a neighbor n of the current state s and probabilisti-
cally decides between moving to this neighbor or staying in place. The acceptance
probability P(n,s,T') of moving to the neighbor depends on the energy (or fitness
score) of the state and a parameter T": the temperature.

The temperature controls the tendency to move to a worse neighbor. In fact, if
P(n,s,T) is 0 whenever the neighbor is worse than the current state, then SA be-
comes the greedy algorithm. These probabilities ultimately lead the system to move
to states of lower energy. However, in practice, a budget is given to the algorithm

either in time or in the number of evaluations. For more details, we refer to Blum
and Roli (2003).

The adaptation to summarization is straight-forward:

e Physical State The candidate summary S = {s;} considered as a set of
sentences, a subset of the sentences in the documents.

e Energy The internal energy of the physical state (candidate summaries) is
the function we wish to minimize. Since we wish to maximize #, we choose

E=—6.

e Move Moving from one summary to a neighboring one is done by randomly
removing one of its sentences and adding a new one that does not violate the
length constraint. We detail the pseudo-code of this procedure in algorithm 2.
It the same as a mutation from the Genetic Algorithm perspective.
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e Acceptance Probability Suppose we have a state s with a score 6(s) and
a neighbor n with a score 6(n). We move to the neighbor according to the
following probability:

6(n)=6(s)

e 1 iff(n) <0(s)

. (3.31)
1 otherwise

P(n,s, T) = {
Thus, we automatically move if the neighbor is better and randomly move if
it is worse. The temperature is a hyper-parameter controlling how much we
allow to move to worse neighbors, i.e., the higher 7" the more often we move
to worse neighbors.

Algorithm 2: Mutation Operator for Extractive Summarization

Input : S = {s;}: summary as a set of sentences
D = {s1,...,s,}: document as a set of sentences
L: length constraint
Output: N = {s,}: mutated summary as a set of sentences
1 Function Mutate (S, D, L):
C={seD|s¢S len(SU{s}) <L}
S =5\ RandomChoice(S)
S = S U RandomChoice(C)

=wN

Genetic Algorithm:
The Genetic Algorithm (GA) is a stochastic search method using mechanisms in-
spired by biological evolution, such as reproduction, mutation and selection (Wright,
1932; Goldberg, 1989).

The candidate solutions are represented as individuals in a population. The fit-
ness function is the function to optimize and determines the quality of an individual.

Evolution of the population takes place after multiple iterations where biological
operators are applied: reproduction and mutation search the space of solutions by
creating new candidate solutions, while the selection operator ensures that better
candidate solutions survive to the next generation more often than worse ones.

In order to produce a GA for summarization, we use a simple analogy to the
problem of extractive summarization:

e Population The individuals of the population are the candidate solutions
which are valid extractive summaries. Valid means that the summary meets
the length constraint. The size of the population is a hyper-parameter of the
algorithm. A summary is simply a binary vector indicating which sentences it
contains.

e Fitness Function The fitness function which evaluates the individuals (i.e.,
summaries) is the function we wish to maximize: 6. The population is scored
and sorted according to the fitness function, a threshold indicates which sum-
maries will survive to the next generation. The survival rate is another hyper-
parameter.
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e Mutation The mutation of a summary is done by randomly removing one of
its sentences and adding a new one that does not violate the length constraint.
It is described by algorithm 2. The mutations affect individuals of a population
randomly, and the mutation rate is a hyper-parameter.

e Reproduction The reproduction is done by randomly selecting parents among
the survivors of the previous generation. Then, the union set of the sentences
of the parents is considered. The child is a random valid summary extracted
from these sentences.This is described by the algorithm 3. There is also a
reproduction rate which controls the number of children in each generation.

e Initial Population The initial population is created by randomly building
valid summaries as described by algorithm 1. We observe a convergence speed-
up by including good summaries in the initial population (e.g., summaries
produced by baseline algorithms).

Algorithm 3: Reproduction Operator for Extractive Summarization
Input : P =[S;] = [{s;}]: A list of summaries or parents (each a set of
sentences)
L: length constraint
Output: N = {s;}: child summary as a set of sentences
1 Function Reproduction (P, L):
2 pool = | S;

3 N = SampleCandidate(pool, L)

Artificial Bee Colony:

Swarm Intelligence (SI) refers to the collective behavior of decentralized, self-organized
artificial systems. The agents in such systems follow very simple rules, and although
there is no centralized control structure, local and random interactions between
agents lead to the emergence of intelligent global behavior, unknown to the individ-
ual agents themselves (Beni and Wang, 1993; Bonabeau et al., 1999; Parsopoulos
and Vrahatis, 2002).

While the population of the GAs consists of candidate solutions, the swarm
population is made up of agents which search the solution space and interact locally
with the environment. The candidate solutions are points in the space investigated
by the agents. The agent interactions with the solution space usually consist in
evaluating a given area.

To apply an SI algorithm to an optimization problem, one must define a space
where candidate solutions live. A point in the space of candidate solutions corre-
sponds to one solution. Simple communication channels allow agents to exchange in-
formation about promising areas. Examples of such natural systems are ant colonies,
fireflies glowing, fish schooling or bird flocking.

One successful model we decided to follow in this work is the model of honey bees
searching for nectar in a field, also known as Artificial Bee Colony (ABC) (Karaboga
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and Basturk, 2007; Karaboga et al., 2014). In ABC, there are three groups of bees:
employed, onlookers and scouts bees.

There is a population of employed bees who each investigate one food source
at a time (the number of employed bees in the colony is equal to the number of
food sources investigated in parallel). Employed bees collect food from their food
source and dance in this area after evaluating the quantity of food in the direct
neighborhood. They measure the quantity of food with the so-called nectar function
which is the analogy to the fitness function in the GA. The dance indicates the
amount of food in the area identified by the employed bee.

When the food source is abandoned, the employed bee becomes a scout and starts
to search for a new source elsewhere. Onlookers watch the dances of employed bees
and choose food sources which are especially promising. The overall behavior allows
the swarm to find areas which contain a lot of nectar.

In order to adapt this algorithm to summarization, we also use a simple analogy:

e Food location The locations in the field are the candidate solutions which
are the valid extractive summaries. The number of food locations considered
in parallel is a hyper-parameter equivalent to the size of the population in the
Genetic Summarizer.

e Location coordinates The summaries are points in the space searched by
the bees. The coordinates are given by the binary vector indicating which
sentences the summary contains.

e Nectar function The nectar function which evaluates the food locations (i.e.,
summaries) is the function to maximize. It corresponds to the fitness function.

e Employed bees local search At each iteration, employed bees evaluate the
direct neighborhood of their assigned food location. To move to a neighbor, a
sentence is randomly removed from the current summary (i.e., food location)
and a new sentence that does not violate the length constraint is added. This
is the analogy to a mutation and is also described by algorithm 2.

e Employed bees dance and onlooker bees When each employed bee has
evaluated a summary, all the summaries are scored and sorted. Onlooker bees
observe the resulting distribution of scores and randomly choose one location
to join and help with the neighbor search. This choice is based on the following
probability:

_ score;

>, scorey,

As a result, onlookers choose high scoring locations (i.e., summaries) more
often. Thus, onlooker bees intensify local search in promising areas.

P, (3.32)

e Scouting bees An employed bee stays in place if the neighbor it evaluates is
not better than its current location. After several iterations at the same place,
the employed bee abandons it and becomes a scouting bee. To move to another
place, the scouting bee selects a random valid summary. This is equivalent
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to generating a random individual from the initial population in the Genetic
Summarizer. The number of iterations before becoming a scouting bee is the
second hyper-parameter.

Comparison of stochastic search algorithms:

In the Genetic Summarizer, the reproduction produces significant changes in the
summaries, because, on average, half of the genotype of the child is different from
its parents. But at the same time, it stays in a reasonable distance range from its
parents because it also keeps half of the genotype from each parent (on average).

In this sense, we say that the Genetic Summarizer has efficient mid-range search
capabilities (Goldberg, 1989). The local search is much reduced because it is done
via mutations happening randomly and (potentially) rarely in the population.

The long-range search is done via the insertion of random individuals into the
population whenever the population becomes too small. A new completely random
individual is quite likely to have a low fitness score and to die in the next generation
with few opportunities to reproduce or mutate.

ABC presents complementary search capabilities. The employed bees perform
an intensive local search around a specific location and the onlooker bees help them
around the locations of interest (Karaboga et al., 2014). For long-range search, the
scout bees regularly look for new locations and investigate each new area for at least
t rounds (where t is the hyper-parameter controlling the number of attempts before
becoming a scout bee).

However, in ABC, the mid-range search is limited because it is achieved only by,
either successfully applying several local movements, or by randomly scouting the
mid-range areas, both of which are unlikely.

Similarly, SA is solely based on local search. However, it is possible to move
to a neighbor even if it has lower fitness than the current position. The annealing
scenario remains dependent on initialization because it is difficult to move far away
from bad local optima. This approach can benefit from random restarts for long-
range searching capabilities (Bianchi et al., 2009).

Even if we did not conduct an extensive hyper-parameters optimization, we ob-
serve that ABC has fewer hyper-parameters than GA, which makes it simpler to
optimize. The Simulated Annealing has only one hyper-parameter.

3.2.2 Is GPO practical?

We have described several solutions to optimize any objective function without re-
quiring particular mathematical properties. Now, we test whether these solutions
are applicable to the summarization use-case.

For this, we implemented the optimization strategies and test their behavior for
different summary scoring functions. These experiments reveal that GPOs are prac-
tical for summarization as they are capable of yielding high-scoring summaries. This
opens up several possibilities for future research as the summary scoring functions
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can be unconstrained and searched independently from the optimization strategy.
Improvements over Greedy:

In this experiment, we test the previous algorithms by measuring the fitness of the
summary they extract when optimizing two important summary scoring functions:

¢ ROUGE-1 This function is submodular and therefore Greedy-M is expected
to perform well (Lin and Bilmes, 2011). Indeed, Greedy-M is the algorithm
prescribed when the objective function is submodular. We report results using
a submodular function in order to also estimate the performances of GPOs on
this special case. The experiments reveal that, when the function is submod-
ular, it may still be preferable to employ the Greedy-M optimization.

e Jensen-Shannon This is the 0,5 = —JS(D,S) described in the previous
section. This function is also important for summarization but does not have
nice exploitable mathematical properties that can be leveraged by optimization
techniques. In particular, it is neither linearly factorizable nor submodular.
In this case, we observe that GPOs give a large improvement over greedy
algorithms.

We report a comparison of optimization algorithms for these two functions in
figure 3.2 for one representative topic of TAC-2008.

For 65, the GA and other meta-heuristics are capable of identifying better
summaries in a decent amount of time. This already suggests that meta-heuristics
are usable in practice for complex fitness functions.

However, this effect is weaker when for the submodular function ROUGE. In this
case, Greedy-M is an efficient and effective optimization strategy. GPOs can find
better solutions than Greedy-M only if they run for a longer time (about 25 seconds).

Better summarizers simply via better optimizers:

In the previous section, we noticed that most summary scoring functions from ex-
isting systems were optimized by a greedy algorithm. Thus, we ran a simple ex-
periment: we optimized these summary scoring functions with the more powerful
optimization techniques described above.

Each of the summary scoring function from table 3.2 (Edmund., TF-IDF, LexRank,
KL and JS) is now optimized with every optimization strategy presented above.
Only ICSI is left out because it is already optimized exactly by an ILP (so no im-
provement is possible).

We used both benchmark datasets: TAC-2008 and TAC-2009 and table 3.3 con-
tains the average improvement (over both TAC-2008 and TAC-2009) obtained by
switching from greedy to another optimization strategy. To test the practicality of
these optimization strategies, they receive a time budget of 30 seconds per topic.

Random Search is not capable of extracting better summaries and often performs

worse than Greedy. Therefore, we do not consider it anymore. Indeed, most of the
randomly selected summaries are poor and have low fitness.

95



CHAPTER 3. A FRAMEWORK FOR OPTIMIZATION-BASED SUMMARIZATION

0.32

030

u
S
028
%
—— Genetic
026 ABC
—— SimAnn
Beam Search
o  Greedy
0.24 ® e Greedy-M
0 5 10 15 20 5 0
Time (s)
(a) ROUGE optimization.
057 = Genetic
—— ABC
= SimAnn
s Beam Search
e Greedy
e  Greedy-M
055
%)
=
T os4
053
L]
052
[ 5 10 15 ) 5 ]

Time (s)

(b) JS optimization.

Figure 3.2: The figure 3.2a is the fitness vs. time comparison of the various opti-
mization procedure when ROUGE is used as the fitness function; figure 3.2b is the
same comparison when JS is used as the fitness function.
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Figure 3.3: Performance improvements when the genetic algorithm is used instead
of greedy for TAC-2008 (measured with ROUGE-2).

However, the other optimization strategies all show consistent improvements over
Greedy. In particular, SA, GA and ABC perform significantly better ® than Greedy
without significant difference between each other. This is particularly interesting
because we could significantly improve summarizers without modifying their core
assumptions encoded by the summary scoring functions.

Not only this encourages the use of GPO for subsequent summarization systems,
but it also motivates the investigation of # independently from the chosen optimiza-
tion strategy (since any @ can be optimized by a GPO).

Furthermore, figure 3.3 shows the improvements obtained for each summary scor-
ing function when the genetic algorithm is used instead of the greedy algorithm. It
is particularly interesting to observe the simple and old from Edmundson (1969)
performing close to the strong ICSI summarizer (Gillick and Favre, 2009). In fact,
Kedzie et al. (2018) also recently observed that even modern end-to-end abstractive
summarizers mostly leverage features like sentence position, which is the Location
method from Edmundson (1969).

Remark that some of these scoring functions, like Orr.rpr, Ogam. OF OLcrRank are
linear and could be optimized directly with an ILP which could give them another
performance boost. However, 0 and 6 ;5 have to be optimized by a GPOs.

Time efficiency:
Different summarization applications may come with different runtime limitations.
In these experiments, we arbitrarily fixed 30 seconds as the time limit. During
manual annotations reported in chapter 4, our annotators took an average of 30
minutes to read a document set. Thus, a system summarizing a similar document
set in 30 seconds is 60 times faster.

Furthermore, the ILP used for computing upper-bound in table 3.2 has a simi-

3 at 0.01 with significance testing done with t-test to compare two means
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Optimizer R-11 R-21 JS-1) JS-2)

Greedy-M +1.1  +0.3 -1.7 -1.1
Beam Search +1.1 404 -1.8 -1.1
Random Search | +0.2  -0.1 +0.2 -0.1

SA +1.5 +1.0 -2.2 -1.5
GA +1.6 +1.1 -23 -1.9
ABC +14 +1.2 -2.1 -1.3

Table 3.3: The average improvement in extracted summaries observed when switch-
ing form Greedy to another optimization algorithm (reported in pp). The average
is taken over every #’s and both datasets (TAC-2008 and TAC-2009).

lar runtime of 25 seconds per topic on average. Even in the submodular case, the
Greedy-M algorithm takes an average of about 10 seconds per topic. It is 3 times
faster than the limit we fixed for the GPOs, but it remains the same order.

One could greatly improve the speed by optimizing the code and removing the
plotting and debugging check-points. In fact, population-based optimization tech-
niques like GA and ABC can be easily parallelized (Bianchi et al., 2009) which would

further improve their efficiency and scalability.

In general, if a strict time budget 7" is given, one can combine greedy approaches
and GPOs to get the best of both worlds. First, the greedy algorithm runs and
generate its solution S, After the greedy algorithm has terminated, if the time
budget is over, S is the final result. Otherwise, S® can be used as starting
point for GPOs: as the initial position for Simulated Annealing or inserted in the
initial population of population-based GPOs (Genetic Algorithm and Artificial Bee
Colony). Then, the GPO can search for improvements over S until the time
budget is over. This results in a simple algorithm exploiting the allocated time
budget.

3.3 Approximate Upper-Bound Computation

In the previous sections, we motivated the use of GPOs as extraction techniques in
order to free the summary scoring functions from previously imposed constraints.

In this section, we discuss another direct benefit stemming from such algorithms:
one can compute better upper-bound estimates of evaluation metrics for which the
upper-bound cannot be found efficiently. Indeed, optimizing an evaluation metric
means finding its upper-bound.

When this optimization can be done exactly, the true upper-bound is found.
This is the case for ROUGE because its optimization can be framed as an ILP and
solved exactly (Takamura and Okumura, 2010).

Unfortunately, this is not possible for many realistic evaluation metrics. In par-
ticular, we used GPOs to compute upper-bound estimates for two important eval-
uation metrics introduced previously: JS-Eval (Lin et al., 2006) and Automatic

o8



3.3. APPROXIMATE UPPER-BOUND COMPUTATION

Pyramid (PEAK) (Yang et al., 2016). These are two summary scoring functions for
which no ILP can be used to find the exact upper-bound.

3.3.1 AUB Algorithm

Let 6 be an evaluation metric for which we want to estimate the upper-bound: the
set of sentences maximizing 6. Formally, we have to solve the following optimization
problem:

S* = argmax 0(S, R*) (3.33)
s

Here R* indicates the reference summary. This is the same optimization objective
used by a summarizer extracting a summary as defined in section 3.1. However, 0
uses of reference summaries.

We describe a simple procedure in algorithm 4 (AUB) which takes advantage of
the previously defined optimization techniques to compute a strong estimate of the
upper-bound for any function. Each algorithm optimizes the function and returns
a solution. The highest scoring solution is kept since the upper-bound is at least
as high-scoring as the best one. Using the max over several different optimization
techniques results in better approximations for the whole dataset because some tech-
niques may return better solutions for some topics but not all.

The AUB algorithm is itself a GPO which could optimize a summary scoring
function as part of a summarizer. In fact, it will result in better optimizations than
any individual algorithm presented before. However, this comes at the cost of more
computation time. The upper-bound of an evaluation metric has to be estimated
only once and, thus, we can afford a higher runtime. In our examples, we let AUB
ran for around 5 minutes per topics. For comparison, in our experiments with sum-
marization systems of chapter 4, we let the genetic algorithm ran for only 30 seconds.

Algorithm 4: Approximate Upper-Bound Computation Algorithm

Input : D ={sy,...,s,}: document as a set of sentences
f: objective function
L: length constaint

A: list of GPOs
Output: Approximate upper-bound as a set of sentences

1 Function AUB(A, D, 0, L):

2 solutions = ||

3 for a € Ado

4 | solutions < a(D,0, L)

5 end

6 return argmax 6(s)
s€solutions
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3.3.2 Examples: JS and PEAK

We now present two important examples of approximate upper-bound computations.
First, JS-Eval (Lin et al., 2006), despite being a simple function, does not exhibit any
convenient mathematical properties useful for optimization. Second, the automatic
version of Pyramid PEAK (Yang et al., 2016) is a complex and computationally
expensive metric which also requires an approximate upper-bound computation.
PEAK is a strong contestant for replacing ROUGE because its scoring process is
more semantically aware.

JS approximate upper-bound:

We saw in section 3.1 that JS divergence between the n-gram distributions of the
candidate summary and the reference summaries is a valuable automatic metric (Lin
et al., 2006). It provides an interesting alternative for ROUGE. Here, we briefly
remind of its formulation:

O1s-mua(S) = ~IS(S|IR) = L(KL(S|IM) + KL(RIM)  (3.34)

Where S is the candidate summary, R* is the reference summary and M is the
average n-gram distribution M = 1(P(S) + P(R")).

JS cannot be linearly decomposed into sentence scores (Louis and Nenkova,
2013). Thus, no ILP formulation can be employed to optimize it. Furthermore,
JS is not submodular (Louis and Nenkova, 2013), and there is no guarantee about
the quality of the solution extracted by the greedy algorithm.

Nevertheless, it is useful to have an idea about the upper-bound when JS-Eval
is used as the evaluation metric because it contextualizes the scores obtained by
summarization systems. We use AUB to compute the approximate upper-bound
of JS-Eval for both TAC-2008 and TAC-2009. We note it (JS-Eval-N, AUB). The
results are reported in table 3.4 for the unigram version and in table 3.5 for the
bigram version. For comparison, we also report the scores obtained by the ROUGE-
2 upper-bound when evaluated with JS-Eval-1 in table 3.4 and by JS-Eval-2 in
table 3.5. We also estimated the upper-bound of JS-Eval with a greedy algorithm
as it was done in table 3.1 (JS-Eval-N, Greedy).

TAC-2008] TAC-2009]

R-UB 387 381
(JS-Eval-1, Greedy) .399 .392
(JS-Eval-1, AUB) 362 353

Table 3.4: Comparison of three methods to compute the JS-Eval-1 upper-bound
on TAC-2008 and TAC-2009: a) computing the ROUGE-2 upper-bound, b) JS-
Eval-1 optimized with the Greedy algorithm and c) JS-Eval-1 optimized with AUB
described in algorithm 4. (All approaches are scored with JS-Eval-1)

Remember that divergence scores should be as low as possible. Then, it is clear
that AUB yields much better upper-bound estimates than the greedy algorithm. In-
terestingly, the upper-bound for ROUGE-2 gives better upper-bound estimates for
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TAC-2008, TAC-2009.

