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Abstract 

 

Wireless scheduling has been extensively studied in the literature. Since MaximumWeighted 

Scheduling has been developed and shown to achieve the optimal performance, there have been many 

efforts to overcome its complexity issue. Random access has attracted much attention due to its potential 

for low complexity and distributed control, which are desirable for scheduling in multi-hop wireless 

networks. Although several interesting random access scheduling schemes have been shown to be 

provably efficient, they suffer in practice from high packet delays or severe performance degradation 

due to the control overhead to exchange information between neighboring links. In this paper, we 

develop a novel random access scheduling scheme that does not need message passing. We pay 

attention to the interplay between the links and control their access probabilities targeting at a certain 

collision rate. We employ the Additive Increase Multiplicative Decrease (AIMD) algorithm for 

convergence, and show that our proposed scheme can achieve the same performance bound as the 

previous random access schemes with high control overhead. We verify our results through simulations 

and show that our proposed scheme achieves the performance close to that of the centralized greedy 

algorithm. 
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Ⅰ. INTRODUCTION 

Scheduling in wireless networks is a process of granting users access to shared medium for 

transmission. Within the same frequency channel, simultaneous transmissions from multiple nodes may 

cause mutual interference if they are close to each other, in which case, none can transmit data at an 

acceptable rate, resulting in a collision. On the other hand, multiple sender-receiver pairs can 

successfully transmit at the same time, provided that they are sufficiently distant from each other, which 

can significantly improve the spectrum efficiency. We denote a set of the links that consists of non-

interfering transmissions by a feasible schedule, and define the wireless scheduling problem as finding 

a sequence of feasible schedules that maximize the network performance. 

Developing an optimal scheduling solution is a difficult task due to the non-linear, non-convex 

property of wireless interference. It has been known that Maximum Weighted Scheduling (MWS) 

achieves the optimal throughput by selecting the feasible schedule that maximizes the queue weighted 

rate sum [5]. However, it requires a centralized control with high computational complexity. In the 

primary interference model, where two links sharing a node cannot make simultaneous transmissions, 

the scheduling decision process that finds the schedule of the maximum queue weighted rate sum has 

O(|V|3) complexity, where |V| denotes the number of nodes, and it is an NP-Hard problem in general 

[1]. 

There have been several efforts to achieve throughput optimality with lower complexity. A family of 

scheduling schemes called Pick-and-Compare randomly pick a feasible schedule and compare it with 

the previous schedule, and choose the better one as the next schedule [14], [15], [16]. They are shown 

to be throughput optimal with O(1) complexity. However, they need frequent exchanges of control 

messages across the network to compare the performance, which often will result in substantial 

performance degradation in practice. 

Recently, optimal scheduling solutions without message passing have been developed by exploiting 

the carrier-sensing technique. Continuous-time Carrier-Sensing Multiple Access (CSMA) scheduling 

scheme [2] operates without control messages and finds the optimal distribution of feasible schedules 

by exploiting the Glauber dynamics. An important weakness of the continuous-time CSMA is the 

assumption of perfect carrier-sensing, under which a link can sense the signal transmission of its 

neighbor and suppress its transmission immediately, so that there is no collision. Such an assumption 

is, however, infeasible since a few microseconds delay in the hardware and the signal propagation delay 

is unavoidable in practice. Ni et al. have developed Q-CSMA that achieves the same optimal distribution 

of feasible schedules as the continuous CSMA, but operates in discrete-time systems without the 

assumption of the perfect carrier-sensing [3]. Although Q-CSMA also achieves the optimal throughput, 
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it needs again the control message passing, and empirically suffer from poor delay performance for the 

convergence to the optimal distribution, which will hinder its practical use. 

There have been another effort to reduce the complexity and to develop provably efficient scheduling 

solutions that are amenable to distributed implementation, leading to the development of the Constant-

time scheduling schemes [6], [7], [8], [9]. These ALOHA-like adaptive scheduling schemes let each 

link randomly access the shared medium based on the information it collects from its neighborhood by 

passing control messages. They are shown to achieve a fraction of the optimal throughput and provide 

an explicit trade-off between the complexity and the throughput performance. Although they can be 

implemented in a distributed fashion and empirically achieve high spectrum efficiency, the requirement 

of explicit message passing may cause a significant amount of overhead and thus substantially degrade 

the overall performance [7]. 

In more practical settings, IEEE 802.11 DCF that controls contention using the backoff timer has 

been studied to achieve the optimal throughput and the fairness. Under the principle that the links in the 

same contention domain should have an identical backoff time, the authors in [13] have proposed to 

copy the backoff time of a station to the others in the contention domain. In single-hop networks, several 

studies has shown that the optimal backoff time can be obtained by estimating the number of contending 

links. In [17], channel idle time and collision probability have been used to estimate the network size. 

