99 research outputs found

    Inferring Regulatory Networks from Expression Data Using Tree-Based Methods

    Get PDF
    One of the pressing open problems of computational systems biology is the elucidation of the topology of genetic regulatory networks (GRNs) using high throughput genomic data, in particular microarray gene expression data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM) challenge aims to evaluate the success of GRN inference algorithms on benchmarks of simulated data. In this article, we present GENIE3, a new algorithm for the inference of GRNs that was best performer in the DREAM4 In Silico Multifactorial challenge. GENIE3 decomposes the prediction of a regulatory network between p genes into p different regression problems. In each of the regression problems, the expression pattern of one of the genes (target gene) is predicted from the expression patterns of all the other genes (input genes), using tree-based ensemble methods Random Forests or Extra-Trees. The importance of an input gene in the prediction of the target gene expression pattern is taken as an indication of a putative regulatory link. Putative regulatory links are then aggregated over all genes to provide a ranking of interactions from which the whole network is reconstructed. In addition to performing well on the DREAM4 In Silico Multifactorial challenge simulated data, we show that GENIE3 compares favorably with existing algorithms to decipher the genetic regulatory network of Escherichia coli. It doesn't make any assumption about the nature of gene regulation, can deal with combinatorial and non-linear interactions, produces directed GRNs, and is fast and scalable. In conclusion, we propose a new algorithm for GRN inference that performs well on both synthetic and real gene expression data. The algorithm, based on feature selection with tree-based ensemble methods, is simple and generic, making it adaptable to other types of genomic data and interactions

    Random Forests Based Group Importance Scores and Their Statistical Interpretation: Application for Alzheimer's Disease

    Get PDF
    Machine learning approaches have been increasingly used in the neuroimaging field for the design of computer-aided diagnosis systems. In this paper, we focus on the ability of these methods to provide interpretable information about the brain regions that are the most informative about the disease or condition of interest. In particular, we investigate the benefit of group-based, instead of voxel-based, analyses in the context of Random Forests. Assuming a prior division of the voxels into non overlapping groups (defined by an atlas), we propose several procedures to derive group importances from individual voxel importances derived from Random Forests models. We then adapt several permutation schemes to turn group importance scores into more interpretable statistical scores that allow to determine the truly relevant groups in the importance rankings. The good behaviour of these methods is first assessed on artificial datasets. Then, they are applied on our own dataset of FDG-PET scans to identify the brain regions involved in the prognosis of Alzheimer's disease

    Importance measures derived from random forests: characterisation and extension

    Full text link
    Nowadays new technologies, and especially artificial intelligence, are more and more established in our society. Big data analysis and machine learning, two sub-fields of artificial intelligence, are at the core of many recent breakthroughs in many application fields (e.g., medicine, communication, finance, ...), including some that are strongly related to our day-to-day life (e.g., social networks, computers, smartphones, ...). In machine learning, significant improvements are usually achieved at the price of an increasing computational complexity and thanks to bigger datasets. Currently, cutting-edge models built by the most advanced machine learning algorithms typically became simultaneously very efficient and profitable but also extremely complex. Their complexity is to such an extent that these models are commonly seen as black-boxes providing a prediction or a decision which can not be interpreted or justified. Nevertheless, whether these models are used autonomously or as a simple decision-making support tool, they are already being used in machine learning applications where health and human life are at stake. Therefore, it appears to be an obvious necessity not to blindly believe everything coming out of those models without a detailed understanding of their predictions or decisions. Accordingly, this thesis aims at improving the interpretability of models built by a specific family of machine learning algorithms, the so-called tree-based methods. Several mechanisms have been proposed to interpret these models and we aim along this thesis to improve their understanding, study their properties, and define their limitations

    Building an automated platform for the classification of peptides/proteins using machine learning