R-UB .552 .543
(JS-Eval-2, Greedy) .562 557
(JS-Eval-2, AUB) .528 498

Table 3.5: Comparison of three methods to compute the JS-Eval-2 upper-bound
on TAC-2008 and TAC-2009: a) computing the ROUGE-2 upper-bound, b) JS-
Eval-2 optimized with the Greedy algorithm and c) JS-Eval-2 optimized with AUB
described in algorithm 4. (All approaches are scored with JS-Eval-2)

JS-Eval-N than the greedy optimization (This could already be seen in table 3.1).
This provides a new understanding of the results described in table 3.2. In particu-
lar, we realize that systems are farther away from the upper-bound than previously
expected. This leaves a large room for improvements, for summarization evaluated

with JS-Eval.

PEAK: automatic Pyramid:

Previously, in section 2.2, we introduced PEAK, an automated version of the man-
ual Pyramid annotations. PEAK (Yang et al., 2016) uses clauses as the content
expressing units and represents them as propositions in the open IE paradigm. An
open IE proposition is a triple of subject, predicate and object phrases. PEAK uses
the state-of-the-art system clauslE (Del Corro and Gemulla, 2013) for proposition
extraction.

While PEAK includes the automatic creation of Pyramid sets from reference
summaries, as well as automatic Pyramid scoring of system summaries, in this work,
we use PEAK for automatic scoring only. As for the Pyramid sets, we can assume
that these have already been created, either via PEAK or by humans (e.g., using the
TAC 2009 data®). We remind that the Pyramid set is made of Semantic Content
Units (SCUs) each associated with a weight indicating its importance.

Since automatic scoring with PEAK requires the Pyramid sets to consist of
open IE propositions as the automated counterparts of the SCUs, we first converted
the manually constructed SCUs into open IE propositions by applying clauslE on
the SCU labels (a sentence describing an SCU). As a result, each Pyramid set is
represented as a list of propositions {p;} with a weight taken from the underlying
SCU.

For scoring, PEAK processes a system summary with clausIE, converting it from
a list of sentences to a list of propositions {pgs)}. A bipartite graph G is constructed,
where the two sets of nodes are the summary propositions p*** = {pz(-s)} and the
pyramid propositions p" = {p;}. An edge is drawn between pgs) and p; if the
similarity is above a given threshold noted ¢. PEAK computes the similarity with
the ADW system (Align, Disambiguate and Walk), a system for computing text
similarity based on WordNet, which reaches state-of-the-art performance but is slow
to compute (Pilehvar et al., 2013).

Since each system summary unit can be aligned to at most one SCU, the align-

4 http://tac.nist.gov/2009/Summarization
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ment of the summary propositions {p§S)} and the Pyramid propositions {p;} is
equivalent to finding a maximum weight matching, which PEAK solves using the
Munkres-Kuhn bipartite graph algorithm. The final Pyramid score is computed
from the matched Pyramid propositions {p;}.

PEAK approximate upper-bound:

Let D = {s;} be a document collection considered as a set of sentences. Again, a
summary S is simply a subset of D. We use p*" to denote the set of propositions
in the Pyramid sets extracted from the SCU labels using clauslE.

Intuitively, the task is to extract the set of sentences which contain the proposi-
tions matching most of the highest-weighted SCUs, thus resulting in the best match-
ing of propositions. Unfortunately, it cannot be solved directly via ILP because of
the Munkres-Kuhn bipartite graph algorithm within PEAK.

While Munkres-Kuhn is itself an ILP, we solve a different problem. In our
optimization problem, Munkres-Kuhn would act as a constraint because we are
looking for the best matching among all valid matchings. Munkres-Kuhn only yields
the valid matching for one particular set of sentences.

In theory, one global ILP can be written down by enumerating all possible match-
ings in the constraints but it will have a completely unrealistic runtime. Instead,
we have to rely on search-based optimization techniques and the AUB from algo-
rithm 4.5

In order to run AUB with PEAK as the fitness function, we need to evaluate
many summaries. Every time a summary is evaluated with PEAK, we need to
compute the similarity between the propositions of the candidate summary with the
propositions in the Pyramid set. Then, the matching algorithm (Munkres-Kuhn)
has to be run.

The runtime might become an issue, because the similarity computation between
propositions via ADW is fairly slow. However, all the necessary information is
available in the similarity matrix A defined by:

Ay = ADW (pP ") (3.35)

Here A;; is the semantic similarity between the proposition p? from the source
document 7 and the proposition pf*" from the Pyramid set j. A has dimensions
m x n if m is the number of propositions in the document collection and n is the
number of propositions in the Pyramid set. We keep the AUB runtime low by
pre-computing the similarity matrix A for each topic in TAC-2009. However, pre-
computing A for the whole dataset took 2 weeks on a compute server with 10 CPUs.

In table 3.6, we report the PEAK scores of summaries extracted by the AUB
noted (PEAK, AUB). For comparison, we also report the scores of summaries ex-
tracted by the greedy algorithm (PEAK, Greedy) and the ROUGE-2 upper-bound
(R-UB). During the computation of the upper-bound with AUB, we set the simi-
larity threshold parameter to ¢ = .6. For evaluating the extracted summaries, we

5 In practice, for this scenario, the genetic algorithm always provided the best summary.
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report PEAK for both ¢t = .6 and t = .7.

PEAK-60 PEAK-70

R-UB 0.509 0.307
(PEAK, Greedy) | 0.518 0.309
(PEAK, AUB) 0.579 0.379

Table 3.6: Comparison of three methods to compute the PEAK upper-bound on
TAC-2009: a) computing the ROUGE-2 upper-bound, b) PEAK optimized with
the Greedy algorithm and ¢) PEAK optimized with AUB described in algorithm 4.
(All approaches are scored with PEAK using ¢t = .6 (PEAK-60) and ¢t = .7 (PEAK-
70))

We observe large gaps between the scores produced by R-UB and (PEAK, AUB).
This observation empirically confirms that the two metrics measure different proper-
ties of system summaries. Unlike for JS-Eval, even the greedy optimization already

finds better estimates of the upper-bound than the summaries extracted for the
ROUGE-2 upper-bound.
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Chapter Summary

Without loss of generality, summarization can be viewed as two com-
ponents: a summary scoring function and an optimization tech-
nique. This decomposition is noted (6, O).

Every summarizer defines implicitly or explicitly a summary scoring
function #. We can measure whether this scoring function correlates with
human judgments and thus measure whether systems follow a strategy
similar to humans.

The 6 of existing summarizers present surprisingly low correlations with
human judgments.

GPO techniques, which can optimize any arbitrary function can be
adapted to summarization. They are shown to be both efficient and
effective enough for the summarization use-case.

Since GPOs are usable, there is no need to constrain 6 to exhibit
particular mathematical properties. This augments the expressive power
of #. This new advantage is leveraged by the following chapter.

Existing summarizers for which 6 has been identified can be significantly
improved by using a GPO (like the Genetic Algorithm) instead of a
greedy optimization.

With GPO, the upper-bound of evaluation metrics without convenient
mathematical properties can be estimated. (Important examples: JS-
Eval and PEAK upper-bound have been estimated)
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Chapter 4

Learning the Summary Scoring
Function

So far, we have argued for the separation of the summarization task into its 2 defin-
ing components: ¢ and O. The design of O is mostly an engineering problem which
can be informed by specialized works in the field of combinatorial optimization. In
section 3.2, we introduced and compared such techniques applied to the summariza-
tion task. These experiments demonstrated that GPOs are usable which opens up
the possibility to search for an unconstrained summary scoring function.

The focus of summarization research can now be put on the discovery and study
of summary scoring functions. Indeed, these functions should encode all relevant
quality aspects of a summary (that we wish to model), such that by maximizing
them we would obtain the best possible summaries.

Additionally, chapter 3 discussed ways to analyze the summary scoring function
f independently from O directly with human judgments. The summary scoring
functions of existing systems display low correlations with human scores. Here, we
propose to explicitly develop summary scoring functions having high correlations
with humans.

In the next chapter (5), we will propose a formulation of # derived within an ab-
stract theoretical framework rooted in information theory. However, in this chapter,
we tackle the problem of discovering 6 automatically from data.

In particular, we aim to infer it from observed scored summaries for the specific
aspect of content selection as evaluated by humans. Indeed, content selection is the
main problem of summarization and lossy semantic compression in general. Other
aspects such as readability or grammaticality are general problems of NLG that we
do not consider here.

For complex or vaguely defined tasks, it is common to employ Machine Learn-
ing (ML) tools to automatically discover statistical regularities in available data
(Bishop, 2006). The ML approach requires minimal prior specification and allows
to search 6 from the available datasets of human judgments. However, important
design choices remain: supervision signal, the learning constraints or the feature
space. These dimensions of variations are discussed in section 4.1.

65



CHAPTER 4. LEARNING THE SUMMARY SCORING FUNCTION

The vast majority of previous work focused on scoring smaller textual units (e.g.,
sentences) with ROUGE as supervision (Yao et al., 2017). This is a restricted sce-
nario and we investigate a much wider spectrum of possibilities. In particular, we
propose to learn the summary scoring function at the summary-level instead of man-
ually specifying a combination of the scores of the sub-elements. This gives access
to much more powerful features, especially ones capturing redundancy.

Additionally, we discuss how to incorporate the available human judgments in
the learning setup. This constitutes a more meaningful supervision signal than sim-
ply relying on automatic evaluation metrics like ROUGE and contributes to RQ4.

Finally, the different summary scoring functions are compared based on their
ability to correlate with humans and to extract high-quality summaries after opti-
mization. The results confirm the superiority of the unconstrained scoring functions
and answer RQ3.

4.1 The Matrix of Possible Scoring Functions

In chapter 3, we saw that 6 has rarely been learned directly at the summary level.
Instead, smaller components such as words, n-grams or sentences have been scored
either by trained models or unsupervised heuristics. In such cases, a summary-level
scoring function has to be defined either implicitly or explicitly by combining the
scores from the smaller units (Carbonell and Goldstein, 1998; McDonald, 2007).

We hypothesize that constraining 6 greatly limits the expressive power of the
resulting scoring functions.

In particular, it appears difficult to model sentence interactions and redundancy
simply by combining sub-elements scores (Carbonell and Goldstein, 1998). Hope-
fully, we showed previously that GPOs are practical, thus # can be freed from its
previously imposed constraints.

In fact, this perspective generalizes previous works because combinations of
scores from smaller units are a special case of the unconstrained scenario. For
instance, linear (McDonald, 2007) or submodular (Lin and Bilmes, 2011) scoring
functions become special cases of this more general setup where 6 is learned without
particular constraints.

Additionally, we discuss another degree of freedom when learning 6 by consid-
ering various supervision signals instead of solely ROUGE scores. The dimensions
of variations of the 6 learning setup can be summarized in a matrix. We briefly
introduce these axes here and detail them in the following section. The two main
axes we consider (supervision and constraints on ) are summarized in table 4.1.

e Axis 1: Supervision: Ideally, the supervision would come directly from hu-
mans but manual annotations are expensive to obtain. Thus, automatic eval-
uation metrics like ROUGE usually provided supervision (Cao et al., 2015b).
However, other metrics could also be considered.
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ROUGE-2 JS-Eval-2 PEAK h

linear constraint 9%72” 9%2 H%Zak 9%”
No constraint Ora 0152 Opcar.  On

Table 4.1: Summary of the two main axes of variations: i) the supervision signal
which may come from various approximation of humans up until actually using
human judgment datasets as target scores. ii) the constraints imposed on 6: either
linear or no constraint. The top left corner is where most previous works lie. For
the second row, non-linear features become available.

e Axis 2: Constraints on #: This axis corresponds to the learning algorithms.
Indeed, each learning algorithm specifies a hypothesis space restraining the
choice of #. These can be categorized into broader categories, such as al-
gorithms that impose linearity constraints, submodularity constraints or no
strong constraint (except for continuity and smoothness).

e Axis 0: Features: Conceptually, the features could be part of the learning
algorithm as they contribute to the specification of the hypothesis space. How-
ever, most learning algorithms work independently from the specific feature
choice. We refer to the features as axis 0 because we do not investigate them
in great detail. Instead, we fixed a simple and standard feature set to focus
the comparison on the other two axes. We describe them in the next section.

4.1.1 Axis 1: Supervision

The source of supervision is an important dimension of variation when learning a
summary scoring function. It defines which summaries are considered as good and
bad. If we wish our system to mimic humans, the supervision should ideally come
directly from humans. Because obtaining such manual annotations is expensive, a
large body of work employed surrogate functions such as ROUGE as a proxy for
summary quality.

However, we already presented several promising alternative evaluation metrics
in chapter 3. Furthermore, even if they are scarce, we may want to leverage the hu-
man judgments made available during the DUC/TAC shared tasks. In section 4.3,
we propose a simple method to incorporate existing human judgments into the train-
ing.

Here, we briefly described these various supervision possibilities.

ROUGE:

System summaries are commonly evaluated using ROUGE (Lin, 2004b), a recall-
oriented metric that measures the n-gram overlap between a system summary and a
set of human-written reference summaries. Since it is the standard evaluation metric,
it seems reasonable to adopt it for supervision as well. We study the properties of
this metric in great detail in section 4.2.
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In fact, previous works used ROUGE variants extensively as target scores for tex-
tual units like n-gram (Li et al., 2013) or sentences (Cao et al., 2015a). Alternatively,
structured output learning can receive ROUGE feedback at the summary-level and
propagates it to the smaller units (Nishikawa et al., 2014; Takamura and Okumura,
2010; Sipos et al., 2012).

ROUGE is a simple and natural choice for training systems. It is easy to use and
fast to compute, giving the possibility to generate many scored summaries. This is
a cheap way to construct a training dataset for summarization systems.

Other Automatic Metrics:
While ROUGE seems to be a decent supervision signal, it also has several problems
(see section 2.2). ROUGE has been widely criticized for being too simplistic and not
suitable for capturing important quality aspects (Lloret et al., 2018). In particular,
ROUGE cannot detect sentences which are semantically equivalent but expressed
with different words (Nenkova et al., 2007).

ROUGE is just one possible proxy for summary quality — there are other auto-
matic metrics to evaluate system summaries, which also correlate well with human
judgments (Louis and Nenkova, 2013).

In chapter 3, we already introduced two potential alternatives: Automatic Pyra-
mid (PEAK) and the Jensen-Shannon divergence between n-gram distributions of
the candidate summary and the reference summaries (JS-Eval-N).

Given the recent advances in the automatic evaluation of summaries regard-
ing content selection, we believe that empirical research in summarization should
progressively move away from ROUGE towards more meaningful metrics for both
training and evaluating systems. Therefore, we conduct a systematic comparison of
the systems trained with the metrics described above.

Humans:
Ultimately, summarization systems are expected to mimic humans, meaning that
their internal scoring functions should ideally correspond to human scores.

We note h as the function explaining the observed human judgment data, which
is an approximation of the ideal human scoring function H. The ideal H refers to the
true process by which humans summarize texts including all biological phenomena
happening in the brain. Such H is not accessible and might not even be well-defined
for an average human summarizer.

In particular, saying that h ~ H even if H is not observable means we recognize
that the existing human judgments h are not necessarily a perfect signal. They
could be improved. For example, improving annotations guidelines to ensure high
inter-annotator agreement could improve the resulting human judgment datasets h.
However, for the purpose of this thesis, we assume h is given and consider it as a
meaningful approximation of this ideal H.

Then, we can learn the objective function # from a pool of manually annotated
summaries (h) to ensure the extraction of summaries considered good by humans.

This explicitly targets the extraction of high-quality summaries as measured by
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humans and limits undesired gaming of the target evaluation metric:
0~h~H (4.1)

The learning setup is the same when an automatic metric is used instead of h, but h
is presumed to be a much better indicator of the average human scoring function H.
Indeed, current evaluation metrics are only weak approximations of humans. They
can only display mild correlations with humans in carefully controlled settings.

Unfortunately, available human judgment datasets contain only a few data points.
The learned 6 might be ill-behaved, driving the optimizer to regions of the feature
space unseen during training where 6 wrongly assumes high scores. We examine
these challenges and potential solutions in section 4.3.

4.1.2 Axis 2: Learning Constraints on 6

Once a supervision signal from axis 1 is chosen and a corresponding dataset of scored
summaries is available, a scoring function 6 can be learned.

Formally, let D be the dataset of topics {71,...,7,}. Each topic 7; has: 1)
sources D; and i) a set of scored summaries S; = {s;1,...,Sim}. Each summary
s;j has a target score 6*(s; ;). For example, if 6* is ROUGE-N, the score of a sum-
mary s; ; is its n-gram overlap with reference summaries. However, 6* could be any
evaluation metric or score manually given by humans (h).

We aim to learn a function 6 approximating 6* on dataset D without accessing the
reference summaries or any other evaluation resources. Thus, # could, for example,
minimize the following loss:

LO)=Y" > I0(D;,si5) — 0" (si, R (4.2)

D;,eD Sij €S;

Here, the 6 should minimize the squared distance from 6* over the available training
data. While we stick with this loss for our experiments, several other loss functions
would be possible. For instance, a max-margin loss (Sipos et al., 2012) or ranking
loss could be employed.

Building from this general learning goal, we explore how the linear constraint can
be imposed on # in a general way and see how this simplifies when this constraint is
removed. While we did not implement it, the same analysis could be done for the
submodular constraint by using general results from Tschiatschek et al. (2018).

Learning with the linearity constraint:

Now, we present a simple but general way to learn a summary scoring function with

linearity constraints. This allows comparing € trained with the linearity constraint

(optimized with ILP) and 6 trained without constraint (optimized with a GPO).
By linearity, we mean that 6 should be linearly factorizable with respect to sub-

elements like sentences. In the simplest case, 6 takes the following form:

0(S) =) fule) (4.3)

eeS
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The function f, of parameter w scores each element e of the summary S. The
overall score of S is the sum of the scores of its elements. The latter are not learned
independently, instead, f, is learned such that 6 as a whole matches the target
summary score.

This view is simplistic and it is possible to maintain linearity while accounting,
to some extent, for element interactions:

0(S) =Y fule) + D gleine) (4.4)

ecS 1>7

Here, two functions are jointly learned: f, (of parameter w) is a function scoring
individual elements, and g, (of parameter ) is a function scoring pairs of elements.
This learning scenario jointly learns the sentence relevance fo and redundancy g,
that make # match the target 6*. This scenario is rather intuitive and neatly fits
within the general description proposed by McDonald (2007).

In such a case, before running an ILP solver on €, one needs to precompute the
score for each element (in a 1-dimensional array), but also the score for each pair of
elements (in a 2-dimensional matrix).

In fact, one can extend this idea to the interactions between n elements, but this
would require to store an n-dimensional tensor for the ILP extraction. In practice,
we don’t see any benefits after n = 2 but the runtime of the ILP explodes with n.

For learning, each element is represented by a feature set ¢ and each pair of
elements by ¢®. Thus, the feature set for a summary S is given by:

2(8) = {2(s)ees} = {{J dle) Ul o™ (eire)} (45)

The number of features is variable and depends on the number of sentences in
S.
In order to deal with a variable sized input, one could use recurrent neural networks
(Hochreiter and Schmidhuber, 1997), but at the cost of losing linearity. Instead, we
employ linear models for both fy and g.:

0(S) =D w-dle) =Y v P (eiey) (4.6)
eeS 1>7
By linearity, we end up with the following formulation:
0(S)=w-> o(s) =7 Y P (eiey) (4.7)
ecs i>]

The resulting feature set at the summary-level is the sum of the features of its
elements, together with the sum of the features of pairs of elements:

., (S) = {p+(S) UsP(9)} (4.8)
where ¢, (5) = Z o(s) (4.9)
and ¢(5) = 3~ d(es ;) (4.10)
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Suppose ¢ is composed of k features and ¢ of p features. Then ¢, (S) is a

vector of dimension k, and similarly (ﬁf)(S ) is of dimension p. Finally, ®, has a
fixed size of k + p.

The function 6 as defined in equation (4.6) remains linear with respect to el-
ements and pairs of elements. The parameters w and v can be estimated using
the loss described by equation (4.2) with standard linear regression algorithm (Pe-
dregosa et al., 2011).

Once @ is learned, we can extract the best scoring summary of a given topic via
ILP. Let x be a binary vector indicating whether the element 7 is in the summary or
not. Similarly, let a be a binary matrix indicating whether both elements ¢ and j are
in the summary. With L denoting the length constraint, the ILP solving “argmax ”
is given by:

argmaxel - p(e;) Zaw v @ (€i,€5) (4.11)
e; €S i>7
such that, le len(e;) < K (4.12)
=1
V(i,5), 05 —x; <0 (4.13)
Wi g) -y < 0 (4.14)
V(i ), :vzﬂy a;; <1 (4.15)

This derivation is a general formulation of existing ideas in optimization-based
summarization. McDonald (2007) already introduced the idea of optimizing a linear
objective function as the difference of relevance and redundancy.

Additionally, the idea of providing feedback at the summary level and propa-
gating it to the smaller units originally comes from the structured output learning
paradigm. Structured output learning was already used in summarization (Li et al.,
2009; Sipos et al., 2012).

Thus, the framework we just presented is following the tradition of summariza-
tion systems learning scores for sub-summary units.

