100 research outputs found

    Puffy: A Step-by-step Guide to Craft Bio-inspired Artifacts with Interactive Materiality

    Full text link
    A rising number of HCI scholars have begun to use materiality as a starting point for exploring the design's potential and restrictions. Despite the theoretical flourishing, the practical design process and instruction for beginner practitioners are still in scarcity. We leveraged the pictorial format to illustrate our crafting process of Puffy, a bio-inspired artifact that features a cilia-mimetic surface expressing anthropomorphic qualities through shape changes. Our approach consists of three key activities (i.e., analysis, synthesis, and detailing) interlaced recursively throughout the journey. Using this approach, we analyzed different input sources, synthesized peers' critiques and self-reflection, and detailed the designed experience with iterative prototypes. Building on a reflective analysis of our approach, we concluded with a set of practical implications and design recommendations to inform other practitioners to initiate their investigations in interactive materiality.Comment: 17th International Conference On Tangible Embedded And Embodied Interactio

    From wearable towards epidermal computing : soft wearable devices for rich interaction on the skin

    Get PDF
    Human skin provides a large, always available, and easy to access real-estate for interaction. Recent advances in new materials, electronics, and human-computer interaction have led to the emergence of electronic devices that reside directly on the user's skin. These conformal devices, referred to as Epidermal Devices, have mechanical properties compatible with human skin: they are very thin, often thinner than human hair; they elastically deform when the body is moving, and stretch with the user's skin. Firstly, this thesis provides a conceptual understanding of Epidermal Devices in the HCI literature. We compare and contrast them with other technical approaches that enable novel on-skin interactions. Then, through a multi-disciplinary analysis of Epidermal Devices, we identify the design goals and challenges that need to be addressed for advancing this emerging research area in HCI. Following this, our fundamental empirical research investigated how epidermal devices of different rigidity levels affect passive and active tactile perception. Generally, a correlation was found between the device rigidity and tactile sensitivity thresholds as well as roughness discrimination ability. Based on these findings, we derive design recommendations for realizing epidermal devices. Secondly, this thesis contributes novel Epidermal Devices that enable rich on-body interaction. SkinMarks contributes to the fabrication and design of novel Epidermal Devices that are highly skin-conformal and enable touch, squeeze, and bend sensing with co-located visual output. These devices can be deployed on highly challenging body locations, enabling novel interaction techniques and expanding the design space of on-body interaction. Multi-Touch Skin enables high-resolution multi-touch input on the body. We present the first non-rectangular and high-resolution multi-touch sensor overlays for use on skin and introduce a design tool that generates such sensors in custom shapes and sizes. Empirical results from two technical evaluations confirm that the sensor achieves a high signal-to-noise ratio on the body under various grounding conditions and has a high spatial accuracy even when subjected to strong deformations. Thirdly, Epidermal Devices are in contact with the skin, they offer opportunities for sensing rich physiological signals from the body. To leverage this unique property, this thesis presents rapid fabrication and computational design techniques for realizing Multi-Modal Epidermal Devices that can measure multiple physiological signals from the human body. Devices fabricated through these techniques can measure ECG (Electrocardiogram), EMG (Electromyogram), and EDA (Electro-Dermal Activity). We also contribute a computational design and optimization method based on underlying human anatomical models to create optimized device designs that provide an optimal trade-off between physiological signal acquisition capability and device size. The graphical tool allows for easily specifying design preferences and to visually analyze the generated designs in real-time, enabling designer-in-the-loop optimization. Experimental results show high quantitative agreement between the prediction of the optimizer and experimentally collected physiological data. Finally, taking a multi-disciplinary perspective, we outline the roadmap for future research in this area by highlighting the next important steps, opportunities, and