80 research outputs found

    Revisiting the Nystrom Method for Improved Large-Scale Machine Learning

    Get PDF
    We reconsider randomized algorithms for the low-rank approximation of symmetric positive semi-definite (SPSD) matrices such as Laplacian and kernel matrices that arise in data analysis and machine learning applications. Our main results consist of an empirical evaluation of the performance quality and running time of sampling and projection methods on a diverse suite of SPSD matrices. Our results highlight complementary aspects of sampling versus projection methods; they characterize the effects of common data preprocessing steps on the performance of these algorithms; and they point to important differences between uniform sampling and nonuniform sampling methods based on leverage scores. In addition, our empirical results illustrate that existing theory is so weak that it does not provide even a qualitative guide to practice. Thus, we complement our empirical results with a suite of worst-case theoretical bounds for both random sampling and random projection methods. These bounds are qualitatively superior to existing bounds---e.g. improved additive-error bounds for spectral and Frobenius norm error and relative-error bounds for trace norm error---and they point to future directions to make these algorithms useful in even larger-scale machine learning applications.Comment: 60 pages, 15 color figures; updated proof of Frobenius norm bounds, added comparison to projection-based low-rank approximations, and an analysis of the power method applied to SPSD sketche

    The Role of Riemannian Manifolds in Computer Vision: From Coding to Deep Metric Learning

    Get PDF
    A diverse number of tasks in computer vision and machine learning enjoy from representations of data that are compact yet discriminative, informative and robust to critical measurements. Two notable representations are offered by Region Covariance Descriptors (RCovD) and linear subspaces which are naturally analyzed through the manifold of Symmetric Positive Definite (SPD) matrices and the Grassmann manifold, respectively, two widely used types of Riemannian manifolds in computer vision. As our first objective, we examine image and video-based recognition applications where the local descriptors have the aforementioned Riemannian structures, namely the SPD or linear subspace structure. Initially, we provide a solution to compute Riemannian version of the conventional Vector of Locally aggregated Descriptors (VLAD), using geodesic distance of the underlying manifold as the nearness measure. Next, by having a closer look at the resulting codes, we formulate a new concept which we name Local Difference Vectors (LDV). LDVs enable us to elegantly expand our Riemannian coding techniques to any arbitrary metric as well as provide intrinsic solutions to Riemannian sparse coding and its variants when local structured descriptors are considered. We then turn our attention to two special types of covariance descriptors namely infinite-dimensional RCovDs and rank-deficient covariance matrices for which the underlying Riemannian structure, i.e. the manifold of SPD matrices is out of reach to great extent. %Generally speaking, infinite-dimensional RCovDs offer better discriminatory power over their low-dimensional counterparts. To overcome this difficulty, we propose to approximate the infinite-dimensional RCovDs by making use of two feature mappings, namely random Fourier features and the Nystrom method. As for the rank-deficient covariance matrices, unlike most existing approaches that employ inference tools by predefined regularizers, we derive positive definite kernels that can be decomposed into the kernels on the cone of SPD matrices and kernels on the Grassmann manifolds and show their effectiveness for image set classification task. Furthermore, inspired by attractive properties of Riemannian optimization techniques, we extend the recently introduced Keep It Simple and Straightforward MEtric learning (KISSME) method to the scenarios where input data is non-linearly distributed. To this end, we make use of the infinite dimensional covariance matrices and propose techniques towards projecting on the positive cone in a Reproducing Kernel Hilbert Space (RKHS). We also address the sensitivity issue of the KISSME to the input dimensionality. The KISSME algorithm is greatly dependent on Principal Component Analysis (PCA) as a preprocessing step which can lead to difficulties, especially when the dimensionality is not meticulously set. To address this issue, based on the KISSME algorithm, we develop a Riemannian framework to jointly learn a mapping performing dimensionality reduction and a metric in the induced space. Lastly, in line with the recent trend in metric learning, we devise end-to-end learning of a generic deep network for metric learning using our derivation