    Get PDF
    Dissertação de mestrado em BioinformaticsOne of the challenging problems in bioinformatics is to computationally characterize sequences, structures and functions of proteins. Sequence-derived structural and physico-chemical properties of proteins have been used in the development of machine learning models in protein related problems. However, tools and platforms to calculate features and perform Machine learning (ML) with proteins are scarce and have their limitations in terms of effectiveness, user-friendliness and capacity. Here, a generic modular automated platform for the classification of proteins based on their physicochemical properties using different ML algorithms is proposed. The tool developed, as a Python package, facilitates the major tasks of ML and includes modules to read and alter sequences, calculate protein features, preprocess datasets, execute feature reduction and selection, perform clustering, train and optimize ML models and make predictions. As it is modular, the user retains the power to alter the code to fit specific needs. This platform was tested to predict membrane active anticancer and antimicrobial peptides and further used to explore viral fusion peptides. Membrane-interacting peptides play a crucial role in several biological processes. Fusion peptides are a subclass found in enveloped viruses, that are particularly relevant for membrane fusion. Determining what are the properties that characterize fusion peptides and distinguishing them from other proteins is a very relevant scientific question with important technological implications. Using three different datasets composed by well annotated sequences, different feature extraction techniques and feature selection methods (resulting in a total of over 20 datasets), seven ML models were trained and tested, using cross validation for error estimation and grid search for model selection. The different models, feature sets and feature selection techniques were compared. The best models obtained for distinct metric were then used to predict the location of a known fusion peptide in a protein sequence from the Dengue virus. Feature importances were also analysed. The models obtained will be useful in future research, also providing a biological insight of the distinctive physicochemical characteristics of fusion peptides. This work presents a freely available tool to perform ML-based protein classification and the first global analysis and prediction of viral fusion peptides using ML, reinforcing the usability and importance of ML in protein classification problems.Um dos problemas mais desafiantes em bioinformática é a caracterização de sequências, estruturas e funções de proteínas. Propriedades físico-químicas e estruturais derivadas da sequêcia proteica têm sido utilizadas no desenvolvimento de modelos de aprendizagem máquina (AM). No entanto, ferramentas para calcular estes atributos são escassas e têm limitações em termos de eficiência, facilidade de uso e capacidade de adaptação a diferentes problemas. Aqui, é descrita uma plataforma modular genérica e automatizada para a classificação de proteínas com base nas suas propriedades físico-químicas, que faz uso de diferentes algoritmos de AM. A ferramenta desenvolvida facilita as principais tarefas de AM e inclui módulos para ler e alterar sequências, calcular atributos de proteínas, realizar pré-processamento de dados, fazer redução e seleção de features, executar clustering, criar modelos de AM e fazer previsões. Como é construído de forma modular, o utilizador mantém o poder de alterar o código para atender às suas necessidades específicas. Esta plataforma foi testada com péptidos anticancerígenos e antimicrobianos e foi ainda utilizada para explorar péptidos de fusão virais. Os péptidos de fusão são uma classe de péptidos que interagem com a membrana, encontrados em vírus encapsulados e que são particularmente relevantes para a fusão da membrana do vírus com a membrana do hospedeiro. Determinar quais são as propriedades que os caracterizam é uma questão científica muito relevante, com importantes implicações tecnológicas. Usando três conjuntos de dados diferentes compostos por sequências bem anotadas, quatro técnicas diferentes de extração de features e cinco métodos diferentes de seleção de features (num total de 24 conjuntos de dados testados), sete modelos de AM, com validação cruzada de io vezes e uma abordagem de pesquisa em grelha, foram treinados e testados. Os melhores modelos obtidos, com avaliações MCC entre 0,7 e o,8 e precisão entre 0,85 e 0,9, foram utilizados para prever a localização de um péptido de fusão conhecido numa sequência da proteína de fusão do vírus do Dengue. Os modelos obtidos para prever a localização do péptido de fusão são úteis em pesquisas futuras, fornecendo também uma visão biológica das características físico-químicas distintivas dos mesmos. Este trabalho apresenta uma ferramenta disponível gratuitamente para realizar a classificação de proteínas com AM e a primeira análise global de péptidos de fusão virais usando métodos baseados em AM, reforçando a usabilidade e a importância da AM em problemas de classificação de proteínas

