
University of Kentucky University of Kentucky

UKnowledge UKnowledge

Theses and Dissertations--Computer Science Computer Science

2018

A recurrent neural network architecture for biomedical event A recurrent neural network architecture for biomedical event

trigger classification trigger classification

Jeevith Bopaiah
University of Kentucky, jeevith.bopaiah@gmail.com
Author ORCID Identifier:

https://orcid.org/0000-0001-8046-6289
Digital Object Identifier: https://doi.org/10.13023/etd.2018.369

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Bopaiah, Jeevith, "A recurrent neural network architecture for biomedical event trigger classification"
(2018). Theses and Dissertations--Computer Science. 73.
https://uknowledge.uky.edu/cs_etds/73

This Master's Thesis is brought to you for free and open access by the Computer Science at UKnowledge. It has been
accepted for inclusion in Theses and Dissertations--Computer Science by an authorized administrator of
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Kentucky

https://core.ac.uk/display/232590473?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/cs_etds
https://uknowledge.uky.edu/cs
https://orcid.org/0000-0001-8046-6289
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT: STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution

has been given to all outside sources. I understand that I am solely responsible for obtaining

any needed copyright permissions. I have obtained needed written permission statement(s)

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing

electronic distribution (if such use is not permitted by the fair use doctrine) which will be

submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and

royalty-free license to archive and make accessible my work in whole or in part in all forms of

media, now or hereafter known. I agree that the document mentioned above may be made

available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in

future works (such as articles or books) all or part of my work. I understand that I am free to

register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of

the program; we verify that this is the final, approved version of the student’s thesis including all

changes required by the advisory committee. The undersigned agree to abide by the statements

above.

Jeevith Bopaiah, Student

Dr. Ramakanth Kavuluru, Major Professor

Dr. Mirosław Truszczyński, Director of Graduate Studies

A recurrent neural network architecture for biomedical event trigger classification

THESIS

A thesis submitted in partial
fulfillment of the requirements for
the degree of Master of Science in
the College of Engineering at the

University of Kentucky

By
Jeevith Bopaiah

Lexington, Kentucky

Director: Dr. Ramakanth Kavuluru
Lexington, Kentucky 2018

Copyright c� Jeevith Bopaiah 2018

ABSTRACT OF THESIS

A recurrent neural network architecture for biomedical event trigger classification

A “biomedical event” is a broad term used to describe the roles and interactions be-
tween entities (such as proteins, genes and cells) in a biological system. The task
of biomedical event extraction aims at identifying and extracting these events from
unstructured texts. An important component in the early stage of the task is biomed-
ical trigger classification which involves identifying and classifying words/phrases that
indicate an event. In this thesis, we present our work on biomedical trigger classifica-
tion developed using the multi-level event extraction dataset. We restrict the scope of
our classification to 19 biomedical event types grouped under four broad categories -
Anatomical, Molecular, General and Planned. While most of the existing approaches
are based on traditional machine learning algorithms which require extensive feature
engineering, our model relies on neural networks to implicitly learn important features
directly from the text. We use natural language processing techniques to transform
the text into vectorized inputs that can be used in a neural network architecture. As
per our knowledge, this is the first time neural attention strategies are being explored
in the area of biomedical trigger classification. Our best results were obtained from
an ensemble of 50 models which produced a micro F-score of 79.82%, an improvement
of 1.3% over the previous best score.

KEYWORDS: LSTM, word embeddings, biomedical triggers, attention layer

Author’s signature: Jeevith Bopaiah

Date: September 3, 2018

A recurrent neural network architecture for biomedical event trigger classification

By
Jeevith Bopaiah

Director of Thesis: Ramakanth Kavuluru

Director of Graduate Studies: Mirosław Truszczyński

Date: September 3, 2018

Dedicated to my family and friends.

ACKNOWLEDGMENTS

In the last few years, I have met some wonderful people who have had a profound

impact on my personal and professional life. My journey as a master’s student would

not have been the same without these people.

First of all, I would like to express my gratitude to Dr. Ramakanth Kavuluru for

his guidance and support throughout the program. His constructive feedbacks on my

research work have helped me improve my conceptual understanding and technical

writing abilities. He always encouraged me to strive for the best and took an active

interest in my job search. I am really fortunate to have had him as the thesis advisor

for my master’s program.

I am grateful to Dr. Sally Ellingson for giving me the opportunity to work on one

of her research projects. This project gave me a platform to hone my data engineering

skills. My first work assignment at the university was with the Research Information

Services department. A big thank you to William Clark for his support and guidance

during the assignment.

My sincere thanks to the committee members Dr. Jerzy Jaromczyk and Dr.

Licong Cui for providing valuable feedback which helped me in improving this thesis.

A special thanks to Dr. Jerzy Jaromczyk for being instrumental in making this

journey a reality. A special mention to my mentor and guide, Vijaykant Nadadur.

He has been a role model in many ways and it was his encouragement that brought

me here to the master’s program.

I would like to thank my friends, Arjun Nagaraj and Sagar Rao for always being

there for me when I needed them. Lastly, a big thank you to my parents for their

constant love and support.

iii

TABLE OF CONTENTS

Acknowledgments . iii

Table of Contents . iv

List of Tables . vi

List of Figures . vii

Chapter 1 Introduction . 1
1.1 What is Biomedical Natural Language Processing? 1
1.2 Biomedical Event Extraction . 3
1.3 Biomedical Event Trigger Classification 4

Chapter 2 Related Work . 6

Chapter 3 Dataset . 10

Chapter 4 Methods . 12
4.1 Preprocessing . 13
4.2 Bidirectional LSTM with attention 14

4.2.1 Input embeddings . 15
4.2.2 Stacked BiLSTM layer . 16
4.2.3 Attention layer . 17
4.2.4 Feature Engineering . 17

Chapter 5 Experiments and Results . 19
5.1 Experiments . 19
5.2 Results . 20

5.2.1 Model Ensembles . 21
5.2.2 Ablation Study . 21

5.3 Analysis . 22

Chapter 6 Reproducibility . 24
6.1 Abstract Preprocessing . 25
6.2 Negative Filtering . 25
6.3 External Features . 26
6.4 Input Data . 27
6.5 Classifier . 27
6.6 Training . 28
6.7 Testing . 29

Chapter 7 Conclusion . 30

iv

7.1 Limitations . 30
7.2 Future Work . 30

Bibliography . 32

Vita . 37

v

LIST OF TABLES

3.1 Distribution of Event Types . 10
3.2 Distribution of Entity Types . 11

4.1 Valid Semantic Types . 14
4.2 Data summary before and after candidate filtering process 14

5.1 Comparison of our model against prior works 21
5.2 Component level performance analysis 22

vi

LIST OF FIGURES

1.1 Data Samples . 5

4.1 Event Trigger Classification Framework 15

5.1 Error patterns . 23

6.1 System Architecture . 24

vii

Chapter 1 Introduction

Natural language processing (NLP) is an interdisciplinary area of research that lies at
the intersection of linguistics and computer science [1]. On a macro level it attempts
to build applications and tools that can understand and interpret language to perform
useful tasks. Unlike programming languages and other symbolic languages useful for
specialized domain specific communication, natural language involves complex syn-
tactic and semantic structure and a loosely defined grammar to enable creative use of
the language. This variability in linguistic structure and flexibility of its associated
grammar makes processing natural language more difficult compared to artificial lan-
guages. With the proliferation of unstructured content on digital platforms, there
is a need for NLP systems that can manage huge volumes of textual data and de-
rive actionable insights from them. Recent advances in computing resources, growing
potential of unstructured data and its widespread use in various domains has not
only encouraged traditional NLP research but also provided a strong foundation for
domain specific NLP systems.

1.1 What is Biomedical Natural Language Processing?

A vast majority of biomedical knowledge ranging from scientific research papers to
patient related data are expressed in natural language text. Physicians and other med-
ical researchers read through these verbose textual data to mine important biomedical
facts and findings. With the increasing growth in biomedical literature, manual ex-
ploration of these articles became a herculean task. The need for an automated
or machine assisted processing of the texts was increasingly felt by the biomedical
community which led to the development of a subfield in NLP known as biomedical
NLP (BioNLP). BioNLP [2, Chapter 2] is the application of NLP techniques to de-
rive meaningful and actionable information from biomedical text such as electronic
medical records and biomedical literature. Domain specific applications are some-
what different from traditional language processing tasks. Even though there is a
considerable overlap between traditional and biomedical NLP, there are several tasks
that are specific to biomedical field which require different strategies. Most of these
tasks are driven by the needs of the physicians and medical practitioners who also
happen to be the primary users of these systems. Besides the tasks that have end
user applications, there also exists certain NLP tasks that form intermediary com-

1

ponents in a larger system. One such example is word sense disambiguation [3, 4]
which resolves ambiguities in the contextual meaning of the word, especially when
the same word assumes multiple meanings. The flexibility of a language allows the
use of different linguistic expressions to refer to the same biomedical concept. To re-
duce the variability in expression and provide a universal representation of a concept,
concept normalization [2, Chapter 6] task was introduced to map each concept in the
text to a unique concept identifier. Named entity recognition [2, Chapter 3] (NER)
is also a well known language processing task with an objective to identify entities
(such as proteins, genes and cells) in unstructured texts. The entity names/types
allow us to generate a higher level and more generalized representation of the text.
A natural extension of NER is the extraction of relationships between the entities [2,
Chapter 4], [5]. These relations describe the function and behavior of the entities
which are of interest to knowledge base curators. This knowledge base of biomedical
facts can assist healthcare professionals in making an informed clinical decision on
their subjects.

