14,598 research outputs found

    Community detection in airline networks : an empirical analysis of American vs. Southwest airlines

    Get PDF
    In this paper, we develop a route-traffic-based method for detecting community structures in airline networks. Our model is both an application and an extension of the Clauset-Newman-Moore (CNM) modularity maximization algorithm, in that we apply the CNM algorithm to large airline networks, and take both route distance and passenger volumes into account. Therefore, the relationships between airports are defined not only based on the topological structure of the network but also by a traffic-driven indicator. To illustrate our model, two case studies are presented: American Airlines and Southwest Airlines. Results show that the model is effective in exploring the characteristics of the network connections, including the detection of the most influential nodes and communities on the formation of different network structures. This information is important from an airline operation pattern perspective to identify the vulnerability of networks

    Using network centrality measures to manage landscape connectivity

    Get PDF
    We use a graph-theoretical landscape modeling approach to investigate how to identify central patches in the landscape as well as how these central patches influence (1) organism movement within the local neighborhood, and (2) the dispersal of organisms beyond the local neighborhood. Organism movements were theoretically estimated based on the spatial configuration of the habitat patches in the studied landscape. We find that centrality depends on the way the graph-theoretical model of habitat patches is constructed, although even the simplest network representation, not taking strength and directionality of potential organisms flows into account, still provides a coarse-grained assessment of the most important patches according to their contribution to landscape connectivity. Moreover, we identify (at least) two general classes of centrality. One accounts for the local flow of organisms in the neighborhood of a patch and the other for the ability to maintain connectivity beyond the scale of the local neighborhood. Finally, we study how habitat patches with high scores on different network centrality measures are distributed in a fragmented agricultural landscape in Madagascar. Results show that patches with high degree-, and betweenness centrality are widely spread, while patches with high subgraph- and closeness centrality are clumped together in dense clusters. This finding may enable multi-species analyses of single-species network models

    Exploring the geography of China's airport networks: a hybrid complex-network approach

    Get PDF
    Air networks are normal examples of transportation systems among ubiquitous big data networks in the dynamic nature. This is particularly the case in developing countries with rapid airport network expansions. This paper explores the structure and evolution of the trunk airport network of China (ANC) in major years during 1980s-2000s. We generalise the complex network approach developed in existing studies and further test for statistical properties of weighted network characteristics by using pair-wise traffic flows. The spatiotemporal decomposition of network metric plots and the visualization maps leads to a rich harvest of stylized ANC structures: (i) national hub-and-spoke patterns surrounding mega-cities; (ii) regional broker patterns surrounding Kunming and Urumqi, and (iii) local heterogeneous disparity patterns in isolated geographical cities, such as Lhasa, Lijiang, Huangshan, etc. These findings have important implications towards understanding the geo-political and economic forces at stake in shaping China's urban systems

    Social delay tolerant approach for safety services in vehicular networks

    Get PDF
    Vehicular networks have attracted attention for recent years due to their various and emerging applications supporting secure and convenient driving. Regarding specific features of vehicular networks, we propose a new Social-aware Vehicular DTN protocol (SocVe) respectively for a type of safety applications such as emergency support services. We evaluate our protocol in short contact and intermittent connection scenarios extracting from mobility data set in Hanoi city. We conduct comparative performance evaluation of SocVe in multiple scenarios with different destination centralities against a geographical protocol

    A Survey of Green Networking Research

    Full text link
    Reduction of unnecessary energy consumption is becoming a major concern in wired networking, because of the potential economical benefits and of its expected environmental impact. These issues, usually referred to as "green networking", relate to embedding energy-awareness in the design, in the devices and in the protocols of networks. In this work, we first formulate a more precise definition of the "green" attribute. We furthermore identify a few paradigms that are the key enablers of energy-aware networking research. We then overview the current state of the art and provide a taxonomy of the relevant work, with a special focus on wired networking. At a high level, we identify four branches of green networking research that stem from different observations on the root causes of energy waste, namely (i) Adaptive Link Rate, (ii) Interface proxying, (iii) Energy-aware infrastructures and (iv) Energy-aware applications. In this work, we do not only explore specific proposals pertaining to each of the above branches, but also offer a perspective for research.Comment: Index Terms: Green Networking; Wired Networks; Adaptive Link Rate; Interface Proxying; Energy-aware Infrastructures; Energy-aware Applications. 18 pages, 6 figures, 2 table
    • 

    corecore