In [18], Additive Increase and Multiplicative Decrease (AIMD) algorithm based on the idle event during 

the half of the contention period has been employed to estimate the number of contending links. In [19], 

the number of idle slots before a transmission has been used for the AIMD algorithm to estimate the 

number of contending links. The aforementioned results, however, are limited to single-hop scenarios, 

and their performance in multi-hop environment remains unclear. 

Also, researches under the condition of the availability of multi-packet transmission/reception using 

multiple antenna systems have been studied. In [27], the authors have suggested the backoff algorithms 

for IEEE 802.11 using multi-packet reception, which maximize the system throughput. For maximizing 

the throughput of an 802.11 network, the minimum contention window when simultaneous 

communications through a number of directional/smart antennas is enabled has been studied in [25]. In 

[26], a MAC layer protocol has been proposed through the analytic research about the problems in IEEE 

802.11ac WLANs caused by the nervous bandwidth resources. 

In this work, we develop distributed scheduling schemes that achieve high throughput performance 

in multi-hop wireless networks. Based on passively collected information, our proposed schemes adjust 

the channel access probability in an AIMD manner without message passing. Our main contribution 

can be summarized as follows: 

 We develop distributed scheduling schemes that adjust the attempt probability dynamically 
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with neither control message exchanges nor a priori knowledge of the traffic information. 

Unlike the previous works, we do not set the attempt probability from the estimation on the 

number of interfering neighbors. Instead, we try to meet a target collision probability. 

 We show that under a mild assumption our proposed solution can theoretically achieve 
1

Δ
 

fraction of the optimal throughput, where Δ denotes the interference degree. 

 We verify the performance of our scheduling schemes and show that they achieve high 

performance comparable to the state-of-the-art distributed scheduling schemes with message 

passing through a number of simulations. 

This paper is organized as follows. We describe our system model in Section Ⅱ. We explain the 

motivation of our work and develop a novel distributed random-access scheduling in Section Ⅲ. The 

proposed scheme is extended to the case with multiple contention opportunities in Section Ⅳ. We 

evaluate our schemes through simulations in comparison with the state-of-the-art distributed schedulers 

in Section Ⅴ, and we conclude in Section Ⅵ. 

 

Ⅱ. SYSTEM MODEL 

We consider a multi-hop wireless network graph 𝐺 = (𝑉, 𝐸) with the set 𝑉 of nodes and the set 𝐸 

of links. We assume that time is slotted, and a single frequency channel is shared by all the links. We 

consider the primary (or 1-hop) interference model, where any two links within 1-hop distance cannot 

transmit at the same time due to the mutual interference between them. Such two links are called a 

neighbor of each other. If any two neighboring links transmit simultaneously, a collision occurs and 

both transmissions will fail. Let 𝑁𝑙  denote the set of neighbors of link 𝑙 excluding itself, and let 

𝑁𝑙
+ ≔ 𝑁𝑙 ∪ {𝑙}. Also, let Δ𝑙 denote the largest number of mutually non-interfering links in 𝑁𝑙

+, and 

let Δ denote the interference degree defined as Δ ≔ max
𝑙∈𝐸

Δ𝑙. For instance, we have Δ = 2 under the 

primary interference model. Our result can be easily extended to more general 𝐾-hop interference 

models that define the link within 𝐾-hop distance as an interfering neighbor. 

Let 𝐴𝑙(𝑡) be the number of packet arrivals at the beginning of time slot 𝑡 at link 𝑙, 𝜆𝑙 denote the 

mean arrival rate, i.e., 𝜆𝑙 ≔ 𝐸[𝐴𝑙(𝑡)], and 𝜆 denote its vector. Let 𝐷𝑙(𝑡) denote the actual number 

of packet departures from the queue of link 𝑙. Let 𝑐𝑙 denote the capacity of link 𝑙 when it makes a 

successful transmission. In this work, we assume unit link capacity, i.e., 𝑐𝑙 = 1, but our results can be 

easily extended to the case of different link rates. The queue length 𝑄𝑙 of link 𝑙 evolves as 
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 𝑄𝑙(𝑡 + 1) = 𝑄𝑙(𝑡) + 𝐴𝑙(𝑡) − 𝐷𝑙(𝑡). (1) 

In the sequel, we omit the time slot index 𝑡 if there is no confusion. 

The network is said to be stable when all the queues remain finite (or stable), or the packet arrival 

rate is less than the service rate 𝜆𝑙 < 𝐸[𝐷𝑙(𝑡)] for all 𝑙 ∈ 𝐸. The capacity region Λ is defined as the 

set of arrival rates that can be supported by some scheduling scheme. We measure the throughput 

performance of a scheduling scheme by the efficiency ratio defined as the largest fraction γ of the 

capacity region such that the scheduling scheme can stabilize the network for 𝛾𝜆 for all 𝜆 ∈ Λ. If 𝛾 =

1, the scheduling scheme achieves the capacity region and it is said to be throughput optimal. 

