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Summary (English)

Over the last few decades computers have gotten to play an essential role in our
daily life, and data is now being collected in various domains at a faster pace
than ever before. This dissertation presents research advances in four machine
learning fields that all relate to the challenges imposed by the analysis of big
data.

In the field of kernel methods, we present an information-based denoising tech-
nique based on semi-supervised kernel Principal Component Analysis (PCA),
that incorporates label information into the kernel PCA objective. Effectively,
this guides the low-rank representation towards relevant components, while ex-
ploiting intrinsic manifold structures exposed by the data. In the same field, we
also introduce a scalable randomized heuristic for optimizing kernel hyperpa-
rameters, that is based on maximizing the Minimum Enclosing Ball (MEB) of
the class means in the associated Reproducing Kernel Hilbert Space (RKHS).

In the field of spectral methods, we introduce semi-supervised eigenvectors of
a graph Laplacian, that inherit many of the properties that characterize the
global eigenvectors, but by using side-information in the form of a seed set, the
semi-supervised eigenvectors are better at modeling local heterogeneities.

In the field of machine learning for neuroimaging, we introduce learning proto-
cols for real-time functional Magnetic Resonance Imaging (fMRI) that allow for
dynamic intervention in the human decision process. Specifically, the model ex-
ploits the structure of fMRI data by incorporating a temporal Gaussian Process
(GP) smoothness prior, which reduces model degeneracy caused by mislabeled
data samples.
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Finally, in the field of topic modeling, we introduce a Graphics Processing Unit
(GPU) accelerated framework for co-clustering in large-scale sparse bipartite
networks. By implementing the Infinite Relational Model (IRM) in this frame-
work we achieve speedups of two orders of magnitude compared to estimation
based on conventional processors



Summary (Danish)

I løbet af de seneste årtier er computere kommet til at spille en væsentlig rolle i
vores daglige liv, og data bliver nu indsamlet i forskellige domæner i et hurtigere
tempo end nogensinde før. Denne afhandling præsenterer forskningsresultater
i fire overordnede maskinlæringsfelter, som alle vedrører de udfordringer der
ligger i analysen af store datasæt.

Inden for kernelmetoder præsenterer vi en informationsbaseret støjreduktion-
steknik baseret på semi-supervised kernel principal komponentanalyse [Princi-
pal Component Analysis (PCA)], som inkorporerer sideinformationer omkring
data. Effektivt guider dette lavrangsrepræsentationen mod komponenter, der er
relevante, og samtidig udnyttes eksponerede glatte strukturer i data. Inden for
samme felt præsenterer vi en skalerbar randomiseret heuristisk til at optimere
kernel hyperparametre, der er baseret på maksimering af den mindste omslut-
tende kugle [Minimum Enclosing Ball (MEB)] udspændt af gennemsnittet for
individuelle klassestrukturer, hvor de underlæggende data er repræsenteret i et
reproducerende kernel Hilbert rum [Reproducing Kernel Hilbert Space (RKHS)].

Inden for spektrale metoder introducerer vi semi-supervised egenvektorer for en
graf Laplacian, der arver mange af de egenskaber, der kendetegner de globale
egenvektorer, men ved at inkorporere sideinformationer i optimeringsproblemet,
er semi-supervised egenvektorer bedre til at modelere lokale heterogeniteter.

Inden formaskinlæring i neuroimaging introducerer vi maskinlæringsprotokoller
for realtids funktionel magnetisk resonans [functional Magnetic Resonance Imag-
ing (fMRI)], der giver mulighed for dynamiske indgreb i den menneskelige beslut-
ningsproces. Specifikt udnytter modellen strukturen af fMRI data ved at inkor-
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porere en tidslig Gausisk process [Gaussian Process (GP)] glatheds-prior, hvilket
reducerer modeldegenerering forårsaget af upræcise sideinformationer.

Slutteligt, inden for emnemodellering, introducerer vi et grafikkortaccelereret
[Graphics Processing Unit (GPU)] system for detektion af klyngedannelser i
todelte storskala netværk med sparsomme observationer. Ved at implementere
den uendelige relationelle model [Infinite Relational Model (IRM)] i dette sys-
tem opnår vi hastighedsforbedringer i to størrelsesordener sammenlignet med
modelestimering baseret på konventionelle processorer.
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Chapter 1

Introduction

This introductory chapter is meant to serve as a general motivation,
setting the stage for the research contributions of this dissertation, as
well as providing the reader with an overview of how the remaining
chapters are organized.



2 Introduction

1.1 Motivation

Data analysis turns out to be a challenging problem when data sets become
so large that commonly used processing tools are infeasible. Nevertheless there
is a clear trend towards even larger data sets, as explained by for instance
the everlasting growth of the World Wide Web (WWW), where search engines
provide clients with enormous amounts of indexed data such as videos, images,
and text. Also, quality demands in for example image processing, result in
digital cameras with ever increasing resolutions, that will set new standards
for television sets, as well as video games. The whole industry is like a closed
loop where competition in a particular area, triggers new possibilities and/or
demands in another, that again will raise the bar and set new standards.

More recently the computer games industry have sparked the research in com-
puter graphics that ultimately led to specialized devices for beautiful graphics
rendering, known as Graphics Processing Units (GPU). The massive market
for computer games, as well as the inherit competition, made GPUs fairly in-
expensive and thereby available for the general consumer. Interestingly, even
though GPUs were specialized for graphics rendering, other research fields dis-
covered that these new consumer devices were not only suitable for rendering,
but applicable for general purpose operations, such as Basic Linear Algebra
Subprograms (BLAS) and Markov Chain Monte Carlo (MCMC) simulations.
Being able to fit such operations within GPUs lead to tremendous perfor-
mance improvements, that for numerous applications outperformed correspond-
ing Central Processing Unit (CPU) implementations by orders of magnitude.
Initial implementations were based on standard graphics rendering Application
Programming Interfaces (API), such as shaders, that in terms of readability
and implementation were suboptimal. Eventually the industry became aware
of the new market and began standardizing the programming paradigm, which
among others resulted in Compute Unified Device Architecture (CUDA) and
Open Computing Language (OpenCL). By now these paradigms are fairly ma-
ture and as a result GPUs are now powering the fastest supercomputer of the
world.

In the same way as the computer games industry pushed the development of
GPUs at a high pace, the availability of big data is pushing research towards
more scalable algorithm for data analysis. However, are more scalable algo-
rithms really a necessity when computers seem to double their performance1
every 18 months, as predicted by Moores law? – Most indeed – The amount of
data increases at a higher pace than Moores law predict the transistor count [Vil-
lars et al., 2011]. Obviously the curse of dimensionality will remain true, and

1Assuming transistor count translates directly to raw performance.



1.1 Motivation 3

likely to become and even greater limitation than it is today, as the gap between
available data and computer performance will continue to expand. This makes
new approximation techniques as well as algorithms that can exploit modern
architectures of the multicore era important as ever before.

This dissertation presents research advances in four machine learning fields that
all relate to the challenges that are imposed by the analysis of big data. Specif-
ically, advances are presented in; kernel methods, spectral methods, machine
learning for neuroimaging, and topic modeling.

Kernel methods refer to nonlinear algorithms for machine learning that exploit
what is known as the so-called kernel trick. The methodology has become very
popular as the trick naturally can extend classical linear algorithms, to allow
for nonlinear mappings, given that the data only enters in the form of inner
products. In this dissertation, one contribution related to kernel methods is an
information-based denoising approach that is based on semi-supervised kernel
Principal Component Analysis (PCA) and the inherently ill-posed pre-image
problem. The classical denoising technique relies on a low-rank assumption, in
that the relevant signal is assumed to be spanned by the leading kernel PCA
components, but when the signal of interest is weak compared to other com-
ponents, the approach is degenerate. The information-based technique incor-
porates label-information into the kernel PCA objective, guiding the low-rank
representation towards components that are relevant. Moreover, we incorporate
a graph regularizer into the pre-image problem to benefit from intrinsic manifold
structures when only few labeled samples are available. Another contribution
related to the field, considers a randomized heuristic for optimizing kernel hy-
perparameters. Specifically, we maximize a Minimum Enclosing Ball (MEB) of
the class means in the associated Reproducing Kernel Hilbert Space (RKHS),
which can be computed efficiently by exploiting randomization.

Spectral methods are widely used for approximating graph partitions, that in
general is an NP-complete problem. The approximation is usually based on the
smallest eigenvectors of a Laplacian matrix for a graph, and by clustering in
this low-rank representation good graph partitions can be found. Inherently
eigenvectors are global quantities, and a low-rank representation is likely to
fail at modeling minor local heterogeneities. In this dissertation, the contribu-
tion related to spectral methods is a methodology for constructing, what we
call; semi-supervised eigenvectors of a Laplacian matrix. These semi-supervised
eigenvectors inherit many of the nice properties that characterize the global
eigenvectors, but by using side-information in the form of a seed set, the semi-
supervised eigenvectors are better at modeling local heterogeneities.

Neuroimaging by real-time functional Magnetic Resonance Imaging (fMRI) al-
lows for intervention in the human decision process, thereby allowing for more
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sophisticated paradigms than in a traditional offline experimental setup. The
human decision process is known to be both complex and influenced by many
factors on multiple time scales, as reflected by the numerous brain networks
and connectivity patterns involved. In this dissertation, we work towards active
learning protocols in neuroimaging and we discuss the possibility of combin-
ing real-time fMRI and online machine learning which will allow experimental
interventions dependent on the cognitive state of the subject. Specifically we
propose a semi-supervised modeling approach, that exploits the smoothness of
fMRI data, to effectively avoid model degeneracy caused by mislabeled data
samples.

Topic modeling by co-clustering is a problem of both theoretical and practical
importance, e.g., in market basket analysis and collaborative filtering, as well as
in web scale text processing. In this dissertation, we state the co-clustering prob-
lem in terms of non-parametric generative models which can address the issue
of estimating the number of row and column clusters from a hypothesis space of
an infinite number of clusters. To reach large-scale applications of co-clustering
we exploit that parameter inference for co-clustering is well suited for parallel
computing. The main contribution is a carefully crafted GPU framework for
efficient inference on large-scale sparse bipartite networks and this implementa-
tion achieves a speedup of two orders of magnitude compared to conventional
CPU model estimation.

1.2 Outline and Contributions

In addition to this very general motivation, the rest of this dissertation serves
as an introduction to the general fields that have influenced the work of this
thesis, as well as providing compressed overviews of selected publications. In
detail, the remainder of this dissertation is organized as follows2:

Chapter 2 - Constrained Optimization; introduces general concepts, such
as Lagrange multipliers and Karush-Kuhn-Tucker (KKT) conditions. These
concepts have played an essential role for many of the contributions of
this thesis; particular in [Hansen and Mahoney, 2012, 2013; Hansen et al.,
2013].

Chapter 3 - Kernel Methods; introduces the kernel trick that allows exist-
ing linear models to handle nonlinear data in a non-parametric compu-
tationally efficient manner. This chapter also contain discussions related

2Papers are ordered according to submission date.
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to [Hansen et al., 2011a] that considers efficient optimization of kernel hy-
perparameters, as well as [Hansen et al., 2013] that exploits labeled data
to improve denoising based on the pre-image problem of kernel PCA.

Chapter 4 - Spectral Methods; introduces the general properties of eigen-
vectors of a graph Laplacian and normalized cuts. Then in detail, the key
contributions of [Hansen and Mahoney, 2012] and [Hansen and Mahoney,
2013] are discussed together with examples demonstrating properties of
the methodology.

Chapter 5 - Neuroimaging; introduces machine learning challenges encoun-
tered in fMRI analysis, as this particular field has motivated much of
the research in this thesis. In particular, we present examples related
to [Hansen et al., 2012] that considers label uncertainty in real-time fMRI,
as well as examples on how semi-supervised eigenvectors [Hansen and Ma-
honey, 2013] can be used for information-based data-driven feature ex-
traction.

Chapter 6 - Topic Modeling; introduces the challenges of using GPUs for
topic modeling on sparse bipartite graphs, as such architecture are much
better suited for dense matrix operations. In particular, this chapter in-
troduces the Infinite Relational Model (IRM) together with results based
on the large-scale implementation described in [Hansen et al., 2011a].

Chapter 7 - Conclusions; summarizes the key contributions of this thesis.

Paper A - Non-parametric Co-clustering of Large Scale Sparse Bipar-
tite Networks on the GPU, [Hansen et al., 2011b], presents a GPU ac-
celerated implementation of the co-clustering problem formulated in terms
of non-parametric generative models. To reach large-scale applications we
exploit that parameter inference for co-clustering is well suited for paral-
lel computing. Specifically we devise a generic GPU framework, in which
we formulate the IRM and demonstrate efficient inference on large-scale
sparse bipartite networks. In both simulations and on real datasets the
implementation achieves a speedup of two orders of magnitude compared
to estimation based on conventional CPUs.

Paper B - A Randomized Heuristic for Kernel Parameter Selection
with Large-scale Multi-class Data, [Hansen et al., 2011a], considers
the challenge of estimating hyperparameters in kernel algorithms when
regular Cross-Validation (CV) proves infeasible due to the size of the prob-
lem. We present a novel heuristic for finding good estimates that is based
on maximizing the MEB of the class means in the associated RKHS, that
can be computed efficiently by exploiting randomization. Compared to
other distance metrics in the RKHS we find that our randomized approach
provides better results together with a highly competitive time complexity.
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Paper C - Decoding Complex Cognitive States Online by Manifold
Regularization in Real-time fMRI, [Hansen et al., 2012], investigates
a methodology for avoiding model degeneracy caused by mislabeled data
samples. In real-time fMRI this is particularly important as the natural
intervention in the human decision process that can be investigated using
online learning, allows for more dynamic paradigms that unfortunately
makes it difficult to quantify the subjects brain state at a given point in
time. The model exploits a temporal Gaussian Process (GP) smoothness
prior, and on synthetic data we demonstrate a significant advantage com-
pared to using a Support Vector Machine (SVM), whereas on real fMRI
data we observe indications of improved generalizability.

Paper D - Semi-supervised Eigenvectors for Locally-biased Learning,
[Hansen and Mahoney, 2012], proposes a new methodology for locally-
biased machine learning. In many applications, one has information about
a specific target region of a large data set, and one wants to perform com-
mon machine learning and data analysis tasks nearby the pre-specified
target region. In such situations, regular eigenvector-based methods tend
to have serious difficulties, as they are inherently global quantities. The
proposed semi-supervised eigenvectors are successively-orthogonalized di-
rections of maximum variance, constrained on being well-correlated with
an input seed set of nodes that are assumed to be provided in a semi-
supervised manner. They inherit many of the nice properties that char-
acterizes the leading nontrivial global eigenvectors of a graph Laplacian,
for example, they capture slowly varying modes in the data, they are ef-
ficiently computable, and they can be used for common machine learning
tasks such as kernel-based and semi-supervised learning, etc. Using several
empirical examples we demonstrate how these semi-supervised eigenvec-
tors can be used to perform locally-biased machine learning.

Paper E - Information-based Kernel PCA Denoising by Semi-supervised
Manifold Learning, [Hansen et al., 2013], proposes two approaches for
exploiting label information to improve the denoising in problems were
side-information, in the form of labeled data is available. First, the clas-
sical kernel PCA formulation is augmented by a loss term, leading to an
iterative algorithm for finding orthonormal components biased by the class
labels. Secondly, we devise a fixed-point iteration scheme for solving the
pre-image problem for a manifold warped RKHS. We demonstrate the
proposed methods on an image classification problem, where it is shown
that incorporating label information decreases the sensitivity to the choice
of kernel hyperparameter, and improves the denoising performance as mea-
sured by the Mean Squared Error (MSE), indicating that incorporating
label information indeed results in a more descriptive manifold represen-
tation.
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Paper F - Semi-supervised Eigenvectors for Large-scale Locally-biased
Learning, [Hansen and Mahoney, 2013], elaborates on the methodology
introduced in [Hansen and Mahoney, 2012]. Two new variants of the
algorithm are introduced that allows for large-scale data analysis. Specif-
ically, we introduce a solution based on low-rank approximations that is
applicable for general machine learning tasks, as well as a diffusion based
approximation, that is very scalable as the solution can be obtained from
local PageRank diffusions on a graph. We provide several empirical ex-
amples that demonstrate how these semi-supervised eigenvectors can be
used to perform locally-biased learning, and we discuss the relationship be-
tween our results and recent machine learning algorithms that use global
eigenvectors of the graph Laplacian.

Paper G - Personalized Audio Systems - a Bayesian Approach, [Nielsen
et al., 2013] (work in progress), presents a framework for user-guided pa-
rameter estimation, based on active learning protocols using GP regres-
sion. Specifically, audio systems are typically equipped with many user-
adjustable parameters and in order to find the optimal settings, the user
must effectively do high-dimensional optimization with respect to subject
preferences. We demonstrate the framework in a real interactive loop
where twenty-four subjects are given a personalized setting of a five-band
equalizer with thousands of possible settings, and we show that the pro-
posed preference methodology is able to find significantly better solutions
than through usual random experimentation.



8 Introduction



Chapter 2

Constrained Optimization

This chapter introduces the general principles of constrained opti-
mization, that are preliminary for the majority of results presented
in this dissertation.
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Lagrange multipliers allow elegant solutions to constrained optimization prob-
lems, and they play an essential role in the contributions of this dissertation.
Here we introduce the concept of Lagrange multipliers by taking a similar ap-
proach as used in [Bishop, 2007].

Let x ∈ RD, and let f(x) be the objective function with constraint equation
g(x) = 0. The constraint g(x) = 0 is a (D − 1)-dimensional surface in RD, and
the gradient ∇g(x) is orthogonal to the surface, which can be shown using a
Taylor expansion around x together with a nearby point, also on the constraint
surface [Bishop, 2007].

We now seek a point on the constraint surface, so that f(x) is maximized.
For the optimal point xopt the gradient ∇f(xopt) must be orthogonal to the
constraint surface, since otherwise x could be moved to a location closer to the
optimum. Thus, ∇g(xopt) and ∇f(xopt) must be parallel or antiparallel, and

∇f(xopt) + λ∇g(xopt) = 0 (2.1)

must hold for some λ ∈ R. In the case where λ 6= 0, λ is called a Lagrange
multiplier.

We then define the Lagrangian as

L(x, λ) = f(x) + λg(x) (2.2)

so that ∇xL(x, λ) = 0, is the constrained stationary condition shown in Eq.
2.1, whereas ∂

∂λL(x, λ) = 0 leads to the constraint g(x) = 0.

To find the maximum of the function f(x) subject to the constraint g(x) = 0,
we therefore calculate the stationary point of L(x, λ) with respect to both x
and λ, and solve these equations for x.

In the case of inequality constraints of the form, g(x) ≥ 0, two scenarios can
occur. If the constrained stationary point lies in the region where g(x) > 0, the
constraint is inactive, and the stationary condition simply becomes ∇f(x) = 0,
corresponding to λ = 0 in Eq. 2.2. In the other case, the constrained stationary
point lies on the boundary, corresponding to the equality constraint g(x) = 0,
and the constraint is now said to be active. Since the optimum is not in the
subspace spanned by g(x) > 0, the sign of λ must be so that ∇f(x) is oriented
away from that subspace. Thus, ∇f(x) and ∇g(x) must be antiparallel

∇f(x) = −λ∇g(x), λ ≥ 0. (2.3)

In both of the two scenarios we have that λg(x) = 0, since in the former inactive
case λ = 0 whereas in the latter active case g(x) = 0.



2.1 Lagrange Duality 11

Maximizing f(x) subject to g(x) ≥ 0, is therefore achieved by maximizing the
Lagrangian in Eq. 2.2 subject to the constraints

g(x) ≥ 0 (2.4)
λ ≥ 0 (2.5)

λg(x) = 0 (2.6)

which together are known as the KKT conditions.

In the case where we want to minimize a function f(x) subject to an inequality
constraint g(x) ≥ 0, then we simply minimize the Lagrangian function L(x, λ) =
f(x)− λg(x) with respect to x, again subject to λ ≥ 0.

2.1 Lagrange Duality

The fundamental goal of duality is to cast a certain problem into another for-
mulation that is more convenient, e.g., in terms of computability.

Let us now consider the following general constrained optimization problem

minimize
x∈RD

f(x),

s.t. gi(x) ≤ 0, ∀i ∈ {1, . . . ,M},
hj(x) = 0, ∀j ∈ {1, . . . , P}, (2.7)

where M and P respectively denote the number of inequality and equality con-
straints.

We now define the Lagrangian, LP : RD×RM ×RP 7→ R, for the optimization
problem

LP (x,λ,ν) = f(x) +

M∑

i=1

λigi(x) +

P∑

j=1

νjhj(x), (2.8)

which we denote as the Lagrange primal function of the problem. Note that since
∇f(x) and ∇gi(x) are antiparallel, this implies that the inequality Lagrange
multiplier must be λi ≥ 0.

The Lagrange dual function, LD : RM × RP 7→ R, can be defined as the
“minimum” of the primal Lagrangian over x

LD(λ,ν) = inf
x∈Ω


f(x) +

M∑

i=1

λigi(x) +

P∑

j=1

νjhj(x)


 (2.9)
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where “inf” is the pointwise infimum (greatest lower bound), and where the
domain Ω is defined as the nonempty intersection of the constraint functions
[Hindi, 2006]. Thus, if the primal function is unbounded below in x, the dual
function takes the value −∞. According to [Boyd and Vandenberghe, 2004] we
shall call parameters (λ,ν) for which LD > −∞ dual feasible.

A crucial observation is that the dual is an affine function of λ and ν, and it
will therefore be a concave function, even though the primal is not a convex
function [Boyd and Vandenberghe, 2004].

Now, let p ∈ R denote the optimal value of f(x) in the minimization problem
in Eq. 2.7. An important property of the dual function, is that it yields lower
bounds for p, because for any feasible point x̂, we have

M∑

i=1

λigi(x̂) +

P∑

j=1

νjhj(x̂) ≤ 0, (2.10)

since gi(x̂) ≤ 0, hj(x̂) = 0 and λi ≥ 0. Thus, by adding f(x̂) on both sides in
the above expression, we recover the primal

LP (x̂,λ,ν) ≤ f(x̂). (2.11)

It is therefore immediate, that the dual is a lower bound

LD(λ,ν) = inf
x∈Ω

LP (x,λ,ν) ≤ LP (x̂,λ,ν) ≤ f(x̂). (2.12)

The optimal lower bound, can then be expressed as a new optimization problem,
denoted the Lagrange dual problem

maximize
λ∈RM ,ν∈RP

LD(λ,ν),

s.t. λi ≥ 0, ∀i ∈ {1, . . . ,M}. (2.13)

The dual problem is a convex optimization problem, since the objective is to
maximize a concave function, with convex constraints.

If we let d ∈ R be the dual optimal point, then due to the result in Eq. 2.12, it
will always be that d ≤ p. This releation is called weak duality, and the difference
p − d is called the duality gap. If d = p, we say that strong duality holds, and
the optimal solution to the primal problem can therefore be expressed in terms
of the optimal dual variables of the dual problem, which sometimes is easier to
solve than the primal problem.

Strong duality does in general not hold, but if {f(x)}∪{gi(x) | i ∈ {1, . . . ,M}}
are convex functions and the equality constraints are linear, strong duality does
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usually hold [Hindi, 2006]. To guarantee strong duality, constraint qualification
such as Slater’s condition can be exploited. The condition states that strong
duality holds if the original problem is convex, and there exists a strictly feasible
point, i.e., there exists a point x such that the inequalities are strictly satisfied

gi(x) < 0, hj(x) = 0. (2.14)

I refer to [Boyd and Vandenberghe, 2004] for a deeper analysis and proof of
Slater’s theorem.

To conclude this section on Lagrange duality, let us consider a more symmetri-
cal form of the primal and dual, to gain some intuition about the geometrical
structure. By definition, the dual optimal point can be written as

d∗ = sup
λ,ν

inf
x

LP (x,λ,ν) (2.15)

and the primal optimal point can be written as [Boyd and Vandenberghe, 2004]

p∗ = inf
x

sup
λ,ν

LP (x,λ,ν) (2.16)

where x ∈ Ω, λ ∈ RM+ , ν ∈ RP , and where “sup” is the pointwise supremum
(least upper bound).

Because strong duality implies that p∗ = d∗, it also implies that the minimization
and maximization can be interchanged, since

sup
λ,ν

inf
x

LP (x,λ,ν) = inf
x

sup
λ,ν

LP (x,λ,ν) (2.17)

Thus, the optimal point corresponds to a saddle point, due to the strong max-
min property [Boyd and Vandenberghe, 2004].

2.2 Optimality Conditions

We shall now assume that the optimization problem in Eq. 2.7 contains differ-
entiable objective and constraint functions.

If the primal problem is non-convex, but there exist optimal points, x∗ for
the primal, and (λ∗,ν∗) for the dual, with a zero duality gap, then the KKT
conditions

∇f(x∗) +

M∑

i=1

λ∗i∇gi(x∗) +

P∑

j=1

ν∗i∇hi(x∗) = 0 (2.18)
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gi(x
∗) ≤ 0, i ∈ {1, . . . ,M} (2.19)
λ∗i ≥ 0, i ∈ {1, . . . ,M} (2.20)

λ∗i gi(x
∗) = 0, i ∈ {1, . . . ,M} (2.21)

hj(x
∗) = 0, j ∈ {1, . . . , P} (2.22)

are necessary for any pair of primal and dual variables, in order to be opti-
mal [Boyd and Vandenberghe, 2004]. Thus, the KKT conditions do not imply
optimality in the non-convex case, but they must be fulfilled at the optimum.

Finally, if the primal problem is convex, and if Slater’s condition applies, then
the KKT conditions are necessary and sufficient for optimality [Boyd and Van-
denberghe, 2004]. Specifically, in [Hansen and Mahoney, 2012, 2013] the KKT
conditions of an optimization ansatz were used to provide valuable insights with
respect convexity.



Chapter 3

Kernel Methods

This chapter introduces the kernel trick and related applications.
In the general field of kernel methods we introduce [Hansen et al.,
2011a] related to the optimization of kernel hyperparameters. With
respect to kernel PCA and the pre-image problem we give an intro-
duction to [Hansen et al., 2013] that exploits side-information for
improving the manifold representation. Finally, we briefly touch
upon [Nielsen et al., 2013] (work in progress) that exploits Bayesian
non-parametrics for quantifying uncertainty, with respect to model-
ing human audio preferences.
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During the last few years, kernel methods have had an enormous influence on
the developments in nonlinear multivariate machine learning. Especially, the
kernel trick has allowed existing linear algorithms, to be modified into nonlinear
versions with minimal effort. This section will introduce some of the most
important results of kernel methods.

A Hilbert space H is a real or complex inner product space and is in essence
an infinite dimensional euclidian space. The space is closed under addition and
scalar multiplication, and obeys the commutative, distributive and associative
laws, i.e., the inner product 〈·, ·〉 in H obeys the following conditions:

〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 (3.1)
〈αx, y〉 = α 〈x, y〉 (3.2)
〈x, y〉 = 〈y, x〉 (3.3)
〈x, x〉 ≥ 0 (3.4)
〈x, x〉 = 0⇒ x = 0 (3.5)

Note that we do not use vector notation (boldface) in the definition and condi-
tions for the inner product, since the exact domain has yet to be defined. The
norm ‖ · ‖ is defined in terms of the inner product via ‖x‖ = 〈x, x〉1/2. Finally,
the Hilbert space H is complete if every Cauchy sequence converges with respect
to this norm to an element in the space [Scholkopf and Smola, 2001].

A RKHS is a Hilbert space of functions in which pointwise evaluation is a
continuous linear functional. Given a kernel, k : X × X 7→ R, we shall now
construct a Hilbert space such that k is a dot product in that space. We then
define the Gram matrix as Kij = k(xi, xj), for x1, x2, . . . , xN , and we say that
the kernel is positive definite, if the Gram matrix is positive definite. Thus, the
determinant of K must be nonnegative.

Now assume that k is a real and positive definite kernel, and that X is a
nonempty set. The reproducing kernel map is then defined as a map from
X into the space of functions mapping X into R, written as: ϕ : X 7→ (X 7→ R)
(equivalently ϕ : X 7→ H), and defined as: ϕ(x) 7→ k(·, x).