Biomedical event extraction [6, 7] is a more complex type of relation extraction.
Unlike relation extraction, whose focus is on binary relations, event extraction en-
compasses extracting n-ary and even nested relations. Another area that is much
appreciated by the medical community is automatic text summarization [2, Chapter
8]. Text summarization aims to extract the important details of a biomedical article
or clinical notes of a patient and present it in a concise and coherent manner. De-
pending on their purpose, the summaries can either be generic or targeted. While a
generic summary presents the user with all the relevant facts, a targeted summary
contains the details regarding a specific information need. Especially, doctors find
this tool useful as the patient information from different sources can be summarized
and presented in the form of facts, graphs and charts. Biomedical question answer-
ing [2, Chapter 9] task was introduced with an aim to assist researchers and clinical
practitioners in their search for specific biomedical facts. It was popularized by the
BioASQ Challenge [8] which involved retrieving relevant articles for each question
from a corpus of several thousand documents. Subsequently, depending on the spe-
cific requirements, the system can be designed to generate either factoid answers,
answer snippets, and list (of factoids) or summary type answers. Another important
contribution of NLP in healthcare is in clinical decision support (CDS) systems. A
CDS system draws the attention of health professionals towards patient specific events
and also recommends suitable interventions. NLP techniques are used to process clin-
ical narratives and monitor the likelihood of occurrence of an event. Some examples

2

include early identification of sepsis patients [9] and detection of post-surgical site
infections [10]. The immense potential of NLP in biomedicine comes with its own
set of challenges, most important being data annotation. Most of the tasks men-
tioned here require annotated data to employ supervised statistical NLP techniques.
Data annotation is an expensive, time-consuming process and it requires biomedical
experts. To make effective use of the limited annotated data and facilitate research
in bioNLP, several shared tasks are organized by the biomedical community. These
shared tasks have played an important role in advancing the existing techniques and
developing new state of the art systems for improving the quality of healthcare.

1.2 Biomedical Event Extraction

Over the last decade, scientific community has witnessed huge investments in biomed-
ical research leading to improved diagnostic and therapeutic procedures. Conse-
quently, this growing impetus in biomedical research has created a wealth of infor-
mation in biomedical literature hosted in the PubMed search engine by the NIH.
Among other research findings and experiments, these scientific articles also contain
information on various biological events, which describe the behavior of an entity in
the presence of other biomolecular entities or external substances such as chemical
compounds. These events help physicians, clinical practitioners, and basic scientists
understand the molecular interactions and keep themselves abreast with the new de-
velopments in biomedicine. Although scientific literature constitutes a rich source of
information on various biological processes and events, its effective utilization is ham-
pered by the need to scour through the entire literature to locate relevant biomedical
events. It is estimated that more than 7.3 million journal articles were added to
PubMed repository in the period 2004-2013 which was an increase of 48.9% since
2003 [11]. As of now, PubMed hosts over 27 million biomedical citations (titles,
abstracts, and other metadata).

Biomedical event extraction (BEE) is the process of extracting evidences of molec-
ular interactions from scientific articles. A biomedical event is comprised of three
parts: event trigger word, entities participating in the event, and role of each par-
ticipating entity. NLP is used to process the text and extract the features that can
be used by a machine learning algorithm to identify event structures in a piece of
text. BEE was introduced for the first time through the BioNLP-ST’09 [12] com-
munity shared task, where the entities participating in the event were restricted to
protein and genes. In subsequent years, the scope of event extraction was increased

3

through shared tasks BioNLP-ST’11 [13] and BioNLP-ST’13 [14] to include chemical
and cellular component entities participating in 19 different event types. The avail-
ability of annotated data for public use has encouraged many researchers to develop
event extraction systems pushing the boundaries of NLP and machine learning tech-
niques. Some of the popular approaches to this task include Bui et al. [15], Björne
et al. [6], and Li et al. [16]. Bui et al. [15] used a simple rule based approach to
extract events from PubMed abstracts. They used the training data to generate lin-
guistic patterns around trigger words and these patterns were applied on the test set
to identify the presence/absence of an event and also to classify the event structure
into one of the predefined event types. Björne et al. [6] employed machine learning
techniques to train a multi class support vector machine (SVM). The features to the
classifier included token features, sentence features, dependency parses, trigger fea-
tures and external features. The features were converted to a vector of binary values
indicating the presence or absence of the feature. Li et al. [16] used a neural network
architecture composed of bidirectional long short-term memory (LSTM) units with
dynamic extended tree of the sentence as its input. Computational techniques used
by the prior works fall into three broad categories — rule based strategies which
rely on well defined rules to identify the event patterns, machine learning techniques
which involve learning the event patterns through the features provided to the model,
and deep neural network architectures which avoid feature engineering and learn to
identify the features directly from the text. Due to the complexity of BEE and
the number of components (triggers, entities, arguments) involved, prior works can
be broadly categorized into pipeline based approaches and joint model approaches.
Pipeline based approaches model the individual components in a sequential manner
while joint modeling approaches extract the entire event structure in a single input–
output pass. Previous studies [17], have found that pipeline based strategies perform
better than joint modeling approaches in BEE task. Therefore, in this thesis we focus
on the first component of the pipeline, biomedical trigger classification.

1.3 Biomedical Event Trigger Classification

Biomedical triggers are words/phrases (usually a verb or nominalized verb) in a sen-
tence that indicate an event or process occurring at the molecular level as discussed
in the sentence. These triggers can be broadly classified into a finite set of event
types. For example, triggers such as ‘respond’, ‘associated’, ‘controlled’, ‘mediated’,
can be classified under “Regulation” event type. Trigger classification can be defined

4

as identifying and classifying the triggers into their relevant event types. Although
there are a wide variety of biological event types occurring at the molecular level, we
focus on the most frequently occurring event types as annotated in multi-level event
extraction (MLEE) dataset [18].

… blood vessel growth induced by both parental and high VEGF …

Positive Regulation

(a) Trigger word

…. Clinical results induced by autologous bone marrow …

Non - Trigger

(b) Non trigger word

Figure 1.1: Data Samples

Identifying and classifying a trigger is a non-trivial task as the same word/phrase
can act as a trigger and as a non-trigger depending on the context in which it is
used. As illustrated in Figure 1.1, the word “induced” plays the role of a trigger in
Figure 1.1a while it acts as a non-trigger in Figure 1.1b. This shows that contextual
information plays a key role in trigger classification task. While the existing methods
attribute higher importance to NLP techniques by generating extensive features, our
method focuses on learning the right set of features directly from the text. We
explore neural architectures that are capable of modeling variable length sequences
to capture the contextual information. We present the dataset details in Chapter 3
and our neural model architecture in Chapter 4 and subsequently discuss the benefits
of its various components in Chapter 5.

5

Chapter 2 Related Work

With the growing popularity of pipeline based approaches for biomedical event ex-
traction, several teams are focusing on improving the performance of individual com-
ponents of the BEE pipeline. Here, we outline the prior efforts related to biomedical
trigger classification which are predominantly based on traditional machine learning
techniques. Zhou et al. [19] combine word embeddings with syntactic and dependency
features using a multiple kernel SVM. Nie et al. [20] avoid feature engineering and
employ a multi layer feed forward network whose input is a one-hot encoding of the
trigger candidate. Syntactic and semantic information is incorporated by using word
embeddings to initialize the hidden layer of feed forward network. Wang et al. [21]
use a feed forward network whose input is generated by concatenating word vectors
to the left and right of the trigger candidate. The words are represented as low di-
mensional vectors using dependency based word embeddings. Rahul et al. [22] were
the first to exploit sequential information by using LSTMs in a sequence-to-sequence
architecture. He et al. [23] followed a two stage approach of trigger identification
and classification. Both the stages involved extensive feature engineering followed by
SVM classifiers. Jiang et al. [24] used noise contrastive estimation for negative in-
stance filtering and applied a multi-layer perceptron (MLP) network with the trigger
candidate as input while ignoring the context information.

