308 research outputs found

    RESIDE: Improving Distantly-Supervised Neural Relation Extraction using Side Information

    Full text link
    Distantly-supervised Relation Extraction (RE) methods train an extractor by automatically aligning relation instances in a Knowledge Base (KB) with unstructured text. In addition to relation instances, KBs often contain other relevant side information, such as aliases of relations (e.g., founded and co-founded are aliases for the relation founderOfCompany). RE models usually ignore such readily available side information. In this paper, we propose RESIDE, a distantly-supervised neural relation extraction method which utilizes additional side information from KBs for improved relation extraction. It uses entity type and relation alias information for imposing soft constraints while predicting relations. RESIDE employs Graph Convolution Networks (GCN) to encode syntactic information from text and improves performance even when limited side information is available. Through extensive experiments on benchmark datasets, we demonstrate RESIDE's effectiveness. We have made RESIDE's source code available to encourage reproducible research.Comment: 10 pages, 6 figures, EMNLP 201

    Improving Neural Relation Extraction with Implicit Mutual Relations

    Full text link
    Relation extraction (RE) aims at extracting the relation between two entities from the text corpora. It is a crucial task for Knowledge Graph (KG) construction. Most existing methods predict the relation between an entity pair by learning the relation from the training sentences, which contain the targeted entity pair. In contrast to existing distant supervision approaches that suffer from insufficient training corpora to extract relations, our proposal of mining implicit mutual relation from the massive unlabeled corpora transfers the semantic information of entity pairs into the RE model, which is more expressive and semantically plausible. After constructing an entity proximity graph based on the implicit mutual relations, we preserve the semantic relations of entity pairs via embedding each vertex of the graph into a low-dimensional space. As a result, we can easily and flexibly integrate the implicit mutual relations and other entity information, such as entity types, into the existing RE methods. Our experimental results on a New York Times and another Google Distant Supervision datasets suggest that our proposed neural RE framework provides a promising improvement for the RE task, and significantly outperforms the state-of-the-art methods. Moreover, the component for mining implicit mutual relations is so flexible that can help to improve the performance of both CNN-based and RNN-based RE models significant.Comment: 12 page

    Deep learning methods for knowledge base population

    Get PDF
    Knowledge bases store structured information about entities or concepts of the world and can be used in various applications, such as information retrieval or question answering. A major drawback of existing knowledge bases is their incompleteness. In this thesis, we explore deep learning methods for automatically populating them from text, addressing the following tasks: slot filling, uncertainty detection and type-aware relation extraction. Slot filling aims at extracting information about entities from a large text corpus. The Text Analysis Conference yearly provides new evaluation data in the context of an international shared task. We develop a modular system to address this challenge. It was one of the top-ranked systems in the shared task evaluations in 2015. For its slot filler classification module, we propose contextCNN, a convolutional neural network based on context splitting. It improves the performance of the slot filling system by 5.0% micro and 2.9% macro F1. To train our binary and multiclass classification models, we create a dataset using distant supervision and reduce the number of noisy labels with a self-training strategy. For model optimization and evaluation, we automatically extract a labeled benchmark for slot filler classification from the manual shared task assessments from 2012-2014. We show that results on this benchmark are correlated with slot filling pipeline results with a Pearson's correlation coefficient of 0.89 (0.82) on data from 2013 (2014). The combination of patterns, support vector machines and contextCNN achieves the best results on the benchmark with a micro (macro) F1 of 51% (53%) on test. Finally, we analyze the results of the slot filling pipeline and the impact of its components. For knowledge base population, it is essential to assess the factuality of the statements extracted from text. From the sentence "Obama was rumored to be born in Kenya", a system should not conclude that Kenya is the place of birth of Obama. Therefore, we address uncertainty detection in the second part of this thesis. We investigate attention-based models and make a first attempt to systematize the attention design space. Moreover, we propose novel attention variants: External attention, which incorporates an external knowledge source, k-max average attention, which only considers the vectors with the k maximum attention weights, and sequence-preserving attention, which allows to maintain order information. Our convolutional neural network with external k-max average attention sets the new state of the art on a Wikipedia benchmark dataset with an F1 score of 68%. To the best of our knowledge, we are the first to integrate an uncertainty detection component into a slot filling pipeline. It improves precision by 1.4% and micro F1 by 0.4%. In the last part of the thesis, we investigate type-aware relation extraction with neural networks. We compare different models for joint entity and relation classification: pipeline models, jointly trained models and globally normalized models based on structured prediction. First, we show that using entity class prediction scores instead of binary decisions helps relation classification. Second, joint training clearly outperforms pipeline models on a large-scale distantly supervised dataset with fine-grained entity classes. It improves the area under the precision-recall curve from 0.53 to 0.66. Third, we propose a model with a structured prediction output layer, which globally normalizes the score of a triple consisting of the classes of two entities and the relation between them. It improves relation extraction results by 4.4% F1 on a manually labeled benchmark dataset. Our analysis shows that the model learns correct correlations between entity and relation classes. Finally, we are the first to use neural networks for joint entity and relation classification in a slot filling pipeline. The jointly trained model achieves the best micro F1 score with a score of 22% while the neural structured prediction model performs best in terms of macro F1 with a score of 25%