This basically means, that to each point x ∈ X (our original space), we associate
the function ϕ(x) that assigns the value k(x′, x) to x′ ∈ X . The image of ϕ can
be turned into a vector space, using a linear combination of the form

f(·) =

N∑

i=1

αik(·, xi), (3.6)

where αi ∈ R. This space is the RKHS, and Eq. 3.6 is due to the representer
theorem [Kimeldorf and Wahba, 1970].
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Now, let g(·) =
∑N ′

j=1 βjk(·, x′j), then the inner product is defined as

〈f, g〉 =

N∑

i=1

N ′∑

j=1

αiβjk(xi, x
′
j). (3.7)

As a final example of this section we verify that this is actually an inner product
in the RKHS, and to do so, we must verify that the above definition fulfills the
previous stated conditions. Since symmetry and linearity are the easiest to
show, we shall here focus on the final property, namely that 〈f, f〉 = 0⇒ f = 0.

Because the kernel is representer of evaluation, then

〈k(·, x), f〉 =

N∑

i=1

αik(xi, x) = f(x). (3.8)

Thus, if we replace f with a kernel in the above expression, then

〈k(·, x), k(·, x′)〉 = k(x, x′) (3.9)

which is called the reproducing property of the kernel [Scholkopf and Smola,
2001].

Finally, by combining Eq. 3.8 and 3.9, and applying the Cauchy-Schwartz in-
equality

|〈x, y〉|2 ≤ 〈x, x〉 · 〈y, y〉 , (3.10)

we can prove the desired property

〈k(·, x), f〉2 ≤ 〈k(·, x), k(·, x)〉 · 〈f, f〉 ⇒ (3.11)

f(x)2 ≤ k(x, x) 〈f, f〉 ⇒ (3.12)
〈f, f〉 = 0⇒ f(x) = 0 (3.13)

3.1 The Kernel Trick

We shall now introduce the kernel trick, by considering data in the input space
defined by x ∈ RD. The motivation behind the kernel trick, is to map data
that are non-separable by a linear classifier in the input space, to some high-
dimensional space, where data then may be linearly separable. Thus, a sep-
arating hyperplane in a high-dimensional space, may correspond to a highly
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nonlinear boundary in the input space, which makes linear classification in the
new space equivalent to nonlinear classification in the original space.

The Mercer theorem states that any continuous, symmetric, positive semidef-
inite kernel function, k(x,x′), can be expressed as a dot product in a high-
dimensional space [Kimeldorf and Wahba, 1970]. Thus, if a kernel satisfies
these properties there will exist a respective RKHS, such that

〈ϕ(x), ϕ(x′)〉 = 〈k(·,x), k(·,x′)〉 = k(x,x′). (3.14)

The result implies that without knowing the mapping defined by ϕ(·), the dot
product can be computed in the high-dimensional space solely in terms of the
respective kernel, which is essential from a computational perspective.

The kernel trick is applicable for any algorithm where data only enters in terms
of dot products, as we shall see in Section 3.2. To conclude this section, let us
briefly review two commonly used kernels. The linear kernel is given by

k(x,x′) = xTx′, (3.15)

and recovers the dot product in the input space, whereas the commonly used
Gaussian kernel is given by

kγ(x,x′) = exp(−γ‖x− x′‖2), (3.16)

where the γ parameter defines the width of the kernel. If the Gaussian is very
wide, the kernel approximates the linear kernel, whereas if the Gaussian is very
narrow, only nearby points are taken into account, which may lead to overfitting.
I refer to [Scholkopf and Smola, 2001] for a discussion on other kernels and their
applications.

3.2 Supervised Learning

To see how the kernel trick can be exploited in practice, let us consider the
following very general objective1

min
w∈RD

N∑

i=1

L(yi,w
Txi) + λ‖w‖22, (3.17)

where x ∈ RD and y ∈ {1,−1}. The well-known SVM can be obtained by
inserting the hinge-loss function LSVM(y, t) = max(0, 1− yt) whereas a logistic-
loss function LLR(y, t) = log(1+exp(−yt)) results in a Logistic Regression (LR)

1A bias term have been omitted for notational convenience.



3.2 Supervised Learning 19

model. Moreover, the L2 regularizer incorporated in the general model shown
here, corresponds to a Gaussian prior in a Baysian framework and provides
weight shrinkage. A Laplace prior corresponds to L1 ∼ ‖w‖1 =

∑
i |wi| regular-

ization and will in the Maximum A Posteriori (MAP) estimate provide sparsity
which often is an advantage for the interpretability of the solution. Note that
marginalization over w will not result in sparsity since the Laplace distribution
assigns probability mass outside the mode, hence sparsity comes from the MAP
point estimate.

We can apply the kernel trick to Eq. 3.17, by applying the feature space mapping
ϕ : RD 7→ H to the training data, and use the representer theorem to rewrite
w =

∑N
i=1 αiϕ(xi). By direct substitution this gives

min
α∈RN

N∑

i=1

L


yi,

N∑

j=1

αjϕ(xj)
Tϕ(xi)


+ λ

N∑

i,j=1

αiαjϕ(xi)
Tϕ(xj). (3.18)

We can now apply the kernel trick, as the training data solely enters as inner
products

min
α∈RN

N∑

i=1

L


yi,

N∑

j=1

αjk(xj ,xi)


+ λ

N∑

i,j=1

αiαjk(xi,xj). (3.19)

By introducing the kernel matrix Kij = k(xj ,xi), the above expression simpli-
fies to

min
α∈RN

N∑

i=1

L


yi,

N∑

j=1

KT
i α


+ λαTKα. (3.20)

As long as we choose L to be differentiable we can optimize this unconstrained
function using gradient descent. Even simple kernel machines scales withO(N3),
as required by inverting the kernel matrix, and with respect to the SVM, most
modern algorithms rely on dual formulations and solve a related Quadratic
Programming (QP) with box constraints [Platt, 1999]. Also primal formula-
tions exist, based on differentiable approximations to the hinge loss, e.g., the
Huber loss, and empirically the SVM may scale much better than O(N3) if only
few points define the margin, i.e., few support vectors [Chapelle, 2007]. See
also [Muller et al., 2001].

In a Bayesian terminology, the GP is a stochastic process that is defined as
a collection of random variables, where any finite subset must have a joint
Gaussian distribution. In effect, the GP is placed as a prior over any finite set
of functional values f = [f1, f2, ..., fn]T , where fi = f(xi), resulting in a finite
multivariate Gaussian distribution over the set as p(f |X) ∼ N (0,K), where
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K is the kernel matrix. The predictive distribution is a immediate advantage
of the probabilistic GP framework, since the mean and variance can be used to
quantify uncertainty in the predictions made by the model. In [Nielsen et al.,
2013] we considered modeling user preferences with respect to the settings of a
five-band equalizer for audio processing. We developed a framework based on
GP regression and a sequential design method for effectively selecting the next
equalizer setting to be evaluated by the subject. For more details see Appendix
G.

In general, kernel methods heavily depend on the choice of kernel hyperparam-
eter(s), but most often direct optimization of the these are infeasible due to
non-convexities imposed by the kernel. Moreover, a Bayesian treatment such as
Automatic Relevance Determination (ARD) will prove computationally heavy
even for moderate sized problems when analytic integration over the param-
eter space is intractable. The default approach is to carry out an exhaustive
grid search, at a sufficient resolution, over some predefined range of the pa-
rameters, and the best parameters are then found by minimizing the CV error.
Obviously, such an approach will only be suitable for small to moderate sized
problems, whereas for large problems this strategy will be computationally in-
feasible. In [Hansen et al., 2011a] that can be found in Appendix B, we propose a
novel algorithm for hyperparameter selection where we use a MEB as a measure
of the dispersion of cluster means in the RKHS. Our approach is motivated by
previous studies on binary classification, demonstrating how the intercluster dis-
tance in RKHS and the optimal hyperparameter defining the RKHS correlates
[Wu and Wang, 2009; Xiaoshan et al., 2010]. For binary classification, there
exist several other computational attractive techniques for finding good param-
eterizations [Joachims, 2001; Vapnik and Chapelle, 2000; Wahba, 1999], and
likewise for multi class problems [Lorena and de Carvalho, 2008; Van Heerden
and Barnard, 2010; Varewyck and Martens, 2011]. However, in [Duan et al.,
2003] it was shown that all of these approximation schemes were inferior to
standard 5-fold CV. Our algorithm in [Hansen et al., 2011a] optimizes the pa-
rameterization of the RKHS, by maximizing the MEB that can be regarded as a
quality proxy of the RKHS in terms of discriminative properties. A sublinear al-
gorithm for finding the MEB in a finite dimensional input space was introduced
by [Clarkson et al., 2010], and in our contribution we generalize their randomized
MEB estimation procedure in a RKHS formulation, thereby providing compet-
itive time complexities with respect to existing distance metrics in the RKHS.
We demonstrate the developed algorithm by considering image classification on
the Amsterdam Library of Object Images (ALOI) [Geusebroek et al., 2005], and
the proposed methodology outperforms related distance measures in the RKHS,
such as the median, mean, maximum and minimum, in that only the MEB ap-
proach provides the same parameter estimate as the computationally expensive
5-fold CV procedure.
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3.3 The Nyström Approximation

Low-rank matrix decompositions have recently gained popularity in scaling up
kernels methods to large amounts of data. The general assumption behind
such approximations are low-rankness of data, e.g., the kernel matrix used for
encoding the similarity between data samples can often be well-approximated
by a few eigenvectors due to a rapidly decaying spectrum [Williams and Seeger,
2000].

The Nyström approximation [Nyström, 1930] is a widely used low-rank approach
in the machine learning community, and originated from solving integral equa-
tions [Williams and Seeger, 2001]. Let k(·, ·) denote the kernel function and let
p(·) denote the underlying sample set distribution, then, the Nyström method
approximates the following integral equation

∫
k(x,y)p(y)φi(y)dy = λiφi(x), (3.21)

where φi(x) and λi corresponds to the ith eigenfunction and eigenvalue of k(·, ·).
In the vanilla approach the integral is then approximated by sampling n data
points that are drawn from the underlying distribution, and using these, we can
approximate the expectation with the empirical average

1

n

n∑

j=1

k(x,yj)φi(yj) = λiφi(x). (3.22)

This approximation technique requiresO(nN) space and runs inO(n2N), thereby
allowing for large-scale kernel machines. The Nyström approximation can be
found in various forms, and most techniques differ in the way they sample data.
For instance [Gittens and Mahoney, 2013] uses leverage scores to do non-uniform
sampling, whereas [Kumar et al., 2009] uses an ensemble approach.

With respect to semi-supervised eigenvectors [Hansen and Mahoney, 2013], we
specifically consider how a low-rank decomposition can be exploited to yield very
efficient solutions, where the running time of computing a given semi-supervised
eigenvector largely depends on a matrix-vector product.

3.4 Kernel PCA

Kernel PCA [Schölkopf et al., 1998] is the natural generalization of linear PCA,
a commonly applied unsupervised dimensionality reduction method, that works
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by projecting multidimensional data onto the directions of the largest variance,
which often facilitates the classification of data [Hotelling, 1933]. This is done by
an orthogonal linear transformation that transforms the data to a new coordi-
nate system, such that the greatest variance by any projection of the data comes
to lie on the first coordinate (called the first principal component), whereas the
second lies in the direction having the second greatest variance and so forth.

Compared to the traditional formulation, we here adapt an approach similar
to [Walder et al., 2010b] and formulate the kernel PCA objective as

max
fn∈H

N∑

i=1


fn(xi)−

1

N

N∑

j=1

fn(xj)




2

(3.23)

s.t ‖fn‖2H = 1 (3.24)
n−1∑

i=1

〈fn, fi〉2H = 0, (3.25)

where H is the RKHS defined by the kernel, and fn the nth solution. We can
then apply the representer theorem f?(·) =

∑N
i=1 α

?
i k(xi, ·) and form the deriva-

tive with respect to α of the Lagrangian, leading to the following generalized
eigenvalue problem

Kα = λ(KTK −KTENK)α, (3.26)

where EN is a matrix of size N with entries 1
N . This solution is equivalent up to

a renormalization of the original problem [Schölkopf et al., 1998] in its centered
form, and the orthogonality constraint in the above formulation is implicitly
satisfied in the solution given by the generalized eigenvectors.

In [Hansen et al., 2013] we generalize the work of [Walder et al., 2010b], who
developed an optimization ansatz for a single semi-supervised kernel PCA com-
ponent. Our technique in [Hansen et al., 2013] elaborates on the previous work
in that we provide a methodology to construct multiple semi-supervised kernel
PCA components, that all are biased by labeled data. Our formulation gives
rise to the following objective, that can be regarded as a constrained eigenvalue
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problem

max
fn∈H

N∑

i=1


fn(xi)−

1

N

N∑

j=1

fn(xj)




2

(3.27)

s.t ‖fn‖2H = 1 (3.28)
n−1∑

i=1

〈fn, fi〉2H = 0 (3.29)

∑

i∈L
(fn(xi)− yi)2 ≤ ω, (3.30)

in that it extends the usual kernel PCA objective with a least squares loss
term. Here L is the set of labeled training data and ω determines the allowed
derivation from the true labels. The general aim of this methodology is to exploit
the class labels of data to bias the manifold representation in such a way that
the obtained kernel PCA basis is “true” to the labels. Constrained eigenvalue
problems, are in general difficult to solve [Gander et al., 1989b], but as we show
in [Hansen et al., 2013] it turns that by computing the components sequentially,
conditioned on being perpendicular to the previous components, the loss term
may be saturated by using a binary search that exploits a monotonic relationship
between the actual loss and the governing Lagrange multiplier. In particular,
the semi-supervised kernel PCA components were in [Hansen et al., 2013] used
to facilitate image denoising through pre-image estimation.

3.5 Denoising through Pre-image Estimation

In denoising applications kernel PCA provides the basis for dimensionality re-
duction, prior to the so-called pre-image problem where denoised feature space
points, as represented by a low-rank structure, are mapped back to input space.
Inherently, the main obstacle is that the problem is ill-posed due to the non-
bijective feature space mapping. The pre-image problem of reconstructing kernel
PCA projections in input space have been faced in a variety of ways, most of
which are limited to a specific choice of kernel embedding, see for instance [Bakir
et al., 2004; Dambreville et al., 2006; Kwok and Tsang, 2003; Mika et al., 1999].

By the representer theorem, the projection of a feature space mapped test point
onto the nth principal component is

βn(x) =

N∑

i=1

αnikc(x,xi) (3.31)
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where kc is the centered kernel, and for convenience we will in the following just
write βn as x will be implicit from the context. The projection of ϕ(x) onto the
subspace spanned by the leading q components can be written as

Pqϕ(x) =

q∑

n=1

βn

N∑

i=1

αniϕc(xi) + ϕ̄ (3.32)

where ϕ̄ = 1
N

∑N
i=1 ϕ(xi) is the mean of the ϕ-mapped data points and ϕc(xi) =

ϕ(xi)− ϕ̄ is the centered feature space mapping of x [Schölkopf et al., 1998].

The ill-posed pre-image problem can be relaxed to that of finding an approxi-
mate pre-image, i.e., a point in input space, say z, that maps into a point in
feature space “as close as possible” to Pqϕ(x). Hence, we can think of the prob-
lem as a search where we seek to minimize the distance in the RKHS between
ϕ(z) and Pqϕ(x) with respect to z [Mika et al., 1999]. Using the kernel trick
for the squared error, we get

ρ = ||ϕ(z)− Pqϕ(x)||2 = k(z, z)− 2

N∑

n=1

ξnk(z,xn) + Ω (3.33)

where all the z-independent terms are collected in Ω, and ξn = ξ̃n + 1
N (1 −∑N

j=1 ξ̃j), with ξ̃n =
∑q
i=1 βiαin. In extrema, the derivative with respect to

z is zero, giving rise to the following fixed-point iteration for the Gaussian
kernel [Mika et al., 1999]

zt+1 =

∑N
n=1 ξn exp(−γ||zt − xn||2)xn∑N
n=1 ξn exp(−γ||zt − xn||2)

=
[ξ ◦ kzt ]T X
ξTkzt

(3.34)

The cost in Equation (3.33) may be highly multi modal, leading to a non-
convex optimization problem, so the fixed-point iteration scheme can suffer from
convergence to local minima.

As discussed in Section 3.4, the main motivation behind [Hansen et al., 2013],
for introducing semi-supervised kernel PCA, was to facilitate denoising when
side-information was available. Besides introducing a generalization of semi-
supervised kernel PCA, [Hansen et al., 2013] also introduces a method for
exploiting intrinsic structures in data, to improve the pre-images. Specifically,
we device a fixed-point iteration for the kernel proposed by [Sindhwani et al.,
2005], that is based on the idea of warping the RKHS to account for the manifold
structure imposed by both labeled and unlabeled data points. The kernel ex-
ploits the smoothness of data as modeled by the combinatorial graph Laplacian
LG, and is given by

k̃(x,y) = k(x,y)− kTx (I +LGK)−1LGky, (3.35)
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where ky = [k(y,x1), . . . , k(y,xN )]T . Details regarding the properties of graph
Laplacians and related methods will be discussed in Chapter 4. Regarding the
fixed-point iteration for this kernel, we choose for simplicity as well as scal-
ability not to include the pre-image in K, thereby avoiding the inversion of
(I + LGK)−1 at every iteration. Note that the effect of this relaxation is only
minor if the manifold is well defined by the training samples.

Letting M def
= (I + LGK)−1LG, the kernel simplifies to k̃(x,y) = k(x,y) −

k>xMky, and by inserting this new kernel into the cost function in Eq. 3.33, we
obtain the following fixed-point iteration

zt+1 =

[
(M ◦ (kztk

T
zt − kzt(Kξ)T − (Kξ)kTzt))1

]T
X

(kTztM + ξT − 2ξTKM)kzt

+
[M ◦ ξ ◦ kzt ]T X

(kTztM + ξT − 2ξTKM)kzt
(3.36)

The introduced methodologies was in [Hansen et al., 2013] evaluated on both
synthetic and image data from the ALOI database [Geusebroek et al., 2005]. For
the images we constructed a denoising problem by randomly adding two images
from the database, where one image had half the intensity of the other, and
the goal was to reconstruct the dominant image. Our method based on semi-
supervised kernel PCA and the graph regularized kernel [Sindhwani et al., 2005],
produced significantly better reconstructions, and proved to be less sensitive to
the choice of kernel parameter than the usual approach based on classical kernel
PCA and the fixed-point iteration by [Mika et al., 1999].
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Chapter 4

Spectral Methods

This chapter introduces spectral clustering as a general motivation
for the field of spectral methods, and we then discuss key results with
respect to the two major contributions of this thesis [Hansen and
Mahoney, 2012, 2013] that introduces the concept of semi-supervised
eigenvectors of a graph Laplacian.
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Spectral techniques have in recent years become popular in machine learning
tasks such as image segmentation [Malik, 2000], clustering [Fowlkes et al., 2004],
semi-supervised learning [Zhu, 2005], and most recently for providing closed-
form solutions to various existing methods such as Latent Dirichlet Allocation
(LDA) and Gaussian Mixture Models (GMM) [Anandkumar et al., 2012].

In the context of spectral graph theory the main structure is the graph Laplacian
which, at first glance, may seem mysterious due to its remarkable clustering
abilities. Spectral clustering serves as a good introduction to the general field
of spectral methods, so before we dive into related details let us first define the
general notation.

Given a set of data points x1, . . . ,xN and some notation of similarity wij ≥ 0
between all pairs of data points, the intuitive goal of clustering is to divide the
points into groups such that similar points are grouped together. A common
approach is to represent such similarities in the form of similarity graphs; i.e.,
let G = (V,E,w) be a connected undirected graph with n = |V | vertices and
m = |E| edges, in which edge {i, j} has weight wij . In the following, AG ∈
RV×V will denote the adjacency matrix of G, while DG ∈ RV×V will denote
the diagonal degree matrix of G, i.e., DG(i, i) = di =

∑n
j=1 wij is the weighted

degree of vertex i. Moreover, for a set of vertices S ⊆ V in a graph, the volume
of S is vol(S)

def
=
∑
i∈S di.

The clustering problem may now be reformulated in terms of the similarity
graph, i.e., a clustering is a partitioning of the graph such that edges between
different groups have low weights, whereas points within a group have high
weights. Obviously the way we measure similarity is crucial for the represen-
tation of latent clusterings, so the similarity graph must be a good model for
representing local heterogeneities. Three popular and common approaches for
constructing a similarity graph are briefly discussed below:

• The ε-neighborhood graph: Connects all points whose pairwise distances
are smaller than ε. These sorts of graphs are usually considered as un-
weighted graphs as the distances between all connected points are roughly
of equal scale.

• The k-nearest neighbor graph: Connects vertex vi with vj if vj is among
the k-nearest neighbors of vi. Such a definition leads to a directed graph
that is not symmetric. The graph can be made undirected in various ways;
one approach is to ignore the direction of the edges by connecting vi with
vj with an undirected edge if vi is among the k-nearest neighbors of vj ,
or if vj is among the k-nearest neighbors of vi. All vertices in such a
graph will therefore have at least k neighbors and at most n− 1, ensuring
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that the resulting graph is connected. A second strategy is to connect
vertices vi and vj if both vi is among the k-nearest neighbors of vj , and
vj is among the k-nearest neighbors of vi. Compared to the first strategy,
usually referred to as a k-nearest neighbor graph, the resulting graph of
the latter strategy is denoted a mutual k-nearest neighbor graph and is not
necessarily connected.

• The fully connected graph: Connects all points with a non-negative similar-
ity wij . A popular similarity measure is the Gaussian kernel kγ(xi,xj) =
exp(−γ‖xi−xj‖2) as introduced in Section 3.1, where γ is a hyperparam-
eter used for adjusting the width of the neighborhood.

With these graph definitions in mind we now consider the main tools of spectral
clustering, namely Laplacian matrices. As the spectral properties of such matri-
ces are the key ingredient in spectral clustering let us first consider some of the
properties of what is known as the combinatorial graph Laplacian. Note that,
when we refer to “the leading eigenvector” of Laplacian matrices we implicitly
mean the eigenvector with the smallest eigenvalue, and moreover, do we assume
eigenvalues to be ordered increasingly.

The combinatorial graph Laplacian is defined as

LG
def
= DG −AG, (4.1)

and poses several interesting properties. For example, for every vector x ∈ Rn
we have

xTLGx =
1

2

n∑

i,j=1

wij(xi − xj)2. (4.2)

To see why this is true we expand the expression and exploit the definition
di =

∑n
j=1 wij

xTLGx = xTDGx− xTAGx =

n∑

i=1

dix
2
i −

n∑

i,j=1

xixjwij (4.3)

=
1

2




n∑

i=1

dix
2
i +

n∑

j=1

djx
2
j − 2

n∑

i,j=1

xixjwij


 (4.4)

=
1

2

n∑

i,j=1

wij(xi − xj)2. (4.5)

From the definition of LG and the above relationship it is evident that LG
is positive semidefinite (PSD), and that the smallest eigenvalue of LG, with
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respect to the generalized eigenvalue problem LGv = λDGv, is λ1 = 0, corre-
sponding to the constant vector v = 1. Yet an interesting property is that the
number of connected components in G is directly related to the spectrum of LG,
as the multiplicity of the eigenvalue 0 of LG equals the number of connected
components, see [Von Luxburg, 2007].

4.1 Spectral Clustering

To see how the graph Laplacian is related to clustering, let us start by defining
the value of a “cut” in the graph as

cut(A,B)
def
=

∑

i∈A,j∈B
wij . (4.6)

Here A and B defines a potential partitioning of the vertices in the graph and
the cost of that partitioning is measured by the sum of edge weights connecting
vertices in A to vertices in B. The “normalized cut”, introduced in [Malik, 2000],
incorporates an extra term to favor balanced partitions

Ncut(A,B)
def
=

∑

i∈A,j∈B
wij

(
1

vol(A)
+

1

vol(B)

)
. (4.7)

Such combinatorial clustering problems are NP-hard and spectral clustering
refers to the continuous relaxation of such problems. To derive such a continuous
relaxation for Eq. 4.7 we define a cluster indicator vector as follows

xi =

{
1

vol(A) if i ∈ A
−1

vol(B) if i ∈ B. (4.8)

By inserting this definition into Eq. 4.5 we get

xTLGx ∝
n∑

i,j=1

wij(xi − xj)2 =
∑

i∈A,j∈B
wij

(
1

vol(A)
+

1

vol(B)

)2

. (4.9)

Similarly we can apply x on both sides of DG

xTDGx =

n∑

i

dix
2
i =

∑

i∈A

di
vol(A)2

+
∑

i∈B

di
vol(B)2

=
1

vol(A)
+

1

vol(B)
. (4.10)

We now see that by combining Eq. 4.9 and 4.10 we arrive at the normalized cut
defined in Eq. 4.7

Ncut(A,B) ∝ xTLGx

xTDGx
, (4.11)
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that we now recognize as the generalized Rayleigh quotient [Golub and Van Loan,
2012]. Hence, we can minimize the righthand side of the above expression, by
relaxing x to take real values, and then choose x to be the eigenvector having
the second smallest eigenvalue of the generalized eigenvalue problem

LGv = λDGv. (4.12)

The reason for choosing the second smallest is that the smallest eigenvalue,
λ1 = 0 as deduced from Eq. 4.5, gives rise to the constant eigenvector v1 =
1 that is infeasible with respect to the normalized cut [Malik, 2000]. With
respect to v2, thresholding is usually applied as a post-processing step to convert
back to discrete assignments used for partitioning the graph. Also, in practical
applications, where we are interested in multiple clusterings, a usual approach
is to compute a series of the smallest eigenvectors, as these captures the slowest
modes of variation in increasing order, and then perform clustering in that
embedding, using e.g., k-means [Von Luxburg, 2007].

Finally, by substituting with v = D
−1/2
G z in the generalized eigenvalue problem

in Eq. 4.12, we obtain the standard eigenvalue problem

LGz = λz, (4.13)

where LG is the normalized graph Laplacian given by

LG def
= D

−1/2
G LGD

−1/2
G = I −D−1/2

G AGD
−1/2
G . (4.14)

4.2 Semi-supervised Eigenvectors

In many applications, one has information about a specific target region of a
large graph, e.g., that is provided in a semi-supervised manner, and one wants
to perform common machine learning and data analysis tasks “near” the pre-
specified target region. For example, in social and information network analysis,
one might have a few “ground truth” nodes that belong to a cluster or community
of interest, and one might want to perform link prediction or to refine the cluster
in order to find other nearby members. In computer vision, one might have a
large corpus of images along with a set of pixels provided by a face detection
algorithm, and one might want to segment entire heads from the background for
all the images in the corpus in an automated manner. In fMRI applications, one
might have sets of neurons that “fire” in response to some external experimental
stimulus, and one might want to analyze the subsequent temporal dynamics of
neuron stimulation.
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Hence, in terms of such “local” side-information we are interested in doing locally-
biased machine learning, meaning that we have a dataset, e.g., represented as a
graph, and that we have information, e.g., given in a semi-supervised manner,
that certain “regions” of of the data graph are of particular interest. In this case,
we may want to focus predominantly on those regions and perform data analysis
and machine learning, e.g., classification, clustering, ranking, etc., that is “biased
towards” those pre-specified regions. Examples of this include the following.

• Locally-biased community identification. In social and information net-
work analysis, one might have a small “seed set” of nodes that belong to
a cluster or community of interest [Andersen and Lang, 2006; Leskovec
et al., 2008]; in this case, one might want to perform link or edge pre-
diction, or one might want to “refine” the seed set in order to find other
nearby members.

• Locally-biased image segmentation. In computer vision, one might have a
large corpus of images along with a “ground truth” set of pixels as provided
by a face detection algorithm [Eriksson et al., 2007; Mahoney et al., 2012;
Maji et al., 2011]; in this case, one might want to segment entire heads
from the background for all the images in the corpus in an automated
manner.

• Locally-biased neural connectivity analysis. In fMRI applications, one
might have small sets of neurons that “fire” in response to some external ex-
perimental stimulus [Norman et al., 2006a]; in this case, one might want
to analyze the subsequent temporal dynamics of stimulation of neurons
that are “nearby,” either in terms of connectivity topology or functional
response, members of the original set.

In each of these examples, the data is modeled by a graph, which is either given
from the application domain, or constructed from feature vectors obtained from
the application domain. Hence, one has information that can be viewed as semi-
supervised in the sense that it consists of exogeneously-specified “labels” for the
nodes of the graph. In addition, there are typically a relatively-small number
of labels and one is interested in obtaining insight about the data graph nearby
those labels.

