18,104 research outputs found

    Exploring Complex Networks with Graph Investigator Research Application

    Get PDF
    This paper describes Graph Investigator, the application intended for analysis of complex networks. A rich set of application functions is briefly described including graph feature generation, comparison, visualization and edition. The program enables to analyze global and local structural properties of networks with the use of various descriptors derived from graph theory. Furthermore, it allows to quantify inter-graph similarity by embedding graph patterns into low-dimensional space or distance measurement based on feature vectors. The set of available graph descriptors includes over eighty statistical and algebraic measures. We present two examples of real-world networks analysis performed with Graph Investigator: comparison of brain vasculature with structurally similar artificial networks and analysis of vertices importance in a macaque cortical connectivity network. The third example describes tracking parameters of artificial vascular network evolving in the process of angiogenesis, modelled with the use of cellular automata

    GraphCombEx: A Software Tool for Exploration of Combinatorial Optimisation Properties of Large Graphs

    Full text link
    We present a prototype of a software tool for exploration of multiple combinatorial optimisation problems in large real-world and synthetic complex networks. Our tool, called GraphCombEx (an acronym of Graph Combinatorial Explorer), provides a unified framework for scalable computation and presentation of high-quality suboptimal solutions and bounds for a number of widely studied combinatorial optimisation problems. Efficient representation and applicability to large-scale graphs and complex networks are particularly considered in its design. The problems currently supported include maximum clique, graph colouring, maximum independent set, minimum vertex clique covering, minimum dominating set, as well as the longest simple cycle problem. Suboptimal solutions and intervals for optimal objective values are estimated using scalable heuristics. The tool is designed with extensibility in mind, with the view of further problems and both new fast and high-performance heuristics to be added in the future. GraphCombEx has already been successfully used as a support tool in a number of recent research studies using combinatorial optimisation to analyse complex networks, indicating its promise as a research software tool

    Conceptual graph-based knowledge representation for supporting reasoning in African traditional medicine

    Get PDF
    Although African patients use both conventional or modern and traditional healthcare simultaneously, it has been proven that 80% of people rely on African traditional medicine (ATM). ATM includes medical activities stemming from practices, customs and traditions which were integral to the distinctive African cultures. It is based mainly on the oral transfer of knowledge, with the risk of losing critical knowledge. Moreover, practices differ according to the regions and the availability of medicinal plants. Therefore, it is necessary to compile tacit, disseminated and complex knowledge from various Tradi-Practitioners (TP) in order to determine interesting patterns for treating a given disease. Knowledge engineering methods for traditional medicine are useful to model suitably complex information needs, formalize knowledge of domain experts and highlight the effective practices for their integration to conventional medicine. The work described in this paper presents an approach which addresses two issues. First it aims at proposing a formal representation model of ATM knowledge and practices to facilitate their sharing and reusing. Then, it aims at providing a visual reasoning mechanism for selecting best available procedures and medicinal plants to treat diseases. The approach is based on the use of the Delphi method for capturing knowledge from various experts which necessitate reaching a consensus. Conceptual graph formalism is used to model ATM knowledge with visual reasoning capabilities and processes. The nested conceptual graphs are used to visually express the semantic meaning of Computational Tree Logic (CTL) constructs that are useful for formal specification of temporal properties of ATM domain knowledge. Our approach presents the advantage of mitigating knowledge loss with conceptual development assistance to improve the quality of ATM care (medical diagnosis and therapeutics), but also patient safety (drug monitoring)

    Construction of near-optimal vertex clique covering for real-world networks

    Get PDF
    We propose a method based on combining a constructive and a bounding heuristic to solve the vertex clique covering problem (CCP), where the aim is to partition the vertices of a graph into the smallest number of classes, which induce cliques. Searching for the solution to CCP is highly motivated by analysis of social and other real-world networks, applications in graph mining, as well as by the fact that CCP is one of the classical NP-hard problems. Combining the construction and the bounding heuristic helped us not only to find high-quality clique coverings but also to determine that in the domain of real-world networks, many of the obtained solutions are optimal, while the rest of them are near-optimal. In addition, the method has a polynomial time complexity and shows much promise for its practical use. Experimental results are presented for a fairly representative benchmark of real-world data. Our test graphs include extracts of web-based social networks, including some very large ones, several well-known graphs from network science, as well as coappearance networks of literary works' characters from the DIMACS graph coloring benchmark. We also present results for synthetic pseudorandom graphs structured according to the Erdös-Renyi model and Leighton's model

    Fourteenth Biennial Status Report: März 2017 - February 2019

    No full text

    Real-time support for high performance aircraft operation

    Get PDF
    The feasibility of real-time processing schemes using artificial neural networks (ANNs) is investigated. A rationale for digital neural nets is presented and a general processor architecture for control applications is illustrated. Research results on ANN structures for real-time applications are given. Research results on ANN algorithms for real-time control are also shown

    Inheritance patterns in citation networks reveal scientific memes

    Full text link
    Memes are the cultural equivalent of genes that spread across human culture by means of imitation. What makes a meme and what distinguishes it from other forms of information, however, is still poorly understood. Our analysis of memes in the scientific literature reveals that they are governed by a surprisingly simple relationship between frequency of occurrence and the degree to which they propagate along the citation graph. We propose a simple formalization of this pattern and we validate it with data from close to 50 million publication records from the Web of Science, PubMed Central, and the American Physical Society. Evaluations relying on human annotators, citation network randomizations, and comparisons with several alternative approaches confirm that our formula is accurate and effective, without a dependence on linguistic or ontological knowledge and without the application of arbitrary thresholds or filters.Comment: 8 two-column pages, 5 figures; accepted for publication in Physical Review
    corecore