Removing the constraints:
In contrast to the constrained case, learning without constraints is conceptually
much simpler.

It is sufficient to specify an arbitrary feature set ®(.S), which may or not include
the features from the constrained case. Then, any regression algorithm can be di-
rectly applied to this feature set using the loss from equation (4.2).

In general, the resulting function does not exhibit convenient mathematical prop-
erties such as linearity or submodularity. This is not problematic since GPO can be
used for the extraction. In comparison, the expressive power of an unconstrained 6
is greater because the hypothesis space is larger and — more importantly — non-linear
but powerful features become available.
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4.1.3 Axis 0: Features

The feature choice is usually a crucial step in any ML setup. Here, in order to
compare the other aspects of the 6 learning framework, we selected a small but
standard feature set inspired by existing summarization systems.

When learning with the linearity constraint, only sentence-level features are
affordable. To preserve linearity, sentence-level features can offer a score at the
summary-level only by (weighted) summation. Alternatively, one can define fea-
tures for pairs of sentences (as described in the previous section).

However, when the constraint is removed, one has also access to features com-
putable only at the summary-level.

TF-IDF (linear):

In section 3.1, we introduced O7p.;pr: each term in the document receives a score
based on its frequency in the source (T'F') and its inverse document frequency (I DF)
in a background corpus.! This is a linear feature as the score of the summary is the
sum of the sentence scores.

Document-frequency of n-grams (linear):

As described in section 3.1, ;097 produces a score for a summary based on the cov-
erage of frequent bigrams. It is linearly factorizable and can, therefore, be used at
the sentence-level. This is known to be a strong signal correlating with importance
as ICSI is capable of extracting high-quality summaries (Gillick and Favre, 2009).

Edmundson scores (linear):
In section 3.1, we also discussed the Edmundson approach (Edmundson, 1969),
which consists of 4 different sentence scoring methods.

The Cue-phrase method counts the number of bonus and stigma words in
the sentences. The Key method computes the frequency of words (which are not
stopwords) in the sentences. The Title method measures the overlap between the
sentence and the title. Finally, the Location method puts more weights on the first
and last sentences as they are expected to be more relevant. It also linear because
the score of the whole summary is the sum of the sentence scores.

Sentence centrality (linear):

The LexRank method (Erkan and Radev, 2004) also produces a summary scoring
function 0r.c.rane described in section 3.1. It computes sentence centrality based
on a similarity graph where sentences are nodes and edges are drawn between two
sentences if their TF-IDF similarity is above a given threshold. The PageRank al-
gorithm is run on the resulting graphs which returns a score for each sentence. The
O LexRank Score of a summary is the sum of the scores of individual sentences.

Number of sentences (linear):
We also use the number of sentences in the summary as a feature because when a
summary contains a lot of sentences, they tend to be very short and irrelevant.

! The IDF values are computed from the Wikipedia dump of 2017 using scikit-learn: http:
//scikit-learn.org/stable/)
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Pairwise redundancy (linear with respect to pairs of sentences):

For each pair of sentences (s,, $;), we define the intersection s, N s, as the set of
n-grams appearing in both sentences. The redundancy between s, and s is then the
size of their intersection: |s, N sp|. The overall pairwise redundancy of a summary
is the sum of the redundancy of all sentence pairs. This feature is used to model
redundancy in the constrained case. We used n = 1 and n = 2. This corresponds
to qbf)(S ) defined in the previous section.

JS divergence with source document (non-linear):

Similar to 0, also discussed in section 3.1, we also employ ;¢ as feature. This is
an example of a feature that cannot arise from linear (or submodular) combination
of sentence scores. This feature can only be used in the unconstrained scenario but
it is a strong indicator of importance, as indicated by the results of section 3.1. We
chose 0 instead of 0, because of its better correlation with humans.

Intra-summary diversity (non-linear):

Let S be a summary composed of several terms w. KEach term appears with a
frequency Pg(w) in the summary. A summary with a lot of diversity and therefore
low redundancy would exhibit a high entropy in the distribution of its terms. Thus,
we define the diversity of S by:

Opin.(S) = H(S) =Y Pg(w) - log

weS

1
]PS(U))

(4.16)

This is a measure of redundancy (as the opposite of diversity) and is also not com-
putable from a linear or submodular combination of sentence scores. It is more
meaningful than the pairwise redundancy feature defined for the constrained case
because it can directly account for the whole summary. The pairwise redundancy
feature is bound to overcount terms appearing in the intersection of three sentences.

Remark:

Even though many linear and non-linear features can be investigated, there are some
dependencies between the choice of features (axis 0) and the constraints (axis 2).
Indeed, non-linear features are incompatible with a linear constraint imposed on 6.
Thus, we have two distinct feature sets for the two different kinds of constraints:

e Linear constraint: ®;, = {TF-IDF, n-gram frequency, Edmundson scores,
sentence centrality, number of sentences, pairwise redundancy}.

e Unconstrained: & = &, U { JS, diversity}.

4.2 An Important Example: Exploiting ROUGE prop-
erties

One special case in the matrix presented above is learning with ROUGE as super-
vision in the constrained case. This scenario is the one followed by the majority of
previous works (Yao et al., 2017).
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Typically, there exist two ways of learning from ROUGE: () training a model
that assigns ROUGE scores to individual textual units (e.g., bigrams or sentences)
(Li et al., 2013) or (i) performing structured output learning with supervision at
the summary-level propagated to the textual units (Nishikawa et al., 2014; Taka-
mura and Okumura, 2010). In both cases, linearity or submodularity constraints
are usually imposed (Sipos et al., 2012).

While we advocate for unconstrained summary scoring functions in general, in
the special case where ROUGE is the supervision, we demonstrate that one can
exploit the simple mathematical structure of ROUGE to uncover a surprisingly
effective linearly factorizable approximation (noted ).

Assuming that ROUGE scores of individual sentences have already been esti-
mated, we derive an approximation of the ROUGE score of a summary from the
scores of its sentences. This results in a 0 approximating ROUGE, for which an
ILP can be solved to extract the optimal summary.

Most importantly, the resulting framework reduces the summarization task (as
evaluated by ROUGE) to the problem of scoring individual sentences with their
ROUGE scores. Indeed, the overall task is converted into two sequential tasks: ()
scoring single sentences, and (ii) selecting a set of sentences by solving an optimiza-
tion problem where the ROUGE score of the summary is maximized. The proposed
approximation of ROUGE almost exactly solves (i) when optimized with the proper
ILP. Hence, solving the whole problem of summarization (as evaluated by ROUGE)
is reduced to solving (i).

In section 4.4, we compare this approximation (noted 6 r) to the general 0 learning
with linearity constraint presented in the previous section. As hypothesized, we
observe strong performances of 0r when ROUGE is the evaluation metric. Thus,
this derivation is a principled way of approximating ROUGE while preserving the
linearity constraint. Unfortunately, such analysis relies on the simplicity of ROUGE
and cannot be replicated to more interesting metrics like JS-Eval-N or PEAK. For
the two latter ones, we have to use the general framework outlined in section 4.1.

4.2.1 Useful Mathematical Properties of ROUGE

Let S = {s;|i < m} be a set of m sentences which constitute a system summary. We
use Or_n(S) or simply 0r(S) to denote the ROUGE-N score of S. Let S* denote the
reference summary and Ry the number of n-gram tokens in S*. Ry is a function of
the summary length in words, in particular, R, is the target size of the summary in
words. Finally, let Fs(g) denote the number of times the n-gram type g occurs in
S. For a single reference summary, ROUGE-N is computed as follows:

Or(S) = - 3 min(F(g), Fi-(9) (4.17)

geS*

For compactness, we use the following notation for any set of sentences X:
Cx,s+(9) = min(Fx (g), Fs-(g)) (4.18)
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Cx s+(g) can be understood as the contribution of the n-gram g.

ROUGE-N for a pair of sentences:
Using this notation, the ROUGE-N score of a set of two sentences a and b can be
written as:

Or(aUDb) Z Claup,s+ (4.19)

gES*
We observe that z(aUb) can be expressed as a function of the individual scores
Or(a) and Or(b):
Or(aUb) =0gr(a) + Or(b) — e(aNb) (4.20)

where €(a N b) is an error correction term that discards overcounted n-grams from

the sum of fg(a) and GR(b):

elanb) = Zmax w5+(9) + Chs-(9) — Fs-(g),0) (4.21)

gES*

A derivation of this error correction is correct is given in Appendix C.2.

General formulation of ROUGE-N
We can extend the previous formulation of 6z to sets of arbitrary cardinality using
recursion. If 05 (S) is given for a set of sentences S, and a is a sentence then:

Or(SUa) =0r(S)+0gr(a) —e(SNa) (4.22)
We prove in Appendix C.2 that this formula is the ROUGE-N score of S U a.

Another way to obtain #r for an arbitrary set S is to adapt the principle of
inclusion-exclusion:
m

- Xm: Or(s;) + Z 1A Z eM(s;,N---Nsy,)) (4.23)

k=2 1<i1§---§ik§m

This formula can be understood as adding up scores of individual sentences, but n-
grams appearing in the intersection of two sentences are overcounted. €? is used to
account for these n-grams. But now, n-grams in the intersection of three sentences
are undercounted and € is used to correct this. Each € contributes to improving
the accuracy by refining the errors made by e*~1 for the n-grams appearing in the
intersection of k sentences. When k = |S|, 0z(S) is exactly the ROUGE-N of S. A
rigorous proof and details about €*) are provided in Appendix C.3.

Approximation of ROUGE-N for a pair of sentences:
To find a valid approximation of O as defined in (4.23), we first consider the 0z (aUb)
from equation (4.19) and then extend it to the general case.

When maximizing g, scores for sentences are assumed to be given (e.g., esti-
mated by an ML component). We still need to estimate €(a N b), which means,
according to (4.21), to estimate:

> max(Cos-(9) + Chs-(9) — Fs+(g),0) (4.24)
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At inference time, neither S* (the reference summary) nor Fg. (number of occur-
rences of n-grams in the reference summary) are known.

At this point, we can observe that, similar as for sentence scoring, € can be
estimated via a supervised ML component. In fact, equation (4.20) has the same
form as equation (4.4) with one function scoring sentences et one fonction scoring
pairs of sentences. Both can be learned with supervised learning as described earlier.

Thus, this would correspond exactly to the learning with linearity constraint
scenario presented in the previous section. There, both the scores for individual
sentences and the € are learned empirically from data using ML.

However, we found in our experiments that a simple heuristic yields a decent
approximation of e. The heuristic uses the frequency freq(g) of an n-gram g observed
in the source documents:

> max(Cus-(9) + Chs(g) — Fs+(9),0) ~ > 1[freq(g) > of (4.25)

geS* gEanb

The threshold « tells us which n-grams are likely to appear in the reference sum-
mary, and it is determined by grid-search on the training set. This is penalizing
n-grams which appear twice in the candidate summary but are likely to occur in the
reference summary. In practice, we used o = 0.3. However, we experimented with
various values of the hyper-parameter a and found that its value has no significant
impact as long as it is fairly small (< 0.5). Higher values will ignore too many
redundant n-grams and the summary will have a high redundancy.

Ry is known since it is simply the number of n-gram tokens in the summaries.
We end up with the following approximation for the pairwise case:

Or(aUDb) = HR( ) + 0r(b) — é(a Ub), where (4.26)
E(aUb) = Z [freq(g) > o (4.27)

General approximation of ROUGE-N:

Now, we can approximate fr(S) for the general case defined by equation (4.23). We
recall that O (S) contains the sum of fx(s;), the pairwise error terms € (s; N s;),
the error terms of three sentences €® and so on.

We can restrict ourselves to the individual sentences and the pairwise error cor-
rections. Indeed, the intersection between more than two sentences is often empty,
and accounting for it does not improve the accuracy significantly, but greatly in-
creases the computational cost.

A formulation of € in the case of two sentences has already been defined in (4.27).
Thus, we have an approximation of the ROUGE-N function for any set of sentences
that can be computed at inference time:

= Z Op(si)— > &(siNsy) (4.28)

8i,5;€85,8;#8;
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This is again the same form as equation (4.4). However, we have presented an ap-
proximation of the second term. Thus, only the sentence scores remain to be learned.

We empirically checked the validity of this formula. For this, we sampled 1000
sets of sentences from source documents of DUC-2003 (sets of 2 to 5 sentences) and
compared their Og score to the real ROUGE-N. When the sentence scores are given,
we observe a high Pearson’s r correlation of 0.97, which validates 0.

4.2.2 Optimizing the Approximation

0r from equation (4.28) defines a set function that scores a set of sentences. Now,
the remaining task of summarization is to select the set S* with maximal 0z(S*)
under a length constraint (the component O).

Submodularity:

It has been shown that ROUGE-N is submodular (Lin and Bilmes, 2011) and one

can verify that 0r, is submodular as well (the proof is given in Appendix C.4).
Therefore, we can apply the Greedy-M maximization algorithm to find a good

set of sentences. This has the advantage of being straightforward and fast. However,

it does not necessarily find the optimal solution.

Integer Linear Programming:
A common way to solve a discrete optimization problem is to formulate it as an ILP.
It maximizes (or minimizes) a linear objective function with some linear constraints
where the variables are integers.

We observe that it is possible to formulate the maximization of f5(S) as an ILP.
Let x be the binary vector whose i-th entry indicates whether sentence i is in the
summary or not, fx(s;) the scores of sentences, and L the length constraint. We

pre-compute the symmetric matrix P where P, ; = &(s; N's;) and solve the following
ILP:

n ~ 1 _
argmaxz x; x Og(s;) — dﬁ Z a;;* Pi,j (4.29)
x i=1 i>j

such that, sz xlen(s;) < L (4.30)

i=1
( ]) Q5 — Ty <0 (431)
V(i j), iy —x; <0 (4.32)
V(i,7), v+ x5 —ai; < 1 (4.33)

d is a damping factor that allows accounting for approximation errors. When
d = 0, the problem becomes the maximization of “summary worthiness” under a
length constraint, with “summary worthiness” being defined by > 0z(s;).

In practice, we used a value d = 0.9 because we observed that the learner tends to
slightly overestimate the ROUGE-N scores of sentences. The mathematical deriva-
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DUC-02  DUC-03
R-1 R-2 R1 R2
~ I

(R, Greedy) 597 414 391 148
(6, Greedy-M) | .630 484 424 .160
(0r, ILP) 644 495 447 178

Upper-Bound 648 497 452 181

Table 4.2: Upper-bound of the proposed framework compared to the true extractive
upper-bound.

tion implies d = 1, however, we can easily adjust for shifts in average scores of
sentences from the estimation step by adjusting d.

Another option would be to post-process the scores after the estimation step to
fix the average and let d = 1 in the optimization step. Indeed, if d moves away from
1, we move away from the mathematical framework of ROUGE-N maximization.

If d # 0, it seems intuitive to interpret the second term as minimizing the
summary redundancy, which is in accordance with previous works (McDonald, 2007).

However, here, this term has a precise interpretation: it maximizes ROUGE-N
scores up to the second order of precision, and the ROUGE-N formula itself already
induces a notion of “summary worthiness” and redundancy, which we can empirically
infer from data via supervised ML for sentence scoring and a simple heuristic for
sentence intersections.

4.2.3 Approximation of ROUGE: a Problem Reduction

Now, we show that our proposed approximation is valid and actually reduces the
problem of summarization (evaluated by ROUGE-N) to the problem of learning
sentence scores. In section 4.4, we perform a thorough comparison of the summaries
extracted by this method against baselines and other proposed approaches.

For the current experiments, we use the multi-document summarization datasets
released as part of the DUC editions of 2002 and 2003 (DUC-02 and DUC-03).

Problem reduction:

Given that sentences receive scores close to their individual ROUGE-N, we pre-
sented a function A that approximates the ROUGE-N of sets of these sentences. We
also proposed an optimization to find the best scoring set under a length constraint.

To validate our framework empirically, we measured the quality of summaries
extracted when 0p is optimized with the real ROUGE-N scores of the individual
sentences, calculated based on the reference summaries.

Then, 0z can be optimized either by the Greedy algorithm (6, Greedy), by
Greedy-M (Ag, Greedy-M), the greedy algorithm for submodular function maxi-
mization, or via the ILP proposed above (HNR, ILP). For reference, we report the real
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upper-bound for extractive summarization which is determined by solving a maxi-
mum coverage problem for n-grams from the reference summary, as it was done by
Takamura and Okumura (2010).

Table 4.2 shows the results. We observe that (éR, ILP) produces scores really
close to the upper-bound. Thus, the problem of extractive summarization is reduced
to the task of sentence scoring, because perfect scores for sentences induced near
perfect extracted summaries when 0 is optimized. Greedy-M seems less promising
than the ILP because it greedily maximizes a function which the ILP can exactly
maximize. However, Greedy-M offers a nice trade-off between performance and
computation cost. The Greedy-M optimization is noticeably faster than the ILP
(on average 3 times faster).

4.3 Using Human Judgments

Another especially important special case in the matrix of possible 6 concerns the
use of human judgments as supervision. In fact, this constitutes the ideal setup if
the goal is to actually mimic humans.

However, this scenario poses several issues. First, collecting such data is difficult
and expensive. As a result, the existing datasets contain few data points. Second,
these datasets are limited in scope as they cover mostly average summaries. Indeed,
human judgment datasets were created as a by-product of the manual evaluations
performed during the shared-tasks of DUC and TAC. The scored summaries are
the summaries extracted by the participating systems which are mostly average
(compared to nowadays standards) and may exhibit some bias in their selection
procedures.

In this section, we actually observe the impact of these problems with a small 6
learning example and propose a simple regularization strategy to still leverage the
existing human judgments.

Furthermore, we draw a simple connection between the task of learning the
evaluation metric and learning the objective function 6. Indeed, the idea of learning
from human judgments is a natural extension to the initial proposal of evaluating
summary scoring functions by measuring their correlation with human judgments.

We already discussed in section 3.1 that this evaluation applies to both evaluation
metrics and summarizers’ internal objective functions. We briefly expand on this
idea because it presents the nice conceptual advantage of putting the two main
challenges of summarization (i.e., the evaluation and crafting of systems) into the
same learning setup.

4.3.1 Learning the Metric — Learning the System

In section 3.1, we argued that evaluation metrics and summarizers’ internal objective
functions are both summary scoring functions which are expected to correlate highly
with humans (i.e., the scores produced by the function should rank summaries in a
similar way as humans do).
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This calls for the supervised learning of summary scoring functions from human
judgments. With h the implicit function explaining the human judgments, 6.,, an
evaluation metric and 0, a scoring function for a summarizer:

Qeval ~h (434)
Ooys ~ h (4.35)

While this idea is particularly intuitive for evaluation metrics (Conroy and Dang,
2008; Rankel et al., 2012), it now becomes obvious for a summarizers’ scoring func-

tion as well. In fact, before, the evaluation metric was used as signal: 05,5 = Ocpar =
h.

Interestingly, the two main challenges of summarization, the evaluation and the
crafting of summarizers, are unified and framed within the same setup. The only
difference concerns the features available. An evaluation metric ,,, can access more
information than a system’s scoring function 0.

In particular, a 6.,, can leverage reference summaries or previously manually
constructed Pyramid sets. Let ®,,,(S) be the features used by a summarization
system and ®.,,(S5) the features used by an evaluation metric, then we have:

VS, eeval(q)eval(s)) ~ h(S) (436)
VS, Osys(Psys(S)) = h(S) (4.37)

Where ®,5(S) C Peyar(S), but @eyai(S) & Psys(S). Generally, since the learned
evaluation metric has access to more information, the evaluation metric is expected
to better approximate human judgments.

In our experiments, ®.,,; contains all the features between the summary and the
inputs described in section 4.1 with the addition of several existing evaluation metrics
described in section 2.2: ROUGE-1 (unigram overlap with reference summaries),
ROUGE-2 (bigram overlap), ROUGE-L (longest sequence in common with reference
summaries), ROUGE-WE (ROUGE-1 with soft matching based on word embeddings
(Mikolov et al., 2013b)), JS-Eval-1 and JS-Eval-2 (JS divergence between n-gram
distribution of the candidate and reference summaries):

Features for learning the evaluation metric: ®.,,, = ® U{ JS-1, JS-2, R-1, R-2, RL,
R-WE}

4.3.2 The Need for Regularization

We propose to learn the summary scoring function # from a pool of manually an-
notated system summaries to ensure the extraction of summaries considered good
by humans. With the same setup, we can train an evaluation metric that explicitly
maximizes its correlation with human judgments.

Let h be the observed human judgments, which can be manual Pyramid (Nenkova
et al., 2007) or overall Responsiveness (on a 0 to 5 LIKERT scale). We learn a
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Figure 4.1: Toy dataset of human judgments with diversity on the x-axis and JS
divergence on the y-axis. Figure 4.1a represents the position of the annotated sum-
maries available in the human judgments of TAC-2008, and figure 4.1b displays 6
trained on summaries of TAC-2008 annotated with Pyramid.

function 0, with parameters w approximating h based on a predefined feature set ¢
(®(S) € R? is the feature representation of a summary S). The parameters w can
be estimated by minimizing the loss defined by equation (4.2) with available human
judgment datasets.