It was surprising to note that vanilla MLP network with word embeddings [24]
outperformed LSTM based architecture [22] by 5.3% in a task that is heavily de-
pendent on contextual information. On further investigating some of these methods
namely, Jiang et al. [24], He et al. [23] and Rahul et al. [22], we found some crit-
ical inconsistencies in their implementation and evaluation strategies. A detailed
explanation of each one of them is as follows:

• Jiang et al. [24]: To establish some context, PubMed abstracts in the MLEE
dataset serve as input and the event file containing trigger spans, trigger words
and event types serve as the output. In the preprocessing step, they exploit
the prior knowledge of a word/phrase being a trigger and apply differential
treatment for triggers and non-triggers. More specifically, they use the word
spans of the actual triggers from the event file (output file) to extract all trigger
words from the abstract and map them to their corresponding word embeddings.
For the remaining non-triggers where the word frequency (in the corpus) is less

6

than 1000, they replace the word embedding with “UNK” embedding. Since the
same word can act as a trigger and non-trigger depending on the context, this
can lead to a scenario where the same word has two different embedding if one
is a trigger and the other, a non-trigger with frequency less than 1000. This
allows the model to clearly distinguish instances when the same word acts as
trigger and non-trigger. We have informed the authors regarding our concerns
and they have graciously acknowledged the errors and are working towards
resolving them.

• He et al. [23]: They use a two-stage approach to trigger classification. The first
stage is trigger recognition, a binary classification of triggers and non-triggers.
The second stage is event type classification, where the triggers identified in
the first stage are classified into one of the 19 event types. In any two-stage
classification approach where the input to second stage is derived from first
stage, the final recall can never be greater than the recall of first stage. A
detailed mathematical proof supporting our claim is provided below.

Proof. Consider a two-stage approach to the event trigger classification task.
The first stage is a binary classification problem that aims to classify an instance
as trigger or non-trigger. The second stage is a multi-class classification task
that aims to classify the triggers (predicted in the first stage) into one of the 19
event types. For the purpose of this claim, we shall focus on the recall metric
of the two stages.

In the first stage (binary classification), let TPb and FNb be the true positives
and false negatives for the binary classification task. The number of actual
triggers present in the test set is given by TPb + FNb. Recall can be expressed
in terms of true positives and false negatives as shown in equation 2.1.

Recallb =
TPb

TPb + FNb
(2.1)

Here, FNb number of actual triggers are predicted as non-triggers and hence,
they are not available for the second stage. In the second stage (multi-class
classification), the total number of candidates available for classification is the
sum of TPb and FPb. Out of the total number of candidates available, the num-
ber of actual triggers present is TPb. Since, this is a multi-class classification,

7

we use micro averaged measures for evaluation. The final micro averaged recall
is given by

Recallm =
TP

0
m + TP

1
m + ...+ TP

n
m

(TP 0
m + TP 1

m + ...+ TP n
m) + (FN0

m + FN1
m + ...FNn

m) + FNb

(2.2)

where, n is the total number of classes and m denotes the multi-class setting.
An additional term FNb in the denominator is carried over from the first stage.
Since the total number of actual triggers available (in second stage) for classi-
fication is TPb, we can conclude,

(TP 0
m + TP

1
m + ...+ TP

n
m)  TPb

Let us assume the best case in which the multi-class classifier got all the triggers
right, i.e., all the triggers were classified into their correct event types. Then
we have,

(TP 0
m + TP

1
m + ...+ TP

n
m) = TPb & (FN

0
m + FN

1
m + ...FN

n
m) = 0

Thus, equation (2.2) reduces to equation (2.1) which implies Recallm  Recallb.
In other words, the final recall is always less than or equal to the recall of the
first stage.

Contrary to what we showed above, He et al. [23] report the recall of first stage
as 79.05% and that of the final stage as 79.16% which is 0.1% higher than the
first stage. This reveals the inconsistencies in the performance evaluation of
their model. Another important finding that further validates our concerns is
that the precision and recall values listed do not lead to the F-score reported
in their paper [23, 2nd row in Table 1]. We tried contacting them to seek
clarification on our concerns but we did not get any responses.

• Rahul et al. [22]: We illustrate the issues in their approach by describing the
steps followed during model training process. Their neural network model is
trained on the training set for a predetermined number of epochs. Each epoch

8

can be regarded as a snapshot of the model at a different stage in the training
process. At the end of each epoch, the snapshot was used to make predictions
on the test set. These predictions were compared with the ground truth to
obtain the performance of each snapshot and the performance of the best snap-
shot was reported as their final score. This is equivalent to choosing the best
model configuration based on its performance on the test set, which ought to be
avoided when comparing performances on a public dataset. In most practical
applications, the test set labels are unknown and choosing the best epoch based
on the test set would not be possible.

The issues highlighted above give an unfair advantage to these models and result
in inflated performance scores. Hence, for fair comparison, we refrain from using their
performance scores in the rest of the paper.

While all the prior works exploit linguistic phenomenon and statistical learning
techniques to develop the predictive model, most of them do not address the variable
nature of the model. While it is true that performance variations are small across
multiple runs, the error patterns exhibit large variations. To counter this behav-
ior, we explore ensembling strategies (explained in Section 5.2.1) which improve the
performance of the overall system and also ensure its consistency.

9

Chapter 3 Dataset

We use the MLEE dataset [18] for this task. It consists of 262 PubMed abstracts
divided into train and test sets with 175 and 87 abstracts respectively. As this dataset
is compiled for the task of event extraction, PubMed abstracts are annotated for event
triggers, associated entities and role of the entities in an event. This dataset is limited
to 19 types of events spanning four broad categories - Anatomical, Molecular, General
and Planned. Table 3.1 shows the distribution of various event types in train and test
splits. From the entity information annotated in this dataset, we have 14 types of
entities that can be associated with 19 event types. Table 3.2 highlights the various
entity types present in the dataset.

Table 3.1: Distribution of Event Types

Category Event Type Train Test

Anatomical

Cell Proliferation 82 43
Development 202 98
Blood Vessel Development 540 305
Growth 107 56
Death 57 36
Breakdown 44 23
Remodeling 22 10

Molecular

Synthesis 13 4
Gene Expression 210 132
Transcription 16 7
Catabolism 20 4
Phosphorylation 26 3
Dephosphorylation 2 1

General

Localization 282 133
Binding 102 56
Regulation 362 178
Positive Regulation 654 312
Negative Regulation 450 233

Planned Planned Process 407 175

10

Table 3.2: Distribution of Entity Types

Category Entity Type Train Test

Organism Organism 485 237

Anatomy

Organism Subdivision 27 22
Anatomical System 10 8
Organ 123 53
Multi-tissue Structure 348 166
Tissue 304 122
Cell 866 332
Cellular Component 105 40
Developing Anatomical Structure 4 2
Organism Substance 82 60
Immaterial Anatomical Entity 11 4
Pathological Formation 533 357

Molecule
Drug Or Compound 637 307
Gene Or Gene Product 1961 1001

Although events in general can be represented with a single or multi-word trigger,
most of the events in this dataset are characterized by single word triggers and less
than 3.0% constitute multi-word triggers. While constructing trigger candidates, we
include only single word triggers and treat all multi-word triggers as false negatives.
Candidate generation for multi-word triggers is expensive in terms of the number of
candidate triggers as it includes all possible consecutive word sequences present in the
dataset, which dramatically increases the search space for actual triggers. Also, this
large increase in the number of candidates cannot be justified, given the relatively
small number of the actual multi-word triggers present in the training data.

11

Chapter 4 Methods

Event trigger classification consists of two subtasks – trigger detection and trigger
type prediction. Trigger detection deals with distinguishing triggers from non-triggers
while trigger type prediction predicts the event types for the triggers identified in the
first subtask. Instead of approaching these two subtasks individually, we combine
them into one task by introducing an additional class for non-triggers. As a result
of this modification, we now have a multi-class classification problem with 19 event
types and one non-trigger type (which plays the role of trigger detection). Multi-
class models can be constructed using two different approaches, namely, extension to
binary and transformation to binary classification. In the former, binary classification
algorithms are modified to predict more than two classes while in the latter, multi-
class classification task is decomposed into multiple binary classification problems and
predictions from all the classifiers are used to determine the class of an instance. We
adopt the extension to binary classification approach as it avoids a situation where
large number of negative instances dominate the final outcomes (as is the case with
the second approach). Before discussing specifics of our model, we will present a
few fundamental concepts that are essential to develop a better understanding of our
architecture.