    Mining entity and relation structures from text: An effort-light approach

    Get PDF
    In today's computerized and information-based society, text data is rich but often also "messy". We are inundated with vast amounts of text data, written in different genres (from grammatical news articles and scientific papers to noisy social media posts), covering topics in various domains (e.g., medical records, corporate reports, and legal acts). Can computational systems automatically identify various real-world entities mentioned in a new corpus and use them to summarize recent news events reliably? Can computational systems capture and represent different relations between biomedical entities from massive and rapidly emerging life science literature? How might computational systems represent the factual information contained in a collection of medical reports to support answering detailed queries or running data mining tasks? While people can easily access the documents in a gigantic collection with the help of data management systems, they struggle to gain insights from such a large volume of text data: document understanding calls for in-depth content analysis, content analysis itself may require domain-specific knowledge, and over a large corpus, a complete read and analysis by domain experts will invariably be subjective, time-consuming and relatively costly. To turn such massive, unstructured text corpora into machine-readable knowledge, one of the grand challenges is to gain an understanding of the typed entity and relation structures in the corpus. This thesis focuses on developing principled and scalable methods for extracting typed entities and relationship with light human annotation efforts, to overcome the barriers in dealing with text corpora of various domains, genres and languages. In addition to our effort-light methodologies, we also contribute effective, noise-robust models and real-world applications in two main problems: - Identifying Typed Entities: We show how to perform data-driven text segmentation to recognize entities mentioned in text as well as their surrounding relational phrases, and infer types for entity mentions by propagating "distant supervision" (from external knowledge bases) via relational phrases. In order to resolve data sparsity issue during propagation, we complement the type propagation with clustering of functionally similar relational phrases based on their redundant occurrences in large corpus. Apart from entity recognition and coarse-grained typing, we claim that fine-grained entity typing is beneficial for many downstream applications and very challenging due to the context-agnostic label assignment in distant supervision, and we present principled, efficient models and algorithms for inferring fine-grained type path for entity mention based on the sentence context. - Extracting Typed Entity Relationships: We extend the idea of entity recognition and typing to extract relationships between entity mentions and infer their relation types. We show how to effectively model the noisy distant supervision for relationship extraction, and how to avoid the error propagation usually happened in incremental extraction pipeline by integrating typing of entities and relationships in a principled framework. The proposed approach leverages noisy distant supervision for both entities and relationships, and simultaneously learn to uncover the most confident labels as well as modeling the semantic similarity between true labels and text features. In practice, text data is often highly variable: corpora from different domains, genres or languages have typically required for effective processing a wide range of language resources (e.g., grammars, vocabularies, and gazetteers). The “massive” and “messy” nature of text data poses significant challenges to creating tools for automated extraction of entity and relation structures that scale with text volume. State-of-the-art information extraction systems have relied on large amounts of task-specific labeled data (e.g., annotating terrorist attack-related entities in web forum posts written in Arabic), to construct machine-learning models (e.g., deep neural networks). However, even though domain experts can manually create high-quality training data for specific tasks as needed, both the scale and efficiency of such a manual process are limited. This thesis harnesses the power of ``big text data'' and focuses on creating generic solutions for efficient construction of customized machine-learning models for mining typed entities and relationships, relying on only limited amounts of (or even no) task-specific training data. The approaches developed in the thesis are thus general and applicable to all kinds of text corpora in different natural languages, enabling quick deployment of data mining applications. We provide scalable algorithmic approaches that leverage external knowledge bases as sources of supervision and exploit data redundancy in massive text corpora, and we show how to use them in large-scale, real-world applications, including structured exploration and analysis of life sciences literature, extracting document facets from technical documents, document summarization, entity attribute discovery, and open-domain information extraction
    corecore