    Data-Driven Representation Learning in Multimodal Feature Fusion

    Get PDF
    abstract: Modern machine learning systems leverage data and features from multiple modalities to gain more predictive power. In most scenarios, the modalities are vastly different and the acquired data are heterogeneous in nature. Consequently, building highly effective fusion algorithms is at the core to achieve improved model robustness and inferencing performance. This dissertation focuses on the representation learning approaches as the fusion strategy. Specifically, the objective is to learn the shared latent representation which jointly exploit the structural information encoded in all modalities, such that a straightforward learning model can be adopted to obtain the prediction. We first consider sensor fusion, a typical multimodal fusion problem critical to building a pervasive computing platform. A systematic fusion technique is described to support both multiple sensors and descriptors for activity recognition. Targeted to learn the optimal combination of kernels, Multiple Kernel Learning (MKL) algorithms have been successfully applied to numerous fusion problems in computer vision etc. Utilizing the MKL formulation, next we describe an auto-context algorithm for learning image context via the fusion with low-level descriptors. Furthermore, a principled fusion algorithm using deep learning to optimize kernel machines is developed. By bridging deep architectures with kernel optimization, this approach leverages the benefits of both paradigms and is applied to a wide variety of fusion problems. In many real-world applications, the modalities exhibit highly specific data structures, such as time sequences and graphs, and consequently, special design of the learning architecture is needed. In order to improve the temporal modeling for multivariate sequences, we developed two architectures centered around attention models. A novel clinical time series analysis model is proposed for several critical problems in healthcare. Another model coupled with triplet ranking loss as metric learning framework is described to better solve speaker diarization. Compared to state-of-the-art recurrent networks, these attention-based multivariate analysis tools achieve improved performance while having a lower computational complexity. Finally, in order to perform community detection on multilayer graphs, a fusion algorithm is described to derive node embedding from word embedding techniques and also exploit the complementary relational information contained in each layer of the graph.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Learning from complex networks

    Get PDF
    Graph Theory has proven to be a universal language for describing modern complex systems. The elegant theoretical framework of graphs drew the researchers' attention over decades. Therefore, graphs have emerged as a ubiquitous data structure in various applications where a relational characteristic is evident. Graph-driven applications are found, e.g., in social network analysis, telecommunication networks, logistic processes, recommendation systems, modeling kinetic interactions in protein networks, or the 'Internet of Things' (IoT) where modeling billions of interconnected web-enabled devices is of paramount importance. This thesis dives deep into the challenges of modern graph applications. It proposes a robustified and accelerated spectral clustering model in homogeneous graphs and novel transformer-driven graph shell models for attributed graphs. A new data structure is introduced for probabilistic graphs to compute the information flow efficiently. Moreover, a metaheuristic algorithm is designed to find a good solution to an optimization problem composed of an extended vehicle routing problem. The thesis closes with an analysis of trend flows in social media data. Detecting communities within a graph is a fundamental data mining task of interest in virtually all areas and also serves as an unsupervised preprocessing step for many downstream tasks. One most the most well-established clustering methods is Spectral Clustering. However, standard spectral clustering is highly sensitive to noisy input data, and the eigendecomposition has a high, cubic