4,786 research outputs found

    Facilitating insight into a simulation model using visualization and dynamic model previews

    Get PDF
    This paper shows how model simplification, by replacing iterative steps with unitary predictive equations, can enable dynamic interaction with a complex simulation process. Model previews extend the techniques of dynamic querying and query previews into the context of ad hoc simulation model exploration. A case study is presented within the domain of counter-current chromatography. The relatively novel method of insight evaluation was applied, given the exploratory nature of the task. The evaluation data show that the trade-off in accuracy is far outweighed by benefits of dynamic interaction. The number of insights gained using the enhanced interactive version of the computer model was more than six times higher than the number of insights gained using the basic version of the model. There was also a trend for dynamic interaction to facilitate insights of greater domain importance

    SenseCluster for exploring large data repositories

    Get PDF
    Exploring and making sense of large data repositories has become a daunting task. This is especially the case for end users who often have limited access to the data due to the complexity of the retrieval process and limited availability of IT support for developing custom queries and reports based on the data. Consequently, traditional interfaces are no longer meeting these requirements. Instead, novel interfaces are required to fully support the sense making process. In this paper, we followed a design science approach and introduced a query clustering system (Sense Cluster) that could serve as a quick exploration tool for making better sense of large data repositories. We also present an evaluation of the effectiveness of our artifact using cognitive walkthroughs

    Creative search using pataphysics

    Get PDF
    This paper looks at defining, analysing and practicing how creativity can be applied to search tools. It defines creativity with respect to search and discusses how these concepts could be applied in software engineering using principles from the pseudo-philosophy of pataphysics. The aim of the proposed tool is to generate surprising, novel, humorous and provocative search results instead of purely relevant ones, in order to inspire a more creative interaction between a user, their information need and the application. A proof-of-concept prototype is described to justify the ideas presented before implications and future work are discussed

    VOICE: Visual Oracle for Interaction, Conversation, and Explanation

    Full text link
    We present VOICE, a novel approach for connecting large language models' (LLM) conversational capabilities with interactive exploratory visualization. VOICE introduces several innovative technical contributions that drive our conversational visualization framework. Our foundation is a pack-of-bots that can perform specific tasks, such as assigning tasks, extracting instructions, and generating coherent content. We employ fine-tuning and prompt engineering techniques to tailor bots' performance to their specific roles and accurately respond to user queries, and a new prompt-based iterative scene-tree generation establishes a coupling with a structural model. Our text-to-visualization method generates a flythrough sequence matching the content explanation. Finally, 3D natural language interaction provides capabilities to navigate and manipulate the 3D models in real-time. The VOICE framework can receive arbitrary voice commands from the user and responds verbally, tightly coupled with corresponding visual representation with low latency and high accuracy. We demonstrate the effectiveness and high generalizability potential of our approach by applying it to two distinct domains: analyzing three 3D molecular models with multi-scale and multi-instance attributes, and showcasing its effectiveness on a cartographic map visualization. A free copy of this paper and all supplemental materials are available at https://osf.io/g7fbr/

    Development of a geovisual analytics environment using parallel coordinates with applications to tropical cyclone trend analysis

    Get PDF
    A global transformation is being fueled by unprecedented growth in the quality, quantity, and number of different parameters in environmental data through the convergence of several technological advances in data collection and modeling. Although these data hold great potential for helping us understand many complex and, in some cases, life-threatening environmental processes, our ability to generate such data is far outpacing our ability to analyze it. In particular, conventional environmental data analysis tools are inadequate for coping with the size and complexity of these data. As a result, users are forced to reduce the problem in order to adapt to the capabilities of the tools. To overcome these limitations, we must complement the power of computational methods with human knowledge, flexible thinking, imagination, and our capacity for insight by developing visual analysis tools that distill information into the actionable criteria needed for enhanced decision support. In light of said challenges, we have integrated automated statistical analysis capabilities with a highly interactive, multivariate visualization interface to produce a promising approach for visual environmental data analysis. By combining advanced interaction techniques such as dynamic axis scaling, conjunctive parallel coordinates, statistical indicators, and aerial perspective shading, we provide an enhanced variant of the classical parallel coordinates plot. Furthermore, the system facilitates statistical processes such as stepwise linear regression and correlation analysis to assist in the identification and quantification of the most significant predictors for a particular dependent variable. These capabilities are combined into a unique geovisual analytics system that is demonstrated via a pedagogical case study and three North Atlantic tropical cyclone climate studies using a systematic workflow. In addition to revealing several significant associations between environmental observations and tropical cyclone activity, this research corroborates the notion that enhanced parallel coordinates coupled with statistical analysis can be used for more effective knowledge discovery and confirmation in complex, real-world data sets