Although eigenvector-based methods have received attention in a wide range
of machine learning and data analysis applications in recent years, for exam-
ple; in nonlinear dimensionality reduction [Belkin and Niyogi, 2003; Coifman
et al., 2005]; in kernel-based machine learning [Schölkopf and Smola, 2001]; in
Nyström-based learning methods [Talwalkar and Rostamizadeh, 2010; Williams
and Seeger, 2001]; spectral partitioning [Ng et al., 2001; Pothen et al., 1990;
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Shi and Malik, 2000], etc., the above examples present considerable challenges
for standard global spectral techniques and other traditional eigenvector-based
methods. At root, the reason is that eigenvectors are inherently global quan-
tities, limiting their applicability in situations where one is interested in very
local properties of the data. That is, very local information can be “washed out”
and essentially become invisible to these globally-optimal vectors. For example,
a sparse cut in a graph may be poorly correlated with the second eigenvector
and thus invisible to a method based only on eigenvector analysis. Hence, if
one has semi-supervised information about a specific target region in the graph,
as in the above examples, one might be interested in finding clusters near this
pre-specified local region in a semi-supervised manner.

In the remainder of this section, we present our contributions [Hansen and Ma-
honey, 2012] and [Hansen and Mahoney, 2013] that can be found in Appendix G
and F, respectively. The original algorithm of [Mahoney et al., 2012] introduced
a methodology to construct a locally-biased version of the leading nontrivial
eigenvector of a graph Laplacian and showed (theoretically and empirically in a
social network analysis application) that the resulting vector could be used to
partition a graph in a locally-biased manner. From this perspective, our exten-
sion incorporates a natural orthogonality constraint that successive vectors need
to be orthogonal to previous vectors. Subsequent to the work of [Mahoney et al.,
2012], [Maji et al., 2011] applied the algorithm of [Mahoney et al., 2012] to the
problem of finding locally-biased cuts in a computer vision application. Similar
ideas have also been applied somewhat differently. For example, [Andersen and
Lang, 2006] use locally-biased random walks, e.g., short random walks start-
ing from a small seed set of nodes, to find clusters and communities in graphs
arising in Internet advertising applications; [Leskovec et al., 2008] used locally-
biased random walks to characterize the local and global clustering structure
of a wide range of social and information networks; [Joachims, 2003] developed
the Spectral Graph Transducer (SGT), that performs transductive learning via
spectral graph partitioning. The objectives in both [Joachims, 2003] and [Ma-
honey et al., 2012] are considered constrained eigenvalue problems, that can be
solved by finding the smallest eigenvalue of an asymmetric generalized eigen-
value problem, but in practice this procedure can be highly unstable [Gander
et al., 1989a]. The SGT reduces the instabilities by performing all calculations
in a subspace spanned by the d smallest eigenvectors of the graph Laplacian,
whereas [Mahoney et al., 2012] performs a binary search, exploiting the mono-
tonic relationship between a control parameter and the corresponding Lagrange
multiplier.

Although the GlobalSpectral objective, presented on the left of Figure 4.1, is
a non-convex optimization problem, strong duality holds for it and the solution
may be computed as v2, i.e., the leading nontrivial generalized eigenvector of
LG. The next eigenvector v3 is the solution to GlobalSpectral, augmented
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GlobalSpectral

minimize xTLGx

s.t xTDGx = 1

xTDG1 = 0

LocalSpectral

minimize xTLGx

s.t xTDGx = 1

xTDG1 = 0

xTDGs ≥
√
κ

Generalized
LocalSpectral

minimize xTLGx

s.t xTDGx = 1

xTDGX = 0

xTDGs ≥
√
κ

Figure 4.1: Left: The usual GlobalSpectral partitioning optimization
problem; the vector achieving the optimal solution is v2, the lead-
ing nontrivial generalized eigenvector of LG with respect to DG.
Middle: The LocalSpectral optimization problem, which was
originally introduced in [Mahoney et al., 2012]; for κ = 0, this
coincides with the usual global spectral objective, while for κ > 0,
this produces solutions that are biased toward the seed vector s.
Right: The Generalized LocalSpectral optimization prob-
lem we introduce that includes both the locality constraint and
a more general orthogonality constraint. Our main algorithm for
computing semi-supervised eigenvectors will iteratively compute
the solution to Generalized LocalSpectral for a sequence of
X matrices. In all three cases, the optimization variable is x ∈ Rn.

with the constraint that xTDGv2 = 0; and in general the tth generalized eigen-
vector of LG is the solution to GlobalSpectral, augmented with the con-
straints that xTDGvi = 0, for i ∈ {2, . . . , t− 1}. Clearly, this set of constraints
and the constraint xTDG1 = 0 can be written as xTDGX = 0, where 0 is a
(t − 1)-dimensional all-zeros vector, and where X is an n × (t − 1) orthogonal
matrix whose ith column equals vi, where v1 = 1, the all-ones vector, is the first
column of X.

Also presented in Figure 4.1 is LocalSpectral, which includes a constraint
requiring the solution to be well-correlated with an input seed set. This Lo-
calSpectral optimization problem was introduced in [Mahoney et al., 2012],
where it was shown that the solution to LocalSpectral may be interpreted
as a locally-biased version of the second eigenvector of the Laplacian. Although
LocalSpectral is non-convex, the solution can be computed efficiently as the
solution to a set of linear equations that generalize the popular Personalized
PageRank procedure.

Our generalization [Hansen and Mahoney, 2012], Generalized LocalSpec-
tral in Figure 4.1, asks us to find a vector x ∈ Rn that minimizes the variance
xTLGx subject to several constraints; that x is unit length; that x is orthogonal
to the span of X; and that x is

√
κ-correlated with the input seed set vector s.
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That is, to compute the first semi-supervised eigenvector, we let X = 1, i.e.,
the n-dimensional all-ones vector, which is the trivial eigenvector of LG, and
to compute each subsequent semi-supervised eigenvector, we let the columns of
X consist of 1 and the other semi-supervised eigenvectors found in each of the
previous iterations.
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Figure 9: Due to size, see the caption in the main text.
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of the non-existent local manifold.

• Peeling procedure and Nystrom gives similar results.

• How does what we do with large-scale networks relate to digits

• gaussian width sensitivity and rank sensitivity.
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By locally-biased machine learning, we mean that we have a data set, e.g.,
represented as a graph, and that we have information, e.g., given in a semi-
supervised manner, that certain “regions” of of the data graph are of particular
interest. In this case, we may want to focus predominantly on those regions
and perform data analysis and machine learning, e.g., classification, clustering,
ranking, etc., that is “biased toward” those pre-specified regions. Examples of
this include the following.

• Locally-biased community identification. In social and information net-
work analysis, one might have a small “seed set” of nodes that belong to a
cluster or community of interest [AL06, LLDM08]; in this case, one might
want to perform link or edge prediction, or one might want to “refine” the
seed set in order to find other nearby members.

• Locally-biased image segmentation. In computer vision, one might have a
large corpus of images along with a “ground truth” set of pixels as provided
by a face detection algorithm [EOK07, MOVa, MVM11]; in this case, one
might want to segment entire heads from the background for all the images
in the corpus in an automated manner.

• Locally-biased neural connectivity analysis. In functional magnetic reso-
nance imaging applications, one might have small sets of neurons that
“fire” in response to some external experimental stimulus [NPDH06a]; in
this case, one might want to analyze the subsequent temporal dynamics
of stimulation of neurons that are “nearby,” either in terms of connectivity
topology or functional response, members of the original set.

In each of these examples, the data are modeled by a graph—which is either
“given” from the application domain or is “constructed” from feature vectors
obtained from the application domain—and one has information that can be
viewed as semi-supervised in the sense that it consists of exogeneously-specified
“labels” for the nodes of the graph. In addition, there are typically a relatively-
small number of labels and one is interested in obtaining insight about the data
graph nearby those labels.

�02 ⇡ �3 �03 ⇡ �3

Explain the solution, and show the figure with the monotonic relationship

(a) (xT
1 DGs)2 = 0.3

γ
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By locally-biased machine learning, we mean that we have a data set, e.g.,
represented as a graph, and that we have information, e.g., given in a semi-
supervised manner, that certain “regions” of of the data graph are of particular
interest. In this case, we may want to focus predominantly on those regions
and perform data analysis and machine learning, e.g., classification, clustering,
ranking, etc., that is “biased toward” those pre-specified regions. Examples of
this include the following.

• Locally-biased community identification. In social and information net-
work analysis, one might have a small “seed set” of nodes that belong to a
cluster or community of interest [AL06, LLDM08]; in this case, one might
want to perform link or edge prediction, or one might want to “refine” the
seed set in order to find other nearby members.

• Locally-biased image segmentation. In computer vision, one might have a
large corpus of images along with a “ground truth” set of pixels as provided
by a face detection algorithm [EOK07, MOVa, MVM11]; in this case, one
might want to segment entire heads from the background for all the images
in the corpus in an automated manner.

• Locally-biased neural connectivity analysis. In functional magnetic reso-
nance imaging applications, one might have small sets of neurons that
“fire” in response to some external experimental stimulus [NPDH06a]; in
this case, one might want to analyze the subsequent temporal dynamics
of stimulation of neurons that are “nearby,” either in terms of connectivity
topology or functional response, members of the original set.

In each of these examples, the data are modeled by a graph—which is either
“given” from the application domain or is “constructed” from feature vectors
obtained from the application domain—and one has information that can be
viewed as semi-supervised in the sense that it consists of exogeneously-specified
“labels” for the nodes of the graph. In addition, there are typically a relatively-
small number of labels and one is interested in obtaining insight about the data
graph nearby those labels.
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Explain the solution, and show the figure with the monotonic relationship

(b) (xT
1 DGs)2 = 0.1

Figure 4.2: For a 2-dimensional grid graph the figures visualize the inter-
play between the γ parameter and the resulting correlation κ
that a semi-supervised eigenvector will end up having with the
seed s. The general problem is non-convex, but in the range
γ ∈ (−vol(G), λ2(G)), there happen to be a monotonic relation-
ship, that we exploit to find the correct setting of γ very efficiently
through a binary search. In both figures the blue curve shows the
correlation decay as a function of γ for the leading semi-supervised
eigenvector, whereas the red shows the decay for the second, con-
ditioned on being perpendicular on the first solution as marked
by the black dot, i.e., the second solution will be in the interval
γ ∈ (−vol(G), λ′2(G)). In 4.2(a) the leading solution is not too
close to λ2, corresponding to v2, so λ′2 ends up in-between λ2 and
λ3, whereas in 4.2(b) the leading solution almost coincides with
v2, and so λ′2 ≈ λ3, as required if the task is to reproduce the
entire sequence of global eigenvectors. Finally, 4.2(a) also high-
lights the range in which Personalized PageRank can be used for
computing solutions to semi-supervised eigenvectors.

As shown in [Hansen and Mahoney, 2012] we can compute the leading semi-
supervised eigenvector as the solution to

x∗1 = c (LG − γ1DG)
+
DGs, (4.15)

where c is chosen to fulfill the norm constraint, and where γ1 is a Lagrange
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multiplier which we can choose to saturate the correlation constraint. In partic-
ular, the KKT conditions state that to find the correct setting of γ1, it suffices
to perform a binary search over the interval γ1 ∈ (−vol(G), λ2(G)) until the
correlation constraint is satisfied, i.e., until (xT1DGs)

2 is sufficiently close to κ1.

To compute subsequent semi-supervised eigenvectors, i.e., at steps t = 2, . . . , k
if one ultimately wants a total of k semi-supervised eigenvectors, then one lets
X be the n× t matrix of the form

X = [1,x∗1, . . . ,x
∗
t−1], (4.16)

where x∗1, . . . ,x∗t−1 are successive semi-supervised eigenvectors. The tth semi-
supervised eigenvector then takes the form

x∗t = c
(
FF T (LG − γtDG)FF T

)+
DGs, (4.17)

where the projection matrix FF T is given by

FF T = I −DGX(XTDGDGX)−1XTDG, (4.18)

due to the the degree-weighted inner norm. As for the leading semi-supervised
eigenvector, the value of γt is found through a binary search, but due to the
orthogonality constraint, the upper bound for the search is increasing and the
value is given by the second smallest eigenvalue of the generalized eigenvalue
problem

FF TLGFF
Tv′ = λ′FF TDGFF

Tv′. (4.19)

The semi-supervised eigenvectors can be thought of as a generalization of the
global eigenvectors, i.e., the first solution coincides with the global eigenvector
v2 for γ → λ2. This is explained by the fact that (LG − γDG)+DGs can be
interpreted as the first step of the generalized Rayleigh quotient iteration, where
γ is the estimate of the eigenvalue, and DGs is the estimate of the eigenvector.
Given that the estimate of the eigenvalue is right, this algorithm will in the initial
step compute the corresponding eigenvector. The relationship is visualized in
Figure 4.2 that considers the interplay between the γ parameter and the resulting
correlation with the seed s. For more details see [Hansen and Mahoney, 2013]
in Appendix F.

4.2.1 Relationship with Personalized PageRank

The usual interpretation of PageRank involves “random walkers” who uniformly
(or non-uniformly, in the case of Personalized PageRank) “teleport” with a prob-
ability α ∈ (0, 1). As visualized in Figure 4.2, a Personalized PageRank pro-
cedure can be used to compute solutions to semi-supervised eigenvectors for
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γ ∈ (−∞, 0), corresponding to choosing α ∈ (0, 1). To make this relationship
explicit we rearrange Eq. 4.15 as follows

x∗ = (LG − γDG)+DGs (4.20)

= c ((DG −AG)− γDG)
+
DGs (4.21)

=
c

1− γ

(
DG −

1

1− γAG

)+

DGs (4.22)

=
c

1− γD
−1
G

(
I − 1

1− γAGD
−1
G

)+

DGs, (4.23)

and we recognize AGD
−1
G as the standard random walk matrix. Hence, it

becomes immediate that the solution based on random walkers,

x∗ =
c

1− γD
−1
G

(
I +

∞∑

i=1

(
1

1− γD
−1
G AG

)i)
DGs, (4.24)

is divergent for γ > 0. Since γ = λ2(G) corresponds to no regularization and
γ → −∞ corresponds to heavy regularization, viewing this problem in terms of
solving a linear equation is formally more powerful than viewing it in terms
of random walkers. That is, while all possible values of the regularization
parameter—and in particular the (positive) value λ2(·)—are achievable algo-
rithmically by solving a linear equation, only values in (−∞, 0) are achievable
by running a PageRank diffusion. However in terms of scalability, the PageRank
approach is very efficient, and so in [Hansen and Mahoney, 2013] we generalize
consecutive semi-supervised eigenvectors in a way that is compatible with the
PageRank formulation, by showing that the tth solution can be approximated
as

x∗t ≈ c
(
I −XXTDG

)
(LG − γtDG)+DGs, (4.25)

under the assumption that all γk for 1 < k ≤ t are sufficiently apart. Hence,
the trick is to decouple the projection operator FF T from the inverse; then
use a PageRank procedure to solve Eq. 4.15; and finally apply the projection
operator

(
I −XXTDG

)
to that solution.

If we think about γk as being distinct eigenvalues of the generalized eigenvalue
problem LGxk = γkDGxk, then it is clear that Eq 4.25, correctly computes
the sequence of generalized eigenvectors. This is explained by the previously
mentioned relationship with the Rayleigh quotient iteration, since the opera-
tor

(
I −XXTDG

)
will be superfluous as the global eigenvectors are already

orthogonal in the degree-weighted norm.
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4.2.2 Experiments on Small-world Networks

Finally, to demonstrate how semi-supervised eigenvectors can focus on specific
target regions of a data graph and capture the slowest modes of local variation,
we consider one-dimensional examples of the popular “small world” model [Watts
and Strogatz, 1998]. This is a parameterized family of models that interpolates
between low-dimensional grids and random graphs; and, as such, it allows us to
illustrate the behavior of the method eigenvectors and its various parameters in
a controlled setting, see Figure 4.3.

In Figure 4.3(a), we show a graph with no randomly-rewired edges (p = 0) and a
locality parameter κ such that the global eigenvectors are obtained. This yields
a symmetric graph with eigenvectors corresponding to orthogonal sinusoids, i.e.,
for all eigenvectors, except the all-ones with eigenvalue 0, the algebraic multiplic-
ity is 2, i.e., the first two capture the slowest mode of variation and correspond
to a sine and cosine with equal random phase-shift (rotational ambiguity). In
Figure 4.3(b), random edges have been added with probability p = 0.01 and
the locality parameter κ is still chosen such that the global eigenvectors of the
rewired graph are obtained. In particular, note small kinks in the eigenvectors
at the location of the randomly added edges. Since the graph is no longer sym-
metric, all of the visualized eigenvectors have algebraic multiplicity 1. Moreover,
note that the slow mode of variation in the interval on the top left; a normalized-
cut based on the leading global eigenvector would extract this region since the
remainder of the ring is more well-connected due to the degree of rewiring. In
Figure 4.3(c), we see the same graph construction as in Figure 4.3(b), except
that the semi-supervised eigenvectors have a seed node at the top of the circle
and the correlation parameter κt = 0.005. Note that, like the global eigenvec-
tors, the local approach produces modes of increasing variation. In addition,
note that the neighborhood around “11 o-clock” contains more mass, when com-
pared with Figure 4.3(b); the reason for this is that this region is well-connected
with the seed via a randomly added edge. Above the visualization we also show
the γt that saturates κt; remember γt is the Lagrange multiplier that defines the
effective correlation κt. Not shown is that if we kept reducing κ, then γt would
tend towards λt+1, and the respective semi-supervised eigenvector would tend
towards the global eigenvector. Finally, in Figure 4.3(d), the desired correlation
is increased to κ = 0.05 (thus decreasing the value of γt), making the different
modes of variation more localized in the neighborhood of the seed. It should be
clear that, in addition to being determined by the locality parameter, we can
think of γ as a regularizer biasing the global eigenvectors towards the region
near the seed set.

Of course there are many other interesting aspects related to semi-supervised
eigenvectors that could be covered here, such as the application of the Nyström
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p = 0,
λ2 = 0.000011λ2 = 0.000011λ2 = 0.000011λ2 = 0.000011λ2 = 0.000011λ2 = 0.000011, λ3 = 0.000011λ3 = 0.000011λ3 = 0.000011λ3 = 0.000011λ3 = 0.000011λ3 = 0.000011,
λ4 = 0.000046λ4 = 0.000046λ4 = 0.000046λ4 = 0.000046λ4 = 0.000046λ4 = 0.000046, λ5 = 0.000046λ5 = 0.000046λ5 = 0.000046λ5 = 0.000046λ5 = 0.000046λ5 = 0.000046.

(a) Global eigenvectors

p = 0.01,
λ2 = 0.000149λ2 = 0.000149λ2 = 0.000149λ2 = 0.000149λ2 = 0.000149λ2 = 0.000149, λ3 = 0.000274λ3 = 0.000274λ3 = 0.000274λ3 = 0.000274λ3 = 0.000274λ3 = 0.000274,
λ4 = 0.000315λ4 = 0.000315λ4 = 0.000315λ4 = 0.000315λ4 = 0.000315λ4 = 0.000315, λ5 = 0.000489λ5 = 0.000489λ5 = 0.000489λ5 = 0.000489λ5 = 0.000489λ5 = 0.000489.

(b) Global eigenvectors

p = 0.01, κ = 0.005,
γ1 = 0.000047γ1 = 0.000047γ1 = 0.000047γ1 = 0.000047γ1 = 0.000047γ1 = 0.000047, γ2 = 0.000052γ2 = 0.000052γ2 = 0.000052γ2 = 0.000052γ2 = 0.000052γ2 = 0.000052,

γ3 = −0.000000γ3 = −0.000000γ3 = −0.000000γ3 = −0.000000γ3 = −0.000000γ3 = −0.000000, γ4 = −0.000000γ4 = −0.000000γ4 = −0.000000γ4 = −0.000000γ4 = −0.000000γ4 = −0.000000.

(c) Semi-supervised eigenvectors

p = 0.01, κ = 0.05,
γ1 = −0.004367γ1 = −0.004367γ1 = −0.004367γ1 = −0.004367γ1 = −0.004367γ1 = −0.004367, γ2 = −0.001778γ2 = −0.001778γ2 = −0.001778γ2 = −0.001778γ2 = −0.001778γ2 = −0.001778,
γ3 = −0.001665γ3 = −0.001665γ3 = −0.001665γ3 = −0.001665γ3 = −0.001665γ3 = −0.001665, γ4 = −0.000822γ4 = −0.000822γ4 = −0.000822γ4 = −0.000822γ4 = −0.000822γ4 = −0.000822.

(d) Semi-supervised eigenvectors

Figure 4.3: Illustration of small-world graphs with rewiring probability of
p = 0 or p = 0.01. For each subfigure, the data consist of 3600
nodes, each connected to it’s 8 nearest-neighbors and with differ-
ent values of the κ parameter. In the center of each subfigure,
we show the nodes (blue) and edges (black and light gray are the
local edges, and blue are the randomly-rewired edges). We wrap
around the plots (black x-axis and gray background), visualizing
the 4 smallest non-trivial eigenvectors of the corresponding graph
Laplacian. The eigenvectors are color coded as blueblueblueblueblueblue, redredredredredred, yellowyellowyellowyellowyellowyellow,
and greengreengreengreengreengreen, starting with the one having the smallest eigenvalue.
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approximation covered in Section 3.3. However, as this chapter only serves as a
compressed introduction to the field, I refer to [Hansen and Mahoney, 2013] that
can be found in Appendix F, for more theoretical as well as empirical results
with respect to semi-supervised eigenvectors.



Chapter 5

Neuroimaging

This chapter briefly introduces neuroimaging based on fMRI together
with machine learning advances related to this particular field. Specif-
ically we introduce [Hansen et al., 2012] that investigates a semi-
supervised technique for modeling of the human decision process in
real-time fMRI, and we also discuss the application of semi-supervised
eigenvectors [Hansen and Mahoney, 2013] for data-driven feature ex-
traction.
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The Blood Oxygen Level Dependent (BOLD) signal is the most commonly used
contrast in fMRI, primarily due to the relatively low complexity in terms of mea-
suring, and its high Signal-to-Noise Ratio (SNR). Measurements of the BOLD
signal is typically based on Echo Planar Imaging (EPI) techniques, where the ac-
tual measured effect is a result of signal loss due to the presence of deoxygenated
haemoglobin, giving rise to a field inhomogeneity [Ogawa et al., 1992].

Traditionally, fMRI analyses have focused on characterizing the relations be-
tween cognitive variables and individual brain voxels, using e.g., the mass-
univariate General Linear Model (GLM), where statistical parametric maps are
used to identify regions of gray matter that are significantly related to particular
effects under study [Friston et al., 1994]. Even though the univariate approach
have been tremendously productive, there are obvious limits on what can be
learnt about cognitive states by only examining isolated voxels [Norman et al.,
2006b].

Multivariate methods have therefore paved the way for more advanced paradigms
involving complex cognition, where the latent brain state cannot solely be de-
termined from looking at individual voxel time series [Bode and Haynes, 2009;
Eger et al., 2008; Kamitani and Tong, 2005]. However, an immediate challenge
for multivariate approaches are that weak signals carried by a sparse set of vox-
els can be very hard to detect, and for this reason multivariate approaches are
often accompanied by spatial priors, to improve on the SNR.

5.1 Semi-supervised Learning for real-time fMRI

In a semi-supervised learning setting, only few training samples have an asso-
ciated label. Such learning settings are very common in practice, as labeled
data is expensive to produce and most often requires human interaction. We
can think of a semi-supervised classifier as a generative model p(x, y) compared
to a discriminative model p(y|x) since the latter is independent of the input
distribution p(x). The intuition behind semi-supervised learning is therefore
that better predictions can be made by learning the structure in the input dis-
tribution. There are many different branches of semi-supervised learning, e.g.,
Expectation Maximization (EM) with generative mixture models, self-training,
co-training, transductive SVMs, and graph-based methods [Zhu, 2005]. In par-
ticular, this section introduces [Hansen et al., 2012], found in Appendix C, that
considers a semi-supervised modeling technique that uses the graph Laplacian
as a regularizer, exploiting the smoothness of fMRI data.

In a real-time Brain-Computer Interface (BCI) fMRI setup, such as the one
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visualized in Figure 5.1, the signal processing pipeline can be very flexible, and
we are not tied to a usual block design. However, this flexibility can make
it difficult to obtain true labels, i.e., it may be difficult to quantify the exact
brain state of the subject at a given point in time, and so we face the risk of
“confusing” the downstream classification algorithm.

fMRI ClientfMRI ServerSpatial smoothing

Feature extraction

High-pass filtering

Paradigm 
implementationNormalization Classification
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0 sample n from model i was misclassified
(A.4)

x� µ

⇥
(A.5)

Brain-computer 
interface

Left or right?

Figure 5.1: Shows the component organization of our BCI pipeline. Volumes
are streamed over a network connection to a computer responsible
for various usual preprocessing stages, where arrows indicate the
direction of the flow. The classification stage receives preprocessed
fMRI volumes and communicates with the paradigm implementa-
tion, by sending predictions and receiving subject events in the
form of button presses.

We address mislabeling issues in paradigms involving complex cognition, by con-
sidering a manifold regularizing prior for modeling a sequence of neural events
leading up to a decision. The method can explain nonlinear relations, it is di-
rectly applicable for online learning in the context of real-time fMRI, and our
experimental results show that the method can efficiently avoid model degener-
acy caused by mislabeling [Hansen et al., 2012]. Compared to linear approaches,
nonlinear studies suggest that complex interactions in brain patterns are impor-
tant for distinguishing cognitive states [Davatzikos et al., 2005; Haynes et al.,
2007; Kriegeskorte et al., 2006; LaConte et al., 2007], and recent experimental
results indicate that the manifold assumption is valid for fMRI data [Blaschko
et al., 2009].

To model the intrinsic decision process more naturally we impose a manifold
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regularizing prior, and thereby rely on the smoothness of fMRI data to infer
the brain state of each individual sample. Specifically, using the normalized
graph Laplacian we define a smoothness operator that takes the unlabeled data
into account, i.e., we seek functions f that agree with the labeled data, but
also smooth with respect to the graph. The smoothness measured by the graph
Laplacian is given by f>LGf that we can view as a zero mean Gaussian process
f ∼ N (0,L−1

G ).

To aggregate a trial decision y we consider the process x→ f → z → y. Stated
in words; the smoothness of x measured by f is mapped to a prediction z per
sampled fMRI volume; then all predictions for the current trial are aggregated
into a single decision y, i.e., a probability distribution over possible conditions.
Hence, we seek a good point estimate of the joint posterior

p(fi∈K,θ|yk) ∝
∫
p(yk|θ, zi∈K)p(zi∈K|fi∈K)p(fi∈K)p(θ)∂zi∈K, (5.1)

where K is the set of volume indices associated with the kth trial, and θ is a
model parameter. We model a C class classification problem by considering a
likelihood based on a Softmax Function Model (SFM)

p(zi|fi) =

C∏

j=1

(
exp(f ji )

∑C
k=1 exp(fki )

)zj
i

, (5.2)

where fi = f(xi) are the latent variables generated by the process x → f →
z, and zi = [0, . . . , 0, zji = 1, 0, . . . , 0] encodes that xi belongs to class j
(j = 1, 2 . . . , C). Moreover, we use zi = 0 to denote an unlabeled sample.
See [Hansen et al., 2012] in Appendix C for further details regarding the model
and the respective inference procedure.

We tested the method on BOLD sensitive fMRI data acquired on a 3 Tesla MR
scanner (Siemens Magnetom Trio). During the scanning session (800 volumes)
the subject was engaged in a simple motor paradigm in which the subject was
asked to respond by either left or right index finger keypress when a visual
cue was presented. The model was used to predict which finger (left or right)
the subject selected to press the button with. Pre-processing steps included:
rigid body realignment, spatial smoothing (6 mm full width at half maximum
isotropic Gaussian kernel), high-pass filtering (cut-off frequency 1/128 Hz), and
static masking of premotor cortex. In terms of our approach, we consider a
3 class classification problem, classifying between baseline, left, and right, and
we validated the approach against the popular SVM objective, that has proven
to yield good generalization performance in a variety of fMRI studies, see for
example [LaConte et al., 2007]. In terms of the suggested modeling approach we
define the graph using the Gaussian kernel wij = k(xi,xj) = exp(−γ‖xi−xj‖2),
which was also used in the SVM.
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Figure 5.2: Illustrates a conceptual overview (best viewed in color) of the
training process of our approach and the SVM used for compar-
ison. The SVM (upper plot) is trained on both the preparation
and response samples (highlighted in blue), whereas remaining
samples correspond to predictions, i.e., the SVM is trained using
samples in this interval through all preceding trials. The semi-
supervised approach (lower plot) is trained on a few baseline sam-
ples (highlighted in red) and 3 samples around the end of each
trial (highlighted in blue), i.e., the three time series correspond
to the probability of baseline (red), left (blue) and right (green).
Common for both approaches; highlighted in grey are the prepa-
ration predictions that must be aggregated into the decision of
the current trial, before the subject reveals the actual decision.
The classification accuracy is measured as the number of correctly
aggregated trial decisions.