runtime complexity O(n^3). Tackling one of these problems often exacerbates the other. This thesis presents a new model which accelerates the eigendecomposition step by replacing it with a Nyström approximation. Robustness is achieved by iteratively separating the data into a cleansed and noisy part of the data. In this process, representing the input data as a graph is vital to identify parts of the data being well connected by analyzing the vertices' distances in the eigenspace. With the advances in deep learning architectures, we also observe a surge in research on graph representation learning. The message-passing paradigm in Graph Neural Networks (GNNs) formalizes a predominant heuristic for multi-relational and attributed graph data to learn node representations. In downstream applications, we can use the representations to tackle theoretical problems known as node classification, graph classification/regression, and relation prediction. However, a common issue in GNNs is known as over-smoothing. By increasing the number of iterations within the message-passing, the nodes' representations of the input graph align and become indiscernible. This thesis shows an efficient way of relaxing the GNN architecture by employing a routing heuristic in the general workflow. Specifically, an additional layer routes the nodes' representations to dedicated experts. Each expert calculates the representations according to their respective GNN workflow. The definitions of distinguishable GNNs result from k-localized views starting from a central node. This procedure is referred to as Graph Shell Attention (SEA), where experts process different subgraphs in a transformer-motivated fashion. Reliable propagation of information through large communication networks, social networks, or sensor networks is relevant to applications concerning marketing, social analysis, or monitoring physical or environmental conditions. However, social ties of friendship may be obsolete, and communication links may fail, inducing the notion of uncertainty in such networks. This thesis addresses the problem of optimizing information propagation in uncertain networks given a constrained budget of edges. A specialized data structure, called F-tree, addresses two NP-hard subproblems: the computation of the expected information flow and the optimal choice of edges. The F-tree identifies independent components of a probabilistic input graph for which the information flow can either be computed analytically and efficiently or for which traditional Monte-Carlo sampling can be applied independently of the remaining network. The next part of the thesis covers a graph problem from the Operations Research point of view. A new variant of the well-known vehicle routing problem (VRP) is introduced, where customers are served within a specific time window (TW), as well as flexible delivery locations (FL) including capacity constraints. The latter implies that each customer is scheduled in one out of a set of capacitated delivery service locations. Practically, the VRPTW-FL problem is relevant for applications in parcel delivery, routing with limited parking space, or, for example, in the scope of hospital-wide scheduling of physical therapists. This thesis presents a metaheuristic built upon a hybrid Adaptive Large Neighborhood Search (ALNS). Moreover, a backtracking mechanism in the construction phase is introduced to alter unsatisfactory decisions at early stages. In the computational study, hospital data is used to evaluate the utility of flexible delivery locations and various cost functions. In the last part of the thesis, social media trends are analyzed, which yields insights into user sentiment and newsworthy topics. Such trends consist of bursts of messages concerning a particular topic within a time frame, significantly deviating from the average appearance frequency of the same subject. This thesis presents a method to classify trend archetypes to predict future dissemination by investigating the dissemination of such trends in space and time. Generally, with the ever-increasing scale and complexity of graph-structured datasets and artificial intelligence advances, AI-backed models will inevitably play an important role in analyzing, modeling, and enhancing knowledge extraction from graph data.Die Graphentheorie hat sich zur einer universellen Sprache entwickelt, mit Hilfe derer sich moderne und komplexe Systeme und Zusammenhänge beschreiben lassen. Diese theoretisch elegante und gut fundierte Rahmenstruktur attrahierte über Dekaden hinweg die Aufmerksamkeit von