We notice that a summarizer’s scoring function trained in this fashion tends to
be ill-behaved under optimization. We first observe this on a toy dataset and then
discuss a possible solution based on automatically generated noisy data. This ap-
proach is then tested in comparison to others in section 4.4.

Difficulties with available human judgments:

We first extracted a toy dataset from TAC-2008. We took the human annotated
summaries from 5 randomly selected topics and represented them with two of the
features described in section 4.1: JS divergence and Intra-summary diversity.

We kept only two features for this toy dataset in order to visualize the results
in 2D. Figure 4.1a shows the distribution of summaries from these 5 topics in
the selected features space. As hypothesized, summaries available in the human
judgments datasets only cover a small area of the feature space, leaving large spots
without supervision.

In figure 4.1b, we illustrate the heatmap of @ trained with this toy dataset using
a standard Support Vector Regression (SVR) ? using Pyramid annotations as target
scores. The red parts indicate areas of the feature space where 6 assigns high scores.
Therefore, the red areas are the areas of the feature space that an optimizer will
explore and select summaries from.

2 from scikit-learn: http://scikit-learn.org/stable/index.html
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Already, we observe why learning only from human judgments poses problems.
On this dataset, the learner has found the top right corner to be the best. Thus,
an optimization procedure will wrongly extract summaries with high diversity and
high JS divergence. While extracting summaries with high diversity makes sense,
summaries with high JS divergences are expected to be bad because they will not
resemble the sources. We discuss a potential solution in the next paragraphs.

Automatic data generation:
About 50 manually annotated summaries per topic are available in TAC-2008 and
TAC-2009 shared tasks. They cover a small region of the feature space and the
learned 6 might be ill-behaved (high 6 scores for bad summaries) pushing the opti-
mizer to explore regions of the feature space unseen during training where 6 wrongly
assumes high scores.

To prevent this scenario, we rely on a large amount of noisy but automatic train-
ing data which provides a signal on a larger span of the feature space. Intuitively,
it can be viewed as a kind of regularization.

We generate summaries distributed across the feature space. For each feature z,
we sample a set of k£ summaries covering the range of possible values of x.

For sampling, we use the genetic algorithm introduced previously in section 3.2.
The resulting population ranges from low to high values for the specific features.
This process is repeated for each feature for both maximization and minimization
as described by algorithm 5 and results in a dataset covering a large span of the
feature space.

Each summary is then scored with ROUGE-N, a noisy surrogate for human
judgments which can, nevertheless, discard poor regions of the feature space and
regularize the behavior of the learned # in previously unseen regions.

As an example, we project the generated summaries to the space of the 2 chosen
features (JS divergence and Intra-summary diversity) for the 5 randomly selected
topics of TAC-2008. Figure 4.2 represents the scatter-plot of summaries generated
in parallel to summaries already available as part of the human evaluation in TAC-
2008. For comparison, we also report the results of randomly sampling summaries.

Like the summaries already scored by humans, randomly selected summaries re-
main confined in a small region but seem uniformly sampled across this area. This
reveals that some areas are more likely to be sampled than others. In contrast, the
summaries generated with algorithm 5 cover a much wider spread of the feature
space.

Even for data automatically generated with algorithm 5, there is still a remain-
ing correlation between the features. Indeed, summaries with high JS divergence
(intuitively bad) tend to also have low diversity (high redundancy).

The bottom left corner of the feature space (low JS and high-redundancy) is
hard to sample because probably few summaries exist in this area. Such a summary
should have a similar distribution of words as the sources but also be redundant,
which is only possible if the sources are themselves highly redundant.
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Figure 4.2: Comparison of dataset coverage of the feature space with diversity on
the x-axis and JS divergence on the y-axis. Figure 4.2a depicts summaries randomly
sampled and their position in the feature space, figure 4.2b represents the position
of summaries available in the human judgments of TAC-2008 (same as figure 4.1a
put here for comparison) and figure 4.2¢ the summaries generated according to
algorithm 5.

Algorithm 5: Generate a Dataset of Diverse Summaries
Input : D ={sy,...,s,}: document as a set of sentences
L: length constraint
k: number of summaries to generate
F={f1,..., f.}: features considered
Output: C =[Sy, ..., Sk]: a set of summaries
1 Function GenerateData(D, L, k, F):
2 C =]
3 for f € F do
4 S = SampleSummaries(D, L, k, f)
5
6

S = RemoveDuplicate(S)
end

Benefit of learning from several sources:
In figure 4.3, we illustrate the heatmap of 6 trained with the respective datasets
using a standard Support Vector Regression (SVR).”

As seen in the previous paragraph, training only on human judgments poses
problems. In fact, the learner trained on automatically generated summaries has
discovered that low JS divergence summaries should be extracted but failed to iden-
tify that high diversity is desired. It would itself be ill-behaved under optimization.

Thus, it seems natural to combine both learners. The simplest way is linear

3 from scikit-learn: http://scikit-learn.org/stable/index.html
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Figure 4.3: Heatmaps associated with 6 trained on various datasets. The more
red, the higher score is given by # to this area of the feature space. Figure 4.3a
represents 6 trained on the randomly generated summaries scored with ROUGE-2,
figure 4.3b displays 6 trained on summaries of TAC-2008 annotated with Pyramid
and figure 4.3c depicts 6 trained with summaries generated according to algorithm 5
scored with ROUGE-2.
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Figure 4.4: Heatmap of the combined summary scoring function: 6 = 6, + a - Ogs.

combination:

0(S) = 0u(S) + a - Oa(S) (4.38)

Where 6, is the function trained only on summaries available in TAC-2008 with
human annotations, #gs is the function trained on generated summaries scored with
ROUGE-2 and « is the factor adjusting the strength of 6z,. Therefore 0z, acts as
a regularizer for 6y,.

While ROUGE is just a poor proxy for human judgments, it provides a rough
signal for unseen areas of the feature space. In general, we expect Oy to discard
obviously bad regions of the feature space for which no supervision was available in
the human judgment dataset.

We report the heatmap associated with the combined 6 for o = 1 in figure 4.4.
Here, the resulting 6 correctly identifies the bottom right corner as the area from
which high-quality summaries should be extracted.

There exist many different techniques to combine different models together, such
as multi-task learning, model averaging and various ensemble techniques. However,
in our experiments, a simple linear combination gave good results. In this section,
we presented an example on a restricted dataset and feature set. In section 4.4, we
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provide detailed and rigorous experiments comparing this approach against others.

4.4 Comparing Scoring Functions and Induced Sum-
marizers

Encoding all the relevant aspects of content selection into one scoring function is
a challenging problem. Instead of manually crafting this function, we investigated
the automatic discovery of such functions from available data. This learning setup
involves several design choices organized along 3 main axes of variation described in
section 4.1.

In particular, we proposed general ways to learn both linear and unconstrained
functions. We presented refinements for some important special cases: linear con-
straint with ROUGE as supervision in section 4.2 and involving human judgments
in the supervision in section 4.3.

In this section, we compare the resulting summary scoring functions with the
evaluation setup introduced in section 3.1. The summary scoring functions are
evaluated by estimating their correlation with available human judgments. This
concerns both learned evaluation metric and learned summarizers’ internal scoring
functions. The results confirm the superiority of the unconstrained case.

Finally, the learned summary scoring functions are combined with an appropriate
optimization algorithm (i.e., an ILP for linear functions and a GPO otherwise). The
extracted summaries are evaluated in a standard evaluation with both automatic
metrics and manual evaluation.

These experiments also confirm the strength of the unconstrained case and an-
swer RQ2. They also illustrate the problems discussed in section 4.3 when human
judgments are used as supervision. The simple regularization strategy we proposed
is able to mitigate these problems. Humans prefer the summaries extracted by the
system which has been trained with human judgments.

We emphasize that the purpose of this chapter is not to claim state-of-the-art
performance on summarization benchmarks but rather test our hypotheses using
simple features set and basic Machine Learning algorithms.

4.4.1 Comparison of the Summary Scoring Functions

In order to compare the various summary scoring functions, we used two multi-
document summarization datasets from the Text Analysis Conference (TAC) shared
tasks: TAC-2008 and TAC-2009.*

Additionally, we used the recently created German dataset DBS-corpus (Benikova
et al., 2016). It contains 10 topics consisting of 4 to 14 documents each. The refer-
ence summaries have variable sizes and are about 500 words long. For each topic,

4 http://tac.nist.gov/2009/Summarization/, http://tac.nist.gov/2008/Summarization/
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5 summaries were evaluated by trained human annotators but only for content se-
lection with Pyramid. We experimented with this dataset because it contains het-
erogeneous sources (different text types) in German about the educational domain.
This contrasts with the English homogeneous news documents from TAC-2008 and
TAC-2009.

We trained summary scoring functions for each target data: ROUGE-2 (R-2),
automatic Pyramid (PEAK), JS-Eval-2 (JS-2) and manually created Pyramid an-
notations (human judgments).”

When automatic metrics provide the supervision, we generated a dataset of 100
summaries per topic scored with the metric using the strategy presented in sec-
tion 4.3 by algorithm 5.

For each supervision signal, two different 6’s are trained: both with and without
the linearity constraint.

For human annotations as supervision, we also trained an evaluation metric
which is an unconstrained 6 whose features access the reference summaries. The
naming convention we used to distinguish these variations is available in table 4.3.

Combined function:
In order to regularize the summary scoring function trained with human judgments,
we followed the procedure discussed in the previous section 4.3.

Thus, we trained 3 different scoring functions: 6,,, with manual Pyramid an-
notations, 0,.s, with Responsiveness annotations and 0, with our automatically
generated data. We trained these models separately because the different annota-
tions do not lie on the same scale.’

The final scoring function is a linear combination:

90(8) = Qg prr(S) —+ a9 - GTESP(S) + asg - HRQ(S) (439)

This results in a combined summary scoring function. In the linearly constrained
case, On 0l and 01 are trained with the linear constraint and 6" is linear. To
get the unconstrained 6, we used the unconstrained 60,,,, 0,cs and Or,. We didn’t
automatically tune the different values of a; but observed that [1,0.5,0.5] works well

in practice.

Training details:

The summary scoring functions are all trained with a linear model. For the uncon-
strained case, this still results in a non-linear function because it contains non-linear
features. We used the same learner in order to compare the benefits of adding non-
linear summary-level features. Indeed, the non-linear #’s differ only by the presence
of non-linear features. Each 6 is trained and evaluated in a leave-one-out cross-
validation scenario.

® Due to the high runtime of PEAK, we perform its analysis only for one dataset: TAC-2009
6 In DBS, no Responsiveness annotations are available. Therefore we used only 2 scoring functions:
prr and QRQ
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Additionally, we evaluate 0o which exploits the mathematical structure of ROUGE-
N as presented in section 4.2. This setup requires learning ROUGE scores for in-
dividual sentences. Thus, we train a linear model to approximate ROUGE-2 scores
of sentences from the following feature set: bigram frequencies (Gillick and Favre,
2009), each of the 4 features from Edmundson (1969) and the LexRank scores of
sentences (Erkan and Radev, 2004). These are all the linear features that can be
defined at the sentence level (note: pairwise redundancy is a linear feature which is
not defined for individual sentences).

ROUGE-2 JS-Eval-2 PEAK Pyr Combination

; ; lin lin lin lin lin
w. linear constraint 0% 07, Opear.  OPyr 06
w.0. linear constraint Oro 0159 Opeak  Opyr Oc
; Eval
evaluation - - - Opyr -

Table 4.3: Notations used for various trained summary scoring functions. The
functions from the first lign rely on the linear features described in section 4.1 :
®;,,. On the second lign, the features used are both the linear and non linear ones:
®. On the last line, reference summaries are available and the features used are all
the previous ones and existing evaluation metrics: @,y

Correlation with human judgments:

To measure the performance of each summary scoring function, we replicate the
evaluation detailed in section 3.1. Table 4.4 reports the correlation between each 6
and manual Pyramid annotations for the three datasets (TAC-2008, TAC-2009 and
DBS). It contains all the functions described in table 4.3. Additionally, for compar-
ison, we reproduce the baseline from section 3.1. Also, the bottom part of the table
compare 6}?57‘}’ to existing evaluation metrics.

Performances vary across datasets as it was already observed in section 3.1. In
particular, we tend to observe higher correlations in the DBS dataset. This can be
explained by the smaller sample of annotated summaries (5 per topic) which are
easier to distinguish than the ~ 50 summaries per topic in TAC datasets.

DBS also contains longer summaries (500 words compared to 100 words for TAC),
this explains the better performances of JS measures. Indeed, word frequency dis-
tributions are more representative for longer texts.

Generally, the learned summary scoring functions better approximate the human
judgments than the baselines. It is particularly surprising to observe that learning
with ROUGE-2 or JS-Eval-2 as supervision sometimes yields better approximations
of Pyramid annotations than directly training with the annotations themselves.

We hypothesize that automatic metrics are more consistent than human anno-
tations which makes the learning simpler (especially for a linear model). In con-
trast, Pyramid annotations may contain more inconsistencies which may confuse
the learner. This motivates the use of more sophisticated techniques to deal with
noise in future works (Simpson and Gurevych, 2018).
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TAC-2008 TAC-2009 DBS

0 r T nDCG r T nDCG r T nDCG
Orcsi 093 .169  .785  .088 .18  .772 | .090 .058  .899
0 Bdm. 190 .155 792 | .385 276  .804 | .322 .301  .798
OLexRank | 259 152 .826 | .390 .250  .816 | .416 .343 .77l
Op1 131 117 779 | 199 203 764 | 170 157 .827
055 280 230 .790 | .262 220  .760 | .291 .144  .913
ODiv 288 172 814 | .290 .155  .800 | .132 .140  .853
Oro 362 220 809 | 418 278 .830 | .553 444 937
glin 280 218 801 | 415 276  .824 | .325 264  .916
olin, 263 208  .800 | .403 273  .823 | 576 426  .923
olin - - - 414 279 826 - - -
o, 280 241 795 | .336 .258  .784 | .600 447 924
glr 285 240 797 | .370 267 795 | 569 .424 927
Or2 .376 281 .823 | .428 .291 .830 | .683 574  .957
0752 320 258 801 | .335 246  .796 | .850 .755 .995
Opeak - - - 426 .288  .829 — - -
O pyr 350 267 810 | .376 265  .793 | .839 .708  .981
Oc 356 270 813 | 400 276  .806 | .822 .679  .980
ROUGE-1 | .748 488 961 | .806 .547  .965 | .702 .632  .984
ROUGE-2 | .718 490  .960 | .803 .550  .963 | .823 .784  .998
JS-Eval-1 | .751 495  .960 | .820 .572  .965 | .971 .754  .998
JS-Eval-2 | .714 474 953 | .775 543 952 | .968 .766  .999
05 755 .501 .965 | .843 .588 .976 | .008 .820 .999

Table 4.4: Correlation of 6 functions with human judgments across various systems
on TAC-2008 and TAC-2009.

Interestingly, learning with PEAK seems useful. This was expected as PEAK
was specially designed to approximate human Pyramid annotations. This result
further motivates the use of more semantically aware evaluation metrics for both
the evaluation and training of summarization systems.

Additionally, O, derived for approximating ROUGE-2 also yields relatively high
correlation with Pyramid scores. In fact, it correlates better with humans than 6%
based on the general learning setup with linear constraint. The development made
in section 4.2 is justified because a better correlation with humans is reached with-
out losing linearity.

Most importantly, there is a large improvement when the constraint on 6 is re-
moved. This begins to answer RQ2 by demonstrating that freeing 6 from previously
unjustified constraints makes it more capable of approximating human judgments.

Finally, we observe that the regularization strategy described by section 4.3 does
not improve the correlation with human judgments. Indeed, the regularization term
is useful during the optimization and not aimed at improving the correlation of the
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Figure 4.5: Relative importance of features in the unconstrained scenario trained
with JS — 2 as supervision.

summary scoring function with observed data. In the next section, we report the
performances of extracted summaries and observe the benefits of this regularization.

The importance of non-linear features:

Since we used a linear regression for training, we can estimate the importance of a
feature by the amplitude of its associated weight. For all unconstrained cases (fgo,
6152, Opeak, Opyr), the two non-linear features,JS divergence and Intra-summary
diversity, were in the top 3 best features. This confirms the advantage of using a
summary-level scoring function.

Figure 4.5 represents the relative importance of for an unconstrained learning
scenario: 6;55. We observe the importance of the non-linear features as they are
both in the top 3 features. Additionally, the bigram coverage is the strongest linear
feature.

Analysis of the trained evaluation metric:

In this paragraph, we focus on the bottom part of table 4.4 which compares eval-
uation metrics. Unsurprisingly, summary scoring functions trained with features
using only the source and the summary remain much worse than evaluation metrics
(which use the references). HEZ;}Z also gives improvements over other existing evalu-
ation metrics.

As discussed above and demonstrated in the next section, blindly matching Pyra-
mid annotations may result in ill-behaved summary scoring functions. Thus, we may
question whether the learned «9557‘}1 is actually a strong evaluation metric.

For summarizers’ summary scoring functions, we can check whether they are
well-behaved or not by optimizing them and evaluating the extracted summaries
with automatic metrics and manual evaluation (as done in the next section).

Similarly, for an evaluation metric, we can extract summaries ranging from ran-
dom to upper-bound and manually score them to check the correlation with humans

on the whole scoring spectrum, i.e., what is considered upper-bound (resp. random)
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r T nDCG

JS-Eval-1 | .695 .620  .921
05 732 .643 .936

Table 4.5: Correlation of automatic metrics with humans across the whole scoring

spectrum of 657,

by the metric is also considered as excellent (resp. bad) by humans.

To perform such a study, we collected summaries ranging from random to upper-
bound using the data generation procedure described in section 4.3 with 91@;‘}[ as
the fitness function for 15 topics of TAC-2009.

To select the summaries, for each topic we ranked them according to their 91@;’7‘}1
scores and, out of a population of 100, we picked 10 evenly spaced summaries (the
first, the tenth and so on). Then, we asked two humans to score them following the

guidelines used during DUC and TAC for assessing content selection.”

We observed an inter-annotator agreement of 0.74 Cohen’s . The results of the
evaluation are displayed in table 4.5 where 01@;’7?’ is compared to the best baseline
metric: JS-Eval-1. The results indicate that the metric is reliable even outside of
its training domain. It also outperforms JS-1 in this experiment.

Therefore, we release a user-friendly tool with the trained metric (called S3:

Supervised Summary Scorer) for the community.®

We hypothesize that 657 (evaluation metric) is well-behaved even though 6p,,
(summarizer’s scoring function) is not because its feature space is more stable. In-
deed, 9]@;’;” is a combination of previously existing evaluation metrics which are

themselves relatively well-behaved.

4.4.2 Comparison of the Summarization Systems

A summary scoring function alone does not make a summarizer, it also requires an
optimization technique to actually select one summary for each topic. Thus, we
performed an evaluation of the summaries extracted by the genetic optimizer for
unconstrained #’s and by an ILP for the linear 6’s.

To evaluate summaries, we report the ROUGE variant identified by Owczarzak
et al. (2012) as strongly correlating with human evaluation methods: ROUGE-2
(R2). We also report JS-2, the Jensen-Shannon divergence between bigrams in the
reference summaries and the candidate system summary (Lin et al., 2006). The last
metric is S3, the combination of several existing metrics trained explicitly to maxi-

mize its correlation with human judgments (it is 95;’? from the previous section).

7 We used LIKERT scale instead of Pyramid because they required less training for the annotators.
8 https://github.com/UKPLab/emnlp-ws-2017-s3 as part of the publication Peyrard et al.
(2017)
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Figure 4.6: Manual evaluation of the main summarization systems for both content
selection and diversity (minus redundancy) on a 5-point LIKERT scale.

Additionally, we set up a manual evaluation for the two English datasets. Two
annotators were given the summaries of every system for 10 randomly selected top-
ics of both TAC-2008 and TAC-2009. They annotated the content selection and
redundancy level of summaries on a 5-points LIKERT scale. The inter-annotator
agreement was 0.68 Cohen’s kappa for content selection and 0.71 Cohen’s kappa for
redundancy.

Furthermore, for comparison, we include the scores from the baselines we previ-
ously considered: LexRank, ICSI, (KL, Greedy) and (JS, Greedy). Also, we report
the scores of SFOUR (Sipos et al., 2012), a structured prediction approach that
trains an end-to-end system with a large-margin method to optimize a convex relax-
ation of ROUGE. SFOUR optimizes a submodular function and acts as a supervised
baseline that is not using linear functions. We use the publicly available implemen-
tation.”

Results:

The results of both manual and automatic evaluations of content selection are re-
ported in table 4.6. The results of the manual evaluation for both content selection
and redundancy are depicted in figure 4.6.

While 6’s trained on human judgments have high correlations with humans, they
behave badly under optimization. This effect is much less visible for 0’s trained on
ROUGE and JS-Eval because they have been trained on a dataset especially sampled
to cover the whole feature space.

However, the regularization strategy introduced in section 4.3 mitigates these is-
sues. Indeed, the combined 6 performs better than each individual scoring function.