Figure 5.2 illustrates a conceptual overview of the training approach. For both
the proposed modeling technique, and the SVM used for comparison, we train
another kernelized SVM on the predictions of each respective model, to aggre-
gate predictions of a trial z to a decision y in a systematic manner. We analyzed
a single 44 trial scanning session, and measured performance on the final 29 tri-
als, i.e., as we learn and predict in an online fashion we let both approaches
stabilize using the leading 15 trials.

The suggested method reached an accuracy of≈ 0.76, whereas the SVM achieved
≈ 0.73, i.e., we need more data to state significant performance improvements,
but we do see indications supporting the suggested modeling approach. One
reason why the SVM performs relatively well on the ambiguous data may be
explained through slackness regularization, but from a modeling perspective the
approach is less attractive since mislabeled samples are then treated as outliers,
hence, in the SVM mislabeled samples will become support vectors.
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The suggested lazy labeling scheme makes few assumptions about the tempo-
ral dynamics of the brain state by only assigning hard labels to a few volumes
within each block, while still benefitting from unlabeled samples by identifying
the manifold on which the data reside. In essence the suggested classification
scheme allows the temporal dynamics of a decision process to be captured by
modeling the identification sequence of related neural events leading to a deci-
sion. The results presented in [Hansen et al., 2012] indicate that the suggested
labeling scheme performs on par with existing state of the art nonlinear methods,
and on synthetic data we show significant improvements over classical modeling
techniques used in fMRI.

5.2 Semi-supervised Eigenvectors for fMRI

Unsupervised data-driven dimensionality reduction techniques are widely used
in modalities such as fMRI and ElectroEncephaloGraphy (EEG). In fMRI,
activation sources are typically assumed to be linearly mixed, as assumed by
PCA and Independent Component Analysis (ICA). However, multiple studies
indicate that event-related as well as resting state fMRI exhibit nonlinear prop-
erties, e.g., artifacts caused by subject movements [Lund et al., 2005], and in
such cases the aforementioned approaches may prove insufficient for modeling.
Despite of these shortcomings PCA has successfully been applied in multiple
studies [Friston, 1998; Moeller and Strother, 1991], and so has ICA [Beckmann
et al., 2005; Calhoun et al., 2001; McKeown et al., 1997].

Among nonlinear dimensionally reduction techniques are for instance Local
Linear Embedding (LLE), a local eigenvector-based approach to find the low-
dimensional embedding of data points, such that each point in the dataset can
be described by a linear combination of its nearest neighbors. In terms of fMRI
analysis, LLE has successfully been used to model resting-state networks, but
also as a nonlinear preprocessing step for ICA [Mannfolk et al., 2010]. Moreover,
nonlinear relations were also discovered in spatiotemporal fMRI studies [Lahaye
et al., 2003; Xie et al., 2008] where nonlinear modeling approaches resulted in
the best model for functional connectivity. Along the lines of functional con-
nectivity, clustering algorithms such as K-Means (KM) provide a simple and
fast approach, that unfortunately may prove too simplistic as each time series
is assumed to be drawn from one of k isotropic gaussians [Venkataraman et al.,
2009]. Functional connectivity has also been well-modeled by graph based tech-
niques such as spectral clustering [Venkataraman et al., 2009] and normalized
cuts [van den Heuvel et al., 2008]. For further details, I refer to [van den Heuvel
and Hulshoff Pol, 2010], who provides a broad overview of connectivity analyses.



5.2 Semi-supervised Eigenvectors for fMRI 47

Searchlight is an algorithm that scans through the whole brain by running mul-
tiple multivariate Region Of Interest (ROI) analyses, measuring the respective
generalization performance, and outputs a brain map showing which regions ex-
hibit the best discriminative properties, for example measured by classification
accuracy for a particular subject task [Kriegeskorte et al., 2006]. This approach
was for instance applied by [Haynes et al., 2007], who used it to find regions in
the brain that are predictive with respect to human intentions. Compared to
a univariate approach, searchlight takes advantage of multivariate techniques,
with the caveat that it only performs well if the target signal is available within
the area covered by the ROI. This limitation is indeed shared by the univariate
approaches, but with searchlight we have the freedom to increase or decrease the
ROI, depending on the structure of the considered problem. If the ROI is small
we approach a univariate analysis, whereas if the ROI is large, the information
localization becomes less specific. Thus, if the multivariate signal is spatially
distributed the searchlight approach will fall short, and simply increasing the
ROI may not be a solution as irrelevant time series will decrease the SNR.

The semi-supervised eigenvectors introduced in Section 4.2 can be used to con-
struct a spatially guided basis, that naturally allows for spatially distributed
signal representations. This strategy shares many similarities with the search-
light approach, but is not tied to a particular ROI, and can span distributed
voxel time series that are similar in terms of our graph representation. Using
the semi-supervised eigenvectors on the voxel × voxel similarity graph in this
way, will yield a low dimensional representation that we can project the fMRI
voxel time series onto and in that projected space we can apply any suitable
classification algorithm.

Here we demonstrate a few results based on BOLD sensitive fMRI data acquired
on a 3 Tesla MR scanner (Siemens Magnetom Verio). Additional sequence
parameter were as follows: 25 interleaved echo planar imaging gradient echo
slices, echo time 30 ms, repetition time 1390 ms, flip angle 90 degrees. During
the scanning session (1300 volumes) the subject was engaged in a simple motor
paradigm in which the subject was asked to respond with key-presses when a
visual cue was presented, and the classification task is to detect such key-presses.
Pre-processing steps included: rigid body realignment, spatial smoothing (6 mm
full width at half maximum isotropic Gaussian kernel), and high-pass filtering
(cut-off frequency 1/128 Hz).

We construct a voxel × voxel 10-nearest neighbor graph using the nonlinear
affinity wij = k(xi,xj) = exp(−γ‖xi−xj‖2). Using a probabilistic atlas created
by averaging across multiple subjects [Eickhoff et al., 2005], we carry out two
experiments based on semi-supervised eigenvectors. Specifically, we construct
semi-supervised eigenvectors seeded in Primary Motor Cortex (PMC), known
to be highly involved in the subject task [Geyer et al., 1996], as well as semi-
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supervised eigenvectors seeded in Primary Auditory Cortex (PAC), that is not
expected to carry much signal with respect to our target variable [Morosan et al.,
2001]. Both seed regions are highlighted in Figure 5.3(a).

For comparison we consider the leading global eigenvectors of the graph Lapla-
cian, as well as simply extracting the time series as specified by the seed regions.
For all of the considered feature extraction approaches we feed either the pro-
jected or extracted time series into a linear SVM responsible for the downstream
classification task.
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Figure 5.3: In Figure 5.3(a) we show the two considered seed regions; blue
corresponds to PAC whereas green to PMC. The plot in Figure
5.3(b) shows the classification accuracy for the 5 different fea-
tures extraction approaches. The dashed lines mark the reference
where all voxel time series, as covered by the seed, are used in
the downstream classifier, whereas the solid ones correspond to
the accuracy obtained from projecting the data onto the semi-
supervised eigenvectors seeded in PAC and PMC, as well as the
global eigenvectors.

Figure 5.3(b) summarizes the classification accuracies obtained by performing
leave-one-out cross validation as a function of the number of components, and
for each semi-supervised eigenvector we fix κ = 1

k where k is the number of
components. Hence, for two components, each correlates 0.5 with the seed,
and so forth. In the same plot, the dashed blue lines corresponds to classifying
the brain state using only voxel time series in the region as defined by PAC.
Unsurprisingly, for the dashed green line, corresponding to PMC, it is evident
that the primary motor cortex is a much better proxy for predicting motor
responses. Due to inter-subject variability there is no guarantee that the rigid
body realignment will align the seed perfectly with the physical region, which
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explains why the data-driven global eigenvectors are able to yield an even higher
accuracy than the PAC time series. Also seen is the “bump” in classification
accuracy for the global eigenvectors, when we reach 4-5 components. Thus,
for this particular dataset, relevant parts of the are signal are captured in this
regime.

For few components the semi-supervised approaches are too localized to ex-
plain relevant local heterogeneities both near and within the seed set. As we
increase the number of components they become less localized, and the semi-
supervised eigenvectors seeded in PMC eventually surpasses the accuracy of
global approach. As we consider more and more components, while distributing
the correlation even across the semi-supervised eigenvectors, they will eventually
converge to the global eigenvectors. Finally, in the limit of a single component,
the projection onto the leading trivial global eigenvector will simply correspond
to the average time series, whereas for a leading semi-supervised eigenvector the
solution is simply the seed itself, i.e., the projection onto this corresponds to
a weighted average in the region defined by the seed. Hence, as seen in Figure
5.3(b) there exists a regime in which the semi-supervised approach performs
better as we are able to pickup the relevant local heterogeneities at that par-
ticular scale, given that the seed is relevant with respect to the subject task.
See [Hansen and Mahoney, 2013] for further details regarding this analysis.
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Chapter 6

Topic Modeling

This chapter provides a brief introduction to topic modeling, and
considers the GPU accelerated framework in [Hansen et al., 2011b]
that was used for a large-scale implementation of the IRM.
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Mining for associations in large-scale graphs is a problem of both theoretical
and practical importance, e.g., study of social networks, collaborative filtering,
and in web scale text processing. Hence, such problems mount the need for
computationally efficient tools that can accurately predict relations and also
provide relevant insights in the underlying mechanisms. In topic modeling, co-
clustering refers to the simultaneous clustering of rows and columns in a matrix.
Co-clustering has gained popularity in several fields, including bio-informatics
for identification of co-regulated genes and gene functional annotation [Madeira
and Oliveira, 2004], collaborative filtering and market basket analysis for identi-
fication of user and product segments [Wang et al., 2002], text miming [Berkhin
and Becher, 2002; Dhillon, 2001; Xu et al., 2006] for identification of related
terms and documents, and social network modeling to find relationships be-
tween agents and behavior [Barber et al., 2008; Fortunato, 2010]. A plethora of
co-clustering methods have been proposed over the years including the iterative
refinement approach of [Hartigan, 1972], heuristics for grouping columns and
rows in an adjacency matrix [Tanay et al., 2004], spectral [Dhillon, 2001] and
information theoretic approaches [Dhillon et al., 2003], and methods inspired
by community detection in complex networks [Fortunato, 2010; Reichardt and
Bornholdt, 2007; Xu et al., 2006]. For reviews on co-clustering see [Fortunato,
2010; Madeira and Oliveira, 2004; Mechelen et al., 2004].

Co-clustering can be defined as the matrix decomposition problem

A ≈ R = Z(1)>ηZ(2),

where the data matrix A is decomposed into clusters, grouping the row and
column entries of the matrix, respectively in Z(1)> and Z(1)> such that the
data matrix is segmented into homogenous regions specified by the matrix η.
For an illustration of the co-clustering problem, see also Figure 6.1 where the
re-permutation by P of A reveals the block structure identified by the latent
variables.

In [Hansen et al., 2011b] we exploit that the alternating estimation of Z(1)

and Z(2) while keeping the remaining model parameters fixed, parallelizes over
the rows and columns respectively of the data matrix. Specifically, we exploit
this particular structure to carry out efficient inference on GPUs, that previ-
ously have been explored in [Liu et al., 2010; Papadimitriou and Sun, 2008]
for MapReduce and similar large-scale cloud environments [Ramanathan et al.,
2010]. Moreover, we approach the co-clustering problem in terms of generative
models that serve two main purposes in machine learning, namely to provide
interpretation and domain insight via the inference of relevant latent variables,
as well as identify predictive relations. In particular, we make use of non-
parametric learning that admits to infer the number of row and columns clusters
from a hypothesis space of potentially infinitely many clusters [Antoniak, 1974;
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Efficient GPU Driven Inference for the Infinite Relational
Model on Large Scale Sparse Bipartite Networks

ABSTRACT
Mining for associations in large scale graphs is a problem
of both theoretical and practical importance, e.g., study of
social networks, market basket analysis and collaborative
filtering, and in web scale text processing. The infinite re-
lational model (IRM) has been proposed as a Bayesian gen-
erative model for graphs. Generative models can provide
accurate predictions and through inference of relevant la-
tent variables they can inform about mesoscale structures.
The IRM can be cast as co-clustering approach for bipartite
networks where the nodes of each mode are grouped simul-
taneously. A benefit of the IRM over existing co-clustering
approaches is that it explicitly exploits the statistical prop-
erties of binary graphs to naturally model strict segmenta-
tion as well as allowing the number of components of each
mode to be inferred from the data. To reach large scale ap-
plications of the IRM we exploit that the structure of the
bipartite version is well suited for parallel computing. We
develop a generic GPU framework for efficient inference on
large scale sparse bipartite networks and achieve a speedup
of two orders of magnitude compared to estimation based
on conventional CPUs. In terms of scalability all networks
we consider have more than 100 million links and in these
reliable inference can be achieved in less than an hour on
a single GPU. To efficiently manage memory consumption
on the GPU we exploit the structure of the posterior like-
lihood to obtain a decomposition that easily allows model
estimation of the IRM on arbitrary large networks as well as
distributed estimation on multiple GPUs. Finally we eval-
uate the implementation on real-life large scale social and
collaborative networks as well as in web scale text corpora,
demonstrating that latent mesoscale structures of the IRM
are consistent across consecutive runs with different initial-
izations and also relevant for interpretation of the underlay-
ing processes in such large scale networks.

Keywords
Infinite Relational Model, co-clustering, bipartite graphs,
GPU computing, link prediction, market basket analysis,

collaborative filtering, recommender systems.

1. INTRODUCTION
Co-clustering also denoted bi-clustering and two-mode clus-
tering is the simultaneous clustering of rows and columns
in a matrix. Co-clustering has already gained popularity
in several fields, including bio-informatics for identification
of co-regulated genes and gene functional annotation [17],
collaborative filtering and market basket analysis for iden-
tification of user and product segments [29], text miming
[8, 4, 30] for identification of related terms and documents,
and social network modeling to find relationships between
agents and behavior [2, 9]. Many co-clustering methods have
been proposed including the iterative refinement approach
of Hartigan [13], heuristics for grouping columns and rows in
an adjacency matrix [28], spectral [8] and information the-
oretic approaches [7], and methods inspired by community
detection in complex networks [26, 9]. For reviews on co-
clustering, see also [18, 17, 9] and distributed co-clustering,
see [25].

In this contribution we consider the specific case of co-clustering
of binary data, i.e., for which co-clustering becomes the anal-
ysis of bipartite graphs. Examples of such bipartite graphs
include, e.g., in bio-informatics where the graph captures
that gene i interacts with drug j, in collaborative filtering
that consumer i purchases product j, or in text mining that
word i occurs in document j. This type of relational data
is typically represented by the adjacency matrix A ∈ BI×J ,
where Aij = 1 if entity i is related to entity j and Aij = 0
otherwise.

We are interested in approaching co-clustering by generative
models. Generative models serve the two main purposes in
machine learning namely to provide interpretation and do-
main insight via the inference of relevant latent variables
as well as identify predictive relations. Bayesian generative
models such as the relational model [16, 30] and the stochas-
tic block model [22, 9] have previously been proposed for
analysis of binary relations. The so-called infinite relational
model (IRM) for bipartite graphs is based on the decompo-

sition A ≈ Z(1)�ηZ(2), where Z(1) and Z(2) are latent bi-
nary clustering assignment matrices while ηlm indicates how
group l in Z(1) is related to group m in Z(2), see also figure
1. The IRM can be considered a lossy compression approach
where the bipartite graph is compressed into blocks of ho-
mogenous regions in the graph. The IRM can lead to insight
in the domain as the latent variables provide for detection
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[8, 4, 30] for identification of related terms and documents,
and social network modeling to find relationships between
agents and behavior [2, 9]. Many co-clustering methods have
been proposed including the iterative refinement approach
of Hartigan [13], heuristics for grouping columns and rows in
an adjacency matrix [28], spectral [8] and information the-
oretic approaches [7], and methods inspired by community
detection in complex networks [26, 9]. For reviews on co-
clustering, see also [18, 17, 9] and distributed co-clustering,
see [25].

In this contribution we consider the specific case of co-clustering
of binary data, i.e., for which co-clustering becomes the anal-
ysis of bipartite graphs. Examples of such bipartite graphs
include, e.g., in bio-informatics where the graph captures
that gene i interacts with drug j, in collaborative filtering
that consumer i purchases product j, or in text mining that
word i occurs in document j. This type of relational data
is typically represented by the adjacency matrix A ∈ BI×J ,
where Aij = 1 if entity i is related to entity j and Aij = 0
otherwise.

We are interested in approaching co-clustering by generative
models. Generative models serve the two main purposes in
machine learning namely to provide interpretation and do-
main insight via the inference of relevant latent variables
as well as identify predictive relations. Bayesian generative
models such as the relational model [16, 30] and the stochas-
tic block model [22, 9] have previously been proposed for
analysis of binary relations. The so-called infinite relational
model (IRM) for bipartite graphs is based on the decompo-

sition A ≈ Z(1)�ηZ(2), where Z(1) and Z(2) are latent bi-
nary clustering assignment matrices while ηlm indicates how
group l in Z(1) is related to group m in Z(2), see also figure
1. The IRM can be considered a lossy compression approach
where the bipartite graph is compressed into blocks of ho-
mogenous regions in the graph. The IRM can lead to insight
in the domain as the latent variables provide for detection
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gives the extend in which row group

Figure 1: Illustration of co-clustering. The permuted data matrix P (1)AP (2) is decomposed into row and
column clusters Z(1) and Z(2) such that ηlm gives the extend in which row group l relates to column group m.
As such, co-clustering segments the data matrix A into homogenous blocks.

inference on Graphical Processing Units (GPU). This prop-
erty has previously been explored in [32, 23] for MapReduce
and in cloud environments using FREERIDE [35]. We will
approach the co-clustering problem in terms of generative
models that serve the two main purposes in machine learn-
ing namely to provide interpretation and domain insight via
the inference of relevant latent variables as well as iden-
tify predictive relations. In particular, we will make use of
non-parametric learning that admits to infer the number of
row and columns clusters from a hypothesis space of poten-
tially infinitely many clusters through the Chinese Restau-
rant Process (CRP) [3, 34, 20], this has previously been
considered for the Bernoulli likelihood in [40, 20] forming
the Infinite Relational Model (IRM).

The paper is organized in the following way: In section 2
we derive the non-parametric co-clustering model based on
Bernoulli, Poisson and Gaussian likelihood and show how
blocked inference admits efficient parallel computation on
the GPU. In section 3 we show a 102 speedup of our GPU
implementation relative to conventional CPU computing.
We analyze four real world large scale networks with up
to ∼ 109 non-zero entries in A that pertain to the two im-
portant data mining tasks; collaborative filtering and topic
modeling, and demonstrate that we by co-clustering iden-
tify relevant mesoscale structure. We further show that co-
clustering of these large scale networks produce competitive
link predictions relative to state-of-the-art memory based
nearest neighbor approaches.

1.1 Organization
The rest of the paper is structured in the following way. In
section 2 we derive the non-parametric co-clustering model
as well as inference based on parallel computation on the
graphics processing unit (GPU). In section 3 we demonstrate
a significant performance gain in terms of inference on the
GPU relative to the CPU. Finally we use our implementa-
tion to analyze the four considered large scale networks and
discuss our findings.

2. METHODS
The graphical model for co-clustering based on the Bernoulli
likelihood for binary bipartite graphs, Poisson likelihood for
non-negative data and Gaussian noise model corresponding
is given in figure 2. According to the graphical models each
node in mode one and two are assigned to a cluster accord-
ing to a draw from the discrete distribution parameterized by
µ(1) and µ(2) respectively. µ(1) and µ(2) are in turn drawn
from a Dirichlet distribution parameterized by α(1)/K(1)1

and α(2)/K(2)1. The probability of observing a given entry
in the matrix Aij is according to the co-clustering model
governed by the class assignment of the ith and jth nodes,

i.e., z
(1)
i and z

(2)
j as well as the inter-group relations η where

ηlm gives the probability of observing a link between class l
and m for the Bernoulli likelihood, the rate or weight for the
Poisson likelihood, and the between group mean value of the
data matrix for the Gaussian noise model. These inter-group
relations ηlm are drawn from conjugate priors. Entries in the
data matrix A are according to the model conditionally inde-
pendent given their respective row and column assignments.
Finally, assuming an infinite number of clusters is obtained
by taking the limits K(1) → ∞ and K(2) → ∞ which has an
analytic solution formed by the Chinese Restaurant Process
(CRP) [3, 34, 20].

2.1 Blocked Gibbs Sampling
As the Dirichlet distribution is conjugate to the Discrete dis-
tribution and the priors on η are conjugate both µ(1), µ(2)

and η can be integrated out analytically (i.e., collapsed).
As a result, inference in the models can be reduced to se-
quentially sampling each column of Z(1) and Z(2) according

Figure 6.1: Illustration of co-clustering. The permuted data matrix
P (1)AP (2) is decomposed into row and column clusters Z(1) and
Z(2) such that ηlm gives the extend in which row group l relates to
column group m. As such, co-clustering segments the data matrix
A into homogenous blocks.

Kemp et al., 2006; Pitman, 2002], as previously considered for the Bernoulli
likelihood in [Kemp et al., 2006; Xu et al., 2006] forming the IRM.

The IRM can be cast as co-clustering approach for bipartite networks where
the nodes of each mode are grouped simultaneously. A benefit of the IRM over
existing co-clustering approaches is that the model explicitly exploits the statis-
tical properties of binary graphs and allows the number of components of each
mode to be inferred from the data. Specifically, in [Hansen et al., 2011b] we
reach web scale applications with the bipartite IRM model by exploiting the
previously mentioned independence between Z(1) and Z(2). This GPU imple-
mentation achieves a speedup of two orders of magnitude for model estimation
on large networks (N = 107 − 109) compared to estimation based on conven-
tional CPUs. Moreover, with this implements we analyze networks with more
than 100 million links on which model estimation can be done within an hour
on a single GPU.

To motivate relational models in general as well as our large-scale implementa-
tion of the IRM, the following shows examples of a few topic groups extracted
from abstracts of U.S. National Library of Medicine (PubMed) based on the
bag of words representation, publicly available from [Frank and Asuncion, 2010].
This particular dataset contains roughly 140K words and 8 million documents
with approximately 500 million word occurrences:

Neurology group; amygdala, ca1, ca3, caudate, cell bodies, circuitry, colliculus,
dendrites, dentate gyrus, dorsal root, dorsolateral, entorhinal, gabaergic, gan-
glion cell, geniculate, innervated, interneuron, lesioned, limbic, mesencephalic,
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midbrain, motoneuron, myelinated, neocortex, neocortical, nerve fiber, neuropil,
perikarya, purkinje, putamen, raphe, rostral, soma, somata, substantia nigra,
synapse, tegmental, thalamic, thalamus.

Cancer group; adenocarcinoma, adjuvant, benign, biopsies, biopsy, breast, breast
cancer, cancer patient, carcinoma, carcinomas, cell carcinoma, chemotherapy,
grade,histologic, histological, histologically, histology, hyperplasia, invasion, in-
vasive, irradiation,lung cancer, lymph node, lymph nodes, malignancies, ma-
lignancy, malignant, metastases, metastasis, metastatic, neoplasm, neoplastic,
prognostic, prostate, radiation, radiotherapy, recurrence, tumour.

Cardiology group; angina, antiarrhythmic, arrhythmia, arrhythmias, atrial, atrial
fibrillation, atrioventricular, atrium, av, beat, cardiomyopathy, congestive heart,
ecg, echocardiographic, ejection fraction, electrocardiogram, electrocardiographic,
electrophysiologic, end-diastolic, endocardial, epicardial, fibrillation, implantable,
left atrial, left ventricle, lv, myocardial ischemia, pacemaker, pacing, pectoris,
qr, right ventricular, tachycardia,ventricular function, ventricular hypertrophy,
ventricular tachycardia.

The remainder of this chapter briefly introduces the GPU implementation of the
IRM. For further details, specifically regarding other types of relational models,
I refer to the full paper [Hansen et al., 2011b] that can be found in Appendix A.

6.1 The Infinite Relational Model

The graphical model for co-clustering based on the Bernoulli likelihood for bi-
nary bipartite graphs is visualized in Figure 6.2.

For each mode, a node is assigned to a cluster by drawing from a discrete
distribution parameterized by µ(1) and µ(2) respectively. µ(1) and µ(2) are
in turn drawn from a Dirichlet distribution parameterized by α(1)/K(1)1 and
α(2)/K(2)1. Then, the entry in the matrix Aij is according to the co-clustering
model governed by the class assignment of the ith row and jth column, i.e., z(1)

i

and z(2)
j as well as the inter-group relations η where ηlm gives the probability of

observing a link between class l andm for the Bernoulli likelihood. Entries in the
data matrix A are modeled conditionally independent given their respective row
and column assignments. Finally, to account for an infinite number of clusters
we can take the limits K(1) →∞ and K(2) →∞ which has an analytic solution
formed by the Chinese Restaurant Process (CRP) [Antoniak, 1974; Kemp et al.,
2006; Pitman, 2002], i.e., in this limit the Dirichlet distribution converges to the
CRP.
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µ(2)µ(1) η,

Aij

β+ β−α(1) α(2)

z(1)
i z(2)
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The Bipartite Infinite
Relational Model

µ(1) ∼ Dirichlet(α(1)/K(1)1)

µ(2) ∼ Dirichlet(α(2)/K(2)1)

ηlm ∼ Beta(β+, β−)

z
(1)
i ∼ Discrete(µ(1))

z
(2)
j ∼ Discrete(µ(2))

Aij ∼ Bernoulli(z(1)>

i ηz
(2)
j )

Figure 6.2: A graphical representation of the IRM for bipartite graphs.

As the Dirichlet distribution is conjugate to the Discrete distribution and the
priors on η are conjugate, we can analytically integrate over µ(1), µ(2) and
η to collapse the model. However, the marginalization over these variables
introduce a dependence within each mode such that the assignments of each
row in mode one, and each column in mode two no longer can be updated
in parallel. Hence, rather than collapsing the parameters of the model, we
use blocked Gibbs sampling which allows for efficient parallelization and that
potentially also result in better mixing [Ishwaran and James, 2001; Z. Xu, 2007].

The blocked Gibbs sampling approach leads to the following parameter updates
for Z(1) and Z(2)

P
(
z

(1)
i = l|A,Z(2),µ(1),η

)
∝ µ(1)

l exp


∑

m,j

log
(

ηlm
1−ηlm

)
Aijz

(2)
mj + log(1− ηlm)z

(2)
mj


 ,

(6.1)

and

P
(
z

(2)
j = m|A,Z(1),µ(2),η

)
∝ µ(2)

m exp


∑

l,i

log
(

ηlm
1−ηlm

)
Aijz

(1)
li + log(1− ηlm)z

(1)
li


 .

(6.2)

Hence, all z(1)
i can be sampled in parallel given Z(2), and vice versa for z(2)

j

given Z(1). As the remaining update rules are irrelevant with respect to the
GPU implementation that will be described in the following section, I refer
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to [Hansen et al., 2011b] in Appendix A for further details regarding blocked
Gibbs sampling.

6.2 GPU Implementation

resulting in the following updates for the model parameters

Update Z(1)

P (z
(1)
i = l|A, Z(2), µ(1),η) ∝ µ

(1)
l




exp(
�

m,j log( ηlm
1−ηlm

)Aijz
(2)
mj + log(1− ηlm)z

(2)
mj) Bernoulli

exp(
�

m,j log(ηlm)Aijz
(2)
mj − ηlmz

(2)
mj) Poisson

exp( 1
�2

�
m,j 2ηlmAijz

(2)
mj − η2

lmz
(2)
mj) Normal

Update Z(2)

P (z
(2)
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)Aijz
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exp( 1
�2

�
l,i 2ηlmAijz
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lmz
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Update η

P (ηlm|A, Z(1), Z(2),β+,β−) ∼



Beta(Ne(l, m) + β+, No(l, m) + β−) Bernoulli
Gamma(Ne(l, m) + β+, Nt(l, m) + β−) Poisson

Normal(
Nt(l,m)/�2+1/β−
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Update µ(1) and µ(2)
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(1)
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(2)
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(2)
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�K(2)

m+1 n
(2)
m ).

