118 research outputs found

    Evaluation Study for Delay and Link Utilization with the New-Additive Increase Multiplicative Decrease Congestion Avoidance and Control Algorithm

    Get PDF
    As the Internet becomes increasingly heterogeneous, the issue of congestion avoidance and control becomes ever more important. And the queue length, end-to-end delays and link utilization is some of the important things in term of congestion avoidance and control mechanisms. In this work we continue to study the performances of the New-AIMD (Additive Increase Multiplicative Decrease) mechanism as one of the core protocols for TCP congestion avoidance and control algorithm, we want to evaluate the effect of using the AIMD algorithm after developing it to find a new approach, as we called it the New-AIMD algorithm to measure the Queue length, delay and bottleneck link utilization, and use the NCTUns simulator to get the results after make the modification for the mechanism. And we will use the Droptail mechanism as the active queue management mechanism (AQM) in the bottleneck router. After implementation of our new approach with different number of flows, we expect the delay will less when we measure the delay dependent on the throughput for all the system, and also we expect to get end-to-end delay less. And we will measure the second type of delay a (queuing delay), as we shown in the figure 1 bellow. Also we will measure the bottleneck link utilization, and we expect to get high utilization for bottleneck link with using this mechanism, and avoid the collisions in the link

    Congestion control protocols in wireless sensor networks: A survey

    Get PDF
    The performance of wireless sensor networks (WSN) is affected by the lossy communication medium, application diversity, dense deployment, limited processing power and storage capacity, frequent topology change. All these limitations provide significant and unique design challenges to data transport control in wireless sensor networks. An effective transport protocol should consider reliable message delivery, energy-efficiency, quality of service and congestion control. The latter is vital for achieving a high throughput and a long network lifetime. Despite the huge number of protocols proposed in the literature, congestion control in WSN remains challenging. A review and taxonomy of the state-of-the-art protocols from the literature up to 2013 is provided in this paper. First, depending on the control policy, the protocols are divided into resource control vs. traffic control. Traffic control protocols are either reactive or preventive (avoiding). Reactive solutions are classified following the reaction scale, while preventive solutions are split up into buffer limitation vs. interference control. Resource control protocols are classified according to the type of resource to be tuned. © 2014 IEEE

    Random Access Scheduling without Message Passing: A Collision-based AIMD Approach

    Get PDF
    Department of Computer EngineeringWireless scheduling has been extensively studied in the literature. Since Maximum Weighted Scheduling has been developed and shown to achieve the optimal performance, there have been many efforts to overcome its complexity issue. Random access has attracted much attention due to its potential for low complexity and distributed control, which are desirable for scheduling in multi-hop wireless networks. Although several interesting random access scheduling schemes have been shown to be provably efficient, they suffer in practice from high packet delays or severe performance degradation due to the control overhead to exchange information between neighboring links. In this paper, we develop a novel random access scheduling scheme that does not need message passing. We pay attention to the interplay between the links and control their access probabilities targeting at a certain collision rate. We employ the Additive Increase Multiplicative Decrease (AIMD) algorithm for convergence, and show that our proposed scheme can achieve the same performance bound as the previous random access schemes with high control overhead. We verify our results through simulations and show that our proposed scheme achieves the performance close to that of the centralized greedy algorithm.ope

    Additive increase rate accelerator

    Get PDF
    Abstract. We propose AIRA, an Additive Increase Rate Accelerator. AIRA extends AIMD functionality towards adaptive increase rates, depending on the level of network contention and bandwidth availability. In this context, acceleration grows when resource availability is detected by goodput/throughput measurements and slows down when increased throughput does not translate into increased goodput as well. Thus, the gap between throughput and goodput determines the behavior of the rate accelerator. We study the properties of the extended model and propose, based on analysis and simulation, appropriate rate decrease and increase rules. Furthermore, we study conditional rules to guarantee operational success even in the presence of symptomatic, extra-ordinary events. We show that analytical rules can be derived for accelerating, either positively or negatively, the increase rate of AIMD in accordance with network dynamics. Indeed, we find that the "blind", fixed Additive Increase rule can become an obstacle for the performance of TCP, especially when contention increases. Instead, sophisticated, contention-aware additive increase rates may preserve system stability and reduce retransmission effort, without reducing the goodput performance of TCP

    A genetic algorithm for the design of a fuzzy controller for active queue management

    Get PDF
    Active queue management (AQM) policies are those policies of router queue management that allow for the detection of network congestion, the notification of such occurrences to the hosts on the network borders, and the adoption of a suitable control policy. This paper proposes the adoption of a fuzzy proportional integral (FPI) controller as an active queue manager for Internet routers. The analytical design of the proposed FPI controller is carried out in analogy with a proportional integral (PI) controller, which recently has been proposed for AQM. A genetic algorithm is proposed for tuning of the FPI controller parameters with respect to optimal disturbance rejection. In the paper the FPI controller design metodology is described and the results of the comparison with random early detection (RED), tail drop, and PI controller are presented

    Challenges on the way of implementing TCP over 5G networks

    Get PDF
    5G cellular communication, especially with its hugely available bandwidth provided by millimeter-wave, is a promising technology to fulfill the coming high demand for vast data rates. These networks can support new use cases such as Vehicle to Vehicle and augmented reality due to its novel features such as network slicing along with the mmWave multi-gigabit-per-second data rate. Nevertheless, 5G cellular networks suffer from some shortcomings, especially in high frequencies because of the intermittent nature of channels when the frequency rises. Non-line of sight state, is one of the significant issues that the new generation encounters. This drawback is because of the intense susceptibility of higher frequencies to blockage caused by obstacles and misalignment. This unique characteristic can impair the performance of the reliable transport layer widely deployed protocol, TCP, in attaining high throughput and low latency throughout a fair network. As a result, the protocol needs to adjust the congestion window size based on the current situation of the network. However, TCP is not able to adjust its congestion window efficiently, and it leads to throughput degradation of the protocol. This paper presents a comprehensive analysis of reliable end-to-end communications in 5G networks. It provides the analysis of the effects of TCP in 5G mmWave networks, the discussion of TCP mechanisms and parameters involved in the performance over 5G networks, and a survey of current challenges, solutions, and proposals. Finally, a feasibility analysis proposal of machine learning-based approaches to improve reliable end-to-end communications in 5G networks is presented.This work was supported by the Secretaria d’Universitats i Recerca del Departament d’Empresa i Coneixement de la Generalitat de Catalunya under Grant 2017 SGR 376.Peer ReviewedPostprint (published version
    corecore