We divide a time slot into two periods: a scheduling period and a data transmission period. During 

the scheduling period, the scheduling scheme makes a decision about which set of non-interfering links 

will be active. Then the links in the chosen set transmit data during the transmission period. 

In this work, we pay attention to random access scheduling due to its potential for low complexity 

and distributed control. In particular, we consider the following generic random access scheduler. 

 During the scheduling period, each link 𝑙 attempts the transmission of RTS (Request-To-

Send) in a probabilistic manner, and the links which made the successful attempt (i.e., received 

CTS (Clear-To-Send)) transmit data during the transmission period. 

Due to the randomness, it is possible for more than two neighboring links to attempt at the same time, 

in which case, a collision occurs and neither links can transmit data during the transmission period. 

Thus an appropriate setting of the attempt probability Pl is the key to achieving high performance: too 

small 𝑃𝑙 reduces the spatial spectrum reuses and too large 𝑃𝑙 will result in the waste of resource due 

to collisions. 

It has been known that the state-of-the-art random access schemes [6], [7], [8] can guarantee up to 
1

Δ
 

fraction of the optimal throughput under the 𝐾-hop interference model, and empirically achieve a near-

optimal performance. Such schemes, however, have a common weakness – they require that each link 

collect the information of its neighboring links (e.g., queue length) to control the attempt probability. 

The overhead from the control message passing is often substantial [7], and in highly dense networks, 

may degrade the performance to an unacceptable level. To this end, we want to develop scheduling 

Fig. 1. Time structure of a slot. 
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schemes that operate without control message passing while achieving good throughput performance. 

 

Ⅲ. ADAPTIVE ATTEMPT PROBABILITY WITHOUT MESSAGE PASSING 

In this section, we first present a static policy in a single-hop network, which will provide us an 

insight into the ideal attempt probability control. Then, we present the potential of the collision 

probability control in achieving good performance without message passing. We extend our ideas to 

the multi-hop networks, and achieve the performance comparable to the state-of-the-art scheduling 

schemes that require message passing for collecting the queue length information of the neighboring 

links. 

 

Ⅲ-A. Motivation: A static scheme with saturated traffic 

Consider a single-hop network with 𝑁 links, where all the links are neighboring with each other and 

only one transmission can occur at a time. In this scenario, we assume that the links are always 

backlogged and have data to transmit. 

Under our generic scheduling scheme, each link 𝑙  can attempt for transmission during the 

scheduling period with probability 𝑃𝑙. Suppose that each link has a single attempt opportunity at each 

time slot and has an identical attempt probability, i.e., 𝑃𝑙 = 𝑃 with some constant 𝑃. The overall 

throughput 𝑈 can be easily calculated as 

 

𝑈 = ∑ 𝑃𝑙 (∏(1 − 𝑃𝑘)

𝑘∈𝑁𝑙

) = 𝑁𝑃(1 − 𝑃)𝑁−1

𝑙∈𝐸

. 

 

(2) 

From 
𝑑𝑈

𝑑𝑃
= 0, we can obtain the optimal probability 𝑃∗ that maximizes the overall throughput, i.e., 

𝑃∗ =
1

𝑁
 [19]. We also note that the conditional collision probability given a link’s attempt can be 

calculated as 𝑃(𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛|𝑎𝑡𝑡𝑒𝑚𝑝𝑡) = 1 − (1 − 𝑃∗)𝑁−1 , which approaches 1 −
1

𝑒
 as 𝑁 increases 

under the optimal control. 

This result implies that in the single-hop network, the performance can be maximized by setting the 

attempt probability to 
1

N
 or by setting the conditional collision probability to 1 −

1

𝑒
. Motivated by this 

facts, we expect that the performance in the multi-hop network can be maximized too, by setting the 

target value of attempt probability or the conditional collision probability as shown in the single-hop 

network. Note that the former approach requires the information of the number of backlogged links, 

which can be obtained by explicit message passing between the neighboring links. Several works have 
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tried to estimate the number of the neighboring links without explicit message exchanges in single-hop 

networks [17], [18], [19]. However, in multi-hop networks, the links will have a different estimate of 

the neighboring links depending on the topology and the traffic, and their control may not lead to good 

performance. In contrast, the conditional collision probability can be obtained from a link’s own 

experience without control message passing. To this end, we develop our random access scheduling 

scheme, under which each link adjusts the attempt probability to maintain its conditional collision 

probability close to 1 −
1

𝑒
. 

 

Ⅲ-B. Additive Increase and Multiplicative Decrease algorithm 

Unlike the single-hop wireless network, the links in multi-hop networks will experience different 

interference depending on their location in the network topology and on the traffic of their nearby links. 

