4,651 research outputs found

    Human-Machine Interface for Remote Training of Robot Tasks

    Full text link
    Regardless of their industrial or research application, the streamlining of robot operations is limited by the proximity of experienced users to the actual hardware. Be it massive open online robotics courses, crowd-sourcing of robot task training, or remote research on massive robot farms for machine learning, the need to create an apt remote Human-Machine Interface is quite prevalent. The paper at hand proposes a novel solution to the programming/training of remote robots employing an intuitive and accurate user-interface which offers all the benefits of working with real robots without imposing delays and inefficiency. The system includes: a vision-based 3D hand detection and gesture recognition subsystem, a simulated digital twin of a robot as visual feedback, and the "remote" robot learning/executing trajectories using dynamic motion primitives. Our results indicate that the system is a promising solution to the problem of remote training of robot tasks.Comment: Accepted in IEEE International Conference on Imaging Systems and Techniques - IST201

    Edaq530: a transparent, open-end and open-source measurement solution in natural science education

    Get PDF
    We present Edaq530, a low-cost, compact and easy-to-use digital measurement solution consisting of a thumb-sized USB-to-sensor interface and a measurement software. The solution is fully open-source, our aim being to provide a viable alternative to professional solutions. Our main focus in designing Edaq530 has been versatility and transparency. In this paper, we shall introduce the capabilities of Edaq530, complement it by showing a few sample experiments, and discuss the feedback we have received in the course of a teacher training workshop in which the participants received personal copies of Edaq530 and later made reports on how they could utilise Edaq530 in their teaching

    Some Research Questions and Results of UC3M in the E-Madrid Excellence Network

    Get PDF
    32 slides.-- Contributed to: 2010 IEEE Global Engineering Education Conference (EDUCON), Madrid, Spain, 14-16 April, 2010.-- Presented by C. Delgado Kloos.Proceedings of: 2010 IEEE Global Engineering Education Conference (EDUCON), Madrid, Spain, 14-16 April, 2010Universidad Carlos III de Madrid is one of the six main participating institutions in the eMadrid excellence network, as well as its coordinating partner. In this paper, the network is presented together with some of the main research lines carried out by UC3M. The remaining papers in this session present the work carried out by the other five universities in the consortium.The Excellence Network eMadrid, “Investigación y Desarrollo de Tecnologías para el e-Learning en la Comunidad de Madrid” is being funded by the Madrid Regional Government under grant No. S2009/TIC-1650. In addition, we acknowledge funding from the following research projects: iCoper: “Interoperable Content for Performance in a Competency-driven Society” (eContentPlus Best Practice Network No. ECP-2007-EDU-417007), Learn3: Hacia el Aprendizaje en la 3ª Fase (“Plan Nacional de I+D+I” TIN2008-05163/ TSI), Flexo: “Desarrollo de aprendizaje adaptativo y accesible en sistemas de código abierto” (AVANZA I+D, TSI-020301- 2008-19), España Virtual (CDTI, Ingenio 2010, CENIT, Deimos Space), SOLITE (CYTED 508AC0341), and “Integración vertical de servicios telemáticos de apoyo al aprendizaje en entornos residenciales” (Programa de creación y consolidación de grupos de investigación de la Universidad Carlos III de Madrid).Publicad

    A Microservice Infrastructure for Distributed Communities of Practice

    Get PDF
    Non-formal learning in Communities of Practice (CoPs) makes up a significant portion of today’s knowledge gain. However, only little technological support is tailored specifically towards CoPs and their particular strengths and challenges. Even worse, CoPs often do not possess the resources to host or even develop a software ecosystem to support their activities. In this paper, we describe a distributed, microservice-based Web infrastructure for non-formal learning in CoPs. It mitigates the need for central infrastructures, coordination or facilitation and takes into account the constant change of these communities. As a real use case, we implement an inquiry-based learning application on-top of our infrastructure. Our evaluation results indicate the usefulness of this learning application, which shows promise for future work in the domain of community-hosted, microservice-based Web infrastructures for learning outside of formal settings