    Development of a geovisual analytics environment using parallel coordinates with applications to tropical cyclone trend analysis

    Get PDF
    A global transformation is being fueled by unprecedented growth in the quality, quantity, and number of different parameters in environmental data through the convergence of several technological advances in data collection and modeling. Although these data hold great potential for helping us understand many complex and, in some cases, life-threatening environmental processes, our ability to generate such data is far outpacing our ability to analyze it. In particular, conventional environmental data analysis tools are inadequate for coping with the size and complexity of these data. As a result, users are forced to reduce the problem in order to adapt to the capabilities of the tools. To overcome these limitations, we must complement the power of computational methods with human knowledge, flexible thinking, imagination, and our capacity for insight by developing visual analysis tools that distill information into the actionable criteria needed for enhanced decision support. In light of said challenges, we have integrated automated statistical analysis capabilities with a highly interactive, multivariate visualization interface to produce a promising approach for visual environmental data analysis. By combining advanced interaction techniques such as dynamic axis scaling, conjunctive parallel coordinates, statistical indicators, and aerial perspective shading, we provide an enhanced variant of the classical parallel coordinates plot. Furthermore, the system facilitates statistical processes such as stepwise linear regression and correlation analysis to assist in the identification and quantification of the most significant predictors for a particular dependent variable. These capabilities are combined into a unique geovisual analytics system that is demonstrated via a pedagogical case study and three North Atlantic tropical cyclone climate studies using a systematic workflow. In addition to revealing several significant associations between environmental observations and tropical cyclone activity, this research corroborates the notion that enhanced parallel coordinates coupled with statistical analysis can be used for more effective knowledge discovery and confirmation in complex, real-world data sets

    Semantic Similarity of Spatial Scenes

    Get PDF
    The formalization of similarity in spatial information systems can unleash their functionality and contribute technology not only useful, but also desirable by broad groups of users. As a paradigm for information retrieval, similarity supersedes tedious querying techniques and unveils novel ways for user-system interaction by naturally supporting modalities such as speech and sketching. As a tool within the scope of a broader objective, it can facilitate such diverse tasks as data integration, landmark determination, and prediction making. This potential motivated the development of several similarity models within the geospatial and computer science communities. Despite the merit of these studies, their cognitive plausibility can be limited due to neglect of well-established psychological principles about properties and behaviors of similarity. Moreover, such approaches are typically guided by experience, intuition, and observation, thereby often relying on more narrow perspectives or restrictive assumptions that produce inflexible and incompatible measures. This thesis consolidates such fragmentary efforts and integrates them along with novel formalisms into a scalable, comprehensive, and cognitively-sensitive framework for similarity queries in spatial information systems. Three conceptually different similarity queries at the levels of attributes, objects, and scenes are distinguished. An analysis of the relationship between similarity and change provides a unifying basis for the approach and a theoretical foundation for measures satisfying important similarity properties such as asymmetry and context dependence. The classification of attributes into categories with common structural and cognitive characteristics drives the implementation of a small core of generic functions, able to perform any type of attribute value assessment. Appropriate techniques combine such atomic assessments to compute similarities at the object level and to handle more complex inquiries with multiple constraints. These techniques, along with a solid graph-theoretical methodology adapted to the particularities of the geospatial domain, provide the foundation for reasoning about scene similarity queries. Provisions are made so that all methods comply with major psychological findings about people’s perceptions of similarity. An experimental evaluation supplies the main result of this thesis, which separates psychological findings with a major impact on the results from those that can be safely incorporated into the framework through computationally simpler alternatives
    corecore