challenges. Taken together, this thesis contributes towards a holistic understanding of Epidermal Devices}: it provides an empirical and conceptual understanding as well as technical insights through contributions in DIY (Do-It-Yourself), rapid fabrication, and computational design techniques.Die menschliche Haut bietet eine große, stets verfĂŒgbare und leicht zugĂ€ngliche FlĂ€che fĂŒr Interaktion. JĂŒngste Fortschritte in den Bereichen Materialwissenschaft, Elektronik und Mensch-Computer-Interaktion (Human-Computer-Interaction, HCI) [so that you can later use the Englisch abbreviation] haben zur Entwicklung elektronischer GerĂ€te gefĂŒhrt, die sich direkt auf der Haut des Benutzers befinden. Diese sogenannten EpidermisgerĂ€te haben mechanische Eigenschaften, die mit der menschlichen Haut kompatibel sind: Sie sind sehr dĂŒnn, oft dĂŒnner als ein menschliches Haar; sie verformen sich elastisch, wenn sich der Körper bewegt, und dehnen sich mit der Haut des Benutzers. Diese Thesis bietet, erstens, ein konzeptionelles VerstĂ€ndnis von EpidermisgerĂ€ten in der HCI-Literatur. Wir vergleichen sie mit anderen technischen AnsĂ€tzen, die neuartige Interaktionen auf der Haut ermöglichen. Dann identifizieren wir durch eine multidisziplinĂ€re Analyse von EpidermisgerĂ€ten die Designziele und Herausforderungen, die angegangen werden mĂŒssen, um diesen aufstrebenden Forschungsbereich voranzubringen. Im Anschluss daran untersuchten wir in unserer empirischen Grundlagenforschung, wie epidermale GerĂ€te unterschiedlicher Steifigkeit die passive und aktive taktile Wahrnehmung beeinflussen. Im Allgemeinen wurde eine Korrelation zwischen der Steifigkeit des GerĂ€ts und den taktilen Empfindlichkeitsschwellen sowie der FĂ€higkeit zur Rauheitsunterscheidung festgestellt. Basierend auf diesen Ergebnissen leiten wir Designempfehlungen fĂŒr die Realisierung epidermaler GerĂ€te ab. Zweitens trĂ€gt diese Thesis zu neuartigen EpidermisgerĂ€ten bei, die eine reichhaltige Interaktion am Körper ermöglichen. SkinMarks trĂ€gt zur Herstellung und zum Design neuartiger EpidermisgerĂ€te bei, die hochgradig an die Haut angepasst sind und BerĂŒhrungs-, Quetsch- und Biegesensoren mit gleichzeitiger visueller Ausgabe ermöglichen. Diese GerĂ€te können an sehr schwierigen Körperstellen eingesetzt werden, ermöglichen neuartige Interaktionstechniken und erweitern den Designraum fĂŒr die Interaktion am Körper. Multi-Touch Skin ermöglicht hochauflösende Multi-Touch-Eingaben am Körper. Wir prĂ€sentieren die ersten nicht-rechteckigen und hochauflösenden Multi-Touch-Sensor-Overlays zur Verwendung auf der Haut und stellen ein Design-Tool vor, das solche Sensoren in benutzerdefinierten Formen und GrĂ¶ĂŸen erzeugt. Empirische Ergebnisse aus zwei technischen Evaluierungen bestĂ€tigen, dass der Sensor auf dem Körper unter verschiedenen Bedingungen ein hohes Signal-Rausch-VerhĂ€ltnis erreicht und eine hohe rĂ€umliche Auflösung aufweist, selbst wenn er starken Verformungen ausgesetzt ist. Drittens, da EpidermisgerĂ€te in Kontakt mit der Haut stehen, bieten sie die Möglichkeit, reichhaltige physiologische Signale des Körpers zu erfassen. Um diese einzigartige Eigenschaft zu nutzen, werden in dieser Arbeit Techniken zur schnellen Herstellung und zum computergestĂŒtzten Design von multimodalen EpidermisgerĂ€ten vorgestellt, die mehrere physiologische Signale des menschlichen Körpers messen können. Die mit diesen Techniken hergestellten GerĂ€te können EKG (Elektrokardiogramm), EMG (Elektromyogramm) und EDA (elektrodermale AktivitĂ€t) messen. DarĂŒber hinaus stellen wir eine computergestĂŒtzte Design- und Optimierungsmethode vor, die auf den zugrunde liegenden anatomischen Modellen des Menschen basiert, um optimierte GerĂ€tedesigns zu erstellen. Diese Designs bieten einen optimalen Kompromiss zwischen der FĂ€higkeit zur Erfassung physiologischer Signale und der GrĂ¶ĂŸe des GerĂ€ts. Das grafische Tool ermöglicht die einfache Festlegung von DesignprĂ€ferenzen und die visuelle Analyse der generierten Designs in Echtzeit, was eine Optimierung durch den Designer im laufenden Betrieb ermöglicht. Experimentelle Ergebnisse zeigen eine hohe quantitative Übereinstimmung zwischen den Vorhersagen des Optimierers und den experimentell erfassten physiologischen Daten. Schließlich skizzieren wir aus einer multidisziplinĂ€ren Perspektive einen Fahrplan fĂŒr zukĂŒnftige Forschung in diesem Bereich, indem wir die nĂ€chsten wichtigen Schritte, Möglichkeiten und Herausforderungen hervorheben. Insgesamt trĂ€gt diese Arbeit zu einem ganzheitlichen VerstĂ€ndnis von EpidermisgerĂ€ten bei: Sie liefert ein empirisches und konzeptionelles VerstĂ€ndnis sowie technische Einblicke durch BeitrĂ€ge zu DIY (Do-It-Yourself), schneller Fertigung und computergestĂŒtzten Entwurfstechniken