We also note that (0go, Gen) performs on par with the other supervised baseline
SFOUR but both are outperformed by exploiting human judgments. (6o, Gen) is

9 http://www.cs.cornell.edu/~rs/sfour/
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consistently better than baselines across datasets and metrics. In particular, hu-
mans tend to prefer the summaries extracted by (6¢, Gen).

Manual inspection of summaries and figure 4.6 reveal that (6c, Gen) has lower
redundancy than previous baselines thanks to summary-level features. In fact, fig-
ure 4.6 shows that the unconstrained 6, which uses non-linear features, are less
redundant than constrained ones.

This was already hinted by the importance of the non-linear diversity feature in
figure 4.5. As an example, we provide two generated summaries, one extracted from
fc and another extracted from the best linear method: 64" (topic: D0831). We can
see a sentence almost fully repeated in 4"

Extracted from 6o

The FARC with about 17,000 fighters and a smaller leftist guerrilla
group, the National Liberation Army (ELN) with some 6,000 members,
have been locked in a 40-year civil war against the Colombian govern-
ment. The FARC, the largest guerrilla force in Colombia, is accused of
commutting selective murders and slaughters, as well as terrorist acts in
different parts of the South American country. President Alvaro Uribe
said late Thursday he was ready to negotiate a prisoner swap with the
country’s largest rebel group, the Revolutionary Armed Forces of Colom-
bia (FARC). The government turned down the rebel demand.

Extracted from 64"

The FARC kidnaps hundreds of people a year for ransom, and also holds
dozens of so-called "exchangeables,” including Colombian politicians, po-
lice officers, soldiers and the three U.S. contractors. President Alvaro
Uribe said late Thursday he was ready to megotiate a prisoner swap
with the country’s largest rebel group, the Revolutionary Armed Forces
of Colombia (FARC). The government turned down the rebel demand.
The FARC kidnaps hundreds of people a year for ransom, and also holds
dozens of so-called "exchangeables,”

Furthermore, our ROUGE approximation 0z, derived in section 4.2 is also a
strong summarizer, better than its counter-part %% following the general learning
with linearity constraint setup described in section 4.1. This further confirms the
intuitions developed in section 4.2.

Finally, we can conclude that an unconstrained 6 optimized with GPO is better
than a constrained one optimized exactly with ILP. However, the gap between the
two diminishes greatly after optimization. This resolves RQ2, as the unconstrained
summary scoring function optimized with GPO is capable of producing high-quality
summaries.
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TAC-2008 TAC-2009 DBS

R-2t JS-20 S3t Hf R2ft JS20 S3t Hf R2ft JS2/ S31
LexRank 078 635 336 3.74 | .090 .625 360 3.75 , .105 594  .354
(KL, Greedy) | .068 .644 .204 3.42 | .061 .648 .288 321 | .078 .620 .293
(JS, Gen) 098 618 376 3.99 | .101 .618 .370 3.89 | .112 .584 .362
SFOUR 101 623 372 3.88 | .101 .622 .367 3.85 | .114 591  .357
ICSI 101 620 377 4.03 | 103 619 369 3.91 | .115 586  .361
(Gga, ILP) 099 622 369 3.75 | 100 .621 .368 3.63 | .110  .592  .359
(6lin ILP) 091 629 365 349 | .097 622 .366 3.43 | .108 .595  .355
(6lm, ILP) | .090 .625 363 3.48 | .095 624 361 3.32 | .102 598 351
(6 ILP) | - - - ~ | 087 619 359 350 | - - -
(6Ln, ILP) 084 630 348 3.44 | .081 636 .331 3.34 | .075 .623  .305
(eﬁn, ILP) 101 622 372 3.92 | 102 .620 361 3.85 | .110 592  .354
(62, Gen) 100 620 375 3.89 | .104 618 .373 3.82 | .116 .585  .363
(6752,Gen) 092 621 369 3.79 | .098 .620 368 3.52 | .109 593  .360
(0 pear,Gen) - - - ~ | 092 618 367 388 | - - -
(Bpyr, Gen) | .096 623 369 3.65 | .085 631 .339 3.77 | 078 .615 .312
(6, Gen) 105 .615 .382 4.09 | .104 .617 .376 4.03 | .117 .584 .367

Table 4.6: Comparison of systems across 3 datasets evaluated with ROUGE-2 recall,
JS divergence on bigrams, S3 and Human annotations.
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Chapter Summary

When learning the summary scoring function from data, several design
choices can be made along 3 dimensions: supervision signal (ROUGE,
PEAK, human judgments, etc.), learning constraints (e.g., linearity)
and feature space.

With a fixed feature space, we compared the remaining dimension based
on their ability to correlate with human judgments. The result confirms
the superiority of the unconstrained case.

When learning from the small and biased human judgments, 6 is not
well-behaved under optimization.

This can be addressed by training a complementary scoring function
on automatically generated data covering the whole feature space (with
noisy signals like ROUGE scores).

An evaluation metric is a summary scoring function and can also be
trained to maximize its correlation with human judgments. This results
in a new evaluation metric: S3.

When ROUGE is used as supervision, an almost perfect linear ap-
proximation can be derived (provided sentence scores are available).
This reduces the task of summarization (as evaluated by ROUGE) to
the task of learning sentence scores.

However, given recent advances in the automatic evaluation, we be-
lieve that empirical research in summarization should progressively move
away from ROUGE towards more meaningful metrics for both evaluat-
ing and training systems like PEAK (Yang et al., 2016) or PyrEval (Gao
et al., 2018).
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Chapter 5

Theoretical Approach

In the previous chapters, we introduced the (6, O) decomposition. The inherent
question of summarization is that of finding strong summary scoring function 6,
i.e., identifying an appropriate input representation I together with a simplification
strategy T guided by a notion of Importance. In the previous chapter, we followed
the path of empirically discovering summary scoring functions from observed data
using tools from statistical analysis. Now, we explore a theoretical path to define a
notion of Importance from an abstract framework rooted in information theory.

In general, automatic text summarization research has heavily focused on em-
pirical developments, crafting summarization systems to perform well on standard
datasets leaving the formal definition of Importance latent (Das and Martins, 2010;
Nenkova and McKeown, 2012). This view entails collecting datasets, defining eval-
uation metrics and iteratively selecting the best-performing systems either via su-
pervised learning or via repeated comparison of unsupervised systems (Yao et al.,
2017). Our contributions of chapter 4 also follow this paradigm.

Such solely empirical studies may lack guidance as they are often not motivated
by more general theoretical frameworks. While empirical approaches have facilitated
the development of practical solutions, they mostly identify signals correlating with
the vague human intuition of Importance. For instance, even nowadays, structural
features like centrality and repetitions are still among the most used proxies for
Importance (Yao et al., 2017). However, such features may just correlate with
Importance in standard datasets. Unsurprisingly, simple adversarial attacks reveal
their weaknesses (Zopf et al., 2016a).

We postulate that establishing formal theories of Importance will advance our
understanding of the task and further improve summarization systems. One can
draw inspiration from physics, arguably one of the most successful scientific devel-
opments, which fosters both empirical and theoretical works with strong interactions
between the two. Empirical studies test hypotheses designed to falsify working theo-
ries, while theories are refined to account for new empirical results (Kuhn, 1970). In
summarization, the lack of efforts to produce abstract theoretical frameworks might
impede the progress.

A theory provides a frame of reference for interpreting observations, defining new
concepts, generalizing knowledge and understanding complex logical relationships
between variables. It forms an interrelated, coherent set of ideas and models which
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is refined upon new empirical observations (KKuhn, 1970). Hence, it is, by design,
more internally consistent than common sense and intuition.

In symbiosis with empirical works, theories are particularly useful because they
provide a common language to ground research. They describe how different ap-
proaches relate to each other, pinpoint dark zones and promising areas. Theo-
retically motivated experiments are always beneficial; even if the outcome of an
experiment is unexpected, it is an opportunity to revise and improve the theory in
a fundamental way (Kuhn, 1970).

In this chapter, we propose a possible definition of Importance within an abstract
theoretical framework. This requires the notion of information, which has received
a lot of attention since the work of Shannon (1948) in the context of communication
theory. The subsequent theory produced powerful tools applied successfully in vari-
ous domains like physics (Jaynes, 1957), economics (Maasoumi, 1993), evolutionary
biology (Adami, 2012), or even the study of consciousness (Tononi et al., 2016).
Information theory provides the means to rigorously discuss the abstract concept of
information, which seems particularly well suited as an entry point for a theory of
summarization.

However, information theory concentrates on uncertainty (entropy) about which
message was chosen from a set of possible messages, ignoring the semantics of mes-
sages (Shannon, 1948). Yet, summarization is a lossy semantic compression depend-
ing on background knowledge.

In order to apply information theory to summarization, we assume the existence
of a semantic representation of texts over a set of semantic units. This assumption is
motivated by previous works on semantic information theory (Carnap and Bar-Hillel,
1953; Zhong, 2017). When applied to semantic symbols, the tools of information
theory indirectly operate at the semantic level.

Within this framework, we define several concepts intuitively connected to sum-
marization: Redundancy, Relevance and Informativeness. From these intuitive defi-
nitions, we can formulate properties required from a useful notion of Importance. In
this view, Importance is not an intrinsic property of a semantic unit, it depends on
which other units are present within some contextual boundaries: Redundancy in the
context of the summary only, Relevance in the context of the source document(s) and
Informativeness in the context of background knowledge and preconceptions of the
user. Importance encompasses these three levels. Finally, whenever one compresses
with loss of information one must make choices about what to discard. Importance
is the measure that guides these choices. This chapter answers RQ5.

5.1 Semantic Units: Terminology and Assumptions

In the previous chapter, we proposed techniques to infer the summary scoring func-
tion from observations via machine learning techniques. In contrast, now, we aim
to derive a theoretical framework governing the information selection step. How-
ever, any meaningful notion of Importance has to account for meaning and operate
with semantic symbols. Thus, we have to make a choice of the input representation
but this choice must be as general and as simple as possible in order to make the
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Figure 5.1: Possible representation of a text X over a set of semantic units:
{A,B,...L}.

framework broadly applicable. Indeed, to be useful, it should encompass most of
the practical textual representations.

With these requirements in mind, we present semantic units, which are general
enough to account for most of the practical approaches to semantics and are well
motivated by existing theoretical frameworks.

5.1.1 Introduction to Semantic Units

We call semantic unit an atomic piece of information which is independent of every
other semantic unit. Atomic and Independent mean that knowing or observing
one semantic unit w; gives no information about the existence or the content of a
different unit w; (Zhong, 2017). Formally, this states that semantic units form a set
Q). Indeed, the elements of a set do not share any dependencies other than belonging
to the same set.

A text X is considered as a semantic source emitting semantic units as envisioned
by Weaver (1953) and recently discussed by Bao et al. (2011). Hence, we assume
that X can be represented by a probability distribution Px over the semantic units
Q). This is the input representation defining the step I of summarization, it is illus-
trated by figure 5.1.

Possible interpretations of the representation over semantic units:

One can interpret Px as the frequency distribution of semantic units in the text.
Alternatively, Px (w;) can be seen as the (normalized) likelihood that a text X entails
an atomic information w; (Carnap and Bar-Hillel, 1953). Another interpretation is
to view Py (w;) as the normalized contribution (utility) of w; to the overall meaning
of X (Zhong, 2017) For practical considerations, these interpretations are equivalent.
Nevertheless, we discuss the motivations for semantic units in greater detail in the
next section.

5.1.2 Motivation for Semantic Units

In this section, we examine the initial assumption that texts can be represented by
distributions over semantic units. We observe that the existence of semantic units is
well-motivated by prior work on semantic information theory and fits within several
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computational approaches to semantics.

Soon after information theory was introduced, Weaver (1953) mentioned that it
only tackles what he called level A: the problem of accurately transmitting symbols
of communication (the technical problem). He then discusses two other levels: (B)
“How precisely do the transmitted symbols convey the desired meaning?” (the se-
mantic problem) and (C) “How effectively does the received meaning affect conduct
in the desired way?” (the effectiveness or pragmatic problem). Tackling problems
(B) and/or (C) formally is the focus of Semantic Information Theory.

Theoretical motivations for semantic units:

Carnap and Bar-Hillel (1953) delivered one of the first and most prominent attempts
at semantic information theory: in a simple formal language, the semantic informa-
tion of a proposition p is determined by the number of propositions implied by p.
Thus, semantic information has an underlying representation on a discrete and finite
set of elements (akin to semantic units). Dunn (1976) discusses the atomicity of the
state description of propositions described by Carnap and Bar-Hillel (1953) (i.e., the
atomicity of semantic units). Recently, Bao et al. (2011) extended this work and
argued that the size of () should be finite even for a language with infinite syntactic
variability.

While previous works aimed at measuring the amount of semantic information,
Zhong (2017) examined what is the essence of semantic information. He proposes
a notion that encompasses syntax, semantics, and pragmatics. In his view, a piece
of semantic information X is represented by an N-dimensional vector v, where an
element v; is a number between 0 and 1 representing the likelihood that X implies
v;. This directly supports the idea of a probability distribution over semantic units.

From philosophy, the Theory of Strongly Semantic Information produced by
Floridi (2009) also implies the existence of semantic units (called information units
in his work). Based on this work, Tsvetkov (2014) argued that the original theory
of Shannon can operate at the semantic level by relying on semantic units.

In fact, by viewing summarization as semantic data compression, our framework
proposes an operational approach to semantic information theory. A rigorous treat-
ment of semantic compression based on semantic units and its connection to existing
semantic and pragmatic information theories is out of the scope of this work. How-
ever, it is a promising direction for future work.

Semantic units within approaches to semantics:
Previous semantic information theories already justify the existence of semantic units
in formal semantics, which treat natural languages as formal languages (Montague,
1970). In general, lexical semantics (Cruse, 1986) also postulates the existence of
elementary constituents called minimal semantic constituents. For instance, with
frame semantics (Fillmore, 1976), frames can directly act as semantic units.
Recently, distributional semantics approaches have received a lot of attention
(Turian et al., 2010; Mikolov et al., 2013b). They are based on the distributional
hypothesis (Harris, 1954) and the assumption that meaning can be encoded in a
vector space (Turney and Pantel, 2010; Erk, 2010). These approaches search latent
and independent components that correlate with the behavior of words (Gabor et al.,
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2017; Mikolov et al., 2013a).

While different approaches to semantics postulate different basic units and dif-
ferent properties for them, they have in common that meaning arises from a set
of independent and discrete units. Thus, the semantic units assumption is general
and has minimal commitment to the actual nature of semantics. This makes the
framework compatible with most existing semantic representation approaches. Each
approach specifies these units and can be plugged in the framework, e.g., frame se-
mantics would define units as frames, topic models (Allahyari et al.; 2017) would
define units as topics and distributional representations would define units as di-
mensions of a vector space.

Other approximations to semantic units:
Characters, character n-grams, morphemes, words, n-grams, phrases, and sentences
do not actually qualify as semantic units. Even though previous works which relied
on information-theoretic motivations (Lin et al., 2006; Haghighi and Vanderwende,
2009; Louis and Nenkova, 2013) used some of them as support for probability dis-
tributions, they are neither atomic nor independent. It is mainly because they are
surface forms whereas semantic units are abstract and operate at the semantic level.
However, they might serve as convenient approximations. Then, interesting re-
search questions arise like Which granularity offers a good approrimation of seman-
tic units?, Can we automatically learn good approximations? In summarization,
n-grams are known to be useful, but other granularities have rarely been considered
together with information-theoretic tools.

5.2 Summarization Quantities

After introducing the notion of probability distributions over semantic units as a
general representation of meaning, we focus on developing the framework useful for
defining the notion of Importance.

In the following section, we represent the source texts D and the candidate
summary S by their respective distribution Pp and Pg. Also, we sometimes note X
instead of Px when it is not ambiguous.

Then, we propose intuitive definitions for Redundancy, Relevance and Informa-
tiveness, by relying on the well-established field of information theory to provide
sound theoretical motivations. Interestingly, by applying the same tools, we can
also come up with a notion of Potential Information which connects background
knowledge with the content of the sources.

5.2.1 Redundancy

Intuitively, a summary should contain a lot of information. In information-theoretic
terms, the amount of information is measured by Shannon’s entropy. For a summary
S represented by Pg, the entropy is given by:

H(S) = =) Ps(w;) - log(Ps(w;)) (5.1)

wi
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Figure 5.2: Comparison between an example of a redundant summary (figure 5.2a)
and an example of a non-redundant one (figure 5.2b).

H(S) is maximized for a uniform probability distribution when every seman-
tic unit is present only once in S: V(i,j),Ps(w;) = Pg(w;). Therefore, we define
Redundancy, our first quantity relevant to summarization, via entropy:

Red(S) = Hypae — H(S) (5.2)

Since Hpq: = log |§2| is a constant indepedent of S, we can simply write: Red(S) =
—H(S). A high-entropy distribution and a low-entropy one are compared in fig-
ure 9.2.

Intuitively, a summary S maximizes the information content if it displays many
semantic units but once. Indeed, S should not be redundant but also contain as
many semantic units as possible. The two following summaries: S; = (a,b) and Sy =
(a, b, c) are both non-redundant but Sy is intuitively better because it contains more
information. This is captured by entropy because H(S1) = log(2) <log(3) = H(S,).

Redundancy in Previous Works:

By definition, entropy encompasses the notion of maximum coverage. Low redun-
dancy via maximum coverage is the main idea behind the use of submodularity (Lin
and Bilmes,; 2011). Submodular functions are generalizations of coverage functions
which can be optimized greedily with guarantees that the result would not be far
from optimal (Krause and Golovin, 2014). Thus, they have been used extensively
in summarization (Sipos et al., 2012; Yogatama et al., 2015). Otherwise, low redun-
dancy is usually enforced during the extraction/generation procedures like MMR
(Carbonell and Goldstein, 1998).

5.2.2 Relevance

Intuitively, observing a summary should reduce our uncertainty about the original
text. A summary approximates the original sources and this approximation should
incur a minimum loss of information. We call this property Relevance.

Within information theory, estimating Relevance boils down to comparing the
distributions Pg and Pp, which is done via the cross-entropy Rel(S, D) = —CE(S, D):

Rel(S,D) =Y Pg(w;) - log(Pp(w;)) (5.3)

wi
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(a) Relevant summary (in green) (b) Non-relevant summary (in green)

Figure 5.3: Compared to the input in blue, figure 5.3a presents an example of a
relevant summary (with low cross-entropy); figure 5.3b depicts an example of non-
relevant summary (with high cross-entropy).

The cross-entropy is interpreted as the average surprise of observing S while expect-
ing T. A summary with a low expected surprise produces low uncertainty about
what were the original sources. This is achieved by exhibiting a distribution of se-
mantic units similar to the distribution of semantic units of the source documents:
Ps ~ Pp. This is illustrated by figure 5.3.

Furthermore, we observe the following connection with Redundancy:

KL(S||D) = CE(S, D) — H(S) (5.4)
~KL(8||D) = Rel(S, D) — Red(S) (5.5)

Where the KL divergence is interpreted as the information loss incurred by using
D as an approximation of S (i.e., the uncertainty about D arising from observ-
ing S instead of D). A summarizer that minimizes the KL divergence minimizes
Redundancy while maximizing Relevance.

In fact, this is an instance of the Kullback Minimum Description Principle (MDI)
(Kullback and Leibler, 1951), a generalization of the maximum entropy principle
(Jaynes, 1957) with non-uniform prior: the summary minimizing the KL divergence
is the least biased (i.e, least redundant or with highest entropy) summary matching
D. 1In other words, this summary fits D while inducing a minimum amount of
new information (any new information is necessarily biased since it does not arise
from observations). The MDI principle and KL divergence unify Redundancy with
Relevance.

In summarization, McDonald (2007) already observed creating high-quality sum-
maries corresponds to maximizing some notion of relevance while minimizing redun-
dancy. As it can be seen in section 2.3, many works followed this approach. Here,
we propose a formal definition of these quantities which were extensively used intu-
itively in summarization.

Relevance in Previous Works:

Relevance is the most heavily studied aspect of summarization. In fact, by design,
most unsupervised systems model Relevance. Usually, they used the idea of topical
frequency where the most frequent topics from the sources must be extracted. Then,
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different notions of topics and counting heuristics have been proposed. We briefly
discuss these developments here.

Luhn (1958) introduced the simple but influential idea that sentences containing
the most important words are most likely to embody the original document. Later,
Nenkova et al. (2006) showed experimentally that humans tend to use words appear-
ing frequently in the sources to produce their summaries. Then, Vanderwende et al.
(2007) developed the system SumBasic, which scores each sentence by the average
probability of its words.

The same ideas can be generalized to n-grams. A prominent example is the ICSI
system (Gillick and Favre, 2009) which extracts frequent bigrams.

Different but similar words may refer to the same topic and should not be counted
separately. This observation gave rise to a set of important techniques based on topic
models (Allahyari et al., 2017). These approaches cover sentence clustering (McK-
eown et al., 1999; Radev et al., 2000; Zhang et al., 2015), lexical chains (Barzilay
and Elhadad, 1999), Latent Semantic Analysis (Deerwester et al., 1990) or Latent
Dirichlet Allocation (Blei et al., 2003) adapted to summarization (Hachey et al.,
2006; Daumé IIT and Marcu, 2006; Wang et al., 2009; Davis et al., 2012).