    Plasma Protein Profiling Reveals Protein Clusters Related to BMI and Insulin Levels in Middle-Aged Overweight Subjects

    Get PDF
    Biomarkers that allow detection of the onset of disease are of high interest since early detection would allow intervening with lifestyle and nutritional changes before the disease is manifested and pharmacological therapy is required. Our study aimed to improve the phenotypic characterization of overweight but apparently healthy subjects and to identify new candidate profiles for early biomarkers of obesity-related diseases such as cardiovascular disease and type 2 diabetes

    A statistical and machine learning approach to the study of astrochemistry

    Get PDF
    This thesis uses a variety of statistical and machine learning techniques to provide new insight into astrochemical processes. Astrochemistry is the study of chemistry in the universe. Due to the highly non-linear nature of a variety of competing factors, it is often difficult to understand the impact of any individual parameter on the abundance of molecules of interest. It is for this reason we present a number of techniques that provide insight. Chapter 2 is a chemical modelling study that considers the sensitivity of a glycine chemical network to the addition of two H2 addition reactions across a number of physical environments. This work considers the concept of a ``hydrogen economy" within the context of chemical reaction networks and demonstrates that H2 decreases the abundance of glycine, one of the simplest amino acids, as well as its precursors. Chapter 3 considers a methodology that involves utilising the topology of a chemical network in order to accelerate the Bayesian inference problem by reducing the dimensionality of the parameters to be inferred at once. We demonstrate that a network can be simplified as well as split into smaller pieces for the inference problem by using a toy network. Chapter 4 considers how the dimensionality can be simplified by exploiting the physics of the underlying chemical reaction mechanisms. We do this by realising that the most pertinent reaction rate parameter is the binding energy of the more mobile species. This significantly reduces the dimensionality of the problem we have to solve. Chapter 5 builds on the work done in Chapters 3 and 4. The MOPED algorithm is utilised to identify which species should be prioritised for detection in order to reduce the variance of our binding energy posterior distributions. Chapter 6 introduces the use of machine learning interpretability to provide better insights into the relationships between the physical input parameters of a chemical code and the final abundances of various species. By identifying the relative importance of various parameters and quantifying this, we make qualitative comparisons to observations and demonstrate good agreement. Chapter 7 uses the same methods as in Chapters 4, 5 and 6 in light of new JWST observations. The relationship between binding energies and the abundances of species is also explored using machine learning interpretability techniques

    Leveraging a machine learning based predictive framework to study brain-phenotype relationships

    Get PDF
    An immense collective effort has been put towards the development of methods forquantifying brain activity and structure. In parallel, a similar effort has focused on collecting experimental data, resulting in ever-growing data banks of complex human in vivo neuroimaging data. Machine learning, a broad set of powerful and effective tools for identifying multivariate relationships in high-dimensional problem spaces, has proven to be a promising approach toward better understanding the relationships between the brain and different phenotypes of interest. However, applied machine learning within a predictive framework for the study of neuroimaging data introduces several domain-specific problems and considerations, leaving the overarching question of how to best structure and run experiments ambiguous. In this work, I cover two explicit pieces of this larger question, the relationship between data representation and predictive performance and a case study on issues related to data collected from disparate sites and cohorts. I then present the Brain Predictability toolbox, a soft- ware package to explicitly codify and make more broadly accessible to researchers the recommended steps in performing a predictive experiment, everything from framing a question to reporting results. This unique perspective ultimately offers recommen- dations, explicit analytical strategies, and example applications for using machine learning to study the brain

    Deep Learning Reconstruction of the Muon Signal Fraction for Mass Composition Studies with AugerPrime

    Get PDF
    • …
    corecore