    Modular soft pneumatic actuator system design for compliance matching

    Get PDF
    The future of robotics is personal. Never before has technology been as pervasive as it is today, with advanced mobile electronics hardware and multi-level network connectivity pushing ĂąsmartĂą devices deeper into our daily lives through home automation systems, virtual assistants, and wearable activity monitoring. As the suite of personal technology around us continues to grow in this way, augmenting and offloading the burden of routine activities of daily living, the notion that this trend will extend to robotics seems inevitable. Transitioning robots from their current principal domain of industrial factory settings to domestic, workplace, or public environments is not simply a matter of relocation or reprogramming, however. The key differences between ĂątraditionalĂą types of robots and those which would best serve personal, proximal, human interactive applications demand a new approach to their design. Chief among these are requirements for safety, adaptability, reliability, reconfigurability, and to a more practical extent, usability. These properties frame the context and objectives of my thesis work, which seeks to provide solutions and answers to not only how these features might be achieved in personal robotic systems, but as well what benefits they can afford. I approach the investigation of these questions from a perspective of compliance matching of hardware systems to their applications, by providing methods to achieve mechanical attributes complimentary to their environment and end-use. These features are fundamental to the burgeoning field of Soft Robotics, wherein flexible, compliant materials are used as the basis for the structure, actuation, sensing, and control of complete robotic systems. Combined with pressurized air as a power source, soft pneumatic actuator (SPA) based systems offers new and novel methods of exploiting the intrinsic compliance of soft material components in robotic systems. While this strategy seems to answer many of the needs for human-safe robotic applications, it also brings new questions and challenges: What are the needs and applications personal robots may best serve? Are soft pneumatic actuators capable of these tasks, or ĂąusefulĂą work output and performance? How can SPA based systems be applied to provide complex functionality needed for operation in diverse, real-world environments? What are the theoretical and practical challenges in implementing scalable, multiple degrees of freedom systems, and how can they be overcome? I present solutions to these problems in my thesis work, elucidated through scientific design, testing and evaluation of robotic prototypes which leverage and demonstrate three key features: 1) Intrinsic compliance: provided by passive elastic and flexible component material properties, 2) Extrinsic compliance: rendered through high number of independent, controllable degrees of freedom, and 3) Complementary design: exhibited by modular, plug and play architectures which combine both attributes to achieve compliant systems. Through these core projects and others listed below I have been engaged in soft robotic technology, its application, and solutions to the challenges which are critical to providing a path forward within the soft robotics field, as well as for the future of personal robotics as a whole toward creating a better society