Graph-based methods form another particularly powerful class of techniques to
estimate the frequency of topics, e.g., via the notion of centrality (Mani and Bloe-
dorn, 1997; Mihalcea and Tarau, 2004; Erkan and Radev, 2004).

Therefore, in existing approaches, the topics (i.e., atomic units) were words, n-
grams, sentences or combinations of these. The general idea of preferring frequent
topics based on various counting heuristics is formalized by cross-entropy. Indeed,
requiring the summary to minimize the cross-entropy with the source documents
implies that frequent topics in the sources should be extracted first.

An interesting line of work is based on the assumption that the best sentences
are the ones that permit the best reconstruction of the input documents (He et al.,
2012). It was refined by a stream of works using distributional similarities (Li et al.,
2015; Liu et al., 2015b; Ma et al., 2016). There, the atomic units are the dimensions
of the vector spaces. This information bottleneck idea is also neatly captured by the
notion of cross-entropy which is a measure of information loss.

5.2.3 Informativeness

Relevance still ignores other potential sources of information such as previous knowl-
edge or preconceptions about the task. We need to further extend the contextual
boundary. Intuitively, a summary is informative if it induces, for a user, a great
change in her knowledge about the world. Therefore, we introduce K as the back-
ground knowledge (or preconceptions about the task). K is also represented by a
probability distribution Px over semantic units €.

Formally, the amount of new information contained in a summary S is given by
the cross-entropy Inf(S, K) = CE(S, K):

Inf(S,K) ==Y Pg(w;) - log(P(w;)) (5.6)

wi

For Relevance, the cross-entropy between S and D should be low. However, for
Informativeness, the cross-entropy between S and K should be high because we
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measure the amount of new information induced by the summary in our knowledge.
Informativeness is also connected to entropy via KL divergence:

KL(S||K) = CE(S,K) — H(S) (5.7)
KL(S||K) = Inf(S, K) — Red(S) (5.8)

KL maximization unifies Redundancy and Informativeness.

Remark:

The background knowledge can be modeled by assigning a high probability to known
semantic units. These probabilities correspond to the strengths of w; in the user’s
memory. A simple model could be the uniform distribution over known information
where P (w;) is < if the user knows w;, and 0 otherwise.

However, K can control many variants of summarization tasks:

A personalized K, models the preferences of a user by setting low probabilities
to the semantic units of interest.

Similarly, a query ) can be encoded by setting low probability to semantic units
related to Q.

Finally, there is a natural formulation of update summarization. Let U and D
be two sets of documents. Update summarization consists in summarizing D given
that the user has already seen U. This is modeled by setting K = U, considering U
as previous knowledge.

Informativeness in Previous Works:
The modelling of Informativeness has received less attention by the summarization
community. The problem of identifying stopwords originally faced by Luhn (1958)
could be addressed by developments in the field of information retrieval using back-
ground corpora like TF-IDF (Sparck Jones, 1972). Based on the same intuition,
Dunning (1993) outlined an alternative way of identifying highly descriptive words:
the log-likelihood ratio test. Words identified with such techniques are known to be
useful in news summarization (Harabagiu and Lacatusu, 2005).

Furthermore, Conroy et al. (2006) proposed to model background knowledge by
a large random set of news articles. In update summarization, Delort and Alfonseca
(2012) used Bayesian topic models to ensure the extraction of informative sum-
maries. Louis (2014) investigated background knowledge for update summarization
with Bayesian surprise. This is comparable to the combination of Informativeness
and Redundancy in our framework when semantic units are n-grams. Thus, previous
approaches to Informativeness generally craft an alternative background distribu-
tion to model the a-prior: importance of units. Then, units from the document rare
in the background are preferred, which is captured by maximizing the cross-entropy
between the summary and K.

5.2.4 Potential Information

Relevance relates S and D, Informativeness relates S and K, but what connects D
and K7 Intuitively, only when K and D are different, we can extract a lot of new
information from D.
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With the same argument we laid out for Informativeness, we can define the
amount of potential information as the average surprise of observing D while already
knowing K. Again, this is given by the cross-entropy Plx (D)= CFE(D, K):

PI(D,K) = - Pp(w) - log(Px(w:)) (5.9)

Wi

Previously, we stated that a summary should aim, using only information from D,
to offer the maximum amount of new information with respect to K. PI(D, K) can
be understood as Potential Information, the maximum amount of new information
that a summary can extract from D while knowing K. It can be viewed as the
maximum Informativeness available in D.

5.3 Formal Definition of Importance

Summarization is a lossy semantic compression and whenever one compresses with
loss of information one must make choices about what to discard. Informally, Im-
portance is the measure that guides these choices. However, Importance is hard to
define because of its inherent vagueness and subjectivity.

Instead, we establish simple properties required from a meaningful measure of
Importance and search for quantities satisfying these specifications. To this end,
we introduce the importance-encoding distribution unifying Relevance and Infor-
mativeness. Then, the Kullback MDI principle is employed to naturally incorporate
Redundancy into a final summary scoring function.

5.3.1 Importance

Since Importance is a measure that guides which choices to make when discarding
semantic units, we must devise a way to encode the relative importance of semantic
units. Here, this means finding a probability distribution unifying D and K by
encoding expectations about which semantic units should appear in a summary.

Informativeness requires a biased summary (w.r.t. K) and Relevance requires
an unbiased summary (w.r.t. D). Thus, a summary should, by using only informa-
tion available in D, produce what brings the most new information to a user with
knowledge K. This could formalize a common intuition in summarization that units
frequent in the source(s) but rare in the background are important.

Formally, let d; = Pp(w;), the probability of the unit w; in the source D. Simi-
larly, we note k; = P (w;). We seek a function f(d;, k;). From the previous insights,
we formulate simple requirements that the function f should satisfy:

o Informativeness: Vi # j, if d; = d; and k; > k; then f(d;, k;) < f(d;, k)
e Relevance: Vi # j, if d; > d; and k; = k; then f(d;, k;) > f(d;, k;)

o Additivity: I(f(d;, ki) = al(d;) + B1(k;) (I is the information measure from
Shannon’s theory (Shannon, 1948))

e Normalization: »_ f(d;, k;) =1
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The first requirement states that, for two semantic units equally represented in
the source, we prefer the more informative one. The second requirement is an
analogous statement for Relevance. The third requirement is a consistency constraint
to preserve additivity of the information measures, as initially proposed by Shannon
(1948). The fourth requirement ensures that f is a valid distribution.

Theorem 2. The functions satisfying the previous requirements are of the form:

1 do
de .
C = ﬁ,@,ﬂER (511)

P
C is the normalizing constant. The parameters o and [ represent the strength

given to Relevance and Informativeness respectively (this is made clearer by equa-
tion (5.15)). The proof is provided in Appendix C.5.

Summary scoring function:

By construction, a candidate summary should approximate P D, which encodes rel-
ative expectations about which semantic units should appear in a summary. Fur-
thermore, the summary should be non-redundant (i.e., high entropy). These two
requirements are unified by the Kullback MDI principle: The least biased summary
S* that best approximates the distribution P D is the solution of:

S* = argmax f; = argmax —KL(S||IP’%) (5.12)
S S

Thus, we note 6; as the quantity that measures the quality of a summary:

Remark: We note that a summary maximizing the Relevance also follows the
Kullback MDI and is the least biased summary fiting the expectations encoded by D.
Similary, a summary maximizing the Informativeness is an instance of the Kullback
MDI where the expectations are given by % Trivially, a summary minimizing its re-
dundancy (maximizing its entropy) is an instance of the maximum entropy principle.

Interpretation of P D:
]P’% can be viewed as an importance-encoding distribution because it encodes the
relative importance of semantic units and gives an overall target for the summary:.
For example, if a semantic unit w; is prominent in D (Pp(w;) is high) and not
known in K (Pp(w;) is low), then P D (w;) is very high, which means very desired in
the summary. Indeed, choosing this unit will fill the gap in the knowledge K while
matching the sources.
Figure 5.4 illustrates how this distribution behaves with respect to D and K
(with a =5 =1).

Summarizability:
The target distribution IP’% may exhibit different properties. For example, it might
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Figure 5.4: Figure 5.4a represents an example distribution of sources, figure 5.4b an
example distribution of background knowledge and figure 5.4c¢ is the resulting target
distribution that summaries should approximate.

be clear which semantic units should be extracted (i.e., a spiky probability distribu-
tion) or it might be unclear (i.e., many units have more or less the same importance
score). This can be quantified by the entropy of the importance-encoding distribu-
tion:

— H(Pb) (5.14)

Intuitively, this quantifies the number of possibly good summaries. If H D is low then
P D is spiky and there is little uncertainty about which semantic units to extract (few

possible good summaries). Conversely, if the entropy is high, many equivalently good
summaries are possible.

Interpretation of 6;:

Maximizing €; not only encourages the selection of high scoring semantic units, it
also indicates which choices and trade-offs are more beneficial. 6; covers the overall
selection of several semantic units together, it is not restricted to independently
choosing individual ones. To better understand 6;, we remark that it can be ex-
pressed in terms of the previously defined quantities:

0:(S, D, K) = H(S) — aCE(S, D) + BCE(S, K) + log C (5.15)
0:1(S, D, K) = —Red(S) + aRel(S, D) + BInf(S, K) (5.16)

Equality holds up to a constant term log C' independent from S. From now on,
we omit the constant term log C' as it does not depend on S. Thus, maximizing
0; is equivalent to maximizing Relevance and Informativeness while minimizing
Redundancy.

Finally, we can say that H(S), CE(S,D) and CE(S, K) are the three indepen-
dent components of Importance.

It is worth noting that each previously defined quantity: Red, Rel and Inf are
measured in bits (using base 2 for the logarithm). Shannon initially axiomatized
that information quantities should be additive (Shannon, 1948) and therefore 6,
arising as the sum of other information quantities is unsurprising. Moreover, we
ensured additivity with the third requirement of P D.
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5.3.2 Examples

To further illustrate the workings of the formula, we provide examples of exper-
iments done with a simplistic choice for semantic units: words. These show that
even with simplistic assumptions, 6; and P D are meaningful and interpretable quan-
tities which correlate well with human judgments.

Setup and assumptions:
We experiment with TAC-2008 and TAC-2009 for two different summarization tasks:
generic and update multi-document summarization.

To keep the experiments simple and focused on illustrating the formulas, we
make several simplistic assumptions. First, we choose words as semantic units and
therefore texts are represented as frequency distributions over words. While it is
limiting, this remains a simple approximation letting us observe the quantities in
action.

K,a and ( are the parameters of the theory and their choice is subject to in-
vestigation. Here, we made simple choices: for update summarization, K is the
frequency distribution over words in the background documents (A). For generic
summarization, K is the uniform probability distribution over all words from the
source documents. Furthermore, we use o = g = 1.

Correlation with humans:
First, we measure how well the different quantities correlate with human judgments.
We compute the score of each system summary according to each quantity defined in
the previous section: Red, Rel, Inf, 0;(S, D, K). We then compute the correlations
between these scores and the manual Pyramid scores, as described in section 3.1.
We measure the correlation with kendall’s 7, a rank correlation metric which
compares the orders induced by both scored lists. We report results for both generic
and update summarization over the two datasets TAC-2008 and TAC-2009 in ta-
ble 5.1. Thus, in the generic case, the results are comparable with table 3.1 and we
include the baselines already considered there. Furthermore, we report two base-
lines from Louis (2014) to model the informativeness: KLy, which measures the
divergence between the distribution of the summary and the background knowledge
K. JSpac does the same with JS divergence instead of KL.

In general, the modelling of Relevance (based only on the sources) correlate more
with human judgments than other quantities. This justifies why most summarization
approaches focused on this aspect. In general, metrics accounting for background
knowledge work better in the update scenario. It is not suprising as the background
knowledge K is more meaningful in this case (using the previous document set).

In general, we observe that JS divergence gives slightly better results than KL.
Even though KL is more theoretically appealing, JS is smoother and usually works
better in practice when distributions have different supports (Louis and Nenkova,
2013).

Finally, #; significantly’ outperforms all baselines in both the generic and up-
date case. Red, Rel and Inf are not particularly strong on their own, but combined

1 at 0.01 with significance testing done with t-test to compare two means
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together they yield a strong summary scoring function #;. Indeed, each quantity
models only one aspect of content selection, they are the three independent compo-
nents of Importance.

We need to be careful when interpreting these results because we made sev-
eral strong assumptions: by choosing n-grams as semantic units and by choosing
K rather arbitrarily. Nevertheless, these are promising results. Should we craft
better text representations and come-up with more suitable K, we would expect
even higher correlations. We already observe better correlation for #; in the up-
date summarization scenario, which comes from a more natural choice of K. In the
generic case, the uninformative uniform distribution is a weaker approximation of
background knowledge.

Generic  Update

ICSI 178 .139
Edm. 215 .205
LexRank .201 .164
TFIDF 227 182
KL .204 176
JS .225 189
KLpack .110 167
JSback .066 187
Red .098 .096
Rel 212 .192
Inf .091 .086
0r .294 211

Table 5.1: Correlation of various information-theoretic quantities with human judg-
ments measured by Kendall’s 7 on generic and update summarization.

Comparison with reference summaries:
Intuitively, the distribution P D should be similar to the probability distribution Pg
of the human-written reference summaries.

To verify this, we scored the system summaries and the reference summaries
with 6; and checked whether there is a significant difference between the two lists.”
We found that 6; scores reference summaries significantly higher than system sum-
maries. The p—value, for the generic case, is 9.2e—6 and 1.1e—3 for the update case.
Both are much smaller than the 1e—2 significance level. Therefore, 6; is capable of
distinguishing systems summaries from human written ones.

Example on a topic:
As an example, for one selected topic of TAC-2008 update track, we computed the
P D and compare it to the distribution of the 4 reference summaries.

2 with standard t-test for comparing two related means.
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Figure 5.5: Example of ]P’% in comparison to the word distribution of reference
summaries for one topic of TAC-2008 (D0803).

We report the two distributions together in figure 5.5. For visibility, only the
top 50 words according to P D are considered. However, we observe a good match
between the distribution of the reference summaries and the ideal distribution as
defined by P D.

Furthermore, the most desired words according to P D make sense. This can be
seen by looking at one of the human-written reference summary of this topic:

Reference summary for topic D0803

China sacrificed coal mine safety in its massive demand for energy. Gas
explosions, flooding, fires, and cave-ins cause most accidents. The min-
ing industry is riddled with corruption from mining officials to owners.
Officials are often illegally invested in mines and ignore safety procedures
for production. South Africa recently provided China with information
on mining safety and technology during a conference. China is beginning
enforcement of safety requlations. Over 12,000 mines have been ordered
to suspend operations and 4,000 others ordered closed. This year 4,228
miners were killed in 2,337 coal mine accidents. China’s mines are the
most dangerous worldwide.
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CHAPTER 5. THEORETICAL APPROACH

Chapter Summary

The notion of semantic units is introduced as a general way of encoding
meaning. It is supported by previous theoretical works and encompasses
most of practical approaches to semantics.

Based on semantic units and information theoretic tools, several no-
tions are formally defined: Redundancy, Relevance and Informa-
tiveness.

Importance can be interpreted as the quantity unifying these concepts.
Importance is not an intrinsic property of a semantic unit, it depends
on which other units are present within some contextual boundaries:
Redundancy in the context of the summary only, Relevance in the
context of the source documents and Informativeness in the context
of background knowledge.

Whenever one compresses with loss of information, one must make
choices about what to discard. Importance is the measure that guides
these choices.

The notion of Importance induces a summary scoring function which,
under simplifying assumptions, is shown to correlate with human judg-
ments and is capable of discriminating human summaries from system
summaries.
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Chapter 6

Limitations of Human Judgment
Datasets

In the previous chapters, we emphasized the role played by humans in defining what
are good and bad summaries. Here, we discuss some limitations of existing hu-
man judgment datasets. More specifically, the experiments of this chapter motivate
the collection of manual annotations for high-scoring summaries to further advance
summarization.

Human judgments play an important role in evaluation. Indeed, evaluation met-
rics are compared based on their ability to correlate with humans (Lin and Hovy,
2003). Then, the selected metrics heavily influence summarization research by guid-
ing progress (Lloret et al., 2018). These metrics also provide supervision for training
summarization systems (see section 2.2). Human judgments can even play a more
direct role in the training of systems. For example, in section 4.3, we demonstrated
how a supervised system can be trained directly with human scores.

Despite their central role, few human judgment datasets have been created. The
existing ones were collected as by-products of the manual evaluations performed dur-
ing the shared-tasks of DUC and TAC. As an example of limitation of these datasets,
section 4.3 already observed the lack of diversity in the annotated summaries.

We first make another observation: the annotated summaries are mostly average
compared to nowadays standards. Indeed, the best systems submitted at the time of
these shared-tasks have typically been used as baselines for subsequent works. This
is illustrated by figure 6.1, which compares the score distribution of summaries in
the human judgment datasets with the score distribution of modern summarization
systems.! The distribution of scores on which evaluation metrics are tested (blue
zone) differs from the one in which they now operate (red zone). Thus, there is
no guarantee that evaluation metrics behave according to human judgments in the
high-scoring range. Yet, whether the supervision comes from human judgments
directly or from evaluation metrics, summarization systems aim to generate high-
scoring summaries. As observed previously by Radev et al. (2003), the high-scoring
regime is of great importance. This is the particular range we study here.

In this chapter, we demonstrate that current evaluation metrics disagree with
each other in the high-scoring range. Even though they correlate well in the average

I scores for modern systems are obtained from the various systems presented in this thesis and

other systems mentioned by Hong et al. (2014).
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Figure 6.1: The blue distribution represents the score distribution of summaries
available in the human judgment datasets of TAC-2008 and TAC-2009. The red
distribution is the score distribution of summaries generated by mordern systems.

range, they present low and even negative correlations for high-scoring summaries.
This is highly problematic because current metrics cannot be distinguished based
solely on analysis on available human judgments. Indeed, in practice, they behave
similarly on these datasets. Nevertheless, they will promote vastly different sum-
maries and systems.

It is a common good practice to report several metrics together. In the aver-
age scoring range, where metrics generally agree, this creates a robust measure of
progress. The specificities of each metric are averaged-out putting the focus on the
general trend. However, if the metrics do not correlate, they do not share a common
trend. In fact, we show that, in the high-scoring range, it becomes almost impossi-
ble to find summaries which provide improvements according to all metrics. Indeed,
with disagreeing metrics, it becomes difficult to find summaries for which metrics
agree.

Since metrics disagree strongly in the high-scoring regime, at least some of them
are deviating largely from humans. Should we collect more human judgments, we
could identify the best ones and develop new and better evaluation methodologies.
Thus, our work motivates the collection of human judgments for high-scoring sum-
maries.

Furthermore, the analysis we provide here could be duplicated for related fields
like Machine Translation or Natural Language Generation.

6.1 Data Collection

In this work, we study the following metrics:

¢ ROUGE-2 (R-2): measures the bigram overlap between the candidate sum-
mary and the pool of reference summaries (Lin, 2004b).
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e ROUGE-L (R-L): a variant of ROUGE which measures the size of the longest

common sub-sequence between candidate and reference summaries.

¢ ROUGE-WE (R-WE): instead of hard lexical matching of bigrams, R-WE
uses soft matching based on the cosine similarity of word embeddings (Ng and
Abrecht, 2015).

e JS divergence (JS-2): uses Jensen-Shannon divergence between bigram dis-
tributions of references and candidate summaries (Lin et al., 20006).

e S3: the metric we introduced and evaluated in chapter 4. It is trained explic-
itly to maximize its correlation with manual Pyramid annotations.

We chose these metrics because they correlate well with available human judgments.
We didn’t include PEAK (Yang et al., 2016) because it remains slow to compute
and difficult to use which decreases its chances of being used as a standard metric.
However, for future analysis, it might be interesting to consider the more recent
version of automatic Pyramid: PyrEval (Gao et al., 2018).

Once an evaluation metric becomes standard, it is optimized, either directly by
supervised methods or indirectly via repeated comparisons of unsupervised systems.

To mimic this procedure, we optimized each metric using the genetic algorithm
for summarization described in section 3.2. The metric m is used as the fitness
function. The resulting population is a set of summaries ranging from random
to upper-bound according to m. For both TAC-2008 and TAC-2009, we used a
population of 400 summaries per topic (per metric). The final dataset contains
160, 523 summaries for an average of 1,763 summaries per topic (less than 5 % 400
due to removed duplicates).

The summary generation procedure is described by algorithm 6. The function
Score(S, M) takes a list S of summaries and a list M of evaluation metrics and
outputs a list where each summary has been scored by each evaluation metric in M.
The SampleSummaries function is the genetic algorithm.