In such an environment, the static scheme in Section Ⅲ-A cannot achieve the optimal throughput. For 

example, in a star topology network with 𝑁 links, the central node will have 𝑁 − 1 neighboring links 

while the other nodes will have only one neighboring link. Thus if we set the attempt probability as in 

the single-hop network, the central node will have the attempt probability of 
1

𝑁−1
 and will suffer from 

poor throughput performance. 

Instead of setting the attempt probability to 
1

|𝑁𝑙|
, where | ⋅ |  denotes the set cardinality, we 

adaptively control the attempt probability aiming at the conditional collision probability of 1 −
1

𝑒
. To 

elaborate, we adopt the Additive Increase Multiplicative Decrease (AIMD) algorithm for dynamic 

controls. The AIMD algorithm is a distributed algorithm that has been used to allocate resource in a fair 

manner, e.g., in TCP congestion control to adjust the congestion window size. The application of the 

AIMD algorithm to adaptive controls for the medium access is not new. There have been several studies 

to apply it to the medium access control based on the estimation of the number of neighboring links in 

single-hop networks [17], [18], [19]. In this work, we also use the AIMD algorithm but with a different 

flavor to support multi-hop networks. 

We let each link modulate its attempt probability such that the probability increases linearly in time 

and decreases multiplicatively upon the occurrence of collision. Specifically, each link 𝑙 updates the 

attempt probability 𝑃𝑙 at each time slot as 

 

𝑃𝑙 = {

𝑃𝑙

𝛽𝑙
, 𝑜𝑛 𝑎 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑎𝑛𝑑 �̂�𝑙

𝑐 > 1 −
1

𝑒

max{1, 𝑃𝑙 + 𝛼𝑙} , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

(3) 

where 𝛼𝑙(> 0)  and 𝛽𝑙(> 1)  are two configuration parameters, and �̂�𝑙
𝑐  denotes the (average) 
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estimation on the conditional collision probability. Note that the collision can be detected by the failure 

of receiving ACK or CTS, and the term �̂�𝑙
𝑐 consult the number of collisions occurred for actually 

estimated value. We refer to the above adaptive algorithm as Constant-AIMD (C-AIMD) and set 𝛽𝑙 =

2 as in TCP. Since the AIMD algorithm has been known to operate in a reliable manner in a variety of 

network scenarios [10], we assume that the AIMD control converges to the steady state as in [19]. 

Once the system is in its steady state, each link will experience the same conditional collision 

probability 1 −
1

𝑒
, and thus, the expected probability of successful transmission �̅�𝑙

𝑠 will be given as 

 
�̅�𝑙

𝑠 =
�̅�𝑙

𝑒
, 

 

(4) 

where �̅�𝑙 denotes average attempt probability of link 𝑙. Note that given any 𝜆 ∈ Λ (strictly inside), 

there exists a stationary static scheduling scheme 𝜙𝑙 that achieves 𝜙𝑙 ≥ 𝜆𝑙 − 𝜖 for some small 𝜖 >

0 [20]. Eq. (2) implies that C-AIMD can achieve the fraction 
1

𝑒
 of the capacity region by setting �̅�𝑙 =

𝜙𝑙, which, however, may require a priori knowledge of the arrival rate or the schedule distribution under 

an optimal scheduler. 

In most practical scenarios, the information of the arrival rate and the schedule distribution of an 

optimal scheduler will not be available. Without such information, several random access scheduling 

schemes are shown to achieve the efficiency ratio up to 
1

Δ
 based on the queue length information of 

neighboring links [6], [7], [8]. For example, the Queue-Length based Constant-Time (QBCT) random 

access scheduler [7] controls the attempt probability of link 𝑙 proportional to the ratio 𝑥𝑙 of its queue 

length and the maximum sum of its neighboring links’ queue lengths: 

 
𝑥𝑙 ≔

𝑄𝑙

max
𝑘∈𝑁𝑙

+
∑ 𝑄𝑗𝑗∈𝑁𝑘

+
. 

 

(5) 

Note that in a simple two-link network, with links 𝑙 and 𝑘, the following equation holds under QBCT: 

 𝑃𝑙

𝑄𝑙
=

𝑃𝑘

𝑄𝑘
. 

