762,258 research outputs found

    Optimization of patch antennas via multithreaded simulated annealing based design exploration

    Get PDF
    In this paper, we present a new software framework for the optimization of the design of microstrip patch antennas. The proposed simulation and optimization framework implements a simulated annealing algorithm to perform design space exploration in order to identify the optimal patch antenna design. During each iteration of the optimization loop, we employ the popular MEEP simulation tool to evaluate explored design solutions. To speed up the design space exploration, the software framework is developed to run multiple MEEP simulations concurrently. This is achieved using multithreading to implement a manager-workers execution strategy. The number of worker threads is the same as the number of cores of the computer that is utilized. Thus, the computational runtime of the proposed software framework enables effective design space exploration. Simulations demonstrate the effectiveness of the proposed software framework

    A voyage to Mars: A challenge to collaboration between man and machines

    Get PDF
    A speech addressing the design of man machine systems for exploration of space beyond Earth orbit from the human factors perspective is presented. Concerns relative to the design of automated and intelligent systems for the NASA Space Exploration Initiative (SEI) missions are largely based on experiences with integrating humans and comparable systems in aviation. The history, present status, and future prospect, of human factors in machine design are discussed in relation to a manned voyage to Mars. Three different cases for design philosophy are presented. The use of simulation is discussed. Recommendations for required research are given

    Multiobjective Design Exploration in Space Engineering

    Get PDF

    Exploring Design Dimensions in Flash-based Mass-memory Devices

    Get PDF
    Mission-critical space system applications present several issues: a typical one is the design of a mass-memory device (i.e., a solid- state recorder). This goal could be accomplished by using flash- memories: the exploration of a huge number of parameters and trade-offs is needed. On the one hand flash-memories are nonvolatile, shock-resistant and power-economic, but on the other hand their cost is higher than normal hard disk, the number of erasure cycles is bounded and other different drawbacks have to be considered. In addition space environment presents various issues especially because of radiations: the design of a flash- memory based solid-state recorder implies the exploration of different and quite often contrasting dimensions. No systematic approach has so far been proposed to consider them all as a whole: as a consequence the design of flash-based mass-memory device for space applications is intended to be supported by a novel design environment currently under development and refinemen

    Multi-objective robust concept exploration within the made-to-order sector

    Get PDF
    Concept exploration is an activity of fundamental importance when designing large, complex made-to-order engineering products. At the concept design stage of the design process, it is essential that many design alternatives are evaluated. In the case of large made-to-order products, the evaluation of a particular design can be both complicated and time consuming. Under these circumstances, designers often resort to the use of concept design models enabling both a reduction in complexity and time for evaluation. Stochastic optimisation methods are then typically used to explore the design space facilitating the selection of optimum or near optimum designs. These optimisation methods can however increase the concept exploration time considerably due to their often random search manner. The objective of this work is therefore to produce a generic framework that would enable a designer to efficiently explore the design space within the MTO domain facilitating the selection of robust designs

    The application of multi-objective robust design methods in ship design

    Get PDF
    When designing large complex vessels, the evaluation of a particular design can be both complicated and time consuming. Designers often resort to the use of concept design models enabling both a reduction in complexity and time for evaluation. Various optimisation methods are then typically used to explore the design space facilitating the selection of optimum or near optimum designs. It is now possible to incorporate considerations of seakeeping, stability and costs at the earliest stage in the ship design process. However, to ensure that reliable results are obtained, the models used are generally complex and computationally expensive. Methods have been developed which avoid the necessity to carry out an exhaustive search of the complete design space. One such method is described which is concerned with the application of the theory of Design Of Experiments (DOE) enabling the design space to be efficiently explored. The objective of the DOE stage is to produce response surfaces which can then be used by an optimisation module to search the design space. It is assumed that the concept exploration tool whilst being a simplification of the design problem, is still sufficiently complicated to enable reliable evaluations of a particular design concept. The response surface is used as a representation of the concept exploration tool, and by it's nature can be used to rapidly evaluate a design concept hence reducing concept exploration time. While the methodology has a wide applicability in ship design and production, it is illustrated by its application to the design of a catamaran with respect to seakeeping. The paper presents results exploring the design space for the catamaran. A concept is selected which is robust with respect to the Relative Bow Motion (RBM), the heave, pitch and roll at any particular waveheading. The design space is defined by six controllable design parameters; hull length, breadth to draught ratio, distance between demihull centres, coefficient of waterplane, longitudinal centre of floatation, longitudinal centre of buoyancy, and by one noise parameter, the waveheading. A Pareto-optimal set of solutions is obtained using RBM, heave, pitch and roll as criteria. The designer can then select from this set the design which most closely satisfies their requirements. Typical solutions are shown to yield average reductions of over 25% in the objective functions when compared to earlier results obtained using conventional optimisation methods

    Wire mesh design

    Get PDF
    We present a computational approach for designing wire meshes, i.e., freeform surfaces composed of woven wires arranged in a regular grid. To facilitate shape exploration, we map material properties of wire meshes to the geometric model of Chebyshev nets. This abstraction is exploited to build an efficient optimization scheme. While the theory of Chebyshev nets suggests a highly constrained design space, we show that allowing controlled deviations from the underlying surface provides a rich shape space for design exploration. Our algorithm balances globally coupled material constraints with aesthetic and geometric design objectives that can be specified by the user in an interactive design session. In addition to sculptural art, wire meshes represent an innovative medium for industrial applications including composite materials and architectural façades. We demonstrate the effectiveness of our approach using a variety of digital and physical prototypes with a level of shape complexity unobtainable using previous methods
    • 

    corecore