Algorithm 6: Generate a Dataset of Scored Summaries

Input : D ={sy,...,s,}: document as a set of sentences
L: length constraint
k: number of summaries to generate
M = {my,...,m.}: evaluation metrics considered
Output: C =[Sy, ...,Sk]: a set of scored summaries
Function GenerateData(D, L, k, M):
C
for m € M do
S = SampleSummaries(D, L, k, m)
S = RemoveDuplicate(S)
C « Score(S, M)
end

i B R S U VU
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6.2 Correlation Analysis

The dataset described above does not include gold scores given by humans, it cannot
be used to decide which candidate metric is better. However, we can compare the
behavior of candidate evaluation metrics, especially in the scoring ranges of interest.
We first observe that evaluation metrics correlate with each other when the whole
scoring range is considered. Then, we observe low and even negative correlations
for high-scoring summaries.

This is related to the Simpson paradox, where different conclusions are drawn
depending on which slice of the population is considered (Wagner, 1982). In fact, it
is simple to distinguish obviously bad from obviously good summaries, which results
in superficially high correlations when the whole scoring range is considered.

6.2.1 When Metrics Correlate with Each Others

We first compute the pairwise correlation between metrics using the existing human
judgments (TAC-2008 and TAC-2009). Figure 6.2 is the scatter matrix plot describ-
ing the correlations between pairs of candidate metrics. The number and the cell
background color indicate the Kendall’s 7 between the two metrics. This measures
the proportion of pairs of summaries ranked in the same order by both metrics.
Diagonal cells represent the score distribution of summaries for the given metric.

The correlations between pairs of metrics are high: metrics behave similarly in
the average-scoring range and cannot be easily distinguished based only on analysis
of standard human judgment datasets.

We then replicated the same pairwise correlation analysis, this time using the
large dataset generated according to algorithm 6. The scatter matrix plot in fig-
ure 6.3 depicts the relationships between each pair of metrics using all summaries
in this generated dataset.

Unsurprisingly, we again observe high positive correlations. As in TAC annota-
tions (figure 6.2), the correlations are about .7 Kendall’s 7. JS-2 and R-2 have the
strongest correlation, while R-L seems less correlated with the others. It is worth
remembering that JS-2 and R-2 both operate on bigrams which also explain their
stronger connection.

The diagonal cells display the score distribution of summaries for each metric. In
our generated dataset, each evaluation metric was sampled evenly across its scoring
range. However, when summaries sampled for every metric are put together, R-2
and JS-2 exhibit distributions skewed toward lower scores. It suggests that average
summaries for other metrics tend to have below average R-2 and JS-2 scores.

6.2.2 When Metrics Do Not Correlate

Poor summaries are easily dismissed by metrics and summarization systems alike.
Hence, the main focus of summarization progress is towards increasingly high-scoring
summaries (Radev et al., 2003). We focus our next experiments on this relevant
scoring range.
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Figure 6.2: Scatter matrix plot over all summaries available as part of the human
evaluation in TAC-2008 and TAC-2009.

To do so, we selected the top summaries from our generated dataset following
the procedure described in algorithm 7. In this algorithm, the function Score(T,m)
returns a list of all the summaries in the topic 7 scored by the metric m. The
baseline B is an existing algorithm used as a threshold: for each metric, we keep
every summary scoring higher than B. The final set of top-scoring summaries is the
union of the top-scoring summaries of each metric.

For the thresholding, we chose LexRank (Erkan and Radev, 2004), because it is
a heavily used baseline. Therefore, most current and future summarization systems
should perform better and should be covered by the selected scoring range. Besides,
LexRank is strong enough to discard a large number of average scoring summaries.
After the selection, we ended up with an average of 102 summaries kept per topic.

We performed the same correlation analysis as the ones presented before in fig-
ure 6.2 and figure 6.3, but on this restricted dataset of high-scoring summaries.
Figure 6.4 is the scatter matrix plot depicting the relationship between pairs of
metrics. Again, the cell background color and the number indicate the pairwise
correlation (Kendall’s 7) averaged over all topics.

Surprisingly, we observe low and even several negative correlations.” Even, R-2

2 We see the same behavior for each dataset taken independently
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Figure 6.3: Scatter matrix plot over all summaries available in the generated dataset.
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and JS-2 which had the strongest connection in figure 6.2 only retain little correla-
tion (< 0.3 7). For most pairs, the correlations are close to what would be expected
from random behavior. Additionally, R-L seems to even have negative correlation
with other metrics. It indicates that there is no global agreement on what con-
stitutes improvements when the summaries are already better than the baseline.
This greatly undermines the possibility of constructing a more robust evaluation
methodology simply by reporting several metrics. This problem is discussed in the
next paragraphs.

On the diagonal, as a result of the selection process, we obtain more spread score
distributions. Note that low-scoring summaries are possible even when selecting only
the top-scoring summaries of each topic. Indeed, for some difficult topic, even the
best summaries have low scores compared to other summaries drawn from easier
topics. Also, top-scoring summaries according to one metric may be low-scoring
according to another. Figure 6.4 indicates that this actually happens.

Disagreement increases with higher-scoring summaries:

In this experiment, we measured the percentage of disagreement between two met-
rics as a function of the average score of summaries. In figure 6.5, the y coordinate
represents the percentage of disagreement for pairs of summaries which have an av-
erage score higher or equal to the = coordinate. We observe that the disagreement is
increasing for higher scoring summary pairs. (Note the z axis has been normalized
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Algorithm 7: Select Top-Scoring Summaries

Input : D ={Ty,...,7,}: dataset as a list of topics (each topic contains a
list of summaries)
B: baseline algorithm used to decide the high-scoring summaries
M ={m4,...,m.}: evaluation metrics considered

Output: DP): dataset which contain only top-scoring summaries
1 Function SelectTopSummaries(D, B, M):

2 Dttor) =]

3 for 7 € D do

4 T(tor) =]

5 for m € M do

6 S =]

7 for s € Score(T,m) do
8 if m(s) > m(B(T .source)) then
9 ‘ S+ s

10 end

11 end

12 Tttor) .= T(tor) 4 §
13 end
14 Dtor) o p(top)
15 end

because different metrics have different scales). This confirms the hypothesis that
metrics disagree more for increasingly high-scoring summaries.

The problem with reporting several disagreeing metrics:

It is common to report the results of several evaluation metrics. However, when the
metrics do not correlate, it becomes difficult to identify consistent improvements.
Indeed, when metrics do not share some common patterns, improvements according
to one metric is almost never an improvement for another metric. We illustrate this
problem with the following experiment:

We first fix a summary s. We then consider the set of summaries from the same
topic which are better than s according to at least one metric. We note N the
size of this set. Then, we count the number of summaries which are better than
s according to all metrics. We note F' this number. Finally, % is the proportion
of summaries which are better than s for all metrics. This measures the difficulty
of finding consistent improvements across metrics. In other words, we ask: among
the summaries which are better than s for one metric, how many are better for all

metrics?

The process is done for 5,000 randomly sampled summary s in the sources for
which N > 20. Indeed, if N is too small, % is not a representative proportion. The
figure 6.6, represents the results of this experiments, where the x-axis is the score of
the summary s (average of all the metrics after they have been normalized between

0 and 1) and the y-axis is the corresponding proportion %
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Figure 6.4: Scatter matrix plot on high-scoring summaries selected with the proce-
dure described by algorithm 7.
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Figure 6.5: Percentage of disagreement between metrics for increasing scores of
summary pairs.
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Figure 6.6: On the x axis: the score of the sampled summary s is computed by aver-
aging the score assigned to s by every metric. For meaningful averaging, all metrics
have been previously normalized such that 0 is the score of the worst summary and
1 the score of the best summary. We also report the average performance of current
systems. On the y axis: % associated to the sampled summary s.

We observe a quick decrease in the ratio % The proportion of consistent im-
provements (agreed by all metrics) is quickly decreasing with the average score of
summaries. When the baseline scores go up, the disagreement between metrics is
strong enough that we cannot identify summaries which are considered better than
the baseline for each metric. This is problematic because we don’t know which
metrics is the best. We also observe that this behavior starts to be problematic

considering the current systems average performances.

Discussion:

Intuitively, a smaller population can also lead to lower correlations. However, in
the high-scoring range, there are 102 summaries per topic and we observe very
low correlations whereas in the average-scoring range (human judgments) there are
around 50 summaries per topic but we observe strong correlations.

Furthermore, the plot of figure 6.5 is normalized according to population size and
the disagreement still increases with average scores. This rules out the possibility
of explaining the low correlations simply by population size.

Also, the high-scoring range covers 38% of the full scoring range (from LexRank
to upper-bound), while human judgments covers 35% of the full scoring range. This
rules out the possibility of explaining the low correlations by the width of the scoring
range.
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Chapter Summary

e Existing human judgment datasets are not suitable to properly compare
evaluation metrics because they do not cover the high-scoring range in
which summarization systems and metrics operate.

e Existing evaluation metrics do not correlate in the high-scoring range.
We cannot measure improvements reliably because metrics disagree and
we don’t know which one to trust.

e This motivates efforts to collect human judgments for high-scoring sum-
maries as this would be necessary to settle the debate over which metric
to use. This would also be greatly beneficial for improving summariza-
tion systems and metrics alike.
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Chapter 7

Conclusion

Automatic text summarization is a complex NLP task that requires natural language
understanding, content selection and natural language generation capabilities. In
this thesis, we concentrated on content selection, the inherent challenge of summa-
rization which is controlled by the notion of Importance and encoded in summary
scoring functions. We introduced several interconnected frameworks to model the
summarization task and guide the search for summary scoring functions. Within
these frameworks, we investigated both empirical and theoretical techniques to dis-
cover some strong scoring functions. We now summarize the main contributions and
findings.

We introduced the (0, O) framework which views, without loss of generality,
the summarization task as two components: a summary scoring function ¢ and an
optimization technique O. Every summarizer implicitly or explicitly implements a
summary scoring function 8 which is subject to an evaluation of its own. By analogy
with the evaluation of evaluation metrics, different summary scoring functions can
be compared based on their ability to correlate with human judgments.

We conducted this evaluation on existing summarizers and discovered surpris-
ingly low correlations. This suggests that current summarization systems do not
use the same strategy as humans during the summarization process. This 6 evalua-
tion is also shown to be complementary to the conventional evaluation of extracted
summaries with automatic metrics as they provide different rankings of systems.

In fact, the evaluation of summary scoring functions can be used as a way to
guide us when crafting summary scoring functions. This can be useful to pinpoint po-
tential areas of improvements. These contributions particularly address Research
Question 3.

Once the (0, O) perspective is adopted, one might be motivated to develop both
components independently. Hence, from the optimization perspective, we were inter-
ested in the most general scenario where 6 does not exhibit exploitable mathematical
properties. In such case, in order to extract a summary out of it, # must be opti-
mized approximately via heuristic search algorithms (or GPOs). In this work, we
adapted and implemented several techniques which can optimize arbitrary objective
functions. We demonstrated that they are both efficient and effective enough for
the summarization use-case. This answers Research Question 1 and allows us to
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search arbitrarily complex summary scoring functions.

Furthermore, existing summarizers which greedily optimized their internal sum-
mary scoring function can be significantly improved simply by switching to a more
powerful optimization techique like the genetic algorithm. Also, for some evaluation
metrics like JS-Eval and PEAK, it is impossible to find the exact upper-bound ef-
ficiently. By leveraging the complementarity of several optimization techniques, we
computed better upper-bound estimates for both JS-Eval and PEAK.

An analysis of previous works revealed that they have heavily constrained the
scoring function # in order to solve convenient optimization problems. However, we
showed that a 6 relieved from constraints is better able to match human judgments.
To do so, we trained various summary scoring functions with and without linear-
ity constraints and observed a large gap in favor of the unconstrained functions.
When such summary scoring functions are optimized by an appropriate optimiza-
tion technique (e.g., genetic algorithm), the unconstrained functions are still capable
of extracting high-scoring summaries. This answers Research Question 2.

When the summary scoring function is learned from data, we investigated an-
other dimension of variation: the supervision signal. Traditionally, ROUGE provides
this supervision. In such case, based on the mathematical structure of ROUGE, we
could derive an almost perfect linear approximation (provided sentence scores are
available). However, recent improvements in evaluation metrics should encourage
us to progressively move away from ROUGE towards more semantically motivated
metrics. In particular, we trained summary scoring functions using alternative met-
rics like JS-Eval and PEAK and observed good performances when PEAK was used.

Ideally, summary scoring functions should mimic humans and, thus, human
scores would be the best possible signal. Unfortunately, human annotations are rare
and expensive to obtain. We demonstrated a simple strategy to leverage the small
human judgment datasets for training. This contributes to Research Question 4.

When human judgments are used for supervision, we saw that training the eval-
uation metric and training the summarizer’s scoring function is the same learning
problem, with the difference that the evaluation metric can leverage the reference
summaries. Hence, we could train a new evaluation metric S3 and released it for
the community.

Apart from empirically learning the summary scoring function from statistical
analysis, we also investigated a theoretical formulation of the notion of Importance.
In a framework rooted in information theory, we formalized several summary-related
quantities like: Redundancy, Relevance and Informativeness. Importance arises as
the notion unifying these concepts. More generally, Importance is the measure that
guides which choices to make when information must be discarded. This contribu-
tion answers Research Question 5 and provides promising directions for future
work.

Finally, evaluation remains an open-problem with a massive impact on summa-
rization progress. We conducted experiments on available human judgment datasets

122



commonly used to compare evaluation metrics and discovered that they do not cover
the high-scoring range in which summarization systems and evaluation metrics op-
erate. A series of experiments motivates efforts to collect human judgments for
high-scoring summaries as this would be necessary to settle the debate over which
metric to use. This would also be greatly beneficial for improving summarization
systems and evaluation metrics alike.

Future Work

To conclude this thesis, we provide interesting directions for future works which can
built upon the work established in this thesis.

First, the (0, O) framework from chapter 3 provides a general and universal
interpretation of the summarization task. This creates two distinct branches of po-
tential improvements: (i) investigating new optimization techniques O particularly
tailored to the summarization task, and (ii) exploring better learning scenario for
the summary scoring function 6. Furthermore, the theoretical framework introduced
in chapter 5 presents a high-level view of summarization. It can be extended to a
broader set of problems but can also inform the development of new summarization
systems.

Learning and Optimizing Summary Scoring Functions

With the aim of training better summarization systems, one could consider the con-
tributions made by chapter 4. In this chapter, we only scratched the surface of what
is possible within the (0, O) framework. Several subsequent works may investigate
more sophisticated techniques to learn # and also craft summarization-specific opti-
mization procedures.

Exploring learning possibilities for 6:

In chapter 4, we introduced the matrix of possible learning scenarios for # and
proposed an initial study of the two main axes of variations: the learning constraints
and the supervision signal. The feature set is also an important design choice, but
we left it fixed in our experiments. In fact, this matrix hints at many possible future
works along each axis:

e Axis 0: Features While we restricted ourselves to a simple feature set, fu-
ture works can clearly benefit from a larger set of more sophisticated features
including semantically motivated quantities. For instance, one could include
the signal from distributional representations of meaning like word vectors
(Mikolov et al., 2013b) or sentence vectors (Conneau et al., 2017). In partic-
ular, He et al. (2012) introduced the idea that a summary should be made
of the sentences which allow the best reconstruction of the input documents.
Several works (Li et al., 2015; Liu et al., 2015b; Ma et al., 2016) refined this
idea with distributional similarities. We believe that such scoring functions
can provide useful signal in a learning scenario.

In general, any existing summary scoring function can become a feature in the
f learning setup. Indeed, with the constraint on # removed, more meaningful
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and complex summary scoring functions can be employed. This opens the
possibility to include any existing previous works in the feature set.

Finally, provided enough training data is available, one could learn the scoring
function from deep learning architectures by representing texts as sequences
of word vectors without specifying any other features. This would generalize
the approach proposed by Nallapati et al. (2017) by providing supervision at
the summary-level.

e Axis 1: Supervision signal Evaluation becomes a more pressing topic in the
summarization community. New automatic evaluation metrics are regularly
introduced to address the shortcomings of existing ones. When new promising
metrics arise, they become great candidates to be used as a supervision signal
for training summary scoring functions.

Alternatively, since human judgments would be the ideal signal, one could
allocate resources to collect larger sets of manual annotations. We made a
case for this in chapter 6.

Finally, one could use partial human feedback and include them in the learning
loop with (inter-)active learning scenarios (P.V.S. and Meyer, 2017).

e Axis 2: Learning constraints and learning algorithms We studied the
two main kinds of constraints: linear and no constraint. In summarization,
submodularity has also been extensively used for learning ROUGE (Lin and
Bilmes, 2011; Sipos et al., 2012). It would be interesting to extend the com-
parison of section 4.4 to also consider the submodularity constraint. Recently,
Tschiatschek et al. (2018) proposed a methodology to learn submodular func-
tions which is akin to the derivation we made for linear functions in section 4.1.

More generally, one can investigate learning algorithms because different learn-
ing algorithms come with different assumptions. For example, it might be
particularly interesting to learn 6 with a ranking loss instead of a regression
loss. Indeed, the scores available for summaries may suffer from inconsistency
when going from one topic to another. In contrast, the relative ordering of
summaries may be a more robust signal (Fiirnkranz and Hiillermeier, 2003).

Bayesian approaches capable of dealing with noisy annotations (Chu and
Ghahramani, 2005) could be employed to better learn human judgments or
to combine noisy automatic scores with human ones (Simpson and Gurevych,
2018).

From GPO to summarization specific global optimization:

Because of the no free lunch theorem (Wolpert and Macready, 1997), we do not
have guarantees about the performances of General Purpose Optimization tech-
niques. Thus, optimization strategies informed with knowledge about language and
the structure of summarization could be investigated.

Even though we viewed the extraction part of summarization as a generic opti-
mization task in this thesis, it actually happens on a specific kind of data — texts —
which might present exploitable regularities. Such regularities can be identified and
leveraged to design more efficient optimizers. They can be discovered by statistical
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analysis as part of the learning to optimize paradigm (Li and Malik, 2016). Opti-
mizers can be either partially or completely learned from the kind of data on which
they are expected to perform optimization.

In fact, there are simple improvements that can be easily incorporated into op-
timizers. For example, by knowing that redundant summaries correlate negatively
with quality, the neighbor search can be incentivized to generate non-redundant
summaries. Another example is that frequency is known to have a positive correla-
tion with Importance on standard datasets. The stochastic search could be biased to
sample summaries with frequent terms more often. Such modifications are expected
to improve the convergence speed as they avoid evaluating summaries unlikely to
provide improvements.

In general, learning representations useful for the optimization heuristic might be
beneficial (Li and Malik, 2016). For example, one could change the neighbor search
from a simplex on sentences (every summary is a binary vector of the sentences
it contains) to a semantic space. In this case, neighbors are semantically similar
summaries instead of summaries which differ by one sentence.

Finally, while we argued for the study of # and O independently, remerging
and jointly learning them in end-to-end scenario might be investigated under the
constraint of preserving an interpretable notion of 6. Indeed, this is the central
concept of summarization and it should be evaluated on its own. Approaches like
Inverse Reinforcement Learning (Ng and Russell, 2000) might then be of interest.
Such approaches try to infer the reward function (here 6) from observed outcomes
(here reference summaries).

Extensions and Applications of the Theoretical Framework

Now, we discuss interesting research directions stemming from the framework out-
lined in chapter 5.

Text representations:

The notion of semantic units introduced in section 5.1 is a very general representa-
tion of meaning supported by previous works. Enforcing text representations (e.g.,
distributional representations) to be probability distributions over independent units
may result in better semantic textual representations. Furthermore, this would al-

low the use of information-theoretic tools at the semantic level for a wide range of
NLP problems.

Semantic information theory:

In section 5.3, we mentioned that the Importance framework provides an entry
point to develop an operational semantic information theory and semantic data
compression theory.

Indeed, summarization is a lossy semantic compression which draws an anal-
ogy with Rate-Distortion Theory initiated by Shannon (1948) to address lossy cod-
ing compression schemes. Prominent examples of applications are JPEG for lossy
compression of images or MP3 for lossy compression of audio signals (Ortega and
Ramchandran, 1998). Rate-Distortion Theory builds upon the notion of distortion
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functions which measure the human-perceived discrepancies between the lossy com-
pressed and original uncompressed data.

While these distortion functions operate at the syntactic level (Shannon, 1948),
the notion of Importance aims to operate at the semantic level. This poses the bases
of lossy semantic compression schemes which could be further studied and made into
a wider theory of semantic compression.

Practical applications in summarization:

Conceptually, it is straightforward to build a system out of 6; (the summary scoring
function induced by Importance) once a semantic units representation and a K have
been chosen. A summarizer intends to extract or generate a summary maximizing
;. Indeed, 07 is a summary scoring function which fits within the (6, O) framework.

Therefore, in extractive summarization, this can naturally be cast as a discrete
optimization problem where the text source is considered as a set of sentences and
the summary is created by selecting an optimal subset of the sentences under a
length constraint (McDonald, 2007). In abstractive summarization, a language-
aware decoder needs to be employed to also guarantee linguistic qualities.

In fact, the background knowledge and semantic units are free parameters of the
theory. They are design choices which can be explored empirically. Then, inter-
esting research questions arise like Which granularity offers a good approrimation
of semantic units?, Can we automatically learn good approximations? In summa-
rization, n-grams are known to be useful, but other granularities have rarely been
considered together with information theoretic tools.