Neural networks, more specifically, recurrent neural networks (RNNs) and their
variants form the core component of our model. RNNs [25] are a class of neural
networks known for their ability to capture sequential information from the data.
Vanilla RNNs were once a popular choice for several NLP tasks such as language
modeling [25, 26, 27], machine translation [28, 29] and sequence labelling [30]. They
are composed of basic units called cells that recur over different inputs in the se-
quence to form a chain like structure. They process the input in a sequential manner,
aggregating the past information and using it to inform the current processing step.
This allows the RNNs to process variable length sequences which became their strong
selling point in NLP tasks. However, it was observed that as the sequence gets longer,
RNN’s information retaining ability decreases and they are unable to retain clues from
the distant past which may be relevant for processing the future time steps. With
longer sequences, they also suffer from vanishing/exploding gradients [31]. These is-
sues led to the development of several variants of RNN, a popular one being LSTM.
LSTMs [32] are capable of remembering long-term dependencies and are commonly
used in place of vanilla RNNs. An LSTM cell consists of three gates which regulate

12

the flow of information within the network. The forget gate decides what elements
of the past are not needed and can be forgotten, the input gate controls what infor-
mation of the input should be updated to the cell state, and the output gate decides
what portion of the cell state should be output at the current time step. LSTMs, feed
forward networks [33, Chapter 4] and external features form the basic constituents
of our model and they are combined in a unique fashion to arrive at the architecture
described in Section 4.2.

4.1 Preprocessing

Since this task is concerned with classifying triggers in biomedical literature, the
input is in the form of PubMed abstracts. Along with event type information, these
abstracts are also annotated for the entities and their semantic types. We believe
that entity types hold important clues to event classification and to leverage this
relationship, we replace all the entities in the abstract by their corresponding semantic
types (as annotated in the data). Next, we decompose the abstract into sentences and
words by using sentence segmenter and word tokenizer respectively. Each tokenized
word is considered to be a trigger candidate. By this definition, the number of
trigger candidates are ten times more than the actual triggers as observed in the
training data. In order to reduce the search space for triggers, we adopt a two stage
filtering approach to reduce the non-triggers in the trigger candidate list. In the
first stage we completely ignore stop words and entities (i.e., words in entity spans)
and treat all other words as triggers candidates. The second stage uses the unified
medical language system (UMLS [34]) to eliminate non-trivial, domain neutral non-
triggers. Using UMLS semantic types, we retrieve type information for each candidate
word in the vocabulary of our corpus. Based on the semantic type information of
the actual triggers in the training set (obtained through API calls to NLM’s UMLS
Metathesaurus server), we have identified 33 semantic types (shown in Table 4.1) as
valid types.

If a trigger candidate does not belong to at least one of these valid types, we remove
the candidate from the trigger candidate list. The combined two stage filtering process
reduces the non-triggers by 53.0% while loosing only 1.0% of the actual triggers as
observed on the training data. Table 4.2 shows the actual numbers before and after
the filtering process.

13

Table 4.1: Valid Semantic Types

Biologic Function Organism Function
Organ or Tissue Function Cell Function
Molecular Function Physiologic Function
Genetic Function Pathologic Function
Disease or Syndrome Cell or Molecular Dysfunction
Event Activity
Laboratory Procedure Diagnostic Procedure
Therapeutic or Preventive Procedure Research Activity
Molecular Biology Research Technique Regulatory Activity
Phenomenon or Process Human-caused Phenomenon or Process
Natural Phenomenon or Process Functional Concept
Idea or Concept Temporal Concept
Qualitative Concept Quantitative Concept
Spatial Concept Chemical Viewed Functionally
Sign or Symptom Anatomical Abnormality
Neoplastic Process Social Behavior
Finding

Table 4.2: Data summary before and after candidate filtering process

Class
Train Test

Before After Before After

Triggers 3,465 3,437 1,749 1,730

Non Triggers 26,068 12,310 13,544 6,365

Total . 29,533 15,747 15,293 8,095

4.2 Bidirectional LSTM with attention

None of the existing architectures for biomedical trigger classification have explicitly
considered the varying degree of influence of the words surrounding the trigger candi-
date. We believe that differential treatment of contextual words is likely to improve
the performance of the model. To test our hypothesis, we propose a novel architec-
ture (shown in Figure 4.1) that uses an attention mechanism to learn the degree of
importance of words in the context. It has six components: embedding layer, stacked
bidirectional LSTM (BiLSTM) layer, attention layer and three feed forward layers.

14

h2k+1

h2k+1

h1

h1

h2

h2

h3

h3

h2k

h2k

h1

h1

h2

h2

h3

h3

h2k

h2k

h2k+1

h2k+1

a1 a2 a3 a2k a2k+1

External Features

y1 y2 y3 ym-1 ym

C

Stacked BiLSTM
Layer

Feed Forward
Layer 1

Attention Layer

Feed Forward
Layer 2

Feed Forward
Layer 3

(wi)
Word Embedding

(ti)
Part-of-speech

Embedding

(pi)
Position

Embedding

Embedding Layer

Trigger
Candidate

1

2

3

4

5

6

Figure 4.1: Event Trigger Classification Framework

4.2.1 Input embeddings

The input to neural network consists of two parts - X and q, where X is the trigger
context and q is the trigger candidate. The trigger context is obtained from the
sentence containing the trigger candidate by using a window of k words to the left and
right of the trigger candidate. In other words, X = {xt�k, ..., xt�1, xt, xt+1, ..., xt+k},
where xt±i are k words surrounding the trigger candidate on either side. Each word in
the input is represented as e1 dimensional vector using word embedding table. Word
embeddings [35, 36] are pre-trained dense vectors that capture syntactic and semantic
meaning of the word. Depending on whether xi is a word or entity type, the vector
representation is obtained from either word embedding table or randomly initialized

15

type embeddings. Similarly, q is also mapped to its corresponding vector in the word
embedding table and it is used directly in layer 4 of Figure 4.1. Along with word
embeddings, we also use e2 dimensional part-of-speech (POS) and e3 dimensional
position embeddings for the trigger context. These embeddings are derived from
randomly initialized weights which are updated during the model training process.
These three embeddings are concatenated to form each input in sequence X, such
that X 2 R(2k+1)⇥(e1+e2+e3). In other words, each xi is constructed as

xi = wi||ti||pi

where wi is the word embedding, ti and pi are POS and position embedding respec-
tively and || is the concatenation operator.

4.2.2 Stacked BiLSTM layer

The first component of the input pair – trigger context is passed through a two
layered stacked BiLSTM. Essentially, each BiLSTM is composed of two LSTMs, one
processing the input from left to right and the other processing the input from right to
left. It generates two output vectors for each word and these vectors are concatenated
with each other as shown in equations 4.1 – 4.3.

�!
hi = Forward-LSTM(xi), (4.1)
 �
hi = Backward-LSTM(xi), (4.2)

hi =
�!
hi ||
 �
hi , for i = 1, ..., 2k + 1 (4.3)

where
�!
hi and

 �
hi are the output vectors of forward and backward LSTMs respec-

tively and || is the concatenation operation. The output of first BiLSTM layer with
d1 hidden units is concatenated with input X before feeding it to the second BiLSTM
layer with d2 hidden units. Each output, hi from the second BiLSTM can be arranged
in a matrix H such that H 2 R(2k+1)⇥2d2 . Next, the matrix H is passed to a feed for-
ward network in layer 3 of Figure 4.1, which is composed of l1 densely interconnected
units called neurons. These neurons learn the mapping si = f(hiWi + bi), where bi

is the bias unit, si is the output, Wi 2 R2d2⇥l1 is a learnable parameter of the net-
work and f is a rectified linear unit (ReLU) function. Since we have 2k+ 1 BiLSTM
outputs, we would need 2k + 1 independent feed forward networks. The outputs of
all the feed forward networks can be represented as a matrix, S = [s1, s2, s3, ..., s2k+1]

such that S 2 R(2k+1)⇥l1 .

16

4.2.3 Attention layer

In NLP, attention was first used in neural machine translation [37] where the decoder
attends to different parts of the source sentence to generate the next target word.
Recently, it has been applied to a variety of other NLP tasks such as textual entail-
ment [38], question-answering [39] and text summarization [40]. Depending on the
task at hand, a variety of attention strategies are available such as self attention, ad-
ditive attention and multiplicative attention. Here, we use a multiplicative attention
strategy inspired from Luong et al. [41], which involves using the trigger candidate to
learn a weight matrix, Wa 2 Re1⇥l1 and generating a weighted product for each word
in the context. Mathematically, this translates to

a = softmax
�
qWaS

T
�
,

c = aS

where a 2 R1⇥(2k+1) is the attention vector and c 2 R1⇥l1 is the context vector.
The context vector is concatenated with the trigger candidate, q and fed to a feed
forward network (at layer 5) with l2 hidden units. The operations at this layer
are governed by h↵ = f

�
[c||q]W↵ + b↵

�
, where b↵ is the bias unit, h↵ 2 R1⇥l2 and

W↵ 2 R(l1+e1)⇥l2 are the output and weights of the feed forward network and f is a
ReLU function.

4.2.4 Feature Engineering

Besides the features learned by the neural network, we also provide explicitly engi-
neered features to the final layer of the network. A brief description of these features
are given below:

• For each instance, we obtain the part-of-speech (POS) tag of the trigger candi-
date and encode it as a r-dimensional one hot feature vector denoted as g1.

