422 research outputs found

    Quantum machine learning: a classical perspective

    Get PDF
    Recently, increased computational power and data availability, as well as algorithmic advances, have led machine learning techniques to impressive results in regression, classification, data-generation and reinforcement learning tasks. Despite these successes, the proximity to the physical limits of chip fabrication alongside the increasing size of datasets are motivating a growing number of researchers to explore the possibility of harnessing the power of quantum computation to speed-up classical machine learning algorithms. Here we review the literature in quantum machine learning and discuss perspectives for a mixed readership of classical machine learning and quantum computation experts. Particular emphasis will be placed on clarifying the limitations of quantum algorithms, how they compare with their best classical counterparts and why quantum resources are expected to provide advantages for learning problems. Learning in the presence of noise and certain computationally hard problems in machine learning are identified as promising directions for the field. Practical questions, like how to upload classical data into quantum form, will also be addressed.Comment: v3 33 pages; typos corrected and references adde

    On the Learnability of Shuffle Ideals

    Get PDF
    PAC learning of unrestricted regular languages is long known to be a difficult problem. The class of shuffle ideals is a very restricted subclass of regular languages, where the shuffle ideal generated by a string u is the collection of all strings containing u as a subsequence. This fundamental language family is of theoretical interest in its own right and provides the building blocks for other important language families. Despite its apparent simplicity, the class of shuffle ideals appears quite difficult to learn. In particular, just as for unrestricted regular languages, the class is not properly PAC learnable in polynomial time if RP 6= NP, and PAC learning the class improperly in polynomial time would imply polynomial time algorithms for certain fundamental problems in cryptography. In the positive direction, we give an efficient algorithm for properly learning shuffle ideals in the statistical query (and therefore also PAC) model under the uniform distribution.T-Party Projec

    Sample complexity of robust learning against evasion attacks

    Get PDF
    It is becoming increasingly important to understand the vulnerability of machine learning models to adversarial attacks. One of the fundamental problems in adversarial machine learning is to quantify how much training data is needed in the presence of so-called evasion attacks, where data is corrupted at test time. In this thesis, we work with the exact-in-the-ball notion of robustness and study the feasibility of adversarially robust learning from the perspective of learning theory, considering sample complexity. We start with two negative results. We show that no non-trivial concept class can be robustly learned in the distribution-free setting against an adversary who can perturb just a single input bit. We then exhibit a sample-complexity lower bound: the class of monotone conjunctions and any superclass on the boolean hypercube has sample complexity at least exponential in the adversary's budget (that is, the maximum number of bits it can perturb on each input). This implies, in particular, that these classes cannot be robustly learned under the uniform distribution against an adversary who can perturb ω(logn)\omega(\log n) bits of the input. As a first route to obtaining robust learning guarantees, we consider restricting the class of distributions over which training and testing data are drawn. We focus on learning problems with probability distributions on the input data that satisfy a Lipschitz condition: nearby points have similar probability. We show that, if the adversary is restricted to perturbing O(logn)O(\log n) bits, then one can robustly learn the class of monotone conjunctions with respect to the class of log-Lipschitz distributions. We then extend this result to show the learnability of 1-decision lists, 2-decision lists and monotone k-decision lists in the same distributional and adversarial setting. We finish by showing that for every fixed k the class of k-decision lists has polynomial sample complexity against a log(n)-bounded adversary. The advantage of considering intermediate subclasses of k-decision lists is that we are able to obtain improved sample complexity bounds for these cases. As a second route, we study learning models where the learner is given more power through the use of local queries. The first learning model we consider uses local membership queries (LMQ), where the learner can query the label of points near the training sample. We show that, under the uniform distribution, the exponential dependence on the adversary's budget to robustly learn conjunctions and any superclass remains inevitable even when the learner is given access to LMQs in addition to random examples. Faced with this negative result, we introduce a local equivalence, query oracle, which returns whether the hypothesis and target concept agree in a given region around a point in the training sample, as well as a counterexample if it exists. We show a separation result: on the one hand, if the query radius λ is strictly smaller than the adversary's perturbation budget ρ, then distribution free robust learning is impossible for a wide variety of concept classes; on the other hand, the setting λ = ρ allows us to develop robust empirical risk minimization algorithms in the distribution-free setting. We then bound the query complexity of these algorithms based on online learning guarantees and further improve these bounds for the special case of conjunctions. We follow by giving a robust learning algorithm for halfspaces on {0,1}n. Finally, since the query complexity for halfspaces on Rn is unbounded, we instead consider adversaries with bounded precision and give query complexity upper bounds in this setting as well

    A Study of the Learnability of Relational Properties: Model Counting Meets Machine Learning (MCML)

    Full text link
    This paper introduces the MCML approach for empirically studying the learnability of relational properties that can be expressed in the well-known software design language Alloy. A key novelty of MCML is quantification of the performance of and semantic differences among trained machine learning (ML) models, specifically decision trees, with respect to entire (bounded) input spaces, and not just for given training and test datasets (as is the common practice). MCML reduces the quantification problems to the classic complexity theory problem of model counting, and employs state-of-the-art model counters. The results show that relatively simple ML models can achieve surprisingly high performance (accuracy and F1-score) when evaluated in the common setting of using training and test datasets - even when the training dataset is much smaller than the test dataset - indicating the seeming simplicity of learning relational properties. However, MCML metrics based on model counting show that the performance can degrade substantially when tested against the entire (bounded) input space, indicating the high complexity of precisely learning these properties, and the usefulness of model counting in quantifying the true performance
    corecore