1,402 research outputs found

    On the Design, Implementation and Application of Novel Multi-disciplinary Techniques for explaining Artificial Intelligence Models

    Get PDF
    284 p.Artificial Intelligence is a non-stopping field of research that has experienced some incredible growth lastdecades. Some of the reasons for this apparently exponential growth are the improvements incomputational power, sensing capabilities and data storage which results in a huge increment on dataavailability. However, this growth has been mostly led by a performance-based mindset that has pushedmodels towards a black-box nature. The performance prowess of these methods along with the risingdemand for their implementation has triggered the birth of a new research field. Explainable ArtificialIntelligence. As any new field, XAI falls short in cohesiveness. Added the consequences of dealing withconcepts that are not from natural sciences (explanations) the tumultuous scene is palpable. This thesiscontributes to the field from two different perspectives. A theoretical one and a practical one. The formeris based on a profound literature review that resulted in two main contributions: 1) the proposition of anew definition for Explainable Artificial Intelligence and 2) the creation of a new taxonomy for the field.The latter is composed of two XAI frameworks that accommodate in some of the raging gaps found field,namely: 1) XAI framework for Echo State Networks and 2) XAI framework for the generation ofcounterfactual. The first accounts for the gap concerning Randomized neural networks since they havenever been considered within the field of XAI. Unfortunately, choosing the right parameters to initializethese reservoirs falls a bit on the side of luck and past experience of the scientist and less on that of soundreasoning. The current approach for assessing whether a reservoir is suited for a particular task is toobserve if it yields accurate results, either by handcrafting the values of the reservoir parameters or byautomating their configuration via an external optimizer. All in all, this poses tough questions to addresswhen developing an ESN for a certain application, since knowing whether the created structure is optimalfor the problem at hand is not possible without actually training it. However, some of the main concernsfor not pursuing their application is related to the mistrust generated by their black-box" nature. Thesecond presents a new paradigm to treat counterfactual generation. Among the alternatives to reach auniversal understanding of model explanations, counterfactual examples is arguably the one that bestconforms to human understanding principles when faced with unknown phenomena. Indeed, discerningwhat would happen should the initial conditions differ in a plausible fashion is a mechanism oftenadopted by human when attempting at understanding any unknown. The search for counterfactualsproposed in this thesis is governed by three different objectives. Opposed to the classical approach inwhich counterfactuals are just generated following a minimum distance approach of some type, thisframework allows for an in-depth analysis of a target model by means of counterfactuals responding to:Adversarial Power, Plausibility and Change Intensity

    Efficient Fuel Consumption Minimization for Green Vehicle Routing Problems using a Hybrid Neural Network-Optimization Algorithm

    Get PDF
    Efficient routing optimization yields benefits that extend beyond mere financial gains. In this thesis, we present a methodology that utilizes a graph convolutional neural network to facilitate the development of energy-efficient waste collection routes. Our approach focuses on a Waste company in Tromsø, Remiks, and uses real-life datasets, ensuring practicability and ease of implementation. In particular, we extend the dpdp algorithm introduced by Kool et al. (2021) [1] to minimize fuel consumption and devise routes that account for the impact of elevation and real road distance traveled. Our findings shed light on the potential advantages and enhancements these optimized routes can offer Remiks, including improved effectiveness and cost savings. Additionally, we identify key areas for future research and development

    Privacy-preserving recommendation system using federated learning

    Get PDF
    Federated Learning is a form of distributed learning which leverages edge devices for training. It aims to preserve privacy by communicating users’ learning parameters and gradient updates to the global server during the training while keeping the actual data on the users’ devices. The training on global server is performed on these parameters instead of user data directly while fine tuning of the model can be done on client’s devices locally. However, federated learning is not without its shortcomings and in this thesis, we present an overview of the learning paradigm and propose a new federated recommender system framework that utilizes homomorphic encryption. This results in a slight decrease in accuracy metrics but leads to greatly increased user-privacy. We also show that performing computations on encrypted gradients barely affects the recommendation performance while ensuring a more secure means of communicating user gradients to and from the global server

    Development of a virtual methodology based on physical and data-driven models to optimize engine calibration

    Get PDF
    Virtual engine calibration exploiting fully-physical plant models is the most promising solution for the reduction of time and cost of the traditional calibration process based on experimental testing. However, accuracy issues on the estimation of pollutant emissions are still unresolved. In this context, the paper shows how a virtual test rig can be built by combining a fully-physical engine model, featuring predictive combustion and NOx sub-models, with data-driven soot and particle number models. To this aim, a dedicated experimental campaign was carried out on a 1.6 liter EU6 diesel engine. A limited subset of the measured data was used to calibrate the predictive combustion and NOx sub-models. The measured data were also used to develop data-driven models to estimate soot and particulate emissions in terms of Filter Smoke Number (FSN) and Particle Number (PN), respectively. Inputs from engine calibration parameters (e.g., fuel injection timing and pressure) and combustion-related quantities computed by the physical model (e.g., combustion duration), were then merged. In this way, thanks to the combination of the two different datasets, the accuracy of the abovementioned models was improved by 20% for the FSN and 25% for the PN. The coupled physical and data-driven model was then used to optimize the engine calibration (fuel injection, air management) exploiting the Non-dominated Sorting genetic algorithm. The calibration obtained with the virtual methodology was then adopted on the engine test bench. A BSFC improvement of 10 g/kWh and a combustion reduction of 3.0 dB in comparison with the starting calibration was achieved
    • …
    corecore