• As already discussed in Chapter 1, an event is described by the entities asso-
ciated with it. This suggests a correlation between the event and entity types
which can be exploited by constructing a table, M 2 R(u+1)⇥v, where u = 14

is the number of entity types and v = 19 is the number of event types. The
extra row in M corresponds to “no-entity”, a situation where an event does not
have any entities as arguments. Table M is constructed using the entity-event
correspondences present in the training data. Once the table is constructed,

17

each input instance can be mapped onto a specific row in M by determining
the entity type that is closest to the trigger candidate in its three-hop depen-
dency path. Thus, the feature vector for each instance is a v-dimensional row
vector denoted as g2.

• For each instance, we generate z-dimensional dependency encoding of the can-
didate trigger denoted as g3. We consider the dependency tags of those relations
in which the trigger candidate is either a governor or dependent.

The above features are concatenated with the previous output, h↵ and passed into
the final layer in Figure 4.1. Softmax activation function is applied over the outputs
from the final layer to generate a probability distribution over the event types. The
operations at the final layer is given by p = softmax

�
Wo[g1||g2||g3||h↵] + bo

�
, where

g1, g2, g3 are the three explicitly engineered feature vectors, Wo 2 R(r+v+z+l2)⇥20 is a
learnable network parameter, bo is the bias unit and p 2 R20 is a vector of probability
estimates for the event types. Using back propagation [42], the weights of the different
network components are updated recursively to minimize the classification errors.
This involves minimizing the objective function

J(✓) = � 1

n

nX

i=1

mX

j=1

yij log pij,

where ✓ is a learnable parameter of all the neural network components in our archi-
tecture, n and m are the total numbers of training instances and classes respectively,
yij is the ground truth and pij is the predicted probability of ith input belonging to
j
th class. The magnitude of errors from the objective function determines the mag-

nitude of updates propagated back to the network. We use optimization technique
to minimize the objective function by driving the weight updates in the direction of
local or global minima.

18

Chapter 5 Experiments and Results

We conducted experiments using MLEE dataset to assess the performance of our
model. The training data was divided into training set and validation set. The
model was trained on the training set and fine tuned on validation set.

5.1 Experiments

After exploring several combination of hyperparameters such as hidden units, dropouts [43],
initializations, embeddings and optimizers, we present below the experimental details
that produced the best performance.

• Word Embeddings: We used 200 dimensional word embeddings published
by Pyysalo et al. [44]. The embeddings were trained on PubMed and PubMed
Central (PMC) articles using word2vec model. The entity types did not have
any pre-trained word embedding and hence, these were randomly initialized
with truncated normal distribution with mean of 0.0 and standard deviation of
0.05

• Input Layer: The trigger context was constructed by setting the value of
k = 4. This yields a sequence of 9 words (four words each to the left and right
of the trigger candidate and the trigger candidate itself). We used sequence
padding for instances going beyond sentence boundaries. Each word in the
trigger context is encoded by 3 types of embeddings: e1 = 200 dimensional
word embedding concatenated with e2 = 30 dimensional POS embedding and
e3 = 20 dimensional position embedding to yield an input word vector of size
250.

• BiLSTM Layer: We used a two layer stacked BiLSTMs with d1 = d2 = 512

hidden units. The weights of each layer were initialized using truncated normal
distribution with mean value of 0.0 and standard deviation of 0.05. A non-
linear ReLU transformation was applied to the outputs of BiLSTM network.
The dropout was set to 0.5 in both layers.

• Feed Forward Layers: These layers were initialized with truncated normal
distribution with l1 = l2 = 512 hidden units. Similar to BiLSTMs, non-linearity
was induced by applying ReLU transformation and dropout was set to 0.5.

19

• Explicit features: We used 3 feature vectors at the final layer of our network.
The POS of the candidate trigger was encoded in a vector of size, r=6, the event
type probabilities were encoded in a vector of size, v=19 and the dependency
tags of trigger candidate were encoded in a vector of size, z=30. Combining
these three features, we obtain a vector of size 55.

• Output layer: It consisted of 20 output units corresponding to 20 classes in
our task. We omit dropout at this layer and unlike the previous feed forward
layers, we used softmax function to generate prediction probabilities.

• Model Training: The training data is split into 85% training set and 15%
validation set. We followed a batch gradient descent strategy with a batch size
of 128. Adam [45] was used for optimization with a learning rate of 0.001. We
trained the model on training set for 20 epochs. At the end of each epoch, we
tested it on the validation set. The epoch that had the lowest validation loss
was used to make predictions on the blind test set.

From the above details, the architectural design and experimental setup might
appear too specific to this task. These choices were made after carefully tuning the
hyperparameters on a validation set. The hyperparameters such as hidden units,
dropouts and number of hidden layers were chosen by gradually increasing their
respective values until no further improvements in performance were observed. Thus,
after several permutations and combinations of the network components and their
values, we arrived at the architecture shown in Figure 4.1

5.2 Results

The performance of our model is evaluated using micro averaged measures of preci-
sion, recall and F-score. While computing micro measures, we omit the non-trigger
class as it is not an event type and it was added for convenience during the prepro-
cessing step. We shall discuss the merits of our model by comparing it with some of
the prior works as shown in Table 5.1. Nie et al. [20] achieve the best performance
in this task. Hence, the performance improvements of our model are discussed with
respect to their scores. Our best performing model is an ensemble of 50 models and it
clocks an improvement of 1.3% (in F-score). Interestingly, it yields an improvement
of 9.23% in precision while loosing 7.3% in recall. The benefits of ensembling and its
various strategies are discussed in Section 5.2.1

20

Table 5.1: Comparison of our model against prior works

Precision Recall F-score

Wang et al. [21] 0.7356 0.8362 0.7827

Zhou et al. [19] 0.7556 0.8129 0.7832

Nie et al. [20] 0.7330 0.8462 0.7856

Our ensemble 0.8253 0.7728 0.7982

5.2.1 Model Ensembles

In any parametric learning approach, the final results vary across different runs even
when the hyperparameters are kept constant. These variations are caused by random
initializations of network weights resulting in different optimization paths leading
to different local minima. Owing to the presence of multiple solutions, the error
patterns and instances also vary across multiple runs. In order to reduce this vari-
ability and improve the consistency of our results, we explore model ensembling [46]
which essentially provides different strategies to combine predictions from multiple
models creating a synergistic effect. Of the ensembling strategies [47] available, we
use bagging approach with model averaging. In model averaging, we average the
class probabilities of multiple models and class predictions are based on the averaged
probabilities. We generate 50 ensembles by running ten models using different train-
validation splits and choosing five best epochs in each model. Each train-validation
split is created by randomly choosing 85% as train instance and the remaining 15%
as validation instances. We made a conscious choice of retaining five best epochs
from each model as we found that error patterns exhibited large variations around
the vicinity of local minima.

5.2.2 Ablation Study

In this chapter, we saw the performance gains of our model against prior efforts. Now,
we will try to understand the reasons behind these improvements. In ablation study,
we remove the various components of the model to interpret the incremental gains in
performance. This uncovers the contribution of individual components by comparing
the model performance with and without the component. We have identified six such
components for ablation experiments as shown in Table 5.2. In all the experiments,
we have used individual model instead of the ensemble. Row 1 displays the score of

21

the individual model with all the components as shown in Figure 4.1. In rows 2 -
7, “�” operator indicates the removal of the component to its right. In row 3, the
output of the LSTM is directly used by the attention layer bypassing the feed forward
network at layer 3 in Figure 4.1. In row 4, we remove the feed forward network at
layer 5 of Figure 4.1 and directly pass the concatenated vectors along with external
features to layer 6 .

Table 5.2: Component level performance analysis

Precision Recall F-score

Individual model 0.8286 0.7507 0.7877

Individual model � position embedding 0.8346 0.7253 0.7761

Individual model � layer 3 0.8152 0.7341 0.7725

Individual model � layer 5 0.7692 0.7518 0.7604

Individual model � external features 0.8171 0.7485 0.7813

Individual model � attention 0.8086 0.7429 0.7744

Individual model � negative filtering 0.7887 0.7739 0.7813

All the performance gains are measured with respect to the F-scores. In row 6, it
can be seen that removal of the attention layer decreases the performance by 1.3%.
This confirms our conjecture that the words in trigger context exert varying degree of
influence on the trigger candidate and learning the degree of influence is imperative
to the classification task. The benefit of adding feed forward networks at layers 3

and 5 of Figure 4.1 can be noticed through the performance improvement of 1.5% and
2.7% respectively. Even though position embeddings might seem trivial in this task, it
contributes to a modest increase of 1.2%. Negative filtering generates an improvement
of 0.6%, indicating a promising avenue for further exploration. Ensembling is also
one of the contributors to the performance (refer Table 5.1), with an improvement of
1.0% over the individual model.