 

(6) 

Inspired by this, we extend C-AIMD such that the attempt probabilities of the two neighboring links 

satisfy (3) as explained below. Note that the attempt probability of C-AIMD will have the saw-like 

behavior in the steady state as the TCP’s congestion window control. Let us consider its typical 

movement, as shown in Fig. 2. Let 𝑃𝑙
𝑚𝑎𝑥 and 𝑃𝑙

𝑚𝑖𝑛 denote the peak and bottom attempt probability, 

respectively, in the typical movement. The mean attempt probability 𝑃𝑙 will be 
1

2
(𝑃𝑙

𝑚𝑎𝑥 + 𝑃𝑙
𝑚𝑖𝑛). Let 

𝑇𝑙 denote the cycle period of the movement and let 𝑋𝑙 denote the average number of attempts of link 

𝑙 during one cycle time 𝑇𝑙. 
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From the AIMD algorithm (1), we will have 𝑃𝑙
𝑚𝑖𝑛 =

𝑃𝑙
𝑚𝑎𝑥

𝛽𝑙
, and thus 

 
𝑃𝑙 =

1

2
(𝑃𝑙

𝑚𝑎𝑥 + 𝑃𝑙
𝑚𝑖𝑛) =

𝛽𝑙 + 1

2𝛽𝑙
⋅ 𝑃𝑙

𝑚𝑎𝑥. 
 

(7) 

Again from the AIMD algorithm, the cycle period 𝑇𝑙 can be obtained as 

 
𝑇𝑙 =

𝑃𝑙
𝑚𝑎𝑥 − 𝑃𝑙

𝑚𝑖𝑛

𝛼𝑙
=

2(𝛽𝑙 − 1)

𝛼𝑙(𝛽𝑙 + 1)
⋅ 𝑃𝑙 . 

 

(8) 

Note that during one cycle period, link 𝑙 will make 𝑋𝑙 = 𝑇𝑙 ⋅ 𝑃𝑙 attempts, and its conditioned collision 

probability can be written as 

 
𝑃(𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛|𝑎𝑡𝑡𝑒𝑚𝑝𝑡) =

1

𝑋𝑙
=

𝛼𝑙𝛽𝑙(𝛽𝑙 + 1)

(𝛽𝑙 − 1) ⋅ 2𝛽𝑙 ⋅ 𝑃𝑙

2 =
3𝛼𝑙

2𝑃𝑙

2 , 
 

(9) 

where the last equality holds for 𝛽 = 2. Since out C-AIMD algorithm will maintain the conditional 

collision probability close to 1 −
1

𝑒
, we can obtain that 

 

𝑃𝑙 = √
3

2
𝛼𝑙 ⋅

𝑒

𝑒 − 1
 . 

 

(10) 

The result implies that given 𝛽 = 2 , the steady-state attempt probability of C-AIMD can be 

controlled by changing the increasing rate 𝛼𝑙. Further, by setting 

 𝛼𝑙 = 𝐶 ⋅ 𝑄𝑙
2 , (11) 

for some constant 𝐶, the scheduling scheme will satisfy the condition (3). We denote this extension of 

C-AIMD with (5) by Queue-length based AIMD (Q-AIMD). We emphasize that Q-AIMD also works 

without message passing since each link only needs its own queue length information. The setting of 

parameter 𝐶 will be of interest for Q-AIMD. In Section Ⅴ, we show through simulations that Q-

AIMD performs well for a wide range of 𝐶. 

Fig. 2. Average behaviors of the attempt probability 𝑷𝒍  in the steady state are shown. The 

probability follows the typical saw-like movement of AIMD in range ൣ𝑷𝒍
𝒎𝒊𝒏, 𝑷𝒍

𝒎𝒂𝒙൧ with mean 

𝑷𝒍. 
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Ⅳ. MULTIPLE CONTENTION OPPORTUNITIES 

In Section Ⅲ, we assumed that there is only one attempt (or contention) opportunity during the 

scheduling period. This can be extended by dividing the scheduling period into 𝑀  mini-slots 

(numbered from 0 to 𝑀 − 1). In general, one can expect that as 𝑀 increases, the collision probability 

decreases resulting in higher throughput performance, and on the other hand, the scheduling overhead 

increases degrading the performance in practice. In this section, we optimize the performance of random 

access scheduling schemes taking into account the multiple contention opportunities. 

Exploiting the carrier-sensing or signal overhearing technique as in [6], [7], [8], we consider the 

following generic random access scheduling scheme with multiple mini-slots: 

 At each mini-slot 𝑀, link 𝑙 attempts transmission with probability 𝑃𝑙(𝑚) until link 𝑙 itself 

or one of its neighbors makes an attempt. 

 There are three possibilities: 

1) If a neighbor of link 𝑙 makes an attempt (and link 𝑙 does not), link 𝑙 can overhear the 

attempt by using the carrier-sensing technique and will not attempt in the remaining mini-

slots. 

2) If link 𝑙 makes an attempt and all its neighbors do not, link 𝑙 will transmit data during 

the transmission period. 

3) If link 𝑙 and some of its neighbors make an attempt at the same mini-slot, they collide 

with each other and none of them can transmit data during the transmission period. 