In [31] blocked sampling based on TSB was found to perform
as well as collapsed sampling for the Bernoulli likelihood.

2.2 The CUDA Architecture
Over the past years, the GPU has evolved into a highly
parallel, multithreaded, many-core processor. It is now not
specialized for graphics rendering but can also be used for
generic intensive parallel computations. Compared to a CPU,
that is well suited for processing code with a complex control
flow, a GPU is much better suited for addressing problems
that can be expressed as data-parallel computations with a
high arithmetic intensity.

CUDA is a set of compiler tools and language extensions
developed by NVIDIA that enable programmers to code al-
gorithms for execution on the GPU. At its core, CUDA uses
three key abstractions namely thread groups, shared memo-
ries, and barrier synchronizations. These are exposed to the
programmer as a minimal set of extensions to C/C++ [24].

A CUDA capable GPU consists of a set of Multi Processors
(MPs) each containing eight Scalar Processors (SPs) and
different types of local memories that the SPs may access.
All MPs have also access to a large global memory that,
compared to their internal memories, is much slower.

A problem to be executed on a CUDA capable device, is
setup in a grid, where each element in the grid gets assigned
to a thread. The grid is then decomposed into blocks that
are scheduled onto the MPs with available resources and
the assigned MP will in turn schedule the elements of the
block onto its eight scalar processors in warps with up to 32
threads. The best performance is obtained when all threads
in a warp execute the same instruction and when the to-
tal number of threads in the grid is large. This allows for
some of the various overhead latencies to be overlapped with
arithmetic operations. For a more detailed description about
CUDA capable devices we refer to the CUDA programming
guide [23] and the reference manual [24].

2.3 GPU Computing Aspects
Our implementation consists of a CPU part for sampling η,
µ(1), µ(2) and a GPU part for sampling Z(1), Z(2). The
main reason for not keeping everything in GPU code is that
only the sampling of the cluster assignment matrices ex-
hibit an arithmetic intensity sufficient for taking advantage
of the GPU architecture, furthermore the limited amount of
GPU memory force us to discretize the sampling into sui-
cidal sized subproblems where asynchronous operations can
be used to hide the associated memory latency when trans-
ferring data between the host memory (CPU) and device
memory (GPU).

CPU GPU

Ti
m
e

Figure 3: Illustration of co-clustering. The data ma-
trix A is decomposed into row and column clusters
Z(1) and Z(2) such that ηlm gives the extend in which
row group l relates to column group m.

A, Z(1), Z(2), µ(1), µ(2),η (6)

p(Z(1)| . . . ) �� p(Z(2)| . . . ) (7)

p(Z(·)| . . . ) (8)

p(µ(·)| . . . ), p(η| . . . ) (9)

The greatest challenge in the development of high perfor-
mance GPU applications is to keep device memory latency
low and thereby all threads occupied with arithmetic oper-
ations. Current architectures allow memory transfers to be
grouped into so-called coalesced memory transfers when all
addresses of an executing warp falls within a single memory
segment [23]. Unfortunately sparse matrix representations
often result in scattered memory accesses thereby making
efficient memory segmentation difficult. Performing sparse
matrix operations on CUDA capable GPUs have already
been analyzed [3], but since the posterior likelihood of Z(1)

and Z(2) contain structure that can be exploited to yield a
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resulting in the following updates for the model parameters

Update Z(1)

P (z
(1)
i = l|A, Z(2), µ(1),η) ∝ µ

(1)
l




exp(
�

m,j log( ηlm
1−ηlm

)Aijz
(2)
mj + log(1− ηlm)z

(2)
mj) Bernoulli

exp(
�

m,j log(ηlm)Aijz
(2)
mj − ηlmz

(2)
mj) Poisson

exp( 1
�2

�
m,j 2ηlmAijz

(2)
mj − η2

lmz
(2)
mj) Normal

Update Z(2)

P (z
(2)
j = m|A, Z(1), µ(2),η) ∝ µ

(2)
m




exp(
�

l,i log( ηlm
1−ηlm

)Aijz
(1)
li + log(1− ηlm)z

(1)
li ) Bernoulli

exp(
�

l,i log(ηlm)Aijz
(1)
li − ηlmz

(1)
li ) Poisson

exp( 1
�2

�
l,i 2ηlmAijz

(1)
li − η2

lmz
(1)
li ) Normal

Update η

P (ηlm|A, Z(1), Z(2),β+,β−) ∼



Beta(Ne(l, m) + β+, No(l, m) + β−) Bernoulli
Gamma(Ne(l, m) + β+, Nt(l, m) + β−) Poisson

Normal(
Nt(l,m)/�2+1/β−

Ne(l,m)/�2+β+/β− ,
Nt(l,m)/�2+1/β−

(Ne(l,m)/�2+β+/β−)2
) Gaussian

Update µ(1) and µ(2)

µ
(1)
l = v

(1)
l

�l−1
l�=1

(1− v
(1)
l� ),

where v
(1)
l ∼ Beta(1 + n

(1)
l ,α(1) +

�K(1)

l+1 n
(1)
l ),

µ
(2)
m = v

(2)
m

�m−1
m�=1

(1− v
(2)
m� ),

where v
(2)
m ∼ Beta(1 + n

(2)
m ,α(2) +

�K(2)

m+1 n
(2)
m ).

In [31] blocked sampling based on TSB was found to perform
as well as collapsed sampling for the Bernoulli likelihood.

2.2 The CUDA Architecture
Over the past years, the GPU has evolved into a highly
parallel, multithreaded, many-core processor. It is now not
specialized for graphics rendering but can also be used for
generic intensive parallel computations. Compared to a CPU,
that is well suited for processing code with a complex control
flow, a GPU is much better suited for addressing problems
that can be expressed as data-parallel computations with a
high arithmetic intensity.

CUDA is a set of compiler tools and language extensions
developed by NVIDIA that enable programmers to code al-
gorithms for execution on the GPU. At its core, CUDA uses
three key abstractions namely thread groups, shared memo-
ries, and barrier synchronizations. These are exposed to the
programmer as a minimal set of extensions to C/C++ [24].

A CUDA capable GPU consists of a set of Multi Processors
(MPs) each containing eight Scalar Processors (SPs) and
different types of local memories that the SPs may access.
All MPs have also access to a large global memory that,
compared to their internal memories, is much slower.

A problem to be executed on a CUDA capable device, is
setup in a grid, where each element in the grid gets assigned
to a thread. The grid is then decomposed into blocks that
are scheduled onto the MPs with available resources and
the assigned MP will in turn schedule the elements of the
block onto its eight scalar processors in warps with up to 32
threads. The best performance is obtained when all threads
in a warp execute the same instruction and when the to-
tal number of threads in the grid is large. This allows for
some of the various overhead latencies to be overlapped with
arithmetic operations. For a more detailed description about
CUDA capable devices we refer to the CUDA programming
guide [23] and the reference manual [24].

2.3 GPU Computing Aspects
Our implementation consists of a CPU part for sampling η,
µ(1), µ(2) and a GPU part for sampling Z(1), Z(2). The
main reason for not keeping everything in GPU code is that
only the sampling of the cluster assignment matrices ex-
hibit an arithmetic intensity sufficient for taking advantage
of the GPU architecture, furthermore the limited amount of
GPU memory force us to discretize the sampling into sui-
cidal sized subproblems where asynchronous operations can
be used to hide the associated memory latency when trans-
ferring data between the host memory (CPU) and device
memory (GPU).

CPU GPU

Ti
m
e

Figure 3: Illustration of co-clustering. The data ma-
trix A is decomposed into row and column clusters
Z(1) and Z(2) such that ηlm gives the extend in which
row group l relates to column group m.

A, Z(1), Z(2), µ(1), µ(2),η (6)

p(Z(1)| . . . ) �� p(Z(2)| . . . ) (7)

p(Z(·)| . . . ) (8)

p(µ(·)| . . . ), p(η| . . . ) (9)

The greatest challenge in the development of high perfor-
mance GPU applications is to keep device memory latency
low and thereby all threads occupied with arithmetic oper-
ations. Current architectures allow memory transfers to be
grouped into so-called coalesced memory transfers when all
addresses of an executing warp falls within a single memory
segment [23]. Unfortunately sparse matrix representations
often result in scattered memory accesses thereby making
efficient memory segmentation difficult. Performing sparse
matrix operations on CUDA capable GPUs have already
been analyzed [3], but since the posterior likelihood of Z(1)

and Z(2) contain structure that can be exploited to yield a
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with a high arithmetic intensity. CUDA is a set of com-
piler tools and language extensions developed by NVIDIA
that enable programmers to code algorithms for execution
on the GPU. At its core, CUDA uses three key abstractions
namely thread groups, shared memories, and barrier syn-
chronizations. These are exposed to the programmer as a
minimal set of extensions to C/C++ [27]. A CUDA capable
GPU consists of a set of Multi Processors (MPs) each con-
taining eight Scalar Processors (SPs) and different types of
local memories that the SPs may access. All MPs have also
access to a large global memory that, compared to their in-
ternal memories, is much slower. A problem to be executed
on a CUDA capable device, is setup in a grid, where each
element in the grid gets assigned to a thread. The grid is
then decomposed into blocks that are scheduled onto the
MPs with available resources and the assigned MP will in
turn schedule the elements of the block onto its eight scalar
processors in warps with up to 32 threads. The best perfor-
mance is obtained when all threads in a warp execute the
same instruction and when the total number of threads in
the grid is large. This allows for some of the various over-
head latencies to be overlapped with arithmetic operations.
For a more detailed description about CUDA capable de-
vices we refer to the CUDA programming guide [26] and the
reference manual [27].

2.3 GPU Computing Aspects
Our implementation consists of a CPU part for sampling η,
µ(1), µ(2) and a GPU part for sampling Z(1), Z(2). The
main reason for not keeping everything in GPU code is that
only the sampling of the cluster assignment matrices ex-
hibit an arithmetic intensity sufficient for taking advantage
of the GPU architecture, see also figure 3 that illustrates how
the computations are divided between the CPU and GPU.
For simplicity the figure illustrates the case where the entire
problem can be stored in GPU memory, but in practice the
limited amount of memory forces us to discretize the sam-
pling into suitable sized subproblems where asynchronous
operations can be used to hide the associated memory la-
tency when transferring data between the CPU and GPU.
One of the greatest challenges in the development of high
performance GPU applications is to keep device memory la-
tency low and thereby all threads occupied with arithmetic
operations. Current architectures allow memory transfers to
be grouped into so-called coalesced memory transfers when
all addresses of an executing warp falls within a single mem-
ory segment [26]. Unfortunately sparse matrix represen-
tations often result in scattered memory accesses thereby
making efficient memory segmentation difficult. Performing
sparse matrix operations on CUDA capable GPUs have al-
ready been analyzed [4] and with the recent introduction of
CUSPARSE the obstacle is indeed simplified, however as the
posterior likelihood of Z(1) and Z(2) contain structure that
can be exploited to yield a more efficient memory pattern,
no existing implementation seems ideal for our purpose. To
minimize the memory footprint of the cluster assignment
matrices (Z(1), Z(2)) we utilize the property that a node
can only belong to a single cluster, hence they are encoded
as vectors where each entry corresponds to the respective
cluster number. With respect to the adjacency matrix A,
we presort each mode according to node degree and chunk
it into aligned blocks of memory where each entry encodes
the position of a link. Using the proposed format the cal-
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Figure 3: A simplified view of how model infer-
ence is distributed between the CPU and GPU.
Initially (top) A, Z(1), Z(2), µ(1), µ(2),η are uploaded
to the GPU, assuming a sufficient amount of
memory. Then we sample the distributions
p(Z(1)| . . . ) �� p(Z(2)| . . . ), compute the sufficient statis-

tics, Ne(l, m), Nt(l, m), No(l, m), n
(1)
l , n

(2)
m , and download

these to the CPU code. The sufficient statistics
are used when sampling p(µ(1)| . . . ) � p(µ(2)| . . . ) �
p(η| . . . ) as seen from the update rules given in sec-
tion 2.1. In case of sufficient GPU memory, con-
secutive sampling iterations only upload µ(1), µ(2),η,
otherwise A, Z(1), Z(2) are decomposed into suitable
sized blocks that are also uploaded and processed in
turn.

culation of AZ(2)� and A�Z(1)� (constituting the main

computational bottleneck in the updates of Z(1) and Z(2)

respectively) correspond to incrementing link counts in the
dense result matrix directly indexed by our sparse represen-
tation. The implemented memory layout minimizes thread
divergence and provides coalesced memory transfers in A,
whereas the scattered accesses in Z can be cached in local
memory. Remaining dense matrix operations are handled
using the CUBLAS library, whereas we utilize yet another
custom CUDA kernel to sample the cluster assignment ma-
trices done by applying inverse transform sampling requir-
ing a stream of uniform random numbers per thread. Since
present devices have no built-in random number generator,
pseudo random numbers are generated in GPU code using
a hybrid of a Linear Congruential Generator (LCG) and a
combined Tausworthe generator that has been shown to re-
move all the statistical defects observed in each separate
generator [24].

3. RESULTS AND DISCUSSION
All experiments have been executed using the following hard-
ware configuration; Intel Core i7-920 2.66GHz with 24 GB
of memory, NVIDIA C1060 Tesla with 4 GB of memory.

with a high arithmetic intensity. CUDA is a set of com-
piler tools and language extensions developed by NVIDIA
that enable programmers to code algorithms for execution
on the GPU. At its core, CUDA uses three key abstractions
namely thread groups, shared memories, and barrier syn-
chronizations. These are exposed to the programmer as a
minimal set of extensions to C/C++ [27]. A CUDA capable
GPU consists of a set of Multi Processors (MPs) each con-
taining eight Scalar Processors (SPs) and different types of
local memories that the SPs may access. All MPs have also
access to a large global memory that, compared to their in-
ternal memories, is much slower. A problem to be executed
on a CUDA capable device, is setup in a grid, where each
element in the grid gets assigned to a thread. The grid is
then decomposed into blocks that are scheduled onto the
MPs with available resources and the assigned MP will in
turn schedule the elements of the block onto its eight scalar
processors in warps with up to 32 threads. The best perfor-
mance is obtained when all threads in a warp execute the
same instruction and when the total number of threads in
the grid is large. This allows for some of the various over-
head latencies to be overlapped with arithmetic operations.
For a more detailed description about CUDA capable de-
vices we refer to the CUDA programming guide [26] and the
reference manual [27].

2.3 GPU Computing Aspects
Our implementation consists of a CPU part for sampling η,
µ(1), µ(2) and a GPU part for sampling Z(1), Z(2). The
main reason for not keeping everything in GPU code is that
only the sampling of the cluster assignment matrices ex-
hibit an arithmetic intensity sufficient for taking advantage
of the GPU architecture, see also figure 3 that illustrates how
the computations are divided between the CPU and GPU.
For simplicity the figure illustrates the case where the entire
problem can be stored in GPU memory, but in practice the
limited amount of memory forces us to discretize the sam-
pling into suitable sized subproblems where asynchronous
operations can be used to hide the associated memory la-
tency when transferring data between the CPU and GPU.
One of the greatest challenges in the development of high
performance GPU applications is to keep device memory la-
tency low and thereby all threads occupied with arithmetic
operations. Current architectures allow memory transfers to
be grouped into so-called coalesced memory transfers when
all addresses of an executing warp falls within a single mem-
ory segment [26]. Unfortunately sparse matrix represen-
tations often result in scattered memory accesses thereby
making efficient memory segmentation difficult. Performing
sparse matrix operations on CUDA capable GPUs have al-
ready been analyzed [4] and with the recent introduction of
CUSPARSE the obstacle is indeed simplified, however as the
posterior likelihood of Z(1) and Z(2) contain structure that
can be exploited to yield a more efficient memory pattern,
no existing implementation seems ideal for our purpose. To
minimize the memory footprint of the cluster assignment
matrices (Z(1), Z(2)) we utilize the property that a node
can only belong to a single cluster, hence they are encoded
as vectors where each entry corresponds to the respective
cluster number. With respect to the adjacency matrix A,
we presort each mode according to node degree and chunk
it into aligned blocks of memory where each entry encodes
the position of a link. Using the proposed format the cal-
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Figure 3: A simplified view of how model infer-
ence is distributed between the CPU and GPU.
Initially (top) A, Z(1), Z(2), µ(1), µ(2),η are uploaded
to the GPU, assuming a sufficient amount of
memory. Then we sample the distributions
p(Z(1)| . . . ) �� p(Z(2)| . . . ), compute the sufficient statis-

tics, Ne(l, m), Nt(l, m), No(l, m), n
(1)
l , n

(2)
m , and download

these to the CPU code. The sufficient statistics
are used when sampling p(µ(1)| . . . ) � p(µ(2)| . . . ) �
p(η| . . . ) as seen from the update rules given in sec-
tion 2.1. In case of sufficient GPU memory, con-
secutive sampling iterations only upload µ(1), µ(2),η,
otherwise A, Z(1), Z(2) are decomposed into suitable
sized blocks that are also uploaded and processed in
turn.

culation of AZ(2)� and A�Z(1)� (constituting the main

computational bottleneck in the updates of Z(1) and Z(2)

respectively) correspond to incrementing link counts in the
dense result matrix directly indexed by our sparse represen-
tation. The implemented memory layout minimizes thread
divergence and provides coalesced memory transfers in A,
whereas the scattered accesses in Z can be cached in local
memory. Remaining dense matrix operations are handled
using the CUBLAS library, whereas we utilize yet another
custom CUDA kernel to sample the cluster assignment ma-
trices done by applying inverse transform sampling requir-
ing a stream of uniform random numbers per thread. Since
present devices have no built-in random number generator,
pseudo random numbers are generated in GPU code using
a hybrid of a Linear Congruential Generator (LCG) and a
combined Tausworthe generator that has been shown to re-
move all the statistical defects observed in each separate
generator [24].

3. RESULTS AND DISCUSSION
All experiments have been executed using the following hard-
ware configuration; Intel Core i7-920 2.66GHz with 24 GB
of memory, NVIDIA C1060 Tesla with 4 GB of memory.

Figure 6.3: A simplified view of how model inference is distributed between
the CPU and GPU. Initially (top) A,Z(1),Z(2),µ(1),µ(2),η
are uploaded to the GPU, assuming a sufficient amount of
memory. In each iteration, we sample the distributions
p(Z(1)| . . . ) 6‖ p(Z(2)| . . . ), compute the sufficient statistics,
Ne(l,m), Nt(l,m), No(l,m), n

(1)
l , n

(2)
m , and download these to the

CPU code. The sufficient statistics are used when sampling
p(µ(1)| . . . ) ‖ p(µ(2)| . . . ) ‖ p(η| . . . ), see [Hansen et al., 2011b].
In case of sufficient GPU memory, consecutive sampling iterations
only upload µ(1),µ(2),η, otherwise A,Z(1),Z(2) are decomposed
into suitable sized blocks that are also uploaded and processed in
turn.
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In recent years, the GPU has evolved into a highly parallel, multithreaded,
many-core processor that is not only specialized for graphics rendering, but also
for generic intensive parallel computations. Compared to a CPU which is well-
suited for processing code with a complex control flow, a GPU is much better
suited for addressing problems that can be expressed as data-parallel computa-
tions with a high arithmetic intensity. For our implementation we used CUDA
that is a set of compiler tools and language extensions developed by NVIDIA,
and that enable programmers to code algorithms for execution on the GPU. At
its core, CUDA uses three key abstractions: thread groups; shared memories;
and barrier synchronizations. These are exposed to the programmer as a min-
imal set of extensions to C/C++. A CUDA-capable GPU consists of a set of
Multi Processors (MP), each containing multiple Scalar Processors (SP), as well
as different types of local memories that the SPs may access. All MPs have also
access to a large global memory that, compared to their internal memories, is
much slower to access. A computation task to be executed on a CUDA-capable
device, is setup in a grid, where each element in the grid gets assigned to a
thread. The grid is then decomposed into blocks that are scheduled onto the
MPs with available resources, and the assigned MP will schedule the elements
of the block onto its SPs in warps with 32 threads. The best performance is
obtained when all threads in a warp execute the same instruction and when the
total number of threads in the grid is large. This allows for some of the various
overhead latencies to be overlapped with arithmetic operations.
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Figure 6.4: The speedup in time for GPU computing compared to computing
on the CPU when varying the number of links and nodes of the
graph. The number of nodes for the two modes are here identical.
Left panel; speedup for 128 clusters in each mode, middle panel;
speedup for 256 clusters in each mode, right panel; speedup for
512 clusters in each mode.

The implementation in [Hansen et al., 2011b], consists of a CPU part for sam-
pling η, µ(1), µ(2) and a GPU part for sampling Z(1), Z(2). The main reason for
not keeping everything in GPU code is that only the sampling of the cluster as-
signment matrices exhibit an arithmetic intensity sufficient for taking advantage
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of the GPU architecture, see also Figure 6.3 that illustrates how the computa-
tions are divided between the CPU and GPU. One of the greatest challenges in
the development of high performance GPU applications is to keep device mem-
ory latency low and thereby all threads occupied with arithmetic operations.
Current architectures allow memory transfers to be grouped into so-called co-
alesced memory transfers when all addresses of an executing warp falls within
a single memory segment [NVIDIA, 2008]. Unfortunately, sparse matrix rep-
resentations often result in scattered memory accesses thereby making efficient
memory segmentation difficult. Performing sparse matrix operations on CUDA
capable GPUs have already been analyzed [Bell and Garland, 2008], however as
the posterior likelihood of Z(1) and Z(2) contain structure that can be exploited
to yield a more efficient memory pattern, no existing implementation seems ideal
for our purpose. To minimize the memory footprint of the cluster assignment
matrices (Z(1), Z(2)) we exploit the property that a node can only belong to a
single cluster, hence they are encoded as vectors where each entry corresponds
to the respective cluster number. With respect to the adjacency matrix A, we
presort each mode according to node degree and chunk it into aligned blocks of
memory where each entry encodes the position of a link. Using the proposed
format the calculation of AZ(2)> and A>Z(1)> (constituting the main compu-
tational bottleneck in the updates of Z(1) and Z(2) respectively) corresponds
to incrementing link counts in the dense result matrix directly indexed by our
sparse representation. The implemented memory layout minimizes thread di-
vergence and provides coalesced memory transfers in A, whereas the scattered
accesses in Z can be cached in local memory. Remaining dense matrix opera-
tions are handled using the CUBLAS library1, whereas we utilize yet another
custom CUDA kernel to sample the cluster assignment matrices done by apply-
ing inverse transform sampling requiring a stream of uniform random numbers
per thread, that we also generate within GPU code, see [Nguyen, 2007].

Finally, in order to evaluate the speedup of GPU computation over traditional
CPU computation we analyze synthetically generated graphs, varying the num-
ber of nodes, links and clusters. We highlight that the benchmark compares
the GPU code with a semantically equivalent CPU implementation based on
the Intel Math Kernel Library (MKL). Figure 6.4 shows the speedup which
is positively correlated with the number of links and clusters, since increasing
these will improve the overall arithmetic intensity on the GPU. Increasing in
the number of nodes while keeping the number of links fixed yields a nega-
tive impact in the speedup, because increasing the sparsity reduces the load on
each parallel processing GPU thread. In particular, for 512 clusters our imple-
mentation peaks with more than a 140 times speedup, and for further details
regarding implementation and hardware setup I refer to [Hansen et al., 2011b]
in Appendix A.

1A GPU accelerated version of BLAS developed NVIDIA



Chapter 7

Conclusions

This chapter concludes on each published and submitted contribution
of this dissertation.
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In [Hansen et al., 2011b] we developed an efficient framework for GPU accel-
erated model estimation for relational models. Using this efficient GPU imple-
mentation we demonstrated, to our knowledge, the first large-scale co-clustering
results based on the IRM. In terms of scalability the current GPU implemen-
tation allows us to go beyond the datasets analyzed here and make inference in
even larger bipartite networks, provided that the cluster assignment matrices
can fit in device memory. Furthermore, the memory organization that is ex-
ploited by the implementation makes it straightforward to utilize systems with
multiple GPUs, simply by parallel distribution of discretized subproblems, i.e., a
heterogeneous setup with different levels of parallelism. Moreover, we note that
the GPU framework trivially generalizes to other inference approaches such as
variational Bayes [Z. Xu, 2007]. Future work will focus on extending the pro-
posed framework for graphs with temporal dynamics, i.e., online auctions and
collaborative content creation such as blogs. Finally, we imagine a potential
in exploiting random projection methods to efficiently subsample data while
still recovering network structure supported by the data within the available
timeframe imposed by online systems.

In [Hansen et al., 2011b] we consider how maximizing the radius of the MEB
of the cluster means in the RKHS provides a meaningful heuristic for finding
the optimal hyperparameters in supervised kernel learning. Compared to other
distance metrics in a RKHS we found that the MEB approach provides better
results together with an attractive time complexity, achieved by exploiting the
randomization technique of [Clarkson et al., 2010]. This makes the approach
very useful for crude hyperparameter selection in large-scale multi-class prob-
lems, where CV proves computationally infeasible. Future research in this area
includes testing on a wider range of large-scale problems, outlier detection mea-
sured in terms of the MEB, and generalize the technique to ellipsoids in order
to accommodate for covariance structures.

In [Hansen et al., 2012] we exploited semi-supervised learning to relax the la-
beling scheme in fMRI data analysis. The scheme makes very few assumptions
about the temporal dynamics of the brain state, in that only hard labels are
given to a few volumes within each trial, while the techniqueue still benefits
from unlabeled samples by identifying the manifold on which the data reside.
In essence the suggested classification scheme will, to some extend, allow the
non-stationary temporal dynamics of a decision process to be captured, enabling
the identification of sequences of related neural events that ultimately leads to
a decision. Results based on synthetic data demonstrate significant enhance-
ments, while the results indicate improvements over existing state of the art
nonlinear methods on real data. Future research in this area should focus on a
more comprehensive evaluation on a wide range of fMRI datasets. Also, by ana-
lyzing the stationarity of the suggested model across subjects, we can investigate
the generalizability of the human decision process.
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In [Hansen and Mahoney, 2012] we introduced the notion of semi-supervised
eigenvectors of a graph Laplacian, motivated by the previous work of [Mahoney
et al., 2012]. This methodology was further generalized in [Hansen and Ma-
honey, 2013] where variants of the algorithm that generalize to large-scale kernel
machines, and large-scale data graphs, were introduced. Specifically, for kernel
machines, low-rank matrix decompositions have recently gained popularity in
scaling up kernel methods to huge amounts of data, under the assumption that
the kernel matrix used for encoding the similarity between data samples can
be well-approximated by a few eigenvectors due to a rapidly decaying spectrum
[Williams and Seeger, 2000]. In effect, we derived a solution for semi-supervised
eigenvectors, based on the recently-popular Nyström approximation to speed up
the computation, and we did so by considering how a low-rank decomposition
can be exploited to yield solutions, where the running time largely depends on
a matrix-vector product. Regarding large-scale graphs, we specifically focused
on the Push algorithm by [Andersen et al., 2006], that approximates the solu-
tion to PageRank very efficiently, and we showed how multiple semi-supervised
eigenvectors can be computed solely in terms of diffusion processes. This makes
the algorithm very scalable and applicable for large-scale data, since only the
local neighborhood near the seed set will be touched, as opposed to solving the
linear system of equations that explicitly touches all nodes in the graph. Future
research in this area, will involve finding more suitable applications to demon-
strate advantages, both in terms of scalability as well as the ability to extract
relevant information, as compared to the usual global eigenvectors. Especially,
in fMRI data analysis the semi-supervised eigenvectors may prove very useful
as an alternative to the Searchlight algorithm [Kriegeskorte et al., 2006], in that
the semi-supervised eigenvectors are data-driven, and efficiently approximates
the combinatorial NP-hard problem of finding a good subset of voxel that are
related to a particular effect under study.