5.3 Analysis

On examining the instances where the model failed to predict the correct type, we
found that a majority of the errors were due to actual triggers being classified as non-
triggers or vice versa with very few inter-event type errors. More specifically, around
90.5% of the total errors were due to trigger/non-trigger type misclassification and the

22

remaining 9.5% were due to inter-event type errors. Here, we will focus our analysis
on the former type of errors. Among these errors, false negatives (triggers being
classified as non-trigger) were higher than false positives (non-triggers being classified
as triggers). On further investigating each of these misclassified trigger candidates
and their context, we discovered that these errors could be broadly grouped into two
buckets as shown in Figure 5.1.

Sentence 1: Here, we expressed the catalytic domain of VEGFR-2 as

a soluble active kinase using Bac-to-Bac expression system …

Sentence 2: … coculture of F-2 cells with A431 cells led to the

formation of A431 cell nests constantly surrounded by tube-like

networks consisting of F-2 cells.

Trigger candidate

(a) Bucket 1 errors

Sentence 3: … revealed that the effects of LeTx on tumor
perfusion were remarkably rapid and resulted in a marked reduction
of perfusion within the tumor …

Sentence 4: sDll4 similarly induced defective vascular response in
tumor implants leading to reduced tumor growth.

- Trigger candidate
- Event 1

- Event 2

Bold

Italics

(b) Bucket 2 errors

Figure 5.1: Error patterns

The first bucket (Figure 5.1a) contains errors due to incorrect ground truth an-
notation. For example, consider Sentence 1, the word “expressed” is used to describe
the experiment performed on VEGFR-2 and it does not describe an entity/event
regulating another entity/event. In Sentence 2, we notice that the word “formation”
describes a “development” event. However, it was not annotated as a trigger word in
the MLEE corpus. The second bucket (Figure 5.1b) corresponds to those candidates
with complex event structure spanning across words/phrases far off from the trigger
candidate. Sentence 3 is an example of nested events where the trigger word “resulted”
interconnects two independent events, event 1 and event 2 (as shown in Figure 5.1b).
Similarly, in Sentence 4, the trigger word “leading” interconnects an event on its left
to another event on its right. These errors can be explained by revisiting the trig-
ger context which is restricted to a window of k words on either side of the trigger
candidate. Nested events, more often extend beyond this context window and hence
they are not available to our model. It would appear that the most obvious solution
is to consider the entire sentence as the trigger context. However, when the entire
sentence was used as the context, the model failed to capture the nuances in the im-
mediate vicinity of the trigger candidate and it resulted in far more errors than using
a context window approach. Therefore, exploring various strategies to acknowledge
the presence of other events around the trigger candidate could potentially improve
the performance.

23

Chapter 6 Reproducibility

There has been a growing concern over the reproducibility aspects of scientific re-
search. In particular, this concern is more relevant to the fields of natural language
processing, machine learning and deep learning where the number of system variables
is large and only the right combination of these variables can reproduce the desired
result. In order to facilitate reproducibility of our methods and allow the biomed-
ical community to utilize and extend our system, we release all our project related
files online1. In this chapter, we will discuss the finer details of implementing the
system described in Chapter 4. This chapter contains references to various project
related scripts and functions (available on github1) and it is advised to refer to these
files to develop a better understanding of our system. From a software engineering
perspective, the different modules of the system are laid out as shown in Figure 6.1.

Replace entities
with types

Entity-Event
type matrix

Sentence
Tokenization

Dependency
featurePOS feature

Entity-Event co-
occurrence

feature

Identify trigger
candidate

Negative filtering

Construct
trigger context

Word
embeddings

Event type classifier

Sentence - 1

Sentence - 2

Sentence - n

Abstract Preprocessing

External Features

Create Inputs

Predicted
event type

PubMed
Abstracts

Annotation
files

Figure 6.1: System Architecture

Before we begin with the discussion, let us reiterate the goal of this task. Given a
PubMed abstract, extract and classify the biomedical event triggers into their biomed-
ical event types.

1 https://github.com/bionlproc/biomedical-trigger-classification

24

6.1 Abstract Preprocessing

The dataset consists of three types of files - the PubMed abstract, event annotation
file and entity annotation file. The event annotation file provides the trigger spans,
trigger words and event type information while the entity annotation file provides
entity spans and entity type information. In this section, we discuss the classes and
methods defined in preprocess_abstracts.py that reads the abstract, replaces the enti-
ties with their corresponding types and divides the abstract into individual sentences.
The process_abstracts method iterates over each abstract and its corresponding an-
notation files. It invokes the extract_triggers_entities function that extracts the
location and type of the entities/trigger words from the annotation files. The loca-
tion and entity type information are used by replace_entities function to locate the
entities in the abstract and replace them with their corresponding entity types. The
location and event type of the triggers are used to locate the triggers in the abstract
and label them with their corresponding event types. This act of labeling the triggers
becomes useful at the time of constructing the inputs, for generating the target class
of triggers. Next, the abstract is passed to a sentence tokenizer, which uses regular
expressions to determine the end of a sentence. Regular expressions are also used
to get rid of non-alphanumerical tokens as they contribute to noise in the trigger
classification task.

As we process the abstracts and their annotation files, we also collect information
on the entity and event types co-occurring with each other. This information is
aggregated across all the abstracts in the training set and is stored as a co-occurrence
matrix. At a later stage, this matrix is used to construct one of the external feature
vectors that encodes the likelihood of an entity type occurring with different event
types.

6.2 Negative Filtering

Negative filtering helps in eliminating some straightforward non-triggers and reducing
the size of the trigger candidate candidate space. We adopt two types of negative
filtering - rule based filtering and domain based filtering. Domain based filtering
leverages the semantic types in UMLS to determine if a trigger candidate is a non-
trigger word. The UMLS REST API is used to extract the semantic types of the
actual trigger words in the training set. Treating these semantic types as valid types,
negative_filtering.py script is used to determine if the trigger candidate belongs to one
of the valid types. The script consists of several functions that perform a sequence of

25

REST API calls to query the semantic type of each trigger candidate. As the UMLS
semantic types are mapped to concept unique identifiers (CUI) and not directly to
words, we use iterate_search function to retrieve the concept unique identifier (CUI)
for the trigger candidate. The CUI is passed as input to iterate_cui function which
returns the semantic type of the trigger candidate. If the semantic type matches with
any of the valid types, it is retained as a valid candidate, otherwise it is excluded
from the trigger candidate list.

6.3 External Features

Three types of external features are provided to the output layer of our classifica-
tion system. These features vary from one trigger candidate to another and they
are extracted from the sentence containing the trigger candidate. Each feature is
represented as a vector and the Python code to generate these vectors can be found
in external_features.py. The script is organized as two functions described below.

• dependency_pos_feature: This function extracts two linguistic features from
the sentence. The first one is known as the dependency feature, which cap-
tures the syntactic relationship between the trigger candidate and other words
in the sentence while the second feature captures the POS tag of the trigger
candidate. Before extracting these features, we first construct the parse tree of
the sentence using the Brown BLLIP parser. The parse tree is used to identify
those relations where the trigger candidate participates either as a governor
or dependent. These relations are encoded as a feature vector of 30 dimen-
sions, each representing one of the 30 predefined dependency relations. This
30-dimensional vector forms the dependency feature of the trigger candidate.
All elements of the feature vector are zero except for those which represent the
dependency relation of the trigger candidate. For the second feature vector, we
extract the part-of-speech information of the trigger candidate and encode it as
a six-dimensional one hot vector, each representing one of the six POS tags.

• entity_event_mapping : This function leverages the entity type around the trig-
ger candidate to generate a feature vector that represents the likelihood of a
particular entity type co-occurring with the event types. Here, the first step is
to explore the dependency paths and identify the entity type closest to the trig-
ger candidate. We construct all possible dependency paths that pass through
the trigger candidate. These paths are truncated to include up to three de-

26

pendency hops. Next, we iterate over all the truncated paths to determine the
entity type closest to trigger candidate. From the co-occurrence matrix con-
structed in Section 6.1, we retrieve the row vector corresponding to the entity
type closest to the trigger candidate.

6.4 Input Data

The input to the classifier consists of a trigger candidate and the context in which
it appears. These two inputs are constructed with the help of functions defined in
construct_input.py file. Earlier in Section 6.1, we saw that the abstracts are converted
into a list of sentences. Here, these sentences are passed through a word tokenizer that
splits each sentence into its constituent words. Next, we utilize the negative filtering
component to determine if a word should be considered as a valid trigger candidate.
For all valid trigger candidates, we create their context by extracting four words to
the left and four words to the right of trigger candidate. Part-of-speech tagger is used
to extract the POS tags of all words in the context. We also store the position of each
word with respect to the trigger candidate. Mathematically, the words in the context
are represented by three vector embeddings - word embedding derived from the word
itself, POS embedding derived from POS tags and position embedding derived from
position indices. Since we replace the entities in the abstract by their types, some
context words may also be entity types. The entity types have no predefined word
embeddings and hence they are represented by vectors with random values drawn
from a uniform distribution. Additionally, we use the external features component
to obtain three feature vectors for every input instance. Finally, we represent the
ground truth label for each valid candidate as a one hot vector of 20 dimensions, each
representing one of the 20 classes. Depending on the class to which the input belongs,
all elements of the vector are zero except one which has the value of one.