For Q-AIMD, we set the attempt probability at each mini-slot as 

 𝑃𝑙 =
𝜇

𝑀
𝑦𝑙  ,  

(12) 

where 0 < 𝜇 < 𝑀 is a constant and 𝑦𝑙 is under the AIMD control, i.e., 

 

𝑦𝑙 = {
𝑦𝑙

𝛽𝑙
, 𝑜𝑛 𝑎 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑎𝑛𝑑 �̂�𝑙

𝑐 > 1 −
1 −

𝜇
𝑀

1 − 𝑃𝑙

max{1, 𝑦𝑙 + 𝛼𝑙} , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 

 

(13) 

As before, we rely on the stable operations of the AIMD algorithm [10], and assume that the AIMD 

algorithm successfully stabilizes the system to the steady state as in [19]. We focus on finding the 

optimal value of 𝜇 to maximize the system performance. We start with the following set Ω of the 

arrival rates. 

 Ω = {𝜆𝑙| ∑ 𝜆𝑘𝑘∈𝑁𝑙
+ ≤ Δ}. (14) 

Clearly, Λ ⊂ Ω since at most Δ links can be active simultaneously in 𝑁𝑙
+. The following lemma 
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specifies a sufficient condition to achieve 
𝑍

Δ
 fraction of the capacity region for some 𝑍. 

Lemma 1: If a scheduling scheme has the successful transmission probability {𝑃𝑙
𝑠}, which satisfies 

 ∑ 𝑃𝑘
𝑠 ≥ 𝑍

𝑘∈𝑁𝑙
+

 for all 𝑙,  

(15) 

for some constant 𝑍, it achieves the efficiency ratio no smaller than 
𝑍

Δ
. 

The lemma can be proven by showing that for any arrival rate 𝜆 strictly inside 
𝑍

Δ
 fraction of Ω, we 

have ∑ 𝜆𝑘𝑘∈𝑁𝑙
+ − ∑ 𝑃𝑘

𝑠
𝑘∈𝑁𝑙

+ < 0 for all 𝑙, and thus the total queue length over 𝑁𝑙
+ will decrease. 

Since Λ ⊂ Ω, the result follows. We omit the proof detail. 

Proposition 2: For sufficiently large number 𝑀 of mini-slots, Q-AIMD can achieve the efficiency 

ratio of 
1

Δ
(1 − 𝑒−𝜇). 

Proof: Based on Lemma 1, we can characterize the performance of Q-AIMD with multiple mini-

slots by finding a 𝑍  such that ∑ 𝑃𝑘
𝑠 ≥ 𝑍𝑘∈𝑁𝑙

+  for all 𝑙  under Q-AIMD. Note that from (6), the 

conditional collision probability satisfies that 1 − ∏ (1 − 𝑃𝑘)𝑘∈𝑁𝑙
= 1 −

1−
𝜇

𝑀

1−𝑃𝑘
, which leads to 

 ∏ (1 − 𝑃𝑘)

𝑘∈𝑁𝑙
+

= 1 −
𝜇

𝑀
 .  

(16) 

Then the probability 𝑃𝑙
𝑠 that link 𝑙 successfully transmits data packet in a time slot can be calculated 

as 𝑃𝑙
𝑠 = ∑ 𝑃𝑙

𝑠[𝑚]𝑀−1
𝑚=0 , where 𝑃𝑙

𝑠[𝑚] denotes the probability that link 𝑙 successfully attempts at mini-

slot 𝑚, i.e., 

 𝑃𝑙
𝑠[0] = 𝑃𝑙 ⋅ ∏(1 − 𝑃𝑘)

𝑘∈𝑁𝑙

 , for 𝑚 = 0 ,  

(17) 

 𝑃𝑙
𝑠[𝑚] = 𝑃𝑙 ⋅ ∏ (1 − 𝑃𝑘)

𝑘∈𝑁𝑙

⋅ ∏ (1 − 𝑃𝑘)𝑚

𝑘∈𝑁𝑙
+

 , for 𝑚 > 0 .  

(18) 

Hence, we can obtain that 

 

𝑃𝑙
𝑠 =

𝑃𝑙

1 − 𝑃𝑙
∑ ∏ (1 − 𝑃𝑘)𝑚+1

𝑘∈𝑁𝑙
+

𝑀−1

𝑚=0

 

≥ 𝑃𝑙 ∑ (1 −
𝜇

𝑀
)

𝑚+1
𝑀−1

𝑚=0

 

=
𝜇

𝑀
𝑦𝑙 ⋅

(1 −
𝜇
𝑀) (1 − (1 −

𝜇
𝑀)

𝑀
)

1 − (1 −
𝜇
𝑀)
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= 𝑦𝑙 ⋅ (1 −
𝜇

𝑀
) ⋅ (1 − (1 −

𝜇

𝑀
)

𝑀

), 
 

(19) 

where the inequality holds from (8) and 
1

1−𝑃𝑙
≥ 1. Thus for sufficiently large 𝑀, we will have 

 𝑃𝑙
𝑠 ≥ 𝑦𝑙 ⋅ (1 − 𝑒−𝜇) . (20) 

From (8) and the fact that ∏ (1 − 𝑃𝑘)𝑘∈𝑁𝑙
+ ≥ 1 − ∑ 𝑃𝑘𝑘∈𝑁𝑙

+ , we can obtain that ∏ 𝑦𝑘𝑘∈𝑁𝑙
+ ≥ 1. 