In [Hansen et al., 2013] we proposed two techniques for improving denoising by
kernel PCA. We extended the work of [Walder et al., 2010a] to allow for more
than one basis vector, leading to a more general semi-supervised kernel PCA
approach that extends to a multidimensional orthonormal basis, biased towards
the labeled data. Moreover, we derived a fixed-point iteration for the pre-
image problem for the graph regularized kernel introduced in [Sindhwani et al.,
2005] as yet another way of including a priori knowledge into the kernel PCA
denoising scheme. Experimental results on both simulated data and images from
the ALOI database [Geusebroek et al., 2005], demonstrated how the proposed
framework leads to improved denoising performance, i.e., the semi-supervised
learning technique yields a more descriptive representation of the signal manifold
in kernel PCA, and thereby improve the denoising performance compared to
classical unsupervised kernel PCA denoising. Future research in this area should
focus on quantifying the impact of the model parameters, i.e., the loss term in
semi-supervised kernel PCA objective may be interpreted as a locally constraint
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similar to the one used in the semi-supervised eigenvector objective [Hansen and
Mahoney, 2012], where the related Lagrange multiplier had an interpretation in
terms of the teleportation parameter in a diffusion process. Presumably, we can
achieve similar interpretations for the semi-supervised kernel PCA parameters,
that would yield valuable insights.
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ABSTRACT

Co-clustering is a problem of both theoretical and practical impor-
tance, e.g., market basket analysis and collaborative filtering, and
in web scale text processing. We state the co-clustering problem in
terms of non-parametric generative models which can address the
issue of estimating the number of row and column clusters from a
hypothesis space of an infinite number of clusters. To reach large
scale applications of co-clustering we exploit that parameter infer-
ence for co-clustering is well suited for parallel computing. We
develop a generic GPU framework for efficient inference on large
scale sparse bipartite networks and achieve a speedup of two or-
ders of magnitude compared to estimation based on conventional
CPUs. In terms of scalability we find for networks with more
than 100 million links that reliable inference can be achieved in
less than an hour on a single GPU. To efficiently manage memory
consumption on the GPU we exploit the structure of the posterior
likelihood to obtain a decomposition that easily allows model es-
timation of the co-clustering problem on arbitrary large networks
as well as distributed estimation on multiple GPUs. Finally we
evaluate the implementation on real-life large scale collaborative
filtering data and web scale text corpora, demonstrating that la-
tent mesoscale structures extracted by the co-clustering problem as
formulated by the Infinite Relational Model (IRM) are consistent
across consecutive runs with different initializations and also rel-
evant for interpretation of the underlaying processes in such large
scale networks.

1. INTRODUCTION

Co-clustering also denoted bi-clustering and two-mode clustering
is the simultaneous clustering of rows and columns in a matrix.
Co-clustering has gained popularity in several fields, including
bio-informatics for identification of co-regulated genes and gene
functional annotation [20], collaborative filtering and market bas-
ket analysis for identification of user and product segments [32],
text miming [7, 33] for identification of related terms and docu-
ments, and social network modeling to find relationships between
agents and behavior [2, 8]. A plethora of co-clustering methods
have been proposed over the years including the iterative refine-
ment approach of Hartigan [12], heuristics for grouping columns
and rows in an adjacency matrix [31], spectral [7] and informa-
tion theoretic approaches [6], and methods inspired by commu-
nity detection in complex networks [33, 30, 8]. For reviews on

This work was supported in part by the IST Programme of the Euro-
pean Community, under the PASCAL2 Network of Excellence, IST-2007-
216886. This publication only reflects the authors’ views.

co-clustering see [21, 20, 8]. Co-clustering can be defined as the
matrix decomposition problem

A ≈ R = Z(1)>ηZ(2),

i.e., the data matrix A is decomposed into clusters grouping the
row and column entries of the matrix respectively in Z(1)> and
Z(1)> such that the data matrix is segmented into homogenous
regions specified by the matrix η.

The deviation in reconstruction D(A||R) is typically mea-
sured in terms of least squares error [12] which corresponds to a
Gaussian noise model. For non-negative data the Kullback-Leibler
divergence [6] which corresponds to a Poisson noise model has
been invoked and for binary data the Bernoulli likelihood [24, 8]
has been considered. These noise models result in the following
measures of deviation

D(A||R) =




∑
ij −Aij log

Rij
1−Rij

− log (1−Rij) BERNOULLI

∑
ij logAij !−Aij logRij +Rij POISSON

‖A−R‖2F GAUSSIAN

Two important remaining issues in co-clustering are scalability,
i.e., to infer latent variables and model parameters for large scale
data and model complexity, i.e., to determine the number of com-
ponents of the row and column clusters. For co-clustering this is
particularly challenging as the number of components are specified
for each mode separately.

In this paper we will exploit that the alternating estimation of
Z(1) andZ(2) keeping the remaining parameters fixed parallelizes
over the rows and columns respectively of the data matrix to do ef-
ficient inference on Graphical Processing Units (GPU). This prop-
erty has previously been explored in [27, 19] for MapReduce and
in cloud environments using FREERIDE [29]. We will approach
the co-clustering problem in terms of generative models that serve
the two main purposes in machine learning namely to provide in-
terpretation and domain insight via the inference of relevant latent
variables as well as identify predictive relations. In particular, we
will make use of non-parametric learning that admits to infer the
number of row and columns clusters from a hypothesis space of
potentially infinitely many clusters through the Chinese Restaurant
Process (CRP) [1, 28, 16], this has previously been considered for
the Bernoulli likelihood in [33, 16] forming the Infinite Relational
Model (IRM).
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Fig. 1. A graphical representation of the relational model for bipartite graphs. For the GAUSSIAN noise model the additional noise variance
parameter % is not illustrated.

1.1. Organization

The paper is organized in the following way: In section 2 we de-
rive the non-parametric co-clustering model based on Bernoulli,
Poisson and Gaussian likelihood and show how blocked inference
admits efficient parallel computation on the GPU. In section 3 we
show a 102 speedup of our GPU implementation relative to con-
ventional CPU computing. We analyze four real world large scale
networks with up to∼ 109 non-zero entries inA that pertain to the
two important data mining tasks; collaborative filtering and topic
modeling, and demonstrate that co-clustering by the IRM on large
scale data identify consistent mesoscale structures.

2. METHODS

The graphical model for co-clustering based on the Bernoulli like-
lihood for binary bipartite graphs, Poisson likelihood for non-negative
data and Gaussian noise model is given in figure 1. According
to the graphical models each node in mode one and two are as-
signed to a cluster according to a draw from the discrete distribu-
tion parameterized by µ(1) and µ(2) respectively. µ(1) and µ(2)

are in turn drawn from a Dirichlet distribution parameterized by
α(1)/K(1)1 and α(2)/K(2)1. The entry in the matrix Aij is ac-
cording to the co-clustering model governed by the class assign-
ment of the ith row and jth column, i.e., z(1)

i and z(2)
j as well

as the inter-group relations η where ηlm gives the probability of
observing a link between class l and m for the Bernoulli likeli-
hood, the rate or weight for the Poisson likelihood, and the be-
tween group mean value of the data matrix for the Gaussian noise
model. These inter-group relations ηlm are drawn from conjugate
priors. Entries in the data matrix A are according to the model
conditionally independent given their respective row and column
assignments. Finally, assuming an infinite number of clusters is
obtained by taking the limits K(1) → ∞ and K(2) → ∞ which
has an analytic solution formed by the Chinese Restaurant Process
(CRP) [1, 28, 16].

2.1. Blocked Gibbs Sampling

As the Dirichlet distribution is conjugate to the Discrete distribu-
tion and the priors on η are conjugate both µ(1), µ(2) and η can
be integrated out analytically (i.e., collapsed). As a result, infer-
ence in the models can be reduced to sequentially sampling each

column of Z(1) and Z(2) according to the following

UpdateZ(1)

P (z
(1)
i = l|A, α(1), β+, β−) ∝
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∏
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∏
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where n(1)
l and n(2)

m are the number of nodes already assigned to
group l and m while an additional proposal cluster according to
the CRP is given by n(1)

L+1 = α(1) and n(2)
M+1 = α(2) respectively,

whereas

Ne(l,m) =
∑

ij

z
(1)
li Aijz

(2)
mj , Nt(l,m) =

∑

ij

z
(1)
li z

(2)
mj ,

No(l,m) = Nt(l,m)−Ne(l,m).

Due to the Dirichlet prior imposed on µ(1) and µ(2) the model
penalize small clusters that are not supported by the data thereby
selecting the number of components [22, 16]. The analytic inte-
gration of µ(1), µ(2) and η introduces a dependence within each
mode such that the assignments of each row in mode one and col-
umn in mode two no longer can be updated in parallel. Blocked
sampling overcomes this issue while potentially also resulting in
better mixing [14, 34]. In blocked Gibbs sampling two approaches
are commonly invoked to approximate the CRP; Dirichlet Multi-
nomial Allocation (DMA) [11] and Truncated Stick Breaking con-
struction (TSB) [14]. Whereas DMA sample µ(1) and µ(2) from
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the finite Dirichlet distribution given in figure 1 the TSB sample µ
according to

v
(1)
l ∼ Beta(1 + n

(1)
l , α(1) +

K(1)∑

l+1

n
(1)
l ),

v(2)
m ∼ Beta(1 + n(1)

m , α(2) +
K(2)∑

m+1

n(2)
m ),

where v(1)

K(1) = 1 and v(2)

K(2) = 1 such that

µ
(1)
l = v

(1)
l

l−1∏

l′=1

(1− v(1)

l′ ), µ(2)
m = v(2)

m

m−1∏

m′=1

(1− v(2)

m′ ).

The truncation error becomes insignificant when the model is es-
timated for large values of K(1) and K(2), see also [14]. We
presently consider the blocked sampling based on TSB resulting
in the following updates for the model parameters
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In [34] blocked sampling based on TSB was found to perform as
well as collapsed sampling for the Bernoulli likelihood forming
the Infinite Relational Model (IRM). We note that while we will

use Markov Chain Monte Carlo (MCMC) sampling for parameter
inference the approach trivially generalize to variational methods
[34]. In particular, a variational implementation follows by taking
the expectations over the derived posteriors based on the following
factorized distribution of the considered graphical model given in
figure 1 of the co-clustering model based on the TSB

q(Z(1),Z(2),η,µ(1),µ(2)) =∏
i q(z

(1)
i )

∏
j q(z

(2)
j )

∏
lm q(ηlm)

∏
l q(v

(1)
l )

∏
m q(v

(2)
m ).

However, we note that the variational inference requires more mem-
ory as Z(1) and Z(2) are no longer hard cluster assignment matri-
ces but dense matrices defining soft clustering.

2.2. The CUDA Architecture

The GPU has evolved into a highly parallel, multithreaded, many-
core processor. It is now not specialized for graphics rendering
but can also be used for generic intensive parallel computations.
Compared to a CPU that is well suited for processing code with a
complex control flow, a GPU is much better suited for addressing
problems that can be expressed as data-parallel computations with
a high arithmetic intensity. CUDA is a set of compiler tools and
language extensions developed by NVIDIA that enable program-
mers to code algorithms for execution on the GPU. At its core,
CUDA uses three key abstractions namely thread groups, shared
memories, and barrier synchronizations. These are exposed to the
programmer as a minimal set of extensions to C/C++. A CUDA
capable GPU consists of a set of Multi Processors (MPs) each con-
taining eight Scalar Processors (SPs) and different types of local
memories that the SPs may access. All MPs have also access to
a large global memory that, compared to their internal memories,
is much slower. A problem to be executed on a CUDA capable
device, is setup in a grid, where each element in the grid gets as-
signed to a thread. The grid is then decomposed into blocks that
are scheduled onto the MPs with available resources and the as-
signed MP will in turn schedule the elements of the block onto its
eight scalar processors in warps with up to 32 threads. The best
performance is obtained when all threads in a warp execute the
same instruction and when the total number of threads in the grid
is large. This allows for some of the various overhead latencies
to be overlapped with arithmetic operations. For a more detailed
description about CUDA capable devices we refer to the CUDA
programming guide [25] and the reference manual [26].

2.3. GPU Computing Aspects

Our implementation consists of a CPU part for sampling η, µ(1),
µ(2) and a GPU part for sampling Z(1), Z(2). The main reason
for not keeping everything in GPU code is that only the sampling
of the cluster assignment matrices exhibit an arithmetic intensity
sufficient for taking advantage of the GPU architecture, see also
figure 2 that illustrates how the computations are divided between
the CPU and GPU. For simplicity the figure illustrates the case
where the entire problem can be stored in GPU memory, but in
practice the limited amount of memory forces us to discretize the
sampling into suitable sized subproblems where asynchronous op-
erations can be used to hide the associated memory latency when
transferring data between the CPU and GPU. One of the greatest
challenges in the development of high performance GPU applica-
tions is to keep device memory latency low and thereby all threads
occupied with arithmetic operations. Current architectures allow
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resulting in the following updates for the model parameters
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exp(
�

l,i log(ηlm)Aijz
(1)
li − ηlmz

(1)
li ) Poisson

exp( 1
�2

�
l,i 2ηlmAijz

(1)
li − η2

lmz
(1)
li ) Normal

Update η

P (ηlm|A, Z(1), Z(2),β+,β−) ∼



Beta(Ne(l, m) + β+, No(l, m) + β−) Bernoulli
Gamma(Ne(l, m) + β+, Nt(l, m) + β−) Poisson

Normal(
Nt(l,m)/�2+1/β−

Ne(l,m)/�2+β+/β− ,
Nt(l,m)/�2+1/β−

(Ne(l,m)/�2+β+/β−)2
) Gaussian

Update µ(1) and µ(2)

µ
(1)
l = v

(1)
l

�l−1
l�=1

(1 − v
(1)
l� ),

where v
(1)
l ∼ Beta(1 + n

(1)
l ,α(1) +

�K(1)

l+1 n
(1)
l ),

µ
(2)
m = v

(2)
m

�m−1
m�=1

(1 − v
(2)
m� ),

where v
(2)
m ∼ Beta(1 + n

(2)
m ,α(2) +

�K(2)

m+1 n
(2)
m ).

In [31] blocked sampling based on TSB was found to perform
as well as collapsed sampling for the Bernoulli likelihood.

2.2 The CUDA Architecture
Over the past years, the GPU has evolved into a highly
parallel, multithreaded, many-core processor. It is now not
specialized for graphics rendering but can also be used for
generic intensive parallel computations. Compared to a CPU,
that is well suited for processing code with a complex control
flow, a GPU is much better suited for addressing problems
that can be expressed as data-parallel computations with a
high arithmetic intensity.

CUDA is a set of compiler tools and language extensions
developed by NVIDIA that enable programmers to code al-
gorithms for execution on the GPU. At its core, CUDA uses
three key abstractions namely thread groups, shared memo-
ries, and barrier synchronizations. These are exposed to the
programmer as a minimal set of extensions to C/C++ [24].

A CUDA capable GPU consists of a set of Multi Processors
(MPs) each containing eight Scalar Processors (SPs) and
different types of local memories that the SPs may access.
All MPs have also access to a large global memory that,
compared to their internal memories, is much slower.

A problem to be executed on a CUDA capable device, is
setup in a grid, where each element in the grid gets assigned
to a thread. The grid is then decomposed into blocks that
are scheduled onto the MPs with available resources and
the assigned MP will in turn schedule the elements of the
block onto its eight scalar processors in warps with up to 32
threads. The best performance is obtained when all threads
in a warp execute the same instruction and when the to-
tal number of threads in the grid is large. This allows for
some of the various overhead latencies to be overlapped with
arithmetic operations. For a more detailed description about
CUDA capable devices we refer to the CUDA programming
guide [23] and the reference manual [24].

2.3 GPU Computing Aspects
Our implementation consists of a CPU part for sampling η,
µ(1), µ(2) and a GPU part for sampling Z(1), Z(2). The
main reason for not keeping everything in GPU code is that
only the sampling of the cluster assignment matrices ex-
hibit an arithmetic intensity sufficient for taking advantage
of the GPU architecture, furthermore the limited amount of
GPU memory force us to discretize the sampling into sui-
cidal sized subproblems where asynchronous operations can
be used to hide the associated memory latency when trans-
ferring data between the host memory (CPU) and device
memory (GPU).

CPU GPU

Ti
m
e

Figure 3: Illustration of co-clustering. The data ma-
trix A is decomposed into row and column clusters
Z(1) and Z(2) such that ηlm gives the extend in which
row group l relates to column group m.

A, Z(1), Z(2), µ(1), µ(2),η (6)

p(Z(1)| . . . ) �� p(Z(2)| . . . ) (7)

p(Z(·)| . . . ) (8)

p(µ(·)| . . . ), p(η| . . . ) (9)

The greatest challenge in the development of high perfor-
mance GPU applications is to keep device memory latency
low and thereby all threads occupied with arithmetic oper-
ations. Current architectures allow memory transfers to be
grouped into so-called coalesced memory transfers when all
addresses of an executing warp falls within a single memory
segment [23]. Unfortunately sparse matrix representations
often result in scattered memory accesses thereby making
efficient memory segmentation difficult. Performing sparse
matrix operations on CUDA capable GPUs have already
been analyzed [3], but since the posterior likelihood of Z(1)

and Z(2) contain structure that can be exploited to yield a
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resulting in the following updates for the model parameters

Update Z(1)

P (z
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i = l|A, Z(2), µ(1),η) ∝ µ

(1)
l




exp(
�

m,j log( ηlm
1−ηlm

)Aijz
(2)
mj + log(1 − ηlm)z

(2)
mj) Bernoulli

exp(
�

m,j log(ηlm)Aijz
(2)
mj − ηlmz

(2)
mj) Poisson

exp( 1
�2

�
m,j 2ηlmAijz
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mj − η2

lmz
(2)
mj) Normal

Update Z(2)

P (z
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j = m|A, Z(1), µ(2),η) ∝ µ
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(1)
li − ηlmz

(1)
li ) Poisson

exp( 1
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�
l,i 2ηlmAijz

(1)
li − η2

lmz
(1)
li ) Normal

Update η

P (ηlm|A, Z(1), Z(2),β+,β−) ∼



Beta(Ne(l, m) + β+, No(l, m) + β−) Bernoulli
Gamma(Ne(l, m) + β+, Nt(l, m) + β−) Poisson

Normal(
Nt(l,m)/�2+1/β−

Ne(l,m)/�2+β+/β− ,
Nt(l,m)/�2+1/β−

(Ne(l,m)/�2+β+/β−)2
) Gaussian

Update µ(1) and µ(2)

µ
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l
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where v
(1)
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�K(1)
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m ,α(2) +
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In [31] blocked sampling based on TSB was found to perform
as well as collapsed sampling for the Bernoulli likelihood.

2.2 The CUDA Architecture
Over the past years, the GPU has evolved into a highly
parallel, multithreaded, many-core processor. It is now not
specialized for graphics rendering but can also be used for
generic intensive parallel computations. Compared to a CPU,
that is well suited for processing code with a complex control
flow, a GPU is much better suited for addressing problems
that can be expressed as data-parallel computations with a
high arithmetic intensity.

CUDA is a set of compiler tools and language extensions
developed by NVIDIA that enable programmers to code al-
gorithms for execution on the GPU. At its core, CUDA uses
three key abstractions namely thread groups, shared memo-
ries, and barrier synchronizations. These are exposed to the
programmer as a minimal set of extensions to C/C++ [24].

A CUDA capable GPU consists of a set of Multi Processors
(MPs) each containing eight Scalar Processors (SPs) and
different types of local memories that the SPs may access.
All MPs have also access to a large global memory that,
compared to their internal memories, is much slower.

A problem to be executed on a CUDA capable device, is
setup in a grid, where each element in the grid gets assigned
to a thread. The grid is then decomposed into blocks that
are scheduled onto the MPs with available resources and
the assigned MP will in turn schedule the elements of the
block onto its eight scalar processors in warps with up to 32
threads. The best performance is obtained when all threads
in a warp execute the same instruction and when the to-
tal number of threads in the grid is large. This allows for
some of the various overhead latencies to be overlapped with
arithmetic operations. For a more detailed description about
CUDA capable devices we refer to the CUDA programming
guide [23] and the reference manual [24].

2.3 GPU Computing Aspects
Our implementation consists of a CPU part for sampling η,
µ(1), µ(2) and a GPU part for sampling Z(1), Z(2). The
main reason for not keeping everything in GPU code is that
only the sampling of the cluster assignment matrices ex-
hibit an arithmetic intensity sufficient for taking advantage
of the GPU architecture, furthermore the limited amount of
GPU memory force us to discretize the sampling into sui-
cidal sized subproblems where asynchronous operations can
be used to hide the associated memory latency when trans-
ferring data between the host memory (CPU) and device
memory (GPU).

CPU GPU

Ti
m
e

Figure 3: Illustration of co-clustering. The data ma-
trix A is decomposed into row and column clusters
Z(1) and Z(2) such that ηlm gives the extend in which
row group l relates to column group m.

A, Z(1), Z(2), µ(1), µ(2),η (6)

p(Z(1)| . . . ) �� p(Z(2)| . . . ) (7)

p(Z(·)| . . . ) (8)

p(µ(·)| . . . ), p(η| . . . ) (9)

The greatest challenge in the development of high perfor-
mance GPU applications is to keep device memory latency
low and thereby all threads occupied with arithmetic oper-
ations. Current architectures allow memory transfers to be
grouped into so-called coalesced memory transfers when all
addresses of an executing warp falls within a single memory
segment [23]. Unfortunately sparse matrix representations
often result in scattered memory accesses thereby making
efficient memory segmentation difficult. Performing sparse
matrix operations on CUDA capable GPUs have already
been analyzed [3], but since the posterior likelihood of Z(1)

and Z(2) contain structure that can be exploited to yield a
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with a high arithmetic intensity. CUDA is a set of com-
piler tools and language extensions developed by NVIDIA
that enable programmers to code algorithms for execution
on the GPU. At its core, CUDA uses three key abstractions
namely thread groups, shared memories, and barrier syn-
chronizations. These are exposed to the programmer as a
minimal set of extensions to C/C++ [27]. A CUDA capable
GPU consists of a set of Multi Processors (MPs) each con-
taining eight Scalar Processors (SPs) and different types of
local memories that the SPs may access. All MPs have also
access to a large global memory that, compared to their in-
ternal memories, is much slower. A problem to be executed
on a CUDA capable device, is setup in a grid, where each
element in the grid gets assigned to a thread. The grid is
then decomposed into blocks that are scheduled onto the
MPs with available resources and the assigned MP will in
turn schedule the elements of the block onto its eight scalar
processors in warps with up to 32 threads. The best perfor-
mance is obtained when all threads in a warp execute the
same instruction and when the total number of threads in
the grid is large. This allows for some of the various over-
head latencies to be overlapped with arithmetic operations.
For a more detailed description about CUDA capable de-
vices we refer to the CUDA programming guide [26] and the
reference manual [27].

2.3 GPU Computing Aspects
Our implementation consists of a CPU part for sampling η,
µ(1), µ(2) and a GPU part for sampling Z(1), Z(2). The
main reason for not keeping everything in GPU code is that
only the sampling of the cluster assignment matrices ex-
hibit an arithmetic intensity sufficient for taking advantage
of the GPU architecture, see also figure 3 that illustrates how
the computations are divided between the CPU and GPU.
For simplicity the figure illustrates the case where the entire
problem can be stored in GPU memory, but in practice the
limited amount of memory forces us to discretize the sam-
pling into suitable sized subproblems where asynchronous
operations can be used to hide the associated memory la-
tency when transferring data between the CPU and GPU.
One of the greatest challenges in the development of high
performance GPU applications is to keep device memory la-
tency low and thereby all threads occupied with arithmetic
operations. Current architectures allow memory transfers to
be grouped into so-called coalesced memory transfers when
all addresses of an executing warp falls within a single mem-
ory segment [26]. Unfortunately sparse matrix represen-
tations often result in scattered memory accesses thereby
making efficient memory segmentation difficult. Performing
sparse matrix operations on CUDA capable GPUs have al-
ready been analyzed [4] and with the recent introduction of
CUSPARSE the obstacle is indeed simplified, however as the
posterior likelihood of Z(1) and Z(2) contain structure that
can be exploited to yield a more efficient memory pattern,
no existing implementation seems ideal for our purpose. To
minimize the memory footprint of the cluster assignment
matrices (Z(1), Z(2)) we utilize the property that a node
can only belong to a single cluster, hence they are encoded
as vectors where each entry corresponds to the respective
cluster number. With respect to the adjacency matrix A,
we presort each mode according to node degree and chunk
it into aligned blocks of memory where each entry encodes
the position of a link. Using the proposed format the cal-
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Figure 3: A simplified view of how model infer-
ence is distributed between the CPU and GPU.
Initially (top) A, Z(1), Z(2), µ(1), µ(2),η are uploaded
to the GPU, assuming a sufficient amount of
memory. Then we sample the distributions
p(Z(1)| . . . ) �� p(Z(2)| . . . ), compute the sufficient statis-

tics, Ne(l, m), Nt(l, m), No(l, m), n
(1)
l , n

(2)
m , and download

these to the CPU code. The sufficient statistics
are used when sampling p(µ(1)| . . . ) � p(µ(2)| . . . ) �
p(η| . . . ) as seen from the update rules given in sec-
tion 2.1. In case of sufficient GPU memory, con-
secutive sampling iterations only upload µ(1), µ(2),η,
otherwise A, Z(1), Z(2) are decomposed into suitable
sized blocks that are also uploaded and processed in
turn.

culation of AZ(2)� and A�Z(1)� (constituting the main

computational bottleneck in the updates of Z(1) and Z(2)

respectively) correspond to incrementing link counts in the
dense result matrix directly indexed by our sparse represen-
tation. The implemented memory layout minimizes thread
divergence and provides coalesced memory transfers in A,
whereas the scattered accesses in Z can be cached in local
memory. Remaining dense matrix operations are handled
using the CUBLAS library, whereas we utilize yet another
custom CUDA kernel to sample the cluster assignment ma-
trices done by applying inverse transform sampling requir-
ing a stream of uniform random numbers per thread. Since
present devices have no built-in random number generator,
pseudo random numbers are generated in GPU code using
a hybrid of a Linear Congruential Generator (LCG) and a
combined Tausworthe generator that has been shown to re-
move all the statistical defects observed in each separate
generator [24].

3. RESULTS AND DISCUSSION
All experiments have been executed using the following hard-
ware configuration; Intel Core i7-920 2.66GHz with 24 GB
of memory, NVIDIA C1060 Tesla with 4 GB of memory.
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piler tools and language extensions developed by NVIDIA
that enable programmers to code algorithms for execution
on the GPU. At its core, CUDA uses three key abstractions
namely thread groups, shared memories, and barrier syn-
chronizations. These are exposed to the programmer as a
minimal set of extensions to C/C++ [27]. A CUDA capable
GPU consists of a set of Multi Processors (MPs) each con-
taining eight Scalar Processors (SPs) and different types of
local memories that the SPs may access. All MPs have also
access to a large global memory that, compared to their in-
ternal memories, is much slower. A problem to be executed
on a CUDA capable device, is setup in a grid, where each
element in the grid gets assigned to a thread. The grid is
then decomposed into blocks that are scheduled onto the
MPs with available resources and the assigned MP will in
turn schedule the elements of the block onto its eight scalar
processors in warps with up to 32 threads. The best perfor-
mance is obtained when all threads in a warp execute the
same instruction and when the total number of threads in
the grid is large. This allows for some of the various over-
head latencies to be overlapped with arithmetic operations.
For a more detailed description about CUDA capable de-
vices we refer to the CUDA programming guide [26] and the
reference manual [27].