Discovering K:

The background knowledge K was introduced, but its practical implementation re-
mains a design choice. A promising direction would be to use the framework to
actually learn K from data. In particular, one can apply supervised techniques to
automatically search for K, o and §: finding the values of these parameters such
that 6; has the best correlation with human judgments. By aggregating over many
users and many topics one can find a generic K: what, on average, people consider
as known when summarizing a document. By aggregating over different persons but
in one domain, one can uncover a domain-specific K. Similarly, by aggregating over
many topics for one person, one would find a personalized K.
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A Corpora and Implementation Details

We reproduce in table A.1 here the part of table 2.1 from section 2.1 that contains
the description of the datasets used throughout the thesis. We also describe further
details concerning these datasets.

A.1 DUC Datasets

In experiments from chapter 4, we used two datasets from the Document Under-
standing Conference (DUC) shared task: DUC-2002 ' and DUC-2003 (Over, 2003).
DUC-2002 and DUC-2003 contain about 60 and 30 topics, respectively. Each topic
consists of 10 news articles to be summarized in a maximum of 100 words for DUC-
2003 and 200 words for DUC-2002. In the official DUC-03 competitions, summaries
of length 665 bytes were expected. Systems could produce different numbers of
words. The variation in length has a noticeable impact on ROUGE recall scores.

A.2 TAC Datasets

We experiment with standard datasets for two different summarization tasks: generic
and update multi-document summarization from the Text Analysis Conference (TAC)
shared task: TAC-2008 and TAC-2009.? . The generic part is used for the experi-
ments of chapter 3, chapter 4, chapter 5 and chapter 6. The update part is used for
the experiments of chapter 5.

TAC-2008 and TAC-2009 contain 48 and 44 topics, respectively. Each topic
consists of 10 news articles to be summarized in a maximum of 100 words. In the
update part, 10 new documents (B documents) are to be summarized assuming that
the first 10 documents (A documents) have already been seen.

For each topic, there are 4 human reference summaries along with a manually
created Pyramid set (Nenkova et al., 2007). In both editions, all system summaries
and the 4 reference summaries were manually evaluated by NIST assessors for read-
ability, content selection (with Pyramid) and overall Responsiveness. At the time
of the shared tasks, 57 systems were submitted to TAC-2008 and 55 to TAC-2009.
The Responsiveness annotations follow a 5 point LIKERT scale in TAC-2008 but a
10 point LIKERT scale in TAC-2009.

! https://www-nlpir.nist.gov/projects/duc/pubs/2002slides/overview.02.pdf
2 http://tac.nist.gov/2009/Summarization/, http://tac.nist.gov/2008/
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Dataset Creation Input Purpose Output Size
Man./Auto. Type Genre Lang Type Length | Topics Doc/Topic

DUC-2002 M SDS, MDS  News en Gen. Abs. 10-400 60 ~10

DUC-2003 M SDS, MDS  News  en Gen. Abs./Ext. 10, 100 30 ~10

TAC-2008 M MDS News en | Gen. Upd. Opi. Abs. 100 48 10

TAC-2009 M MDS News en Gen. Upd. Abs. 100 44 10

DBS M MDS Heter. de Gen. Ext. ~500 30 4-14
Table A.1: Description of the datasets used during the thesis

We also use the recently created German dataset DBS-corpus (Benikova et al., 2016).
It contains 10 topics consisting of 4 to 14 documents each. The summaries have
variable sizes and are about 500 words long. For each topic, 5 summaries were
evaluated by trained human annotators but only for content selection with Pyramid.

We experiment with this dataset because it contains heterogeneous sources (dif-
ferent text types) in German about the educational domain. This contrasts with
the English homogeneous news documents from DUC and TAC.

A.4 Other Details

In this section, we describe some useful implementation details concerning the com-
putation of evaluation metrics and features.

ROUGE:
ROUGE-N (Lin, 2004b) is an evaluation metric used throughout the thesis (chapter 3
and chapter 4).

For ROUGE-N, we used the variants of ROUGE identified by Owczarzak et al.
(2012) as strongly correlating with human evaluation methods: with stemming and
stopwords not removed (giving the best agreement with human evaluation). The
truncation of system summaries is done automatically by ROUGE using the official
Perl script.®

JS-Eval:

JS-Eval (Lin et al., 2006) is also an evaluation metric that was used throughout
the thesis (chapter 3 and chapter 4) Like ROUGE-N, JS-Eval operates on n-grams.
Thus, we used the same specifications: stemming and stopwords not removed.

Details about features and baselines:
In order to get the scores of baselines (LexRank, TF-IDF and Edmundson) in chap-
ter 3 and chapter 4, we used the freely available sumy package.®. Similarly, in order
to extract the features based on these systems — as described in section 4.1 — we also
adapted the sumy implementation.

For the baseline systems [CSI (Gillick and Favre, 2009) and SFOUR (Sipos et al.,
2012), we used the freely available implementations.”

3 ROUGE-1.5.5 with the parameters: -n 2 -m -a -1 100 -x -¢ 95 -r 1000 -f A -p 0.5 -t 0
4 https://github.com/miso-belica/sumy
® For ICSI, we used the later implementation from Boudin et al. (2015): https://github.com/
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The remaining baselines and features (KL, JS, n-gram coverage and diversity)
rely on n-grams. Contrary to ROUGE and JS-Eval, we removed the stopwords as
we observed better performances without them. In particular, whenever n > 1, the
n-grams composed of only stopwords are removed.

KL divergence and cross-entropy (used in chapter 5) implicitly assume that the
two input distributions P and () have the same support. However, in summarization,
it often happens that n-grams appear in one but not the other. One solution is to
add a smoothing factor to prevent divisions by 0. Alternatively, one can compute
KL and cross-entropy only the shared support. We found the latter to give better
performances; it also does not require to choose a smoothing factor.

boudinfl/sume. For SFOUR: http://www.cs.cornell.edu/"rs/sfour/
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APPENDIX

B Standard Optimization Algorithms

Greedy:

The greedy algorithm selects the sentence with the best score at each steps. We refer
to this algorithm as Greedy in the following sections. A convenient improvement is
the greedy with marginal gains ( Greedy-M ) which selects the sentence which incurs
the best increase in the overall score. The pseudo-code of Greedy-M is described in
algorithm 8.

Algorithm 8: Greedy Algorithm for Extractive Summarization

Input : D ={sy,...,8,}: document as a set of sentences
f: objective function
L: length constaint
Output: S = {s;}: summary as a set of sentences
Function Greedy-M (D, 0, L):
S ={}
while 1 do
C={seD|s¢ S len(SU{s}) <L}
if C'=( then
‘ return S
end
c* = argmax0(S Uc)
ceC
9 S = Su{c}

10 end

® N o A W N+

Beam Search:
The pseudo-code for the Beam Search is given by the algorithm 9. Note the notation

arg(fl)lax which denotes the operator returning the top k elements, i.e., the k elements
which have the best scores in the list. N is the set of candidate answer and n is a
candidate summary.

Suppose the final summary contains m sentences, then this algorithm keeps &
candidates for each of the m decision steps and therefore considers k - m candidates.

Random Search:

Based on the sampling function, the random search follows a simple described by the
pseudo-code in algorithm 10. It has the advantage of having a fixed and predefined
complexity set by B the budget of allowed candidate evaluation.

Simulated Annealing:

The pseudo-code for Simulated Annealing is given by the algorithm 11. The func-
tion Random(0, 1) generates samples from the uniform distribution between 0 and
1. Simulated annealing also has a fixed complexity predefined by the number of
steps allowed k4.

130



B. STANDARD OPTIMIZATION ALGORITHMS

Algorithm 9: Beam Search for Extractive Summarization

Input : D = {sy,...,s,}: document as a set of sentences
f: objective function
L: length constaint
k: size of the beam

Output: S = {s,}: summary as a set of sentences

1 Function BeamSearch (D,0, L, k):
2 N =1{}
3 while 1 do
4 C={}
5 for n € N do
6 | C=CuU{seD|s¢n,len(nU{s}) < L}
7 end
8 if C' = then
9 S := argmax6(n)
neN
10 return S
11 end
. (k)
12 c* = argmaxf(n U c)
ceC
13 N =NUc*
14 end

Algorithm 10: Random Search for Extractive Summarization
Input : D = {sy,...,s,}: document as a set of sentences
f: objective function
L: length constaint

Output: S = {s;}: summary as a set of sentences
Function RandomSearch (D,0, L, B):
¢ ={}
evaluations = 0
while evaluations < B do
¢ = SampleCandidate(D, L)
if 6(c) > ¢,,,. then
cr=c
evaluations++
end

© o N O v A W N H

10 end
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Algorithm 11: Simulated Annealing for Extractive Summarization

Input : D = {sy,...,s,}: document as a set of sentences
0: objective function
L: length constaint
T: temperature
kmae: maximum number of iteration
Output: S = {s,}: summary as a set of sentences

1 Function SimulatedAnnealing (D, 0, L, T, knaz):
2 S = SampleCandidate(D, L)

3 for k € {1,...,kna} do

4 N = Mutate(S, D, L)

5 if P(N,S,T) > Random(0,1) then

6 ‘ S:=N

7 end

8

end

Genetic Algorithm:

Algorithm 12 describes the optimization process via the genetic algorithm. The
function RandomChoose(P,n) randomly selects n elements from the list P. We
note that in nature, the fertilized egg cell undergoes a process known as embryogen-
esis before becoming a mature embryo. This is believed to make the genetic search
more robust by reducing the probability of fatal mutation. At each step, we only
consider valid summaries, which is the direct analogy to embryogenesis.

Artificial Bee Colony:
The overall execution of the ABC algorithm is presented in the algorithm 14.
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Algorithm 12: Genetic Algorithm Optimization for Extractive Summa-
rization

B SR =T 4 B SV R R

0]

10
11
12
13
14
15
16
17
18
19

Input

: D ={s1,...,8,}: document as a set of sentences
0: objective function
L: length constaint
popsize: number of candidate in the population
S,: survival rate
M,: mutation rate
R,: reproduction rate
Emaz: Maximum number of epochs

Output: S = {s;}: summary as a set of sentences
Function GeneticAlgorithm(D, 0, L, popsize, S, M., R.., €maz):

]
for i € {1,...,popsize} do

C < SampleCandidate(D, L)

end
for e € {1,...,epna} do

newpop = ||

SUTVIVOTS 4— argmaxﬁiogme'sr)é’(c)

n = len(survivors)

NeWwpop $— Survivors

M = RandomChoose(survivors,n - M,)

for m € M do

‘ newpop < Mutate(m, D, L)

end

for j€{l,...,n- R, do
P := RandomChoose(survivors, 2)
newpop < CrossOver(P, L)

end

end
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Algorithm 13: Choose a Location for the Artificial Bee Colony Algorithm

Input : S: vector of scores
Output: idx: index of the chosen location
1 Function ChooseLocation(D, 0, L,n, T, mfe):

2 Z = sum/(S)

3 P =]

4 forie {1,...,len(S)} do

5 ‘ P+ 57[1}

6 end

7 while True do

8 for j € {1,...,len(P)} do
9 if P[j] > Random(0,1) then
10 ‘ return j

11 end

12 end
13 end
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Algorithm 14: Artificial Bee Colony Algorithm for Extractive Summa-
rization

Input : D ={sy,...,s,}: document as a set of sentences
: objective function
L: length constaint
n: number of employed bees
tl: number of trial before giving up a location
mfe: maximum function call

Output: S = {s;}: summary as a set of sentences

1 Function ABC(D,0,L,n, T, mfe):

2 C =]
3 S =]
4 T =]
5 for i € {1,...,popsize} do
6 ¢ = SampleCandidate(D, L)
7 C++c
8 S <+ 0(c)
9 T < 0 // number of trials at this location
10 end
11 nevals = 0
12 while nevals < mfe do
13 C. = [1] xlen(C) // How many bees will work on each location
14 forie {1,...,n} do
15 idz = Choose Location(S)
16 Celidx] + +
17 end
18 forie{l,...,n} do
19 // Employed and Onlooker bees phase
20 for j € C.[i] do
21 M = Mutate(C|i], L)
22 if (M) > 6(C[i] then
23 Cli] =M
24 Sli] == 6(M)
25 T[] =0
26 end
27 else
28 | Th++
29 end
30 end
31 // Scout bees phase
32 if T'[i] > tl then
33 ¢ = SampleCandidate(D, L) C <+ ¢
34 S <« 0(c)
35 T++0
36 end
37 end
38 end
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C Proofs

C.1 Proof of the Universality Theorem

As described in section 3.1.1, ¢ designs a summarization system, 6 an objective
function and O an optimization strategy. The statement of Theorem 1 is:
theorem

Vo, 3(6, O) such that: (1)
VD € D,o(D) = 0(0, D) (2)
theorem

Proof. We can construct a function 6, from ¢ which reconstructs the exact same
summaries as ¢ when optimized by O.
For a given document collection D, suppose that o(D) = S,. We define 0, to be

the following function:
1,it S=5,
0,(5) = { : (3)

0, otherwise

It is clear that VD € D : o(D) = O(0,, D), because the optimal summaries according
to 0, are precisely the summaries produced by o. O

C.2 Recursive Expression of ROUGE-N

Let S = {s;|i < m} and T = {t;|i <[} be two sets of sentences, S* the reference
summary, and p(X) denote the ROUGE-N score of the set of sentences X. Assuming
that p(S) and p(T) are given, we prove the following recursive formula:

p(SUT) = p(S) +p(T') —e(SNT) (4)
For compactness, we use the following notation as well:
Cx.s-(9) = min(Fx(g), Fs-(9)) (5)

Proof. We have the following definitions:

Z Cs.s-( (6)

gGS*
Z Cr.s-(g (7)
gGS*

€(SNT) = Zmax (Cs,5-(9) + Cr5+(9) — Fs+(9),0) (8)

gES*

And by definition of ROUGE, the formula of SUT"

p(SUT) Z min(Fsur(g), Fs-(g)) (9)

geS*
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In order to prove equation (4), we have to show that the following equation holds:

geS* geS* geS*

= 3" min(Fsur(g), Fs-(9)) (10)

geS*

It is sufficient to show:

Vg € S*,Cs,s+(9) + Cr,5+(9) — max(Cs,s+(9) + Cr,5+(9) — Fs+(g),0)
= min(Fsur(g), Fs-(g)) (11)

Let g € S* be a n-gram. There are two possibilities:

e Fs(g9) + Fr(g) < Fs«(g): g appears less frequently in S U T than in the
reference summary. It implies: min(Fsur(g), Fs<(9)) = Fsur(g) = Fs(g) +
Fr(g). Moreover, all Fx(g) are positive numbers by definition, and Fs(g) <
Fs+(g) is equivalent to: Cgg«(g) = min(Fs(g), Fs«(g9)) = Fs(g). Similarly, we
have: Crs«(g) = min(Fr(g), Fs-(g)) = Fr(g). Since max(Cs.s+(9)+Cr.s(g)—
Fs<(g),0) = 0, the equation (11) holds in this case.

e Fs(g) + Fr(g) > Fs«(g9): g appears more frequently in S U T than in the
reference summary. It implies: min(Fsur(g), Fs«(g)) = Fs+(g). Here we have:

maX(C'SS* (g) + CT,S*(Q) — FS*(g),O) = CS,S* (g) + CT,S*(Q) — FS* (g), and it
directly follows that equation (11) holds in this case as well.

Equation (11) has been proved, which proves (4) as well. O

C.3 Expanded Expression of ROUGE-N

Let S = {s;|i < m} be a set of sentences and 0r(5) its ROUGE-N score. We prove
the following formula:

Or(S) = Or(s)+) (D' > sn-nsy))  (12)

m
i=1 k=2 1<i1<-<i<m

Proof. Let g € S* be a n-gram in the reference summary, and k € [1,m| the number
of sentences in which it appears. Specifically, 3{s;,,- -+, 54, }, Vs, € {84,,...,8i,},9 €
s;,. In order to prove the formula (12), we have to find an expression for the k)
that gives to g the correct contribution to the formula:

1

Bin min(Fs(g), Fs-(g)) (13)

First, we observe that g does not appear in the terms that contain the intersection
of more than k sentences. Specifically, e®) is not affected by ¢ if t > k. However, g
is affected by all the e® for which t < k.
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Given that g appears in the sentences {s;,,...,s; }, we can determine the score
attributed to g by the previous ¢ (¢ < k):

SEV@) = Y e+ (DY YT Osnnsy)  (14)

1<iy < <<l

Now, ¢ receives the correct contribution to the overall scores if € is defined as
follows:

1 _
6(’“)(51-1 NN Sij) = R_ Z C’{si1 ..... slk}(g) - S(k 1)<g) (15>

ges; N ﬂsz

Indeed, with this expression for ), the score of g is:

1
SED(g) + R—C{si1 ..... si 3 (9) — S*(g) (16)
N
1
:R_NC{S” ..... sik}(g) (17)

Since g appears only in the sentences {s;,, ..., i}, Fis, .5, 1(9) = Fs(g) and it
follows that:

(9) = - win(Fs(g). Fe-(9) (18)

This proves equation (12). Every ¢® for ¢ < k including g is counted by S*~1),
and no other terms from e* will affect g because all the other terms ¢*) should
contain at least one sentence that is not in {s;,,...,s; } and g would not belong to
this intersection by definition.

Finally, it has been proved in the appendix C.2 that for k = 2, ¢® has a reduced
form:

(2)(5(1 N Sb Z max Sa S* ) + Csb,S* (g) - FS* (9)7 0) (19)
gES*
In the paper, we ignore the terms for k > 2. O

C.4 Submodularity of 05
Let S = {s;|i < m} be a set of sentences and Az(S) its ROUGE-N approximation:

:ZeR(si)_ Y dsinsg) (20)

Si,55 ES,SZ';&SJ'

To prove the submodularity of fg, we prove that Ir follows the diminishing returns
property: VS C T and a sentence a: 0z(S U a) — Ox(S) > Ox(T Ua) — 0x(T)

Proof. Let S = {s;[i < m} and T = {t;|i < [} be two sets of sentences such that
S CT. We study the following difference:

0r(S U a) — Br(S) — (6r(T U a) — a(T)) (21)
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We recall the formula for any set X and any sentence a:

Or(X Ua) = Op(X) 4 Orla) — &X Na) (22)
When applied to equation (21) we obtain:
E(TNa)—éSNa) (23)
We recall the definition of é(X) for any set X:

{X) = = S 1freqly) > of (24)

N geX

S C T implies SNa C T Na. Therefore we can split €(7'N a) and the expression
(23) becomes:

(X e zal+ Y freqle) 2l = Y 1ifreals) > a)
geSna geTNa\SNa geSNa

(25)
:RL > 1lfreqlg) = o (26)

N geTna\snb

This is a sum of positive terms and it is therefore positive. This proves that expres-
sion (21) is > 0 which is equivalent to:

éR(S U a) — QNR(S) Z éR(T U CL) — éR(T) (27)

This concludes the proof of the submodularity of fg. m

C.5 Proof of Importance-Encoding Theorem

Let € be the set of semantic units. The notation w; represents one unit. Let Py, and
Pg be the text representations of the source documents and background knowledge
as probability distributions over semantic units.

We note t; = Pp(w;), the probability of the unit w; in the source T'. Similarly,
we note k; = Px(w;). We seek a function f unifying 7" and K such that: f(w;) =

We remind the simple requirements that f should satisfy:

Informativeness: Vi # j, if t; = t; and k; > k; then f(t;, k;) < f(t;, k)

Relevance: Vi # j, if t; > t; and k; = k; then f(t;, ki) > f(t;, k)

Additivity: I(f(t:, ki) = al(t;) + BI(k;) (I is the information measure from
Shannon’s theory (Shannon, 1948))

Normalization: Y f(t;, k;) =1
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Theorem 2 states that the functions satisfying the previous requirements are:

1o
e

to .
C:Zﬁ,a,BeR

)

Pr (w)
(28)

with C' the normalizing constant.

Proof. The information function defined by Shannon (1948) is the logarithm: I =
log. Then, the Additivity criterion can be written:

log(f(ti, ki) = alog(t;) + log(k;) + A

with A a constant independent of ¢; and k;

Since log is monotonous and increasing, the Informativeness and Additivity cri-
teria can be combined:

V1 7é j, if t; = tj and k?z > k?j then:

log f(ti, ki) <log f(t;,k;)
alog(t;) + Blog(k;) + A < alog(t;) + flog(k;) + A
Blog(k;) < flog(k;)
But k; > k;, therefore:
<0

For clarity, we can now use —f with § € R*.

Similarly, we can combine the Relevance and Additivity criteria: Vi # j, if t; > t;
and kl = kfj then:

log f(t, ki) > log f(t;, k;)
alog(t;) + Blog(k;) + A > alog(t;) + Slog(k;) + A
alog(t;) > alog(t;)
But ¢; > t;, therefore:
a>0

Then, we have the following form from the Additivity criterion:

log f(ti, ki) = alog(t;) — Blog(k;) + A
f(ti, ki) = explalog(t;) — Blog(ki)] - exp(A)

f(ti, ki) = ]i% -exp(A4)

7
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Finally, the Normalization constraint specifies the constant exp(A):

B 1
exp(A)

andC:Zk—i

t
then: A = — log(z l{;—%)

% %
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