Combining it with (9), we can obtain that 

 ∑ 𝑃𝑙
𝑠

𝑘∈𝑁𝑙
+

≥ ∑ 𝑦𝑙(1 − 𝑒−𝜇)

𝑘∈𝑁𝑙
+

≥ 1 − 𝑒−𝜇 .  

(21) 

Lemma 1 and (10) imply that Q-AIMD can achieve the efficiency ratio no smaller than 
1−𝑒−𝜇

Δ
 for 

sufficiently large 𝑀. 

By setting 𝜇 as an increasing function of 𝑀, e.g., 𝜇 = log 𝑀, the lower bound on the achievable 

efficiency ratio can be arbitrarily close to 
1

Δ
. For Q-AIMD, we set 𝜇 = 1. We also consider our scheme 

with 𝜇 = log 𝑀, which is denoted by Q-AIMD+. 

We highlight that Q-AIMD achieves the same performance bound as QBCT, while it does not require 

the neighboring links’ queue length information and has significantly lower overhead in practice. 

 

Ⅴ. SIMULATION 

In this section, we numerically evaluate the performance of our scheduling schemes in both a grid 

network and a randomly generated network. We compare them with those of the state-of-the-art 

distributed scheduling schemes. 

Fig. 3. Grid network topology. 
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We first consider a grid network with 16 nodes and 24 undirected links, as shown in Fig. 3. As 

assumed earlier, time is slotted. At each time slot, link 𝑙 has an i.i.d. packet arrival with probability 

𝜆𝑙 = 𝜌 ⋅ 𝑟𝑙, where 𝑟𝑙 denotes a traffic vector coefficient randomly chosen among {0.2, 0.4, 0.6, 0.8} 

and 𝜌 denotes the traffic load. We assume that the links have a unit capacity and are constrained under 

the primary interference model, i.e., two links sharing a node cannot transmit at the same time. 

We run each simulation for 100,000 time slots, and measure the total queue lengths (summed over 

all the links) after termination, to estimate the throughput indirectly. By comparing the change amount 

of the queue lengths as the traffic load 𝜌 varies, the limitation of acceptable arrival rate for each 

scheduling scheme can be known. When 𝜌 is small, the scheduling schemes can support the arrival 

rates and keep the queue lengths small. As the traffic load 𝜌 increases across the boundary of the 

achievable region, we will observe that the queue lengths soar sharply. 

Fig. 4 shows the performance of Q-AIMD+ with different values of 𝐶, which controls the increase 

rate of the attempt probability as shown in (5). We fix 𝛽𝑙 = 2 and change 𝐶 in range [5 ⋅ 10−8, 10−5] 

to investigate the impact of aggressive increment of the attempt probability. The number of mini-slots 

is set to 𝑀 = 1000. The results show that Q-AIMD+ performs best when 𝐶 ∈ [10−7, 5 ⋅ 10−7], which 

implies that there is an optimal setting for the dynamics of AIMD. Finding the optimal parameters 𝛽 

and 𝐶 for Q-AIMD+ is beyond the scope of this paper and remains as an interesting open problem. 

We use 𝐶 = 10−7 for our scheduling schemes in the sequel. 

Since the number 𝑀 of mini-slots denotes the length of the contention period, it can be easily 

expected that, as 𝑀 increases, the probability of collision decreases and thus the performance of the 

scheduling schemes improves. Fig. 5 illustrates the results with different 𝑀 under Q-AIMD and Q-

AIMD+. The results show that for both Q-AIMD and Q-AIMD+, at least 100 mini-slots are necessary 

Fig. 4. Performance of Q-AIMD+ with different values of 𝑪. 
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for reasonable performance, and the marginal performance gain decreases as 𝑀 increases. Especially, 

when 𝑀 > 1000, additional mini-slots lead to a marginal performance gain. The comparison between 

Q-AIMD and QAIMD+ shows that both have similar throughput performance in terms of the achievable 

region, Q-AIMD+ outperforms Q-AIMD in delay performance by maintaining queue lengths smaller 

(except when 𝑀 = 1; Q-AIMD+ has very large queue lengths > 3000 even for a small 𝜌.). 

