18,361 research outputs found

    Exploring & Exploiting High-Order Graph Structure for Sparse Knowledge Graph Completion

    Full text link
    Sparse knowledge graph (KG) scenarios pose a challenge for previous Knowledge Graph Completion (KGC) methods, that is, the completion performance decreases rapidly with the increase of graph sparsity. This problem is also exacerbated because of the widespread existence of sparse KGs in practical applications. To alleviate this challenge, we present a novel framework, LR-GCN, that is able to automatically capture valuable long-range dependency among entities to supplement insufficient structure features and distill logical reasoning knowledge for sparse KGC. The proposed approach comprises two main components: a GNN-based predictor and a reasoning path distiller. The reasoning path distiller explores high-order graph structures such as reasoning paths and encodes them as rich-semantic edges, explicitly compositing long-range dependencies into the predictor. This step also plays an essential role in densifying KGs, effectively alleviating the sparse issue. Furthermore, the path distiller further distills logical reasoning knowledge from these mined reasoning paths into the predictor. These two components are jointly optimized using a well-designed variational EM algorithm. Extensive experiments and analyses on four sparse benchmarks demonstrate the effectiveness of our proposed method.Comment: 12 pages, 5 figure

    Slot Filling

    Get PDF
    Slot filling (SF) is the task of automatically extracting facts about particular entities from unstructured text, and populating a knowledge base (KB) with these facts. These structured KBs enable applications such as structured web queries and question answering. SF is typically framed as a query-oriented setting of the related task of relation extraction. Throughout this thesis, we reflect on how SF is a task with many distinct problems. We demonstrate that recall is a major limiter on SF system performance. We contribute an analysis of typical SF recall loss, and find a substantial amount of loss occurs early in the SF pipeline. We confirm that accurate NER and coreference resolution are required for high-recall SF. We measure upper bounds using a naïve graph-based semi-supervised bootstrapping technique, and find that only 39% of results are reachable using a typical feature space. We expect that this graph-based technique will be directly useful for extraction, and this leads us to frame SF as a label propagation task. We focus on a detailed graph representation of the task which reflects the behaviour and assumptions we want to model based on our analysis, including modifying the label propagation process to model multiple types of label interaction. Analysing the graph, we find that a large number of errors occur in very close proximity to training data, and identify that this is of major concern for propagation. While there are some conflicts caused by a lack of sufficient disambiguating context—we explore adding additional contextual features to address this—many of these conflicts are caused by subtle annotation problems. We find that lack of a standard for how explicit expressions of relations must be in text makes consistent annotation difficult. Using a strict definition of explicitness results in 20% of correct annotations being removed from a standard dataset. We contribute several annotation-driven analyses of this problem, exploring the definition of slots and the effect of the lack of a concrete definition of explicitness: annotation schema do not detail how explicit expressions of relations need to be, and there is large scope for disagreement between annotators. Additionally, applications may require relatively strict or relaxed evidence for extractions, but this is not considered in annotation tasks. We demonstrate that annotators frequently disagree on instances, dependent on differences in annotator world knowledge and thresholds on making probabilistic inference. SF is fundamental to enabling many knowledge-based applications, and this work motivates modelling and evaluating SF to better target these tasks

    A Survey on Knowledge Graphs: Representation, Acquisition and Applications

    Full text link
    Human knowledge provides a formal understanding of the world. Knowledge graphs that represent structural relations between entities have become an increasingly popular research direction towards cognition and human-level intelligence. In this survey, we provide a comprehensive review of knowledge graph covering overall research topics about 1) knowledge graph representation learning, 2) knowledge acquisition and completion, 3) temporal knowledge graph, and 4) knowledge-aware applications, and summarize recent breakthroughs and perspective directions to facilitate future research. We propose a full-view categorization and new taxonomies on these topics. Knowledge graph embedding is organized from four aspects of representation space, scoring function, encoding models, and auxiliary information. For knowledge acquisition, especially knowledge graph completion, embedding methods, path inference, and logical rule reasoning, are reviewed. We further explore several emerging topics, including meta relational learning, commonsense reasoning, and temporal knowledge graphs. To facilitate future research on knowledge graphs, we also provide a curated collection of datasets and open-source libraries on different tasks. In the end, we have a thorough outlook on several promising research directions

    A recurrent neural network architecture for biomedical event trigger classification

    Get PDF
    A “biomedical event” is a broad term used to describe the roles and interactions between entities (such as proteins, genes and cells) in a biological system. The task of biomedical event extraction aims at identifying and extracting these events from unstructured texts. An important component in the early stage of the task is biomedical trigger classification which involves identifying and classifying words/phrases that indicate an event. In this thesis, we present our work on biomedical trigger classification developed using the multi-level event extraction dataset. We restrict the scope of our classification to 19 biomedical event types grouped under four broad categories - Anatomical, Molecular, General and Planned. While most of the existing approaches are based on traditional machine learning algorithms which require extensive feature engineering, our model relies on neural networks to implicitly learn important features directly from the text. We use natural language processing techniques to transform the text into vectorized inputs that can be used in a neural network architecture. As per our knowledge, this is the first time neural attention strategies are being explored in the area of biomedical trigger classification. Our best results were obtained from an ensemble of 50 models which produced a micro F-score of 79.82%, an improvement of 1.3% over the previous best score
    • …
    corecore