Wissenschaftlern/-innen. In der heutigen Informationstechnologie-Landschaft haben sich Graphen längst zu einer allgegenwärtigen Datenstruktur in Anwendungen etabliert, innerhalb derer charakteristische Zusammenhangskomponenten eine zentrale Rolle spielen. Anwendungen, die über Graphen unterstützt werden, finden sich u.a. in der Analyse von sozialen Netzwerken, Telekommunikationsnetwerken, logistische Prozessverwaltung, Analyse von Empfehlungsdiensten, in der Modellierung kinetischer Interaktionen von Proteinstrukturen, oder auch im "Internet der Dinge" (engl.: 'Internet Of Things' (IoT)), welches das Zusammenspiel von abermillionen web-unterstützte Endgeräte abbildet und eine prädominierende Rolle für große IT-Unternehmen spielt. Diese Dissertation beleuchtet die Herausforderungen moderner Graphanwendungen. Im Bereich homogener Netzwerken wird ein beschleunigtes und robustes spektrales Clusteringverfahren, sowie ein Modell zur Untersuchung von Teilgraphen mittels Transformer-Architekturen für attribuierte Graphen vorgestellt. Auf wahrscheinlichkeitsbasierten homogenen Netzwerken wird eine neue Datenstruktur eingeführt, die es erlaubt einen effizienten Informationsfluss innerhalb eines Graphen zu berechnen. Darüber hinaus wird ein Optimierungsproblem in Transportnetzwerken beleuchtet, sowie eine Untersuchung von Trendflüssen in sozialen Medien diskutiert. Die Untersuchung von Verbünden (engl.: 'Clusters') von Graphdaten stellt einen Eckpfeiler im Bereich der Datengewinnung dar. Die Erkenntnisse sind nahezu in allen praktischen Bereichen von Relevanz und dient im Bereich des unüberwachten Lernens als Vorverarbeitungsschritt für viele nachgeschaltete Aufgaben. Einer der weit verbreitetsten Methodiken zur Verbundanalyse ist das spektrale Clustering. Die Qualität des spektralen Clusterings leidet, wenn die Eingabedaten sehr verrauscht sind und darüber hinaus ist die Eigenwertzerlegung mit O(n^3) eine teure Operation und damit wesentlich für die hohe, kubische Laufzeitkomplexität verantwortlich. Die Optimierung von einem dieser Kriterien exazerbiert oftmals das verbleibende Kriterium. In dieser Dissertation wird ein neues Modell vorgestellt, innerhalb dessen die Eigenwertzerlegung über eine Nyström Annäherung beschleunigt wird. Die Robustheit wird über ein iteratives Verfahren erreicht, das die gesäuberten und die verrauschten Daten voneinander trennt. Die Darstellung der Eingabedaten über einen Graphen spielt hierbei die zentrale Rolle, die es erlaubt die dicht verbundenen Teile des Graphen zu identifizieren. Dies wird über eine Analyse der Distanzen im Eigenraum erreicht. Parallel zu neueren Erkenntnissen im Bereich des Deep Learnings lässt sich auch ein Forschungsdrang im repräsentativen Lernen von Graphen erkennen. Graph Neural Networks (GNN) sind eine neue Unterform von künstlich neuronalen Netzen (engl.: 'Artificial Neural Networks') auf der Basis von Graphen. Das Paradigma des sogenannten 'message-passing' in neuronalen Netzen, die auf Graphdaten appliziert werden, hat sich hierbei zur prädominierenden Heuristik entwickelt, um Vektordarstellungen von Knoten aus (multi-)relationalen, attribuierten Graphdaten zu lernen. Am Ende der Prozesskette können wir somit theoretische Probleme angehen und lösen, die sich mit Fragestellungen über die Klassifikation von Knoten oder Graphen, über regressive Ausdrucksmöglichkeiten bis hin zur Vorhersage von relationaler Verbindungen beschäftigen. Ein klassisches Problem innerhalb graphischer neuronaler Netze ist bekannt unter der Terminologie des 'over-smoothing' (dt.: 'Überglättens'). Es beschreibt, dass sich mit steigender Anzahl an Iterationen des wechselseitigen Informationsaustausches, die Knotenrepräsentationen im vektoriellen Raum angleichen und somit nicht mehr unterschieden werden können. In dieser Forschungsarbeit wird eine effiziente Methode vorgestellt, die die klassische GNN Architektur aufbricht und eine Vermittlerschicht in den herkömmlichen Verarbeitungsfluss einarbeitet. Konkret gesprochen werden hierbei Knotenrepräsentationen an ausgezeichnete Experten geschickt. Jeder Experte verarbeitet auf idiosynkratischer Basis die Knoteninformation. Ausgehend von einem Anfrageknoten liegt das Kriterium für die Unterscheidbarkeit von Experten in der restriktiven Verarbeitung lokaler Information. Diese neue Heuristik wird als 'Graph Shell Attention' (SEA) bezeichnet und beschreibt die Informationsverarbeitung unterschiedlicher Teilgraphen von Experten unter der Verwendung der Transformer-technologie. Eine zuverlässige Weiterleitung von Informationen über größere Kommunikationsnetzwerken, sozialen