2.3 GPU Computing Aspects
Our implementation consists of a CPU part for sampling η,
µ(1), µ(2) and a GPU part for sampling Z(1), Z(2). The
main reason for not keeping everything in GPU code is that
only the sampling of the cluster assignment matrices ex-
hibit an arithmetic intensity sufficient for taking advantage
of the GPU architecture, see also figure 3 that illustrates how
the computations are divided between the CPU and GPU.
For simplicity the figure illustrates the case where the entire
problem can be stored in GPU memory, but in practice the
limited amount of memory forces us to discretize the sam-
pling into suitable sized subproblems where asynchronous
operations can be used to hide the associated memory la-
tency when transferring data between the CPU and GPU.
One of the greatest challenges in the development of high
performance GPU applications is to keep device memory la-
tency low and thereby all threads occupied with arithmetic
operations. Current architectures allow memory transfers to
be grouped into so-called coalesced memory transfers when
all addresses of an executing warp falls within a single mem-
ory segment [26]. Unfortunately sparse matrix represen-
tations often result in scattered memory accesses thereby
making efficient memory segmentation difficult. Performing
sparse matrix operations on CUDA capable GPUs have al-
ready been analyzed [4] and with the recent introduction of
CUSPARSE the obstacle is indeed simplified, however as the
posterior likelihood of Z(1) and Z(2) contain structure that
can be exploited to yield a more efficient memory pattern,
no existing implementation seems ideal for our purpose. To
minimize the memory footprint of the cluster assignment
matrices (Z(1), Z(2)) we utilize the property that a node
can only belong to a single cluster, hence they are encoded
as vectors where each entry corresponds to the respective
cluster number. With respect to the adjacency matrix A,
we presort each mode according to node degree and chunk
it into aligned blocks of memory where each entry encodes
the position of a link. Using the proposed format the cal-
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Figure 3: A simplified view of how model infer-
ence is distributed between the CPU and GPU.
Initially (top) A, Z(1), Z(2), µ(1), µ(2),η are uploaded
to the GPU, assuming a sufficient amount of
memory. Then we sample the distributions
p(Z(1)| . . . ) �� p(Z(2)| . . . ), compute the sufficient statis-

tics, Ne(l, m), Nt(l, m), No(l, m), n
(1)
l , n

(2)
m , and download

these to the CPU code. The sufficient statistics
are used when sampling p(µ(1)| . . . ) � p(µ(2)| . . . ) �
p(η| . . . ) as seen from the update rules given in sec-
tion 2.1. In case of sufficient GPU memory, con-
secutive sampling iterations only upload µ(1), µ(2),η,
otherwise A, Z(1), Z(2) are decomposed into suitable
sized blocks that are also uploaded and processed in
turn.

culation of AZ(2)� and A�Z(1)� (constituting the main

computational bottleneck in the updates of Z(1) and Z(2)

respectively) correspond to incrementing link counts in the
dense result matrix directly indexed by our sparse represen-
tation. The implemented memory layout minimizes thread
divergence and provides coalesced memory transfers in A,
whereas the scattered accesses in Z can be cached in local
memory. Remaining dense matrix operations are handled
using the CUBLAS library, whereas we utilize yet another
custom CUDA kernel to sample the cluster assignment ma-
trices done by applying inverse transform sampling requir-
ing a stream of uniform random numbers per thread. Since
present devices have no built-in random number generator,
pseudo random numbers are generated in GPU code using
a hybrid of a Linear Congruential Generator (LCG) and a
combined Tausworthe generator that has been shown to re-
move all the statistical defects observed in each separate
generator [24].

3. RESULTS AND DISCUSSION
All experiments have been executed using the following hard-
ware configuration; Intel Core i7-920 2.66GHz with 24 GB
of memory, NVIDIA C1060 Tesla with 4 GB of memory.

Fig. 2. A simplified view of how model inference is distributed
between the CPU and GPU. Initially A,Z(1),Z(2),µ(1),µ(2),η
are uploaded to the GPU, assuming a sufficient amount of
memory. In each iteration, we sample the distributions
p(Z(1)| . . . ) 6‖ p(Z(2)| . . . ), compute the sufficient statistics,
Ne(l,m), Nt(l,m), No(l,m), n

(1)
l , n

(2)
m , and download these to

the CPU code. The sufficient statistics are used when sampling
p(µ(1)| . . . ) ‖ p(µ(2)| . . . ) ‖ p(η| . . . ) as seen from the update
rules given in section 2.1. In case of sufficient GPU memory, con-
secutive sampling iterations only upload µ(1),µ(2),η, otherwise
A,Z(1),Z(2) are decomposed into suitable sized blocks that are
also uploaded and processed in turn.

memory transfers to be grouped into so-called coalesced memory
transfers when all addresses of an executing warp falls within a sin-
gle memory segment [25]. Unfortunately, sparse matrix represen-
tations often result in scattered memory accesses thereby making
efficient memory segmentation difficult. Performing sparse matrix
operations on CUDA capable GPUs have already been analyzed
[3] and with the recent introduction of CUSPARSE the obstacle
is indeed simplified, however as the posterior likelihood of Z(1)

and Z(2) contain structure that can be exploited to yield a more
efficient memory pattern, no existing implementation seems ideal
for our purpose. To minimize the memory footprint of the clus-
ter assignment matrices (Z(1), Z(2)) we utilize the property that
a node can only belong to a single cluster, hence they are encoded
as vectors where each entry corresponds to the respective cluster
number. With respect to the adjacency matrix A, we presort each
mode according to node degree and chunk it into aligned blocks of
memory where each entry encodes the position of a link. Using the
proposed format the calculation of AZ(2)> and A>Z(1)> (con-
stituting the main computational bottleneck in the updates of Z(1)

and Z(2) respectively) corresponds to incrementing link counts in
the dense result matrix directly indexed by our sparse represen-
tation. The implemented memory layout minimizes thread diver-
gence and provides coalesced memory transfers inA, whereas the
scattered accesses inZ can be cached in local memory. Remaining

dense matrix operations are handled using the CUBLAS library,
whereas we utilize yet another custom CUDA kernel to sample
the cluster assignment matrices done by applying inverse trans-
form sampling requiring a stream of uniform random numbers per
thread. Since present devices have no built-in random number gen-
erator, pseudo random numbers are generated in GPU code using a
hybrid of a Linear Congruential Generator (LCG) and a combined
Tausworthe generator that has been shown to reduce the statistical
defects observed in each separate generator [23].

3. RESULTS AND DISCUSSION

All experiments have been executed using the following hardware
configuration; Intel Core i7-920 2.66GHz with 24 GB of memory,
NVIDIA C1060 Tesla with 240 cores and 4 GB memory. Ubuntu
9.10, Linux kernel 2.6.31, NVIDIA CUDA driver version 256.40.

3.1. GPU Performance Investigation

In order to evaluate the speedup of GPU computation over tradi-
tional CPU computation we analyze synthetically generated graphs,
varying the number of nodes, links and clusters. We highlight that
the benchmark compares the GPU code with a semantically equiv-
alent CPU implementation based on the Intel Math Kernel Library
(MKL), i.e., the comparison is invariant with respect to the selected
likelihood on Aij . Figure 3 shows the speedup which is positively
correlated with the number of links and clusters, since increasing
these will improve the overall arithmetic intensity on the GPU.
Increasing in the number of nodes while keeping the number of
links fixed yields a negative impact in the speedup, because in-
creasing the sparsity reduces the load on each parallel processing
GPU thread. For 512 clusters our implementation reaches more
than a 140 times speedup.

3.2. Large Scale Real Networks

In the analysis of real networks we will focus on co-clustering of
binary data, i.e., we consider Aij ∼ Bernoulli(z(1)>

i ηz
(2)
j ) form-

ing the so-called Infinite Relational Model (IRM). This type of
relational data is typically represented by the (bipartite) adjacency
matrix A ∈ BI×J , where Aij = 1 if entity i is related to entity
j and Aij = 0 otherwise. We will consider four datasets, two
pertain to collaborative filtering and two to topic modeling.

Collaborative Filtering and Market Basket Data: In market
basket analysis consumer purchases of products are stored in a bi-
nary adjacency matrix A such that Aij = 1 if consumer i pur-
chased product j and Aij = 0 otherwise. A benefit of analyzing
collaborative filtering/market basket data by co-clustering meth-
ods are that consumers and products are automatically divided into
segments while unobserved relations can be inferred. We will
presently consider consumer purchases of movies based on the
Netflix data and user downloads of Facebook applications. The
Netflix data1 contains about 18K movies and 480K consumers pur-
chasing approximately 100 million movies. We note that the col-
laborative filtering challenge for the Netflix data, i.e., predicting
how well users like given movies differ from the current analysis
where we predict whether users actually purchased movies. The
Facebook dataset of user application consumption was provided

1See http://www.netflixprize.com/
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Fig. 3. The speedup in time for GPU computing compared to computing on the CPU when varying the number of links and nodes of the
graph. The number of nodes for the two modes are here identical. Left panel; speedup for 128 clusters in each mode, middle panel; speedup
for 256 clusters in each mode, right panel; speedup for 512 clusters in each mode.

by [10] and contains about 14K applications and 300K users with
a total of almost 6 million installed applications.

Topic Modeling Data: Topic models are statistical models used
to discover the abstract topics that occur in a collection of docu-
ments. The most well known approaches to topic modeling are
the generalization of Latent Semantic Indexing [5] to probabilistic
Latent Semantic Indexing (pLSI) [13] and Latent Dirichlet Allo-
cation (LDA) [4]. While these approaches discover topics in doc-
uments they also rate within documents how likely specific words
are to occur based on some derived measure. We will presently
only consider whether a given word occurred in a document or
not. As such, co-clustering by the IRM will group documents and
terms based on their co-occurrence rather than taking into account
the specific number of times given words occurred in the docu-
ments, this alleviates any normalization step in the topic model-
ing. For modeling topics by the IRM we consider articles from
New York Times (NYTimes) and abstracts from U.S. National Li-
brary of Medicine (PubMed) based on the bag of words represen-
tation publicly available from [9]. After tokenization and removal
of stop-words the vocabulary of unique words was truncated by
only keeping words that occurred more than ten times. Disregard-
ing the number of occurrences of the words we obtain the adja-
cency matrix A where Aij = 1 if word i occurred in document j
and Aij = 0 otherwise. The New York Times data contains ap-
proximately 100K words in 300K documents with approximately
100 million word occurrences whereas the PubMed abstracts con-
tain 140K words and 8 million documents with approximately 500
million word occurrences.

We analyzed all networks based on a maximum of 500 clus-
ters and treated 1 % of links and an equivalent number of non-links
as missing at random and analyzed each graph five times with dif-
ferent randomly generated missing sets. This strategy allows us
to evaluate the link predictive performance of the IRM. For all
analyzed networks convergence was achieved after approximately
100 sampling iterations measured in terms of link predictive per-
formance, therefore all analyses were terminated upon 500 sam-
pling iterations. Table 1 shows the number of extracted compo-
nents for the two modes as well as the normalized mutual infor-
mation NMI = 2·MI(Z̃,Ẑ)

H(Z̃,Z̃)+H(Ẑ,Ẑ)
measuring how similar the ex-

tracted clusters are across the five sampling runs, i.e., NMI = 1
indicates that the cluster structures are identical whereas NMI = 0
indicates that there is no information shared between the identified
clusters. From the table it can be seen that the extracted clusters all

are very robust, i.e., the mutual information is close to saturation
given by the mean information in the marginals. In the table we
also illustrate link predictability by the area under curve (AUC) of
the receiver operator characteristic (ROC) which has been widely
used for link prediction in graphs [18, 17]. According to the AUC
scores the estimated models are predicting links and non-links sig-
nificantly better than random guessing (AUC=0.5). In terms of
interpretability a clear pattern emerged for the Netflix data where
sequels of programs and movies are grouped together. From the
term group in NYTimes many highly interpretable topics were ex-
tracted, for instance, the IRM extracted topics corresponding to
“9/11”, “Harry Potter” and “The war on terror”, whereas from
the PubMed data clusters relating to various areas of research of
medicine clearly emerged, while words with the same stem were
grouped together.

4. CONCLUSION

We considered the co-clustering problem in terms of non-parametric
generative models and demonstrated how a generic GPU imple-
mentation admits efficient large scale inference resulting in an or-
der of 102 speedup compared to inference on conventional CPUs.
For the Bernoulli likelihood the derived co-clustering method is
equivalent to the Infinite Relational Model (IRM) of [16, 33, 34]
and we found that the model is able to robustly extract interpretable
mesoscale information from large scale bipartite networks, provid-
ing additional insights into the considered application domains.

A limitation of co-clustering is that it does not directly result
in a ranking of the items within a group. We envision several ap-
proaches to rank products or terms within a given segment. Future
work could be to invoke association mining based on the Apri-
ori algorithm within the extracted segment or to extend the co-
clustering model to explicitly rank the entities within a group by
introducing a parameter that models the degree in which each en-
tity belong to its assigned cluster. This has been considered for
the Poisson likelihood in [15] and readily extends to the present
non-parametric co-clustering formulation.

In terms of scalability the current GPU implementation allows
us to go beyond the datasets analyzed here and make inference in
even larger bipartite networks, provided that Z(1) can fit in de-
vice memory when sampling subsets of Z(2) and vice versa. Fur-
thermore, the discretization that we apply in our current imple-
mentation makes it straightforward to utilize systems with multi-
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Name I J N K(1) K(2) NMI(1) NMI(2) AUC
Facebook 13604 297474 6 mio. 85.00 (3.74) 117.40 (8.65) 0.74 (3) [0.04(0)] 0.42 (1) [0.01(0)] 0.8117 (66)

Netflix 17770 480189 100 mio 165.20 (16.71) 121.20 (18.02) 0.76 (1) [0.11(1)] 0.69 (1) [0.00(0)] 0.8010 (35)
New York Times 101636 299752 100 mio. 167.40 (20.44) 348.40 (7.20) 0.72 (1) [0.02(0)] 0.73 (1) [0.04(0)] 0.7737 (44)

PubMed 141043 8.2 mio. 483 mio. 488.67 (4.73) 498.67 (0.58) 0.73 (0) [0.07(0)] 0.67 (0) [0.00(0)] 0.7979 (159)

Table 1. The size of the first and second mode of the adjacency matrix A ∈ BI×J , the number of non-zero entries N = |A| rounded
to closest million as well as the number of extracted clusters for each mode (K(1) and K(2)) and the stability of the clusters as measured
by normalized mutual information (NMI) across the sampling runs for each mode. In parenthesis is given the standard deviation on last
digit across the five runs and in brackets the NMI obtained by random. Link prediction is measured in terms of AUC scores averaged over
low, mid, and high node degree regions. We applied this scheme since randomly sampling links and non-links from the graph resulted in a
trivially high AUC score. In general we found that high degree nodes were less predictable than low degree nodes across the datasets.

ple GPUs, simply by parallel distribution of the discretized sub-
problems, i.e., a heterogeneous setup with different levels of par-
allelism.
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ABSTRACT
Over the past few years kernel methods have gained a tremen-
dous amount of attention as existing linear algorithms can
easily be extended to account for highly non-linear data in a
computationally efficient manner. Unfortunately most ker-
nels require careful tuning of intrinsic parameters to cor-
rectly model the distribution of the underlying data. For
large-scale problems the multiplicative scaling in time com-
plexity imposed by introducing free parameters in a cross-
validation setup will prove computationally infeasible, often
leaving pure ad-hoc estimates as the only option. In this
contribution we investigate a novel randomized approach
for kernel parameter selection in large-scale multi-class data.
We fit a minimum enclosing ball to the class means in Re-
producing Kernel Hilbert Spaces (RKHS), and use the ra-
dius as a quality measure of the space, defined by the kernel
parameter. We apply the developed algorithm to a computer
vision paradigm where the objective is to recognize 72.000
objects among 1.000 classes. Compared to other distance
metrics in the RKHS we find that our randomized approach
provides better results together with a highly competitive
time complexity.

1. INTRODUCTION

Kernel based classification algorithms account for non-lin-
earities in a computational sophisticated manner through
use of the kernel trick. Robust selection of intrinsic ker-
nel parameters involves a grid search combined with cross-
validation (CV), but for large-scale multi-class data CV be-
comes both time consuming and resource intensive due to
the multiplicative scaling in time complexity imposed by
free parameters.

Only few attempts to specifically address the challenge
of hyperparameter selection for multi-class problems have
been made. While generic algorithms for choosing the hy-
perparameter in multi-class Support Vector Machines (SVM)

This work was supported in part by the IST Programme of the Euro-
pean Community, under the PASCAL2 Network of Excellence, IST-2007-
216886. This publication only reflects the authors’ views.

was suggested in [1], both [2] and [3] aimed at merely re-
ducing the number of train-validation cycles, e.g., by per-
forming CV on a subsample of the data prior to a restricted
line search on the full data set. Several other attempts to
more computational attractive approximations to K-fold CV
have been made for binary classification [4, 5, 6]. However,
in [7] it was shown that all of these approximation schemes
were inferior to 5-fold CV.

In this contribution we exploit that previous studies on
binary classification have shown, how the intercluster dis-
tance in feature space and the optimal hyperparameter defin-
ing the RKHS correlates [8, 9]. We extend these attempts to
multi-class problems where heuristics for good class sepa-
ration becomes less immediate. In previous work on inter-
cluster distance based measures for choosing the hyperpa-
rameter, it was briefly suggested to maximize the mean of
the intercluster distances for multi-class problems [8, 9].

We propose a novel algorithm for hyperparameter selec-
tion where a Minimum Enclosing Ball (MEB) is used as a
measure of the dispersion of cluster means in the RKHS.
Hence, we seek the RKHS that maximizes the MEB. A sub-
linear algorithm for finding the MEB in a finite dimensional
input space was introduced by [10]. In this paper, we de-
vice a randomized approximation for MEB estimation in
the infinite dimensional RKHS, thereby providing competi-
tive time complexities with respect to existing distance met-
rics in the RKHS. We demonstrate the developed algorithm
by considering image classification on the Amsterdam Li-
brary of Object Images (ALOI) [11] and compare the per-
formance with the median, mean, maximum and minimum
distance measures in the RKHS.

In our experiments we focus on the Gaussian kernel,
k(xi,xj) = exp(−γ||xi − xj ||2), and use a multi-class
SVM in a 5-fold CV setting to establish a ground-truth es-
timate for comparison with the heuristics. However, the de-
veloped heuristics trivially generalize to other kernel func-
tions and kernel machines.
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1.1. Organization

This paper is organized in the following way: In Section
2 we introduce the theory behind kernel machines together
with the derivation of the considered MEB algorithms. In
Section 3 we apply the MEB heuristics to a multi-class ob-
ject recognition problem and compare our novel approach
with related heuristics. Finally, Section 4 briefly concludes
the paper.

2. THEORY

Let H be the RKHS associated with the kernel function
k(x,x′) = ϕ(x)Tϕ(x′) (see notation1), where ϕ : X 7→
H is a possibly non-linear map from the DX -dimensional
input space, X , to the DH-dimensional feature space, H,
(possibly infinite dimensional). This is known as the kernel
trick which states that innerproducts in H can be computed
in terms of kernel evaluations in X . For convenience, all
kernel evaluations are collected in the kernel matrix, K ∈
RN×N .

2.1. Kernel Machines for Classification

Given a set of training data D = {xi, yi}Ni=1, x ∈ RDX ,
y ∈ {1,−1}, the SVM loss function can be expressed as
follows2:

LSVM = min
w∈H

N∑

i=1

max(0, 1− yiw>ϕ(xi)) + λ‖w‖2, (1)

where the first term corresponds to the Hinge-loss function.
A computational benefit of the SVM is that classification is
based on a subset of training samples defining the margin,
these samples are also known as support vectors. Note that
the slack term controlling the width of the margin is given
by C = 1

λ . By applying the representer theorem to rewrite
w as w =

∑N
i=1 αiϕ(xi), the kernel trick is made applica-

ble. For all kernel type machines the decision function can
be expressed as a linear combination of kernel evaluations.

Often direct optimization of the hyperparameters will be
infeasible due to non-convexities introduced by the kernel,
and a Bayesian treatment such as Automatic Relevance De-
termination (ARD) will prove computationally heavy even
for moderate sized problems when analytic integration over
the parameter space is intractable.

For binary classifiers such as the loss functions stated
in Eq. (1), two general schemes can be applied to accom-
modate for multiple classes. One approach is to build one-
versus-rest classifiers and to choose the class which classi-
fies the test point with greatest margin/probability. Another

1Bold uppercase letters denote matrices, bold lowercase letters repre-
sent column vectors, and non-bold letters denote scalars.

2The bias term, b, has been omitted for notational convenience.

strategy is to build a set of one-versus-one classifiers, and
select the class based on majority voting [12]. This scheme
is applied in our experiments. Even though more classifiers
must be trained, the latter approach may prove faster, since
the training data set for each classifier is much smaller. The
immediate advantage of multiple binary classifiers is that
averaging over the classifier decisions will most likely re-
duce the variance.

2.2. Clustering Geometry in RKHSs

Given a K class problem with N observations, the jth clus-
ter mean in the RKHS is given by:

mj =
1

NSj

∑

i∈Sj
ϕ(xi),

where Sj denotes the set of observations belonging to class
j. For small values of γ relative to the length scale in in-
put space, any kernelized method approach the equivalent
linear method because high order terms in the taylor expan-
sion of the RBF kernel becomes insignificant. Hence, in
order to account for non-linearities in the data, γ should be
increased. However, in the limit, γ → ∞, the following
holds:

lim
γ→∞

K = I ⇒ lim
γ→∞

||mi −mj ||2 =
1

NSi
+

1

NSj
.

This result implies that all observations become uncorre-
lated and the mean of each class will approach 0 at a rate
inversely proportional to the number of samples within that
class. A further result of K approaching I is that the vari-
ance of any partitioning of the observations approaches 1,
making signal extraction infeasible. Decreasing γ from∞
will introduce off-diagonal contributions in K, leading to
an increased distance between the means when the clus-
ter assumption holds (cf. [13]). Since the emerging off-
diagonal elements of K depend on the distribution in input
space, the exact structure of the intercluster distance as a
function of γ will be difficult to quantify without an explicit
search, hence finding the optimal γ is nontrivial.

2.3. Minimum Enclosing Ball

Let A denote the matrix of cluster means in feature space:

A = [m1,m2, . . . ,mK ],

where A ∈ RDH×K . As a measure of the class separation
in H we fit a minimum enclosing ball to the cluster means
and choose the optimal γ, and thereby RKHS, as the one
leading to the largest MEB (see Figure 1). The MEB prob-
lem can be formulated as finding the smallest Euclidean ball
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• mean: requires only O(1) additional time as it can
be computed on the fly while computing the Gram
matrix.

• median: requires sorting which can be done in O(k log(k))

• primal-dual MEB: For t optimization steps this re-
quires O(t k2) and or results demonstrate that con-
vergence is achieved for t� k.

• randomized MEB: For t optimization steps this only
requires O(t k). Convergence is in general achieved
for t < log(k), hence, lower time complexity than the
median.

2. THEORY

Let H be the RKHS associated with the kernel function
k(x,x�) = ϕ(x)Tϕ(x�) (see notation1), where ϕ : X �→
H is a possibly nonlinear map from the DX -dimensional in-
put space X to the DH-dimensional feature space H (possi-
bly infinite dimensional). This is known as the kernel trick
which states that innerproducts in H can be computed in
terms of kernel evaluations in X .

2.1. The Large-scale Primal SVM

Given a set of training data D = {xi, yi}N
i=1, x ∈ RDX , y ∈

{1,−1}, the SVM with L2 penalization of training errors
can be expressed as follows

minimize
w∈H

λ

2
�w�2 +

1

2

N�

i=1

max(0, 1− yiw
�ϕ(xi))

2

(1)

where the bias b has been omitted for notational conve-
nience.

To minimize the primal problem directly one approach
is to apply the representer theorem, to represent w as

w =
N�

i=1

βiϕ(xi) (2)

whereas in a large scale setting a reduced set of basis func-
tions are commonly used

w =
�

i∈J
βiϕ(xi) (3)

where J ⊂ {1, . . . , n}.

1Bold uppercase letters denote matrices, bold lowercase letters repre-
sent column vectors, and non-bold letters denote scalars. aj denotes the
j’th column of A, while aij denotes the scalar in the i’th row and j’th
column of A. Finally, 1NN is a N × N matrix of ones

2.2. Minimum Enclosing Ball

Given a K class problem with N observations, the jth clus-
ter mean in feature space is given by:

mj =
1

NSj

�

i∈Sj

ϕ(xi) (4)

where Sj denotes the set of observations belonging to class
j. Let A denote the matrix of cluster means in feature space:

A = [m1,m2, . . . ,mK ] (5)

where A ∈ RDH×K . As a measure of the class separation
in H we fit a minimum enclosing ball to the cluster means
and choose the optimal γ (and thereby RKHS) as the one
leading to the largest MEB. The MEB problem can be for-
mulated as finding the smallest Euclidean ball in DH which
contains all columns of A. The problem of finding the MEB
can be formulated as.

c∗ = argmin
ϕ(x)∈RDH

max
i∈[K]

||ϕ(x)− ai||2 (6)

Where maxi∈[K] ||ϕ(x)−ai||2 is the radius of the ball, and
c∗ is the center which minimizes the maximum squared dis-
tances to the data. The above can be reformulated as [7]

c∗ = argmin
ϕ(x)∈RDH

max
p∈∆K

�

i∈[K]

pi||ϕ(x)− ai||2 (7)

where ∆K = {p ∈ RK |�i pi = 1, pi ≥ 0} is the unit
simplex. So, maximizing p puts all its weight on the farthest
point.

Since we are only interested in finding the radius of the
ball, the possible infinite dimension of c∗ is not of impor-
tance. To calculate the distance �ϕ(x)−ai�2 we follow [7]
and substitute ϕ(x) = Ap:

�Ap− ai�2 = p�A�Ap + a�i ai − 2p�A�ai (8)

Next we apply the kernel trick:

(A�A)m,n =
1

NSmNSn

�

i∈Sm

�

j∈Sn

ϕ(xi)
�ϕ(xj) (9)

=
1

NSmNSn

�

i∈Sm

�

j∈Sn

k(xi,xj) (10)

where the two terms (a�i ai and A�ai) are simply subsets
of the full matrix A�A.

The dual problem of Eq. (7) can now be used to derive
a primal-dual algorithm for optimizing Eq. (7) and thereby
finding the radius of the MEB in H (cf. [7]).

Algorithm 1 Primal-dual algorithm for the MEB
1: Let q0 ← [ 1

K , 1
K , . . . , 1

K ]� and p0 ← q0

2: for t = 1 to T do
3: for all i ∈ [K] do
4: qt

i = qt−1
i exp(−η||Apt−1−ai||2) {Eq. (8)-(10)}

5: end for
6: qt = qt/||qt||
7: pt = (1 − 1/t)qt−1 + 1/t · qt {assuming A is in-

vertible}
8: end for
9: k = argmax qt

10: R = ||Apt − ak||2

Here we exploit that the point corresponding to the largest
value of q is the one farthest from the center. Hence, the ra-
dius, R, of the ball can be found as the distance between the
estimated center, c∗ ≈ Apt, and the farthest cluster mean,
ak. In line 7, we assume that A is invertible, which trans-
lates to requiring that the K clusters span a K-dimensional
subspace in H.

noget ang. tidskomplexitet In order to achieve sublin-
ear convergence, the primal-dual algorithm is randomized
[7]. Instead of calculating Ap, we sample index j ∈ [K]
with probability pj and substitute Ap with aj . Since j is
chosen randomly, aj is an unbiased estimator of Ap. The
randomized algorithm is given in Alg. 2.

Algorithm 2 Randomized primal-dual algorithm for the
MEB problem

1: Let q0 ← [ 1
K , 1

K , . . . , 1
K ]� and p0 ← q0

2: for t = 1 to T do
3: for all i ∈ [K] do
4: Choose jt−1 ∈ [K] by jt−1 ← j with probability

pt−1
i

5: qt
i = qt−1

i exp(−η||ajt−1
− ai||2)

6: end for
7: qt = qt/||qt||
8: pt = (1− 1/t)qt−1 + 1/tqt

9: end for
10: k = argmax qt

11: R = ||Apt − ak||2

We can now choose the hyperparameter as argmax
γ∈R

R(γ),

by running Alg. 2 for various values of γ.
The time complexity can be reduced further by random-

izing the radius estimate in Line 11 in Alg. 2, thereby avoid-
ing to calculate the full Apt. Again this is done by choos-
ing index l ∈ [K] with probability pt

l leading to the algo-
rithm below. For large scale problems randomization of the
R-estimate will lead to a significant speed up, as only one
column of Apt is calculated. Since this randomization ap-

Algorithm 3 Randomized MEB algorithm and radius esti-
mation

1: Let q0 ← [ 1
K , 1

K , . . . , 1
K ]� and p0 ← q0

2: for t = 1 to T do
3: for all i ∈ [K] do
4: Choose jt−1 ∈ [K] by jt−1 ← j with probability

pt−1
i

5: qt
i = qt−1

i exp(−η||ajt−1
− ai||2)

6: end for
7: qt = qt/||qt||
8: pt = (1− 1/t)qt−1 + 1/tqt

9: end for
10: k = argmax qt

11: Choose l ∈ [K] with probability pt
l

12: R = ||Apt
l − ak||2

proximates the center of the MEB by a single data point,
some variability of the estimate is inevitable, however, the
estimate clearly converges in expectation.