6.5 Classifier

The neural network components of the classifier are implemented using the functions
defined in neural_network_model.py. A brief description of these functions are as
follows.

• embedding_layer : This function takes a scalar input and maps it to a vector.
The part-of-speech and position indices are mapped to 30 and 20 dimensional

27

vectors respectively. These vectors are updated along with other parameters of
the network.

• stacked_lstm_layer : This function creates two layered bi-directional LSTMs
with 512 hidden units per layer. The input to the first layer is a concatenation
of word embeddings, POS embeddings and position embeddings while the input
to the second layer includes the output from the first layer along with the initial
embeddings.

• attention_layer : This functions reduce the dimension of the BiLSTM output
vectors (obtained from previous function) and uses the trigger candidate to
attend to specific parts of the context words. The vectors from the previous
function are passed to a feed forward network with 512 hidden units to obtain
context word vectors of a smaller dimension. The trigger candidate attends to
these newly created context word vectors to obtain the attention weights. The
attention weights are applied to these context word vectors to obtain a single
vectoral representation of the entire context.

• neural_network : This function organizes the components described above to
create the classifier shown in Figure 4.1.

• construct_model : The input vectors and their dimensions are defined in this
function. The position and part-of-speech embeddings are also created here by
invoking the embedding_layer function. The type of optimizer and loss function
to be used in the training process are also instantiated in this function.

6.6 Training

In this step, we divide the training instances into two parts - 85% training subset and
15% validation set. The inputs from the training subset are passed to our classifier
in batches of 128 instances and the parameters of the network are updated once for
every batch. When the model has seen all instances from the training subset, we
say that the model has been trained for one epoch and the trained model is referred
to as model snapshot. We continue training the model for 20 such epochs. At the
end of each epoch, we evaluate the performance of the model snapshot using the
validation set. The snapshot with the lowest validation error is used to classify the
triggers in the test set. While working with model ensembles, instead of selecting the
snapshot with lowest validation error, we select top five (out of 20) snapshots with

28

least validation errors. We train 10 such independent models by shuffling training
and validation instances. By following this process, we obtain 50 model ensembles (5
best snapshots ⇥ 10 models). The source code for training the ensemble model can
be found in train_model_ensemble.py

6.7 Testing

Once we have the models trained on the training subset, we use test_model.py to
evaluate the performance of the classifier on unseen test samples. We provide these
samples to the 50 trained models which yield 50 probability estimates of each sample
belonging to 20 classes. We average these individual probability outcomes and predict
the class that has the highest probability score for that particular test instance. In the
evaluate function, the predictions and ground truth labels are compared with each
other to count the number of true positives, false positives and false negatives for
each of the 19 event types. These counts are used in computing the final performance
of the system which is given by micro-averaged precision, recall and F-score.

29

Chapter 7 Conclusion

In this thesis, we developed a predictive model to identify and classify the trigger
words into biomedical event types. We explored deep neural network architectures
and proposed an attention mechanism that learns to attribute varying degrees of
importance to words in the context. We also saw the benefits of adding a minimal
yet effective set of features at the final layer of the network. Domain based candidate
filtering plays an important role in reducing non-triggers and its contribution to the
overall performance cannot be overlooked. The novelty of our architecture lies in the
way different components (attention layer, stacked BiLSTMs, feed forward layers)
interact with each other to produce a competent model.

7.1 Limitations

Even though our model performs better than the existing methods in terms of F-score,
it has the following limitations.

• Our model does not support the classification of multi-word triggers. We have
intentionally restricted it to classify triggers at the word level due to the lack
of a sizable portion of phrase triggers of length > 1.

• The results of our model highlight an opposite trend in precision-recall measure.
We gain 9.23% in precision and loose 7.3% in recall with a net gain of 2 points
in the overall trade off. Because of the gain in precision and loss in recall, this
system might appear as a product of a straightforward precision-recall trade
off. A higher net gain would have been more convincing of the performance of
our system.

• The idea of using fixed length context prevents the system from looking at clues
beyond the context window. This is especially true for nested events where the
clues are interspersed far away from the trigger word.

7.2 Future Work

Some of the future research directions in the area of biomedical event trigger classi-
fication are as follows

30

• Exploring distance supervision techniques to include more trigger words and
phrases is likely to improve the performance of the existing system. Extending
our model to support multi-word triggers can be beneficial if it can be done
without compromising a lot on precision.

• From the results, it is clear that our model produces a higher precision than
recall, reversing the existing precision-recall trend seen in prior methods that
depend on feature engineering. Expanding on our manually engineered feature
set and exploring a hybrid combination of conventional learning methods with
our deep learning system could yield positive results.

• While analyzing errors, we noticed that the model failed on those test instances
where the entity clues were far apart from the trigger word. Instead of using
fixed length context, forming a dynamic context guided by syntactic structure
and domain level clues could help in reducing these errors.

• Our UMLS guided filtering mechanism is based on the individual word and
does not take into account the context in which it is used. Exploring mecha-
nisms to consider the contextual meaning of the word while filtering the trigger
candidates could eliminate far more non-triggers leading to fewer false positives.

Copyright c� Jeevith Bopaiah, 2018.

31

Bibliography

[1] P. M. Nadkarni, L. Ohno-Machado, W. W. Chapman, Natural language process-
ing: an introduction, Journal of the American Medical Informatics Association
18 (5) (2011) 544–551.

[2] K. B. Cohen, D. Demner-Fushman, Biomedical natural language processing,
Vol. 11, John Benjamins Publishing Company, 2014.

[3] G. K. Savova, A. R. Coden, I. L. Sominsky, R. Johnson, P. V. Ogren, P. C.
De Groen, C. G. Chute, Word sense disambiguation across two domains: biomed-
ical literature and clinical notes, Journal of biomedical informatics 41 (6) (2008)
1088–1100.

[4] A. Sabbir, A. Jimeno-Yepes, R. Kavuluru, Knowledge-based biomedical word
sense disambiguation with neural concept embeddings, in: Bioinformatics and
Bioengineering (BIBE), 2017 IEEE 17th International Conference on, IEEE,
2017, pp. 163–170.

[5] A. Rios, R. Kavuluru, Z. Lu, Generalizing biomedical relation classification with
neural adversarial domain adaptation, Bioinformatics 1 (2018) 9.

[6] J. Björne, T. Salakoski, Generalizing biomedical event extraction, in: Proceed-
ings of the BioNLP Shared Task 2011 Workshop, Association for Computational
Linguistics, 2011, pp. 183–191.

[7] J. Björne, F. Ginter, S. Pyysalo, J. Tsujii, T. Salakoski, Scaling up biomedical
event extraction to the entire pubmed, in: Proceedings of the 2010 workshop on
biomedical natural language processing, Association for Computational Linguis-
tics, 2010, pp. 28–36.

[8] G. Tsatsaronis, M. Schroeder, G. Paliouras, Y. Almirantis, I. Androutsopoulos,
E. Gaussier, P. Gallinari, T. Artieres, M. R. Alvers, M. Zschunke, et al., Bioasq:
A challenge on large-scale biomedical semantic indexing and question answering.,
in: AAAI fall symposium: Information retrieval and knowledge discovery in
biomedical text, 2012.

[9] E. Apostolova, T. Velez, Toward automated early sepsis alerting: Identifying
infection patients from nursing notes, BioNLP 2017 (2017) 257–262.

32

[10] Z. Hu, G. J. Simon, E. G. Arsoniadis, Y. Wang, M. R. Kwaan, G. B. Melton,
Automated detection of postoperative surgical site infections using supervised
methods with electronic health record data, Studies in health technology and
informatics 216 (2015) 706.

[11] K. Z. Vardakas, G. Tsopanakis, A. Poulopoulou, M. E. Falagas, An analysis of
factors contributing to pubmed’s growth, Journal of Informetrics 9 (3) (2015)
592–617.

[12] J.-D. Kim, T. Ohta, S. Pyysalo, Y. Kano, J. Tsujii, Overview of bionlp’09 shared
task on event extraction, in: Proceedings of the Workshop on Current Trends in
Biomedical Natural Language Processing: Shared Task, Association for Compu-
tational Linguistics, 2009, pp. 1–9.

[13] J.-D. Kim, S. Pyysalo, T. Ohta, R. Bossy, N. Nguyen, J. Tsujii, Overview of
bionlp shared task 2011, in: Proceedings of the BioNLP shared task 2011 work-
shop, Association for Computational Linguistics, 2011, pp. 1–6.