Netzwerken oder Sensorennetzwerken spielen eine wichtige Rolle in Anwendungen der Marktanalyse, der Analyse eines sozialen Gefüges, oder der Überwachung der physischen und umweltorientierten Bedingungen. Innerhalb dieser Anwendungen können Fälle auftreten, wo Freundschaftsbeziehungen nicht mehr aktuell sind, wo die Kommunikation zweier Endpunkte zusammenbricht, welches mittels einer Unsicherheit des Informationsaustausches zweier Endpunkte ausgedrückt werden kann. Diese Arbeit untersucht die Optimierung des Informationsflusses in Netzwerken, deren Verbindungen unsicher sind, hinsichtlich der Bedingung, dass nur ein Bruchteil der möglichen Kanten für den Informationsaustausch benutzt werden dürfen. Eine eigens entwickelte Datenstruktur - der F-Baum - wird eingeführt, die 2 NP-harte Teilprobleme auf einmal adressiert: zum einen die Berechnung des erwartbaren Informationsflusses und zum anderen die Auswahl der optimalen Kanten. Der F-Baum unterscheidet hierbei unabhängige Zusammenhangskomponenten der wahrscheinlichkeitsbasierten Eingabedaten, deren Informationsfluss entweder analytisch korrekt und effizient berechnet werden können, oder lokal über traditionelle Monte-Carlo sampling approximiert werden können. Der darauffolgende Abschnitt dieser Arbeit befasst sich mit einem Graphproblem aus Sicht der Optimierungsforschung angewandter Mathematik. Es wird eine neue Variante der Tourenplanung vorgestellt, welches neben kundenspezifischer Zeitfenster auch flexible Zustellstandorte beinhaltet. Darüber hinaus obliegt den Zielorten, an denen Kunden bedient werden können, weiteren Kapazitätslimitierungen. Aus praktischer Sicht ist das VRPTW-FL (engl.: "Vehicle Routing Problem with Time Windows and Flexible Locations") eine bedeutende Problemstellung für Paketdienstleister, Routenplanung mit eingeschränkten Stellplätzen oder auch für die praktische Planung der Arbeitsaufteilung von behandelnden Therapeuten/-innen und Ärzten/-innen in einem Krankenhaus. In dieser Arbeit wird für die Bewältigung dieser Problemstellung eine Metaheuristik vorgestellt, die einen hybriden Ansatz mit der sogenannten Adaptive Large Neighborhood Search (ALNS) impliziert. Darüber hinaus wird als Konstruktionsheuristik ein 'Backtracking'-Mechanismus (dt.: Rückverfolgung) angewandt, um initiale Startlösungen aus dem Lösungssuchraum auszuschließen, die weniger vielversprechend sind. In der Evaluierung dieses neuen Ansatz werden Krankenhausdaten untersucht, um auch die Nützlichkeit von flexiblen Zielorten unter verschiedenen Kostenfunktionen herauszuarbeiten. Im letzten Kapitel dieser Dissertation werden Trends in sozialen Daten analysiert, die Auskunft über die Stimmung der Benutzer liefern, sowie Einblicke in tagesaktuelle Geschehnisse gewähren. Ein Kennzeichen solcher Trends liegt in dem Aufbraußen von inhaltsspezifischen Themen innerhalb eines Zeitfensters, die von der durchschnittlichen Erscheinungshäufigkeit desselben Themas signifikant abweichen. Die Untersuchung der Verbreitung solches Trends über die zeitliche und örtliche Dimension erlaubt es, Trends in Archetypen zu klassifizieren, um somit die Ausbreitung zukünftiger Trends hervorzusagen. Mit der immerwährenden Skalierung von Graphdaten und deren Komplexität, und den Fortschritten innerhalb der künstlichen Intelligenz, wird das maschinelle Lernen unweigerlich weiterhin eine wesentliche Rolle spielen, um Graphdaten zu modellieren, analysieren und schlussendlich die Wissensextraktion aus derartigen Daten maßgeblich zu fördern.La théorie des graphes s'est révélée être une langue universel pour décrire les systèmes complexes modernes. L'élégant cadre théorique des graphes a attiré l'attention des chercheurs pendant des décennies. Par conséquent, les graphes sont devenus une structure de données omniprésente dans diverses applications où une caractéristique relationnelle est évidente. Les applications basées sur les graphes se retrouvent, par exemple, dans l'analyse des réseaux sociaux, les réseaux de télécommunication, les processus logistiques, les systèmes de recommandation, la modélisation des interactions cinétiques dans les réseaux de protéines, ou l'"Internet des objets" (IoT) où la modélisation de milliards de dispositifs interconnectés basés sur le web est d'une importance capitale. Cette thèse se penche sur les défis posés par les applications modernes des graphes. Elle propose un modèle de regroupement spectral robuste et accéléré dans les graphes homogènes et de nouveaux modèles d'enveloppe de graphe pilotés par transformateur pour les graphes attribués. Une nouvelle structure de données