4,360 research outputs found

    Performance Analysis Of Data-Driven Algorithms In Detecting Intrusions On Smart Grid

    Get PDF
    The traditional power grid is no longer a practical solution for power delivery due to several shortcomings, including chronic blackouts, energy storage issues, high cost of assets, and high carbon emissions. Therefore, there is a serious need for better, cheaper, and cleaner power grid technology that addresses the limitations of traditional power grids. A smart grid is a holistic solution to these issues that consists of a variety of operations and energy measures. This technology can deliver energy to end-users through a two-way flow of communication. It is expected to generate reliable, efficient, and clean power by integrating multiple technologies. It promises reliability, improved functionality, and economical means of power transmission and distribution. This technology also decreases greenhouse emissions by transferring clean, affordable, and efficient energy to users. Smart grid provides several benefits, such as increasing grid resilience, self-healing, and improving system performance. Despite these benefits, this network has been the target of a number of cyber-attacks that violate the availability, integrity, confidentiality, and accountability of the network. For instance, in 2021, a cyber-attack targeted a U.S. power system that shut down the power grid, leaving approximately 100,000 people without power. Another threat on U.S. Smart Grids happened in March 2018 which targeted multiple nuclear power plants and water equipment. These instances represent the obvious reasons why a high level of security approaches is needed in Smart Grids to detect and mitigate sophisticated cyber-attacks. For this purpose, the US National Electric Sector Cybersecurity Organization and the Department of Energy have joined their efforts with other federal agencies, including the Cybersecurity for Energy Delivery Systems and the Federal Energy Regulatory Commission, to investigate the security risks of smart grid networks. Their investigation shows that smart grid requires reliable solutions to defend and prevent cyber-attacks and vulnerability issues. This investigation also shows that with the emerging technologies, including 5G and 6G, smart grid may become more vulnerable to multistage cyber-attacks. A number of studies have been done to identify, detect, and investigate the vulnerabilities of smart grid networks. However, the existing techniques have fundamental limitations, such as low detection rates, high rates of false positives, high rates of misdetection, data poisoning, data quality and processing, lack of scalability, and issues regarding handling huge volumes of data. Therefore, these techniques cannot ensure safe, efficient, and dependable communication for smart grid networks. Therefore, the goal of this dissertation is to investigate the efficiency of machine learning in detecting cyber-attacks on smart grids. The proposed methods are based on supervised, unsupervised machine and deep learning, reinforcement learning, and online learning models. These models have to be trained, tested, and validated, using a reliable dataset. In this dissertation, CICDDoS 2019 was used to train, test, and validate the efficiency of the proposed models. The results show that, for supervised machine learning models, the ensemble models outperform other traditional models. Among the deep learning models, densely neural network family provides satisfactory results for detecting and classifying intrusions on smart grid. Among unsupervised models, variational auto-encoder, provides the highest performance compared to the other unsupervised models. In reinforcement learning, the proposed Capsule Q-learning provides higher detection and lower misdetection rates, compared to the other model in literature. In online learning, the Online Sequential Euclidean Distance Routing Capsule Network model provides significantly better results in detecting intrusion attacks on smart grid, compared to the other deep online models

    Human-Robot Perception in Industrial Environments: A Survey

    Get PDF
    Perception capability assumes significant importance for human–robot interaction. The forthcoming industrial environments will require a high level of automation to be flexible and adaptive enough to comply with the increasingly faster and low-cost market demands. Autonomous and collaborative robots able to adapt to varying and dynamic conditions of the environment, including the presence of human beings, will have an ever-greater role in this context. However, if the robot is not aware of the human position and intention, a shared workspace between robots and humans may decrease productivity and lead to human safety issues. This paper presents a survey on sensory equipment useful for human detection and action recognition in industrial environments. An overview of different sensors and perception techniques is presented. Various types of robotic systems commonly used in industry, such as fixed-base manipulators, collaborative robots, mobile robots and mobile manipulators, are considered, analyzing the most useful sensors and methods to perceive and react to the presence of human operators in industrial cooperative and collaborative applications. The paper also introduces two proofs of concept, developed by the authors for future collaborative robotic applications that benefit from enhanced capabilities of human perception and interaction. The first one concerns fixed-base collaborative robots, and proposes a solution for human safety in tasks requiring human collision avoidance or moving obstacles detection. The second one proposes a collaborative behavior implementable upon autonomous mobile robots, pursuing assigned tasks within an industrial space shared with human operators

    On exploiting human domain workflows in cyber-physical systems

    Get PDF
    In this thesis, we describe a general methodology for enhancing sensing accuracy in cyber-physical systems that involve human domain workflows in noisy physical environment. A novel workflow-aware sensing model is proposed to jointly correct unreliable sensor data and keep track of states in a workflow. We also propose a new inference algorithm to handle cases with partially known states and objects as supervision. Our model is evaluated with extensive simulations. As a concrete application, we develop a novel log service called Emergency Transcriber, which can automatically document operational procedures followed by teams of first responders in emergency response scenarios. Evaluation shows that our system has significant improvement over commercial off-the-shelf (COTS) sensors and keeps track of workflow states with high accuracy in noisy physical environment