Fig. 5. Performance with different numbers 𝑴 of mini-slots. 
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Fig. 6 shows the traces of the non-attempt probabilities of some links in the grid network, i.e., the 

measurements of ∏ (1 − 𝑃𝑘)𝑘∈𝑁𝑙
+  for link 𝑙 = link (5, 6), link (4, 8), and link (14, 15) under Q- 

AIMD+ with 𝑀 = 1000 and 𝜌 = 0.38. It shows that they are close to the target 1 −
𝜇

𝑀
= 0.997 as 

we intended in (8). Note that the number of neighboring links decreases in the order of 

links (5, 6), (4, 8), (14, 15), and the results imply that the link in the more crowded area is likely to 

have a smaller non-attempt probability. 

We evaluate the performance of our schemes in comparison with other state-of-the-art distributed 

scheduling schemes, such as Greedy algorithm, QBCT [7] and Q-CSMA [3]. The Greedy (maximal) 

scheduling finds a maximal schedule in decreasing order of queue length conforming to the interference 

constraints, i.e., longest-queue-first. It can be implemented in a distributed manner with 𝑂(|𝐸| log|𝐸|) 

complexity, and empirically shown to achieve near-optimal performance [7]. Hence, we use it as the 

reference to the optimal performance. Q-CSMA is a distributed scheduling scheme that achieves the 

optimal throughput [3]. It carefully controls the transition of link activities using the carrier-sensing 

technique and maintains the stationary schedule distribution of an optimal solution. It requires control 

message passing during the scheduling period to manage the schedule transition in a distributed fashion. 

We omit the results of the static scheme in Section Ⅲ-A due to its low performance, but include the 

results of C-AIMD that sets all the links with identical parameter values of 𝛼𝑙 = 0.01 and 𝛽𝑙 = 2. We 

set 𝑀 = 1000. 

Fig. 6. Non-attempt probabilities of links under Q-AIMD+. By the AIMD control, the 

probabilities remains near the target value 𝟎. 𝟗𝟗𝟕. 
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Fig. 7 shows the results. The Greedy scheduling scheme achieves the best performance up to traffic 

load 0.46, which is supposed to the bound of the capacity region. The performance of QBCT and our 

proposed schemes closely follows that of the Greedy scheduling scheme. We emphasize that the Greedy 

scheme is a centralized algorithm with higher complexity, and that both the Greedy scheme and QBCT 

require control message exchanges to collect the information of neighboring links. On the other hand, 

Q-AIMD and Q-AIMD+ work without such overhead. It is notable that Q-AIMD and Q-AIMD+ 

achieve the performance comparable to QBCT but without explicit control message exchanges. For Q-

CSMA, although it has been shown to be throughput-optimal, it has empirical performance much lower 

than the others and suffers from poor delay performance. Further, Q-CSMA also needs control message 

exchanges in the process of its scheduling decision. 

We also consider a network where 10 nodes are randomly deployed in a 6 × 6 area as shown in Fig. 

8. Two nodes within distance 3 can communicate directly, which results in a total of 19 links. Fig. 9 

Fig. 7. Comparison with other scheduling schemes in the grid networks. 

 

Fig. 8. Random network topology. 
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depicts the performance of the scheduling schemes. The results are similar to those in the grid network. 

Finally, we present the evolution of the attempt probability under Q-AIMD+. We consider a simple 

network that consists of two links, with arrival rates 𝜆 = 𝜌 ⋅ 𝑟, 𝜌 = 0.8, and 𝑟 = (0.8, 0.2). Fig. 10 

show the trace of the attempt probabilities of the two links. They converge to the steady state by the 

AIMD algorithm, and show a typical saw-like movement as expected. Since the two links have different 

arrival rates, they have different average attempt probabilities, 0.534 and 0.145, respectively, and 

different average queue lengths, 12.948 and 9.746, respectively. The decrease of the attempt 

probabilities of the two links is synchronized since a collision will be observed by the both links. On 

the other hand, link 1 has higher attempt probabilities than link 2 since it has a larger increment step 

from the larger queue lengths. 

 

Fig. 10. Comparison of different scheduling schemes in a random 

network. 

Fig. 9. Trace of the attempt probabilities of two links under Q-AIMD+, when the arrival rates are 

different. 
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Ⅵ. CONCLUSION 

The scheduling problem attracts great attention due to its significance to find a set of simultaneous 

transmissions that result in efficient spectrum use without incurring severe interference in multi-hop 

wireless networks. In this paper, we develop novel scheduling schemes that graft the concept of AIMD 

and maintain a target collision probability. The proposed solution successfully removes the overhead 

incurred by the control message passing, and achieves good throughput performance comparable to the 

centralized GMS without a priori knowledge of the traffic demand. We evaluate our proposed schemes 

through simulations, whose results demonstrate that the achievable regions of our schemes are similar 

to those of the state-of-the-art distributed scheduling schemes that need a large amount of overhead for 

the control message passing. 
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