est introduite pour les graphes probabilistes afin de calculer efficacement le flux d'informations. De plus, un algorithme métaheuristique est conçu pour trouver une bonne solution à un problème d'optimisation composé d'un problème étendu de routage de véhicules. La thèse se termine par une analyse des flux de tendances dans les données des médias sociaux. La détection de communautés au sein d'un graphe est une tâche fondamentale d'exploration de données qui présente un intérêt dans pratiquement tous les domaines et sert également d'étape de prétraitement non supervisé pour de nombreuses tâches en aval. L'une des méthodes de regroupement les mieux établies est le regroupement spectral. Cependant, le regroupement spectral standard est très sensible aux données d'entrée bruitées, et l'eigendecomposition a une complexité d'exécution cubique élevée O(n^3). S'attaquer à l'un de ces problèmes exacerbe souvent l'autre. Cette thèse présente un nouveau modèle qui accélère l'étape d'eigendecomposition en la remplaçant par une approximation de Nyström. La robustesse est obtenue en séparant itérativement les données en une partie nettoyée et une partie bruyante. Dans ce processus, la représentation des données d'entrée sous forme de graphe est essentielle pour identifier les parties des données qui sont bien connectées en analysant les distances des sommets dans l'espace propre. Avec les progrès des architectures de Deep Learning, nous observons également une poussée de la recherche sur l'apprentissage de la représentation graphique. Le paradigme du passage de messages dans les réseaux neuronaux graphiques (GNN) formalise une heuristique prédominante pour les données graphiques multi-relationnelles et attribuées afin d'apprendre les représentations des nœuds. Dans les applications en aval, nous pouvons utiliser les représentations pour résoudre des problèmes théoriques tels que la classification des nœuds, la classification/régression des graphes et la prédiction des relations. Cependant, un problème courant dans les GNN est connu sous le nom de lissage excessif. En augmentant le nombre d'itérations dans le passage de messages, les représentations des nœuds du graphe d'entrée s'alignent et deviennent indiscernables. Cette thèse montre un moyen efficace d'assouplir l'architecture GNN en employant une heuristique de routage dans le flux de travail général. Plus précisément, une couche supplémentaire achemine les représentations des nœuds vers des experts spécialisés. Chaque expert calcule les représentations en fonction de son flux de travail GNN respectif. Les définitions de GNN distincts résultent de k vues localisées à partir d'un nœud central. Cette procédure est appelée Graph Shell Attention (SEA), dans laquelle les experts traitent différents sous-graphes à l'aide d'un transformateur. La propagation fiable d'informations par le biais de grands réseaux de communication, de réseaux sociaux ou de réseaux de capteurs est importante pour les applications concernant le marketing, l'analyse sociale ou la surveillance des conditions physiques ou environnementales. Cependant, les liens sociaux d'amitié peuvent être obsolètes, et les liens de communication peuvent échouer, induisant la notion d'incertitude dans de tels réseaux. Cette thèse aborde le problème de l'optimisation de la propagation de l'information dans les réseaux incertains compte tenu d'un budget contraint d'arêtes. Une structure de données spécialisée, appelée F-tree, traite deux sous-problèmes NP-hard: le calcul du flux d'information attendu et le choix optimal des arêtes. L'arbre F identifie les composants indépendants d'un graphe d'entrée probabiliste pour lesquels le flux d'informations peut être calculé analytiquement et efficacement ou pour lesquels l'échantillonnage Monte-Carlo traditionnel peut être appliqué indépendamment du reste du réseau. La partie suivante de la thèse couvre un problème de graphe du point de vue de la recherche opérationnelle. Une nouvelle variante du célèbre problème d'acheminement par véhicule (VRP) est introduite, où les clients sont servis dans une fenêtre temporelle spécifique (TW), ainsi que des lieux de livraison flexibles (FL) incluant des contraintes de capacité. Ces dernières impliquent que chaque client est programmé dans l'un des emplacements de service de livraison à capacité. En pratique, le problème VRPTW-FL est pertinent pour des applications de livraison de colis, d'acheminement avec un espace de stationnement limité ou, par exemple, dans le cadre de la programmation de kinésithérapeutes à l'échelle d'un hôpital. Cette thèse