[14] C. Nédellec, R. Bossy, J.-D. Kim, J.-J. Kim, T. Ohta, S. Pyysalo, P. Zweigen-
baum, Overview of bionlp shared task 2013, in: Proceedings of the BioNLP
Shared Task 2013 Workshop, 2013, pp. 1–7.

[15] Q.-C. Bui, D. Campos, E. van Mulligen, J. Kors, A fast rule-based approach for
biomedical event extraction, in: proceedings of the BioNLP shared task 2013
workshop, 2013, pp. 104–108.

[16] L. Li, J. Zheng, J. Wan, D. Huang, X. Lin, Biomedical event extraction via long
short term memory networks along dynamic extended tree, in: Bioinformatics
and Biomedicine (BIBM), 2016 IEEE International Conference on, IEEE, 2016,
pp. 739–742.

[17] M. Miwa, P. Thompson, I. Korkontzelos, S. Ananiadou, Comparable study of
event extraction in newswire and biomedical domains, in: Proceedings of COL-
ING 2014, the 25th International Conference on Computational Linguistics:
Technical Papers, 2014, pp. 2270–2279.

[18] S. Pyysalo, T. Ohta, M. Miwa, H.-C. Cho, J. Tsujii, S. Ananiadou, Event ex-
traction across multiple levels of biological organization, Bioinformatics 28 (18)
(2012) i575–i581.

33

[19] D. Zhou, D. Zhong, Y. He, Event trigger identification for biomedical events
extraction using domain knowledge, Bioinformatics 30 (11) (2014) 1587–1594.

[20] Y. Nie, W. Rong, Y. Zhang, Y. Ouyang, Z. Xiong, Embedding assisted predic-
tion architecture for event trigger identification, Journal of bioinformatics and
computational biology 13 (03) (2015) 1541001.

[21] J. Wang, J. Zhang, Y. An, H. Lin, Z. Yang, Y. Zhang, Y. Sun, Biomedical event
trigger detection by dependency-based word embedding, BMC medical genomics
9 (2) (2016) 45.

[22] P. V. Rahul, S. K. Sahu, A. Anand, Biomedical event trigger identification using
bidirectional recurrent neural network based models, BioNLP 2017 (2017) 316.

[23] X. He, L. Li, Y. Liu, X. Yu, J. Meng, A two-stage biomedical event trigger de-
tection method integrating feature selection and word embeddings, IEEE/ACM
transactions on computational biology and bioinformatics.

[24] N. Jiang, W. Rong, Y. Nie, Y.-K. Shen, Z. Xiong, Biological event trigger iden-
tification with noise contrastive estimation, IEEE/ACM Transactions on Com-
putational Biology and Bioinformatics.

[25] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, S. Khudanpur, Recurrent neu-
ral network based language model, in: Eleventh Annual Conference of the Inter-
national Speech Communication Association, 2010.

[26] T. Mikolov, S. Kombrink, L. Burget, J. Černockỳ, S. Khudanpur, Extensions
of recurrent neural network language model, in: Acoustics, Speech and Signal
Processing (ICASSP), 2011 IEEE International Conference on, IEEE, 2011, pp.
5528–5531.

[27] A. Graves, Generating sequences with recurrent neural networks, arXiv preprint
arXiv:1308.0850.

[28] S. Liu, N. Yang, M. Li, M. Zhou, A recursive recurrent neural network for sta-
tistical machine translation, in: Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), Vol. 1,
2014, pp. 1491–1500.

[29] M. Auli, M. Galley, C. Quirk, G. Zweig, Joint language and translation model-
ing with recurrent neural networks, in: Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing, 2013, pp. 1044–1054.

34

[30] J. A. Perez-Ortiz, M. L. Forcada, Part-of-speech tagging with recurrent neural
networks, in: Neural Networks, 2001. Proceedings. IJCNN’01. International Joint
Conference on, Vol. 3, IEEE, 2001, pp. 1588–1592.

[31] R. Pascanu, T. Mikolov, Y. Bengio, On the difficulty of training recurrent neural
networks., Proceedings of the 30th International Conference on Machine Learn-
ing 28 (2013) 1310–1318.

[32] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural computation
9 (8) (1997) 1735–1780.

[33] C. M. Bishop, Neural networks for pattern recognition, Oxford university press,
1995.

[34] National Library of Medicine, Unified Medical Language System Reference Man-
ual, http://www.ncbi.nlm.nih.gov/books/NBK9676/ (2009).

[35] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, J. Dean, Distributed represen-
tations of words and phrases and their compositionality, in: Advances in Neural
Information Processing Systems, 2013, pp. 3111–3119.

[36] T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word repre-
sentations in vector space, arXiv preprint arXiv:1301.3781.

[37] D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly learning
to align and translate, International Conference on Learning Representations.

[38] A. Parikh, O. Täckström, D. Das, J. Uszkoreit, A decomposable attention model
for natural language inference, in: Proceedings of the 2016 Conference on Em-
pirical Methods in Natural Language Processing, 2016, pp. 2249–2255.

[39] K. Chen, J. Wang, L.-C. Chen, H. Gao, W. Xu, R. Nevatia, Abc-cnn: An at-
tention based convolutional neural network for visual question answering, arXiv
preprint arXiv:1511.05960.

[40] A. M. Rush, S. Chopra, J. Weston, A neural attention model for abstractive
sentence summarization, in: Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, 2015, pp. 379–389.

[41] T. Luong, H. Pham, C. D. Manning, Effective approaches to attention-based
neural machine translation, in: Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, 2015, pp. 1412–1421.

35

http://www.ncbi.nlm.nih.gov/books/NBK9676/

[42] R. Hecht-Nielsen, Theory of the backpropagation neural network, in: Neural
networks for perception, Elsevier, 1992, pp. 65–93.

[43] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov,
Dropout: A simple way to prevent neural networks from overfitting, The Journal
of Machine Learning Research 15 (1) (2014) 1929–1958.

[44] S. Pyysalo, F. Ginter, H. Moen, T. Salakoski, S. Ananiadou, Distributional se-
mantics resources for biomedical text processing, Proceedings of 5th Interna-
tional Symposium on Languages in Biology and Medicine (2013) 39–44.

[45] D. Kinga, J. B. Adam, Adam: A method for stochastic optimization, in: Inter-
national Conference on Learning Representations (ICLR), 2015.

[46] D. Abbott, A. Analytics, Benefits of creating ensembles of classifiers.

[47] D. Opitz, R. Maclin, Popular ensemble methods: An empirical study, Journal of
artificial intelligence research 11 (1999) 169–198.

36

Vita

Name: Jeevith Bopaiah

Education
Bachelor of Engineering in Computer Science, August 2010 - May 2014
Nitte Meenakshi Institute of Technology, India

Experience

• Research Intern, Oak Ridge National Lab, Tennessee Jun 2017 - Jul 2017

• Full Stack Developer, Stride.ai Inc, India Nov 2015 - Jun 2016

• Software Engineer, Tesco HSC, India Jul 2014 - Oct 2015

• Tech Intern, Tationem, India Jan 2014 - May 2014

Awards

• Best Graduate Student (MS) in Computer Science (2018)

Publications

1. Derek Jones, Jeevith Bopaiah, Fatemah Alghamedy, Nathan Jacobs, Heidi
L. Weiss, W.A. de Jong, Sally R. Ellingson. Polypharmacology Within the Full
Kinome: a Machine Learning Approach. In AMIA 2018 Informatics Summit

2. Fatemah Alghamedy, Jeevith Bopaiah, Derek Jones, Xiaofei Zhang, Heidi L.
Weiss, Sally R. Ellingson. Incorporating Protein Dynamics Through Ensemble
Docking in Machine Learning Models to Predict Drug Binding. In AMIA 2018
Informatics Summit

3. Jeevith Bopaiah and Ramakanth Kavuluru. Precision/Recall Trade-Off Anal-
ysis in Abnormal/Normal Heart Sound Classification, Proceedings of the 5th
International Conference on Big Data Analytics (BDA 2017), pp. 179–194.

4. Michael Bowie, Edmon Begoli, Byung Park and Jeevith Bopaiah. [2017, Oc-
tober] Towards the LSTM-based Approach for Detection of Temporally Anoma-
lous Data in Medical Datasets. In 2017 22nd MIT International Conference on
Information Quality (ICIQ), Little Rock, Arkansas, USA.

37

	A recurrent neural network architecture for biomedical event trigger classification
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	What is Biomedical Natural Language Processing?
	Biomedical Event Extraction
	Biomedical Event Trigger Classification

	Related Work
	Dataset
	Methods
	Preprocessing
	Bidirectional LSTM with attention
	Input embeddings
	Stacked BiLSTM layer
	Attention layer
	Feature Engineering

	Experiments and Results
	Experiments
	Results
	Model Ensembles
	Ablation Study

	Analysis

	Reproducibility
	Abstract Preprocessing
	Negative Filtering
	External Features
	Input Data
	Classifier
	Training
	Testing

	Conclusion
	Limitations
	Future Work

	Bibliography
	Vita