    Measuring Mobile Portal User Satisfaction

    Get PDF
    With the rapid advancement of mobile technology, smart devices have challenged the extant research concerned with time and space. Based on a user’s specific interests, mobile portals allow quick and easy access, anywhere, anytime to a world of data, applications and services. Whilst this provides an enhanced, dynamic and personalized user experience, knowing how satisfied users are with their mobile portal is crucial to understanding users’ needs, identifying important factors in the improvement of existing mobile portals and enhancing Information Technology (IT)-related business value. The study extends research knowledge about user satisfaction to the context of mobile portals. Secondly it contributes knowledge regarding mobile portals, particularly concerning post-adoption mobile portal user satisfaction. Thirdly, the research contributes a new reliable and valid instrument to measure user satisfaction with mobile portals – a contribution to the research stream within the IS literature concerned with measurement

    An aesthetics of touch: investigating the language of design relating to form

    Get PDF
    How well can designers communicate qualities of touch? This paper presents evidence that they have some capability to do so, much of which appears to have been learned, but at present make limited use of such language. Interviews with graduate designer-makers suggest that they are aware of and value the importance of touch and materiality in their work, but lack a vocabulary to fully relate to their detailed explanations of other aspects such as their intent or selection of materials. We believe that more attention should be paid to the verbal dialogue that happens in the design process, particularly as other researchers show that even making-based learning also has a strong verbal element to it. However, verbal language alone does not appear to be adequate for a comprehensive language of touch. Graduate designers-makers’ descriptive practices combined non-verbal manipulation within verbal accounts. We thus argue that haptic vocabularies do not simply describe material qualities, but rather are situated competences that physically demonstrate the presence of haptic qualities. Such competencies are more important than groups of verbal vocabularies in isolation. Design support for developing and extending haptic competences must take this wide range of considerations into account to comprehensively improve designers’ capabilities

    A survey and classification of software-defined storage systems

    Get PDF
    The exponential growth of digital information is imposing increasing scale and efficiency demands on modern storage infrastructures. As infrastructure complexity increases, so does the difficulty in ensuring quality of service, maintainability, and resource fairness, raising unprecedented performance, scalability, and programmability challenges. Software-Defined Storage (SDS) addresses these challenges by cleanly disentangling control and data flows, easing management, and improving control functionality of conventional storage systems. Despite its momentum in the research community, many aspects of the paradigm are still unclear, undefined, and unexplored, leading to misunderstandings that hamper the research and development of novel SDS technologies. In this article, we present an in-depth study of SDS systems, providing a thorough description and categorization of each plane of functionality. Further, we propose a taxonomy and classification of existing SDS solutions according to different criteria. Finally, we provide key insights about the paradigm and discuss potential future research directions for the field.This work was financed by the Portuguese funding agency FCT-Fundacao para a Ciencia e a Tecnologia through national funds, the PhD grant SFRH/BD/146059/2019, the project ThreatAdapt (FCT-FNR/0002/2018), the LASIGE Research Unit (UIDB/00408/2020), and cofunded by the FEDER, where applicable

    Proceedings of the Second International Workshop on Physicality, Physicality 2007

    Get PDF

    Embedding Intelligence. Designerly reflections on AI-infused products

    Get PDF
    Artificial intelligence is more-or-less covertly entering our lives and houses, embedded into products and services that are acquiring novel roles and agency on users. Products such as virtual assistants represent the first wave of materializa- tion of artificial intelligence in the domestic realm and beyond. They are new interlocutors in an emerging redefined relationship between humans and computers. They are agents, with miscommunicated or unclear proper- ties, performing actions to reach human-set goals. They embed capabilities that industrial products never had. They can learn users’ preferences and accordingly adapt their responses, but they are also powerful means to shape people’s behavior and build new practices and habits. Nevertheless, the way these products are used is not fully exploiting their potential, and frequently they entail poor user experiences, relegating their role to gadgets or toys. Furthermore, AI-infused products need vast amounts of personal data to work accurately, and the gathering and processing of this data are often obscure to end-users. As well, how, whether, and when it is preferable to implement AI in products and services is still an open debate. This condition raises critical ethical issues about their usage and may dramatically impact users’ trust and, ultimately, the quality of user experience. The design discipline and the Human-Computer Interaction (HCI) field are just beginning to explore the wicked relationship between Design and AI, looking for a definition of its borders, still blurred and ever-changing. The book approaches this issue from a human-centered standpoint, proposing designerly reflections on AI-infused products. It addresses one main guiding question: what are the design implications of embedding intelligence into everyday objects
    corecore