présente une métaheuristique construite sur une recherche hybride de grands voisinages adaptatifs (ALNS). En outre, un mécanisme de retour en arrière dans la phase de construction est introduit pour modifier les décisions insatisfaisantes à des stades précoces. Dans l'étude computationnelle, des données hospitalières sont utilisées pour évaluer l'utilité de lieux de livraison flexibles et de diverses fonctions de coût. Dans la dernière partie de la thèse, les tendances des médias sociaux sont analysées, ce qui donne un aperçu du sentiment des utilisateurs et des sujets d'actualité. Ces tendances consistent en des rafales de messages concernant un sujet particulier dans un laps de temps donné, s'écartant de manière significative de la fréquence moyenne d'apparition du même sujet. Cette thèse présente une méthode de classification des archétypes de tendances afin de prédire leur diffusion future en étudiant la diffusion de ces tendances dans l'espace et dans le temps. D'une manière générale, avec l'augmentation constante de l'échelle et de la complexité des ensembles de données structurées en graphe et les progrès de l'intelligence artificielle, les modèles soutenus par l'IA joueront inévitablement un rôle important dans l'analyse, la modélisation et l'amélioration de l'extraction de connaissances à partir de données en graphe

    Scalable large margin pairwise learning algorithms

    Get PDF
    2019 Summer.Includes bibliographical references.Classification is a major task in machine learning and data mining applications. Many of these applications involve building a classification model using a large volume of imbalanced data. In such an imbalanced learning scenario, the area under the ROC curve (AUC) has proven to be a reliable performance measure to evaluate a classifier. Therefore, it is desirable to develop scalable learning algorithms that maximize the AUC metric directly. The kernelized AUC maximization machines have established a superior generalization ability compared to linear AUC machines. However, the computational cost of the kernelized machines hinders their scalability. To address this problem, we propose a large-scale nonlinear AUC maximization algorithm that learns a batch linear classifier on approximate feature space computed via the k-means Nyström method. The proposed algorithm is shown empirically to achieve comparable AUC classification performance or even better than the kernel AUC machines, while its training time is faster by several orders of magnitude. However, the computational complexity of the linear batch model compromises its scalability when training sizable datasets. Hence, we develop a second-order online AUC maximization algorithms based on a confidence-weighted model. The proposed algorithms exploit the second-order information to improve the convergence rate and implement a fixed-size buffer to address the multivariate nature of the AUC objective function. We also extend our online linear algorithms to consider an approximate feature map constructed using random Fourier features in an online setting. The results show that our proposed algorithms outperform or are at least comparable to the competing online AUC maximization methods. Despite their scalability, we notice that online first and second-order AUC maximization methods are prone to suboptimal convergence. This can be attributed to the limitation of the hypothesis space. A potential improvement can be attained by learning stochastic online variants. However, the vanilla stochastic methods also suffer from slow convergence because of the high variance introduced by the stochastic process. We address the problem of slow convergence by developing a fast convergence stochastic AUC maximization algorithm. The proposed stochastic algorithm is accelerated using a unique combination of scheduled regularization update and scheduled averaging. The experimental results show that the proposed algorithm performs better than the state-of-the-art online and stochastic AUC maximization methods in terms of AUC classification accuracy. Moreover, we develop a proximal variant of our accelerated stochastic AUC maximization algorithm. The proposed method applies the proximal operator to the hinge loss function. Therefore, it evaluates the gradient of the loss function at the approximated weight vector. Experiments on several benchmark datasets show that our proximal algorithm converges to the optimal solution faster than the previous AUC maximization algorithms

    Large-scale Machine Learning in High-dimensional Datasets

    Get PDF
    corecore