    Data-driven framework to improve collaborative human-robot flexible manufacturing applications

    Get PDF
    The manufacturing assembly lines of the future are foreseen to dismiss fully unmanned systems in favour of anthropocentric solutions. However, bringing in the human complexity leads to modeling and control questions that only data can answer. Moreover, many human-robot collaborative applications in flexible manufacturing involve manipulator cobots, whereas little attention is given to the role of mobile robots. This work outlines a data-driven framework, which is the core of a brand new project to be fully developed in the very next future, to let human-robot collaborative processes overcome the barriers to successful interaction, leveraging mobile and fixed-base robots

    Towards Artificial General Intelligence (AGI) in the Internet of Things (IoT): Opportunities and Challenges

    Full text link
    Artificial General Intelligence (AGI), possessing the capacity to comprehend, learn, and execute tasks with human cognitive abilities, engenders significant anticipation and intrigue across scientific, commercial, and societal arenas. This fascination extends particularly to the Internet of Things (IoT), a landscape characterized by the interconnection of countless devices, sensors, and systems, collectively gathering and sharing data to enable intelligent decision-making and automation. This research embarks on an exploration of the opportunities and challenges towards achieving AGI in the context of the IoT. Specifically, it starts by outlining the fundamental principles of IoT and the critical role of Artificial Intelligence (AI) in IoT systems. Subsequently, it delves into AGI fundamentals, culminating in the formulation of a conceptual framework for AGI's seamless integration within IoT. The application spectrum for AGI-infused IoT is broad, encompassing domains ranging from smart grids, residential environments, manufacturing, and transportation to environmental monitoring, agriculture, healthcare, and education. However, adapting AGI to resource-constrained IoT settings necessitates dedicated research efforts. Furthermore, the paper addresses constraints imposed by limited computing resources, intricacies associated with large-scale IoT communication, as well as the critical concerns pertaining to security and privacy

    SALSA: A Novel Dataset for Multimodal Group Behavior Analysis

    Get PDF
    Studying free-standing conversational groups (FCGs) in unstructured social settings (e.g., cocktail party ) is gratifying due to the wealth of information available at the group (mining social networks) and individual (recognizing native behavioral and personality traits) levels. However, analyzing social scenes involving FCGs is also highly challenging due to the difficulty in extracting behavioral cues such as target locations, their speaking activity and head/body pose due to crowdedness and presence of extreme occlusions. To this end, we propose SALSA, a novel dataset facilitating multimodal and Synergetic sociAL Scene Analysis, and make two main contributions to research on automated social interaction analysis: (1) SALSA records social interactions among 18 participants in a natural, indoor environment for over 60 minutes, under the poster presentation and cocktail party contexts presenting difficulties in the form of low-resolution images, lighting variations, numerous occlusions, reverberations and interfering sound sources; (2) To alleviate these problems we facilitate multimodal analysis by recording the social interplay using four static surveillance cameras and sociometric badges worn by each participant, comprising the microphone, accelerometer, bluetooth and infrared sensors. In addition to raw data, we also provide annotations concerning individuals' personality as well as their position, head, body orientation and F-formation information over the entire event duration. Through extensive experiments with state-of-the-art approaches, we show (a) the limitations of current methods and (b) how the recorded multiple cues synergetically aid automatic analysis of social interactions. SALSA is available at http://tev.fbk.eu/salsa.Comment: 14 pages, 11 figure

    Development of Non Expensive Technologies for Precise Maneuvering of Completely Autonomous Unmanned Aerial Vehicles

    Get PDF
    In this paper, solutions for precise maneuvering of an autonomous small (e.g., 350-class) Unmanned Aerial Vehicles (UAVs) are designed and implemented from smart modifications of non expensive mass market technologies. The considered class of vehicles suffers from light load, and, therefore, only a limited amount of sensors and computing devices can be installed on-board. Then, to make the prototype capable of moving autonomously along a fixed trajectory, a “cyber-pilot”, able on demand to replace the human operator, has been implemented on an embedded control board. This cyber-pilot overrides the commands thanks to a custom hardware signal mixer. The drone is able to localize itself in the environment without ground assistance by using a camera possibly mounted on a 3 Degrees Of Freedom (DOF) gimbal suspension. A computer vision system elaborates the video stream pointing out land markers with known absolute position and orientation. This information is fused with accelerations from a 6-DOF Inertial Measurement Unit (IMU) to generate a “virtual sensor” which provides refined estimates of the pose, the absolute position, the speed and the angular velocities of the drone. Due to the importance of this sensor, several fusion strategies have been investigated. The resulting data are, finally, fed to a control algorithm featuring a number of uncoupled digital PID controllers which work to bring to zero the displacement from the desired trajectory

    Modelling and Co-simulation of Multi-Energy Systems: Distributed Software Methods and Platforms

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    corecore