    Challenges in the Locomotion of Self-Reconfigurable Modular Robots

    Get PDF
    Self-Reconfigurable Modular Robots (SRMRs) are assemblies of autonomous robotic units, referred to as modules, joined together using active connection mechanisms. By changing the connectivity of these modules, SRMRs are able to deliberately change their own shape in order to adapt to new environmental circumstances. One of the main motivations for the development of SRMRs is that conventional robots are limited in their capabilities by their morphology. The promise of the field of self-reconfigurable modular robotics is to design robots that are robust, self-healing, versatile, multi-purpose, and inexpensive. Despite significant efforts by numerous research groups worldwide, the potential advantages of SRMRs have yet to be realized. A high number of degrees of freedom and connectors make SRMRs more versatile, but also more complex both in terms of mechanical design and control algorithms. Scalability issues affect these robots in terms of hardware, low-level control, and high-level planning. In this thesis we identify and target three major challenges: (i) Hardware design; (ii) Planning and control; and, (iii) Application challenges. To tackle the hardware challenges we redesigned and manufactured the Self-Reconfigurable Modular Robot Roombots to meet desired requirements and characteristics. We explored in detail and improved two major mechanical components of an SRMR: the actuation and the connection mechanisms. We also analyzed the use of compliant extensions to increase locomotion performance in terms of locomotion speed and power consumption. We contributed to the control challenge by developing new methods that allow an arbitrary SRMR structure to learn to locomote in an efficient way. We defined a novel bio-inspired locomotion-learning framework that allows the quick and reliable optimization of new gaits after a morphological change due to self-reconfiguration or human construction. In order to find new suitable application scenarios for SRMRs we envision the use of Roombots modules to create Self-Reconfigurable Robotic Furniture. As a first step towards this vision, we explored the use and control of Plug-n-Play Robotic Elements that can augment existing pieces of furniture and create new functionalities in a household to improve quality of life

    The Architecture of Soft Machines

    Get PDF
    This thesis speculates about the possibility of softening architecture through machines. In deviating from traditional mechanical conceptions of machines based on autonomous, functional and purely operational notions, the thesis proposes to conceive of machines as corporeal media in co-constituting relationships with human bodies. As machines become corporeal (robots) and human bodies take on qualities of machines (cyborgs) the thesis investigates their relations to architecture through readings of William S. Burroughs’ proto-cyborgian novel The Soft Machine (1961) and Georges Teyssot’s essay ‘Hybrid Architecture: An Environment for the Prosthetic Body’ (2005) arguing for a revision of architecture’s anthropocentric mandate in favour of technologically co-constituting body ideas. The conceptual shift in man-machine relations is also demonstrated by discussion of two installations shown at the Venice Biennale, Daniel Libeskind’s mechanical Three Lessons in Architecture (1985) and Philip Beesely’s responsive Hylozoic Ground (2010). As the purely mechanical model has been superseded by a model that incorporates digital sensing and embedded actuation, as well as soft and compliant materiality, the promise of softer, more sensitive and corporeal conceptions of technology shines onto architecture. Following Nicholas Negroponte’s ambition for a ‘humanism through machines,’ stated in his groundbreaking work, Soft Architecture Machines (1975), and inspired by recent developments in the emerging field of soft robotics, I have developed a series of practical design experiments, ranging from soft mechanical hybrids to soft machines made entirely from silicone and actuated by embedded pneumatics, to speculate about architectural environments capable of interacting with humans. In a radical departure from traditional mechanical conceptions based on modalities of assembly, the design of these types of soft machines is derived from soft organisms such as molluscs (octopi, snails, jellyfish) in order to infuse them with notions of flexibility, compliance, sensitivity, passive dynamics and spatial variability. Challenging architecture’s alliance with notions of permanence and monumentality, the thesis finally formulates a critique of static typologisation of space with walls, floors, columns or windows. In proposing an embodied architecture the thesis concludes by speculating about architecture as a capacitated, sensitive and sensual body informed by reciprocal conditioning of constituent systems, materials, morphologies and behaviours

    Ancient and historical systems

    Get PDF

    The Development of a Flexible Sensor for Continuum Soft-Bodied Robots

    Get PDF
    In this thesis, we investigate, develop, and verify an approach to sense over soft and flexible materials based on the use of a tomographic technique known as Electrical Impedance Tomography
    • 

    corecore