317,837 research outputs found

    The environmental impacts of different mask options for healthcare settings in the UK

    Get PDF
    During the COVID-19 pandemic, different strategies emerged to combat shortages of certified face masks used in the healthcare sector. These strategies included increasing production from the original manufacturing sites, commissioning new production facilities locally, exploring and allowing the reuse of single-use face masks via various decontamination methods, and developing reusable mask alternatives that meet the health and safety requirements set out in European Standards. In this article, we quantify and evaluate the life-cycle environmental impacts of selected mask options available for use by healthcare workers in the UK, with the objective of supporting decision- and policy-making. We investigate alternatives to traditional single-use face masks like surgical masks and respirators (or FFP3 masks), including cloth masks decontaminated in washing machines; FFP3 masks decontaminated via vapour hydrogen peroxide, and rigid half masks cleaned with antibacterial wipes. Our analysis demonstrates that: (1) the reuse options analysed are environmentally preferential to the traditional “use then dispose” of masks; (2) the environmental benefits increase with the number of reuses; and (3) the manufacturing location and the material composition of the masks have great influence over the life-cycle environmental impacts of each mask use option, in particular for single-use options

    Applying tropos to socio-technical system design and runtime configuration

    Get PDF
    Recent trends in Software Engineering have introduced the importance of reconsidering the traditional idea of software design as a socio-tecnical problem, where human agents are integral part of the system along with hardware and software components. Design and runtime support for Socio-Technical Systems (STSs) requires appropriate modeling techniques and non-traditional infrastructures. Agent-oriented software methodologies are natural solutions to the development of STSs, both humans and technical components are conceptualized and analyzed as part of the same system. In this paper, we illustrate a number of Tropos features that we believe fundamental to support the development and runtime reconïŹguration of STSs. Particularly, we focus on two critical design issues: risk analysis and location variability. We show how they are integrated and used into a planning-based approach to support the designer in evaluating and choosing the best design alternative. Finally, we present a generic framework to develop self-reconïŹgurable STSs

    Shape exploration in design : formalising and supporting a transformational process

    Get PDF
    The process of sketching can support the sort of transformational thinking that is seen as essential for the interpretation and reinterpretation of ideas in innovative design. Such transformational thinking, however, is not yet well supported by computer-aided design systems. In this paper, outcomes of experimental investigations into the mechanics of sketching are described, in particular those employed by practising architects and industrial designers as they responded to a series of conceptual design tasks,. Analyses of the experimental data suggest that the interactions of designers with their sketches can be formalised according to a finite number of generalised shape rules. A set of shape rules, formalising the reinterpretation and transformations of shapes, e.g. through deformation or restructuring, are presented. These rules are suggestive of the manipulations that need to be afforded in computational tools intended to support designers in design exploration. Accordingly, the results of the experimental investigations informed the development of a prototype shape synthesis system, and a discussion is presented in which the future requirements of such systems are explored

    Application of context knowledge in supporting conceptual design decision making

    Get PDF
    Conceptual design is the most important phase of the product life cycle as the decisions taken at conceptual design stage affect the downstream phases (manufacture, assembly, use, maintenance, and disposal) in terms of cost, quality and function performed by the product. This research takes a holistic view by incorporating the knowledge related to the whole context (from the viewpoint of product, user, product's life cycle and environment in which the product operates) of a design problem for the consideration of the designer to make an informed decision making at the conceptual design stage. The design context knowledge comprising knowledge from these different viewpoints is formalised and a new model and corresponding computational framework is proposed to support conceptual design decision making using this formalised context knowledge. Using a case study, this paper shows the proof of the concept by selecting one concept among different design alternatives using design context knowledge thereby proactively supporting conceptual design decision making for an informed and effective decision making

    Exploring the dynamics of compliance with community penalties

    Get PDF
    In this paper, we examine how compliance with community penalties has been theorized hitherto and seek to develop a new dynamic model of compliance with community penalties. This new model is developed by exploring some of the interfaces between existing criminological and socio-legal work on compliance. The first part of the paper examines the possible definitions and dimensions of compliance with community supervision. Secondly, we examine existing work on explanations of compliance with community penalties, supplementing this by drawing on recent socio-legal scholarship on private individuals’ compliance with tax regimes. In the third part of the paper, we propose a dynamic model of compliance, based on the integration of these two related analyses. Finally, we consider some of the implications of our model for policy and practice concerning community penalties, suggesting the need to move beyond approaches which, we argue, suffer from compliance myopia; that is, a short-sighted and narrowly focused view of the issues

    Exploring Alternatives to use Master/Slave Full Duplex Switched Ethernet for Avionics Embedded Applications

    Get PDF
    The complexity of distributed real-time systems, including military embedded applications, is increasing due to an increasing number of nodes, their functionality and higher amounts of exchanged data. This higher complexity imposes major development challenges when nonfunctional properties must be enforced. On the other hand, the current military communication networks are a generation old and are no longer effective in facing such increasingly complex requirements. A new communication network, based on Full Duplex Switched Ethernet and Master/slave approach, has been proposed previously. However, this initial approach is not efficient in terms of network bandwidth utilization. In this paper we propose two new alternative approaches that can use the network bandwidth more efficiently. In addition we provide a preliminary qualitative assessment of the three approaches concerning different factors such as performance, scalability, complexity and flexibility

    Outsourcing and acquisition models comparison related to IT supplier selection decision analysis

    Get PDF
    This paper presents a comparison of acquisition models related to decision analysis of IT supplier selection. The main standards are: Capability Maturity Model Integration for Acquisition (CMMI-ACQ), ISO / IEC 12207 Information Technology / Software Life Cycle Processes, IEEE 1062 Recommended Practice for Software Acquisition, the IT Infrastructure Library (ITIL) and the Project Management Body of Knowledge (PMBOK) guide. The objective of this paper is to compare the previous models to find the advantages and disadvantages of them for the future development of a decision model for IT supplier selection

    FLARE: A design environment for FLASH-based space applications

    Get PDF
    Designing a mass-memory device (i.e., a solid-state recorder) is one of the typical issues of mission-critical space system applications. Flash-memories could be used for this goal: a huge number of parameters and trade-offs need to be explored. Flash-memories are nonvolatile, shock-resistant and power-economic, but in turn have different drawback: e.g., their cost is higher than normal hard disk and the number of erasure cycles is bounded. Moreover space environment presents various issues especially because of radiations: different and quite often contrasting dimensions need to be explored during the design of a flash-memory based solid-state recorder. No systematic approach has so far been proposed to consider them all as a whole: as a consequence a novel design environment currently under development is aimed at supporting the design of flash-based mass-memory device for space application
    • 

    corecore