Evidently, the radius of the MEB is upperbounded by
half of the maximum of the pairwise distances between the
cluster means.

Other natural measures of the class seperation include
the minimum, median or maximum of the pairwise distances
between the cluster means. sammenligning. Choose hyper-
parameter by maximizing the median pairwise distance of
the k nearest neighbors to each cluster.

2.3. Evaluation of performance

For efficient computation of the heuristics we pre-compute
the tensor (A�A) ∈ RM×N×Γ, where the third dimension
corresponds to different choices of hyperparameter and in
the present given by γ ∈ {2−6, 2−5, . . . , 25}. In order to
validate how the considered heuristics perform on noisy ob-
servations we added gaussian noise to the extracted features
having σ ∈ {0.01, 0.05, 0.1, 0.5, 1.0}.

We compare the heuristics against the multi-class SVM
implementation found in LIBSVM where 5-fold cross-validation
was applied to obtain a ground truth estimate of both γ the
slack value C, using C ∈ {10−5, 10−4, . . . , 1010}.

3. EXPERIMENTS

3.1. MNIST handwritten digit dataset

To verify the validity of the proposed heuristics we consider
the well known MNIST dataset consisting of handwritten
digits in the range 0−9. As a reference we train a multiclass
support vector machine (SVM) using LIBSVM
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7: pt = (1 − 1/t)qt−1 + 1/t · qt {assuming A is in-

vertible}
8: end for
9: k = argmax qt

10: R = ||Apt − ak||2

Here we exploit that the point corresponding to the largest
value of q is the one farthest from the center. Hence, the ra-
dius, R, of the ball can be found as the distance between the
estimated center, c∗ ≈ Apt, and the farthest cluster mean,
ak. In line 7, we assume that A is invertible, which trans-
lates to requiring that the K clusters span a K-dimensional
subspace in H.

noget ang. tidskomplexitet In order to achieve sublin-
ear convergence, the primal-dual algorithm is randomized
[7]. Instead of calculating Ap, we sample index j ∈ [K]
with probability pj and substitute Ap with aj . Since j is
chosen randomly, aj is an unbiased estimator of Ap. The
randomized algorithm is given in Alg. 2.
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6: end for
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8: pt = (1− 1/t)qt−1 + 1/tqt

9: end for
10: k = argmax qt

11: R = ||Apt − ak||2

We can now choose the hyperparameter as argmax
γ∈R

R(γ),

by running Alg. 2 for various values of γ.
The time complexity can be reduced further by random-

izing the radius estimate in Line 11 in Alg. 2, thereby avoid-
ing to calculate the full Apt. Again this is done by choos-
ing index l ∈ [K] with probability pt

l leading to the algo-
rithm below. For large scale problems randomization of the
R-estimate will lead to a significant speed up, as only one
column of Apt is calculated. Since this randomization ap-
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proximates the center of the MEB by a single data point,
some variability of the estimate is inevitable, however, the
estimate clearly converges in expectation.

Evidently, the radius of the MEB is upperbounded by
half of the maximum of the pairwise distances between the
cluster means.

Other natural measures of the class seperation include
the minimum, median or maximum of the pairwise distances
between the cluster means. sammenligning. Choose hyper-
parameter by maximizing the median pairwise distance of
the k nearest neighbors to each cluster.

2.3. Evaluation of performance

For efficient computation of the heuristics we pre-compute
the tensor (A�A) ∈ RM×N×Γ, where the third dimension
corresponds to different choices of hyperparameter and in
the present given by γ ∈ {2−6, 2−5, . . . , 25}. In order to
validate how the considered heuristics perform on noisy ob-
servations we added gaussian noise to the extracted features
having σ ∈ {0.01, 0.05, 0.1, 0.5, 1.0}.

We compare the heuristics against the multi-class SVM
implementation found in LIBSVM where 5-fold cross-validation
was applied to obtain a ground truth estimate of both γ the
slack value C, using C ∈ {10−5, 10−4, . . . , 1010}.

3. EXPERIMENTS

3.1. MNIST handwritten digit dataset

To verify the validity of the proposed heuristics we consider
the well known MNIST dataset consisting of handwritten
digits in the range 0−9. As a reference we train a multiclass
support vector machine (SVM) using LIBSVM
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• mean: requires only O(1) additional time as it can
be computed on the fly while computing the Gram
matrix.

• median: requires sorting which can be done in O(k log(k))

• primal-dual MEB: For t optimization steps this re-
quires O(t k2) and or results demonstrate that con-
vergence is achieved for t� k.

• randomized MEB: For t optimization steps this only
requires O(t k). Convergence is in general achieved
for t < log(k), hence, lower time complexity than the
median.

2. THEORY

Let H be the RKHS associated with the kernel function
k(x,x�) = ϕ(x)Tϕ(x�) (see notation1), where ϕ : X �→
H is a possibly nonlinear map from the DX -dimensional in-
put space X to the DH-dimensional feature space H (possi-
bly infinite dimensional). This is known as the kernel trick
which states that innerproducts in H can be computed in
terms of kernel evaluations in X .

2.1. The Large-scale Primal SVM

Given a set of training data D = {xi, yi}N
i=1, x ∈ RDX , y ∈

{1,−1}, the SVM with L2 penalization of training errors
can be expressed as follows

minimize
w∈H

λ

2
�w�2 +

1

2

N�

i=1

max(0, 1− yiw
�ϕ(xi))

2

(1)

where the bias b has been omitted for notational conve-
nience.

To minimize the primal problem directly one approach
is to apply the representer theorem, to represent w as

w =

N�

i=1

βiϕ(xi) (2)

whereas in a large scale setting a reduced set of basis func-
tions are commonly used

w =
�

i∈J
βiϕ(xi) (3)

where J ⊂ {1, . . . , n}.

1Bold uppercase letters denote matrices, bold lowercase letters repre-
sent column vectors, and non-bold letters denote scalars. aj denotes the
j’th column of A, while aij denotes the scalar in the i’th row and j’th
column of A. Finally, 1NN is a N × N matrix of ones

2.2. Minimum Enclosing Ball

Given a K class problem with N observations, the jth clus-
ter mean in feature space is given by:

mj =
1

NSj

�

i∈Sj

ϕ(xi) (4)

where Sj denotes the set of observations belonging to class
j. Let A denote the matrix of cluster means in feature space:

A = [m1,m2, . . . ,mK ] (5)

where A ∈ RDH×K . As a measure of the class separation
in H we fit a minimum enclosing ball to the cluster means
and choose the optimal γ (and thereby RKHS) as the one
leading to the largest MEB. The MEB problem can be for-
mulated as finding the smallest Euclidean ball in DH which
contains all columns of A. The problem of finding the MEB
can be formulated as.

c∗ = argmin
ϕ(x)∈RDH

max
i∈[K]

||ϕ(x)− ai||2 (6)

Where maxi∈[K] ||ϕ(x)−ai||2 is the radius of the ball, and
c∗ is the center which minimizes the maximum squared dis-
tances to the data. The above can be reformulated as [7]

c∗ = argmin
ϕ(x)∈RDH

max
p∈∆K

�

i∈[K]

pi||ϕ(x)− ai||2 (7)

where ∆K = {p ∈ RK |�i pi = 1, pi ≥ 0} is the unit
simplex. So, maximizing p puts all its weight on the farthest
point.

Since we are only interested in finding the radius of the
ball, the possible infinite dimension of c∗ is not of impor-
tance. To calculate the distance �ϕ(x)−ai�2 we follow [7]
and substitute ϕ(x) = Ap:

�Ap− ai�2 = p�A�Ap + a�i ai − 2p�A�ai (8)

Next we apply the kernel trick:

(A�A)m,n =
1

NSmNSn
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=
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where the two terms (a�i ai and A�ai) are simply subsets
of the full matrix A�A.

The dual problem of Eq. (7) can now be used to derive
a primal-dual algorithm for optimizing Eq. (7) and thereby
finding the radius of the MEB in H (cf. [7]).

Algorithm 1 Primal-dual algorithm for the MEB
1: Let q0 ← [ 1

K , 1
K , . . . , 1

K ]� and p0 ← q0

2: for t = 1 to T do
3: for all i ∈ [K] do
4: qt

i = qt−1
i exp(−η||Apt−1−ai||2) {Eq. (8)-(10)}

5: end for
6: qt = qt/||qt||
7: pt = (1 − 1/t)qt−1 + 1/t · qt {assuming A is in-

vertible}
8: end for
9: k = argmax qt

10: R = ||Apt − ak||2

Here we exploit that the point corresponding to the largest
value of q is the one farthest from the center. Hence, the ra-
dius, R, of the ball can be found as the distance between the
estimated center, c∗ ≈ Apt, and the farthest cluster mean,
ak. In line 7, we assume that A is invertible, which trans-
lates to requiring that the K clusters span a K-dimensional
subspace in H.

noget ang. tidskomplexitet In order to achieve sublin-
ear convergence, the primal-dual algorithm is randomized
[7]. Instead of calculating Ap, we sample index j ∈ [K]
with probability pj and substitute Ap with aj . Since j is
chosen randomly, aj is an unbiased estimator of Ap. The
randomized algorithm is given in Alg. 2.

Algorithm 2 Randomized primal-dual algorithm for the
MEB problem

1: Let q0 ← [ 1
K , 1

K , . . . , 1
K ]� and p0 ← q0

2: for t = 1 to T do
3: for all i ∈ [K] do
4: Choose jt−1 ∈ [K] by jt−1 ← j with probability

pt−1
i

5: qt
i = qt−1

i exp(−η||ajt−1
− ai||2)

6: end for
7: qt = qt/||qt||
8: pt = (1− 1/t)qt−1 + 1/tqt

9: end for
10: k = argmax qt

11: R = ||Apt − ak||2

We can now choose the hyperparameter as argmax
γ∈R

R(γ),

by running Alg. 2 for various values of γ.
The time complexity can be reduced further by random-

izing the radius estimate in Line 11 in Alg. 2, thereby avoid-
ing to calculate the full Apt. Again this is done by choos-
ing index l ∈ [K] with probability pt

l leading to the algo-
rithm below. For large scale problems randomization of the
R-estimate will lead to a significant speed up, as only one
column of Apt is calculated. Since this randomization ap-

Algorithm 3 Randomized MEB algorithm and radius esti-
mation

1: Let q0 ← [ 1
K , 1

K , . . . , 1
K ]� and p0 ← q0

2: for t = 1 to T do
3: for all i ∈ [K] do
4: Choose jt−1 ∈ [K] by jt−1 ← j with probability
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5: qt
i = qt−1

i exp(−η||ajt−1
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6: end for
7: qt = qt/||qt||
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9: end for
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11: Choose l ∈ [K] with probability pt
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12: R = ||Apt
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proximates the center of the MEB by a single data point,
some variability of the estimate is inevitable, however, the
estimate clearly converges in expectation.

Evidently, the radius of the MEB is upperbounded by
half of the maximum of the pairwise distances between the
cluster means.

Other natural measures of the class seperation include
the minimum, median or maximum of the pairwise distances
between the cluster means. sammenligning. Choose hyper-
parameter by maximizing the median pairwise distance of
the k nearest neighbors to each cluster.

2.3. Evaluation of performance

For efficient computation of the heuristics we pre-compute
the tensor (A�A) ∈ RM×N×Γ, where the third dimension
corresponds to different choices of hyperparameter and in
the present given by γ ∈ {2−6, 2−5, . . . , 25}. In order to
validate how the considered heuristics perform on noisy ob-
servations we added gaussian noise to the extracted features
having σ ∈ {0.01, 0.05, 0.1, 0.5, 1.0}.

We compare the heuristics against the multi-class SVM
implementation found in LIBSVM where 5-fold cross-validation
was applied to obtain a ground truth estimate of both γ the
slack value C, using C ∈ {10−5, 10−4, . . . , 1010}.

3. EXPERIMENTS

3.1. MNIST handwritten digit dataset

To verify the validity of the proposed heuristics we consider
the well known MNIST dataset consisting of handwritten
digits in the range 0−9. As a reference we train a multiclass
support vector machine (SVM) using LIBSVM

• mean: requires only O(1) additional time as it can
be computed on the fly while computing the Gram
matrix.

• median: requires sorting which can be done in O(k log(k))

• primal-dual MEB: For t optimization steps this re-
quires O(t k2) and or results demonstrate that con-
vergence is achieved for t� k.

• randomized MEB: For t optimization steps this only
requires O(t k). Convergence is in general achieved
for t < log(k), hence, lower time complexity than the
median.

2. THEORY

Let H be the RKHS associated with the kernel function
k(x,x�) = ϕ(x)Tϕ(x�) (see notation1), where ϕ : X �→
H is a possibly nonlinear map from the DX -dimensional in-
put space X to the DH-dimensional feature space H (possi-
bly infinite dimensional). This is known as the kernel trick
which states that innerproducts in H can be computed in
terms of kernel evaluations in X .

2.1. The Large-scale Primal SVM

Given a set of training data D = {xi, yi}N
i=1, x ∈ RDX , y ∈

{1,−1}, the SVM with L2 penalization of training errors
can be expressed as follows
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where the bias b has been omitted for notational conve-
nience.

To minimize the primal problem directly one approach
is to apply the representer theorem, to represent w as

w =
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whereas in a large scale setting a reduced set of basis func-
tions are commonly used
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where J ⊂ {1, . . . , n}.

1Bold uppercase letters denote matrices, bold lowercase letters repre-
sent column vectors, and non-bold letters denote scalars. aj denotes the
j’th column of A, while aij denotes the scalar in the i’th row and j’th
column of A. Finally, 1NN is a N × N matrix of ones

2.2. Minimum Enclosing Ball

Given a K class problem with N observations, the jth clus-
ter mean in feature space is given by:

mj =
1
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ϕ(xi) (4)

where Sj denotes the set of observations belonging to class
j. Let A denote the matrix of cluster means in feature space:

A = [m1,m2, . . . ,mK ] (5)

where A ∈ RDH×K . As a measure of the class separation
in H we fit a minimum enclosing ball to the cluster means
and choose the optimal γ (and thereby RKHS) as the one
leading to the largest MEB. The MEB problem can be for-
mulated as finding the smallest Euclidean ball in DH which
contains all columns of A. The problem of finding the MEB
can be formulated as.

c∗ = argmin
ϕ(x)∈RDH

max
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The dual problem of Eq. (7) can now be used to derive
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finding the radius of the MEB in H (cf. [7]).

Algorithm 1 Primal-dual algorithm for the MEB
1: Let q0 ← [ 1

K , 1
K , . . . , 1

K ]� and p0 ← q0

2: for t = 1 to T do
3: for all i ∈ [K] do
4: qt

i = qt−1
i exp(−η||Apt−1−ai||2) {Eq. (8)-(10)}

5: end for
6: qt = qt/||qt||
7: pt = (1 − 1/t)qt−1 + 1/t · qt {assuming A is in-

vertible}
8: end for
9: k = argmax qt

10: R = ||Apt − ak||2

Here we exploit that the point corresponding to the largest
value of q is the one farthest from the center. Hence, the ra-
dius, R, of the ball can be found as the distance between the
estimated center, c∗ ≈ Apt, and the farthest cluster mean,
ak. In line 7, we assume that A is invertible, which trans-
lates to requiring that the K clusters span a K-dimensional
subspace in H.

noget ang. tidskomplexitet In order to achieve sublin-
ear convergence, the primal-dual algorithm is randomized
[7]. Instead of calculating Ap, we sample index j ∈ [K]
with probability pj and substitute Ap with aj . Since j is
chosen randomly, aj is an unbiased estimator of Ap. The
randomized algorithm is given in Alg. 2.

Algorithm 2 Randomized primal-dual algorithm for the
MEB problem

1: Let q0 ← [ 1
K , 1

K , . . . , 1
K ]� and p0 ← q0

2: for t = 1 to T do
3: for all i ∈ [K] do
4: Choose jt−1 ∈ [K] by jt−1 ← j with probability

pt−1
i

5: qt
i = qt−1

i exp(−η||ajt−1
− ai||2)

6: end for
7: qt = qt/||qt||
8: pt = (1− 1/t)qt−1 + 1/tqt

9: end for
10: k = argmax qt

11: R = ||Apt − ak||2

We can now choose the hyperparameter as argmax
γ∈R

R(γ),

by running Alg. 2 for various values of γ.
The time complexity can be reduced further by random-

izing the radius estimate in Line 11 in Alg. 2, thereby avoid-
ing to calculate the full Apt. Again this is done by choos-
ing index l ∈ [K] with probability pt

l leading to the algo-
rithm below. For large scale problems randomization of the
R-estimate will lead to a significant speed up, as only one
column of Apt is calculated. Since this randomization ap-

Algorithm 3 Randomized MEB algorithm and radius esti-
mation

1: Let q0 ← [ 1
K , 1

K , . . . , 1
K ]� and p0 ← q0

2: for t = 1 to T do
3: for all i ∈ [K] do
4: Choose jt−1 ∈ [K] by jt−1 ← j with probability

pt−1
i

5: qt
i = qt−1

i exp(−η||ajt−1
− ai||2)

6: end for
7: qt = qt/||qt||
8: pt = (1− 1/t)qt−1 + 1/tqt

9: end for
10: k = argmax qt

11: Choose l ∈ [K] with probability pt
l

12: R = ||Apt
l − ak||2

proximates the center of the MEB by a single data point,
some variability of the estimate is inevitable, however, the
estimate clearly converges in expectation.

Evidently, the radius of the MEB is upperbounded by
half of the maximum of the pairwise distances between the
cluster means.

Other natural measures of the class seperation include
the minimum, median or maximum of the pairwise distances
between the cluster means. sammenligning. Choose hyper-
parameter by maximizing the median pairwise distance of
the k nearest neighbors to each cluster.

2.3. Evaluation of performance

For efficient computation of the heuristics we pre-compute
the tensor (A�A) ∈ RM×N×Γ, where the third dimension
corresponds to different choices of hyperparameter and in
the present given by γ ∈ {2−6, 2−5, . . . , 25}. In order to
validate how the considered heuristics perform on noisy ob-
servations we added gaussian noise to the extracted features
having σ ∈ {0.01, 0.05, 0.1, 0.5, 1.0}.

We compare the heuristics against the multi-class SVM
implementation found in LIBSVM where 5-fold cross-validation
was applied to obtain a ground truth estimate of both γ the
slack value C, using C ∈ {10−5, 10−4, . . . , 1010}.

3. EXPERIMENTS

3.1. MNIST handwritten digit dataset

To verify the validity of the proposed heuristics we consider
the well known MNIST dataset consisting of handwritten
digits in the range 0−9. As a reference we train a multiclass
support vector machine (SVM) using LIBSVM

Algorithm 1 Primal-dual algorithm for the MEB
1: Let q0 ← [ 1

K , 1
K , . . . , 1

K ]� and p0 ← q0

2: for t = 1 to T do
3: for all i ∈ [K] do
4: qt

i = qt−1
i exp(−η||Apt−1−ai||2) {Eq. (8)-(10)}

5: end for
6: qt = qt/||qt||
7: pt = (1 − 1/t)qt−1 + 1/t · qt {assuming A is in-

vertible}
8: end for
9: k = argmax qt

10: R = ||Apt − ak||2

Here we exploit that the point corresponding to the largest
value of q is the one farthest from the center. Hence, the ra-
dius, R, of the ball can be found as the distance between the
estimated center, c∗ ≈ Apt, and the farthest cluster mean,
ak. In line 7, we assume that A is invertible, which trans-
lates to requiring that the K clusters span a K-dimensional
subspace in H.

noget ang. tidskomplexitet In order to achieve sublin-
ear convergence, the primal-dual algorithm is randomized
[7]. Instead of calculating Ap, we sample index j ∈ [K]
with probability pj and substitute Ap with aj . Since j is
chosen randomly, aj is an unbiased estimator of Ap. The
randomized algorithm is given in Alg. 2.

Algorithm 2 Randomized primal-dual algorithm for the
MEB problem

1: Let q0 ← [ 1
K , 1

K , . . . , 1
K ]� and p0 ← q0

2: for t = 1 to T do
3: for all i ∈ [K] do
4: Choose jt−1 ∈ [K] by jt−1 ← j with probability

pt−1
i

5: qt
i = qt−1

i exp(−η||ajt−1
− ai||2)

6: end for
7: qt = qt/||qt||
8: pt = (1− 1/t)qt−1 + 1/tqt

9: end for
10: k = argmax qt

11: R = ||Apt − ak||2

We can now choose the hyperparameter as argmax
γ∈R

R(γ),

by running Alg. 2 for various values of γ.
The time complexity can be reduced further by random-

izing the radius estimate in Line 11 in Alg. 2, thereby avoid-
ing to calculate the full Apt. Again this is done by choos-
ing index l ∈ [K] with probability pt

l leading to the algo-
rithm below. For large scale problems randomization of the
R-estimate will lead to a significant speed up, as only one
column of Apt is calculated. Since this randomization ap-

Algorithm 3 Randomized MEB algorithm and radius esti-
mation

1: Let q0 ← [ 1
K , 1

K , . . . , 1
K ]� and p0 ← q0

2: for t = 1 to T do
3: for all i ∈ [K] do
4: Choose jt−1 ∈ [K] by jt−1 ← j with probability

pt−1
i

5: qt
i = qt−1

i exp(−η||ajt−1
− ai||2)

6: end for
7: qt = qt/||qt||
8: pt = (1− 1/t)qt−1 + 1/tqt

9: end for
10: k = argmax qt

11: Choose l ∈ [K] with probability pt
l

12: R = ||Apt
l − ak||2

proximates the center of the MEB by a single data point,
some variability of the estimate is inevitable, however, the
estimate clearly converges in expectation.

Evidently, the radius of the MEB is upperbounded by
half of the maximum of the pairwise distances between the
cluster means.

Other natural measures of the class seperation include
the minimum, median or maximum of the pairwise distances
between the cluster means. sammenligning. Choose hyper-
parameter by maximizing the median pairwise distance of
the k nearest neighbors to each cluster.

2.3. Evaluation of performance

For efficient computation of the heuristics we pre-compute
the tensor (A�A) ∈ RM×N×Γ, where the third dimension
corresponds to different choices of hyperparameter and in
the present given by γ ∈ {2−6, 2−5, . . . , 25}. In order to
validate how the considered heuristics perform on noisy ob-
servations we added gaussian noise to the extracted features
having σ ∈ {0.01, 0.05, 0.1, 0.5, 1.0}.

We compare the heuristics against the multi-class SVM
implementation found in LIBSVM where 5-fold cross-validation
was applied to obtain a ground truth estimate of both γ the
slack value C, using C ∈ {10−5, 10−4, . . . , 1010}.

3. EXPERIMENTS

3.1. MNIST handwritten digit dataset

To verify the validity of the proposed heuristics we consider
the well known MNIST dataset consisting of handwritten
digits in the range 0−9. As a reference we train a multiclass
support vector machine (SVM) using LIBSVM

Next we apply the kernel trick:

(A�A)m,n =
1

NSm
NSn

�

i∈Sm

�

j∈Sn

ϕ(xi)
�ϕ(xj) (9)

=
1

NSm
NSn

�

i∈Sm

�

j∈Sn

k(xi,xj) (10)

where the two terms (a�i ai and A�ai) are simply subsets
of the full matrix A�A.

The dual problem of Eq. (7) can now be used to derive
a primal-dual algorithm for optimizing Eq. (7) (cf. [7]).

The algortihm is shown in Alg. 1. By running the algo-
rithm for various values of γ, the optimal hyperparameter
can be found as γ∗ = argmax

γ∈R
R(γ), where R is the radius

of the MEB in H .

Algorithm 1 Primal-dual MEB algorithm
1: Let q0 ← [ 1

K , 1
K , . . . , 1

K ]� and p0 ← q0

2: for t = 1 to T do
3: for all i ∈ [K] do
4: qt

i = qt−1
i exp(−η||Apt−1−ai||2) {Eq. (8)-(10)}

5: end for
6: qt = qt/||qt||
7: pt = (1 − 1/t)qt−1 + 1/t · qt {assuming A is in-

vertible}
8: end for
9: k = argmax qT

10: R = ||ApT − ak||2

When deriving the algorithm we exploit that the point
corresponding to the largest value of q is the one farthest
from the center. Hence, the radius of the ball can be found
as the distance between the estimated center, c∗ ≈ Apt, and
the farthest cluster mean, ak. In line 7, we assume that A is
invertible, which translates to requiring that the K clusters
span a K-dimensional subspace in H.

In order to achieve sublinear convergence, the primal-
dual algorithm is randomized [7]. Instead of calculating
Ap, we sample index j ∈ [K] with probability pj and sub-
stitute Ap with aj . Since j is chosen randomly, aj is an
unbiased estimator of Ap. The randomized MEB (RMEB)
algorithm is given in Alg. 2.

The time complexity can be reduced further by random-
izing the radius estimate in Line 11 in Alg. 2, leading to the
randomized radius MEB (R2MEB) algorithm. Instead of
calculating the full ApT , index l ∈ [K] is chosen with prob-
ability pT

l and the radius is estimated as R = ||ApT
l −ak||2

For large scale problems randomization of the radius esti-
mate will lead to a significant speed up, as only one column
of ApT is calculated. Since this randomization approxi-
mates the center of the MEB by a single data point, some

Algorithm 2 RMEB algortihm
1: Let q0 ← [ 1

K , 1
K , . . . , 1

K ]� and p0 ← q0

2: for t = 1 to T do
3: for all i ∈ [K] do
4: Choose jt−1 ∈ [K] by jt−1 ← j with probability

pt−1
i

5: qt
i = qt−1

i exp(−η||ajt−1
− ai||2)

6: end for
7: qt = qt/||qt||
8: pt = (1− 1/t)qt−1 + 1/tqt

9: end for
10: k = argmax qT

11: R = ||ApT − ak||2

variability of the estimate is inevitable, however, the esti-
mate clearly converges in expectation.

Evidently, the radius of the MEB is upperbounded by
half of the maximum of the pairwise distances between the
cluster means.

Other natural measures of the class seperation include
the minimum, median or maximum of the pairwise distances
between the cluster means which can all be found based on
the kernel matrix A�A.

In terms of time complexity the considered methods re-
quire O(N2) operations for computing the Gram matrix,
but only O(K2) storage since only intercluster distances in
RKHS are required by the heuristics. In addition to the com-
mon time complexity the heuristics used for comparison re-
quires

• minimum and maximum distances: requires only O(1)
additional time as it can be computed on the fly while
computing the Gram matrix.

• mean: requires only O(1) additional time as it can
be computed on the fly while computing the Gram
matrix.

• median: requires sorting which can be done in O(K log(K))

• primal-dual MEB: For T optimization steps this re-
quires O(T K2) and or results demonstrate that con-
vergence is achieved for T � K.

• randomized MEB: For T optimization steps this only
requires O(T K). Convergence is in general achieved
for T < log(K), hence, lower time complexity than
the median.

3. EXPERIMENTS

For efficient computation of the heuristics we pre-compute
the tensor (A�A)γ ∈ RK×K×Γ, where the third dimension
corresponds to different choices of hyperparameter in the

Fig. 1. Illustration of the minimum enclosing ball approach to hyperparameter selection. Each instance is mapped from input
space, X , to a RKHS defined by the hyperparameter, γ. The class means are calculated in the RKHS, and the radius, R, of the
smallest ball that encloses all cluster means are determined using either the MEB, RMEB or R2MEB algorithm. The optimal
hyperparameter is chosen as the one which maximizes the radius of the minimum enclosing ball.

in DH which contains all columns of A, which can be for-
mulated as:

c∗ = argmin
ϕ(x)∈RDH

max
i∈[K]

||ϕ(x)− ai||2,

where maxi∈[K] ||ϕ(x)−ai||2 is the radius of the ball, and
c∗ is the center which minimizes the ball. The above can be
reformulated as [10]:

c∗ = argmin
ϕ(x)∈RDH

max
p∈∆K

∑

i∈[K]

pi||ϕ(x)− ai||2 , (2)

where ∆K = {p ∈ RK |∑i pi = 1, pi ≥ 0} is the unit
simplex. Thus, maximizing p puts all its weight on the far-
thest point.

Since we are only interested in finding the radius of the
ball, the possible infinite dimensionality of c∗ is not of im-
portance. To calculate the distance ‖ϕ(x)−ai‖2 we follow
[10] and substitute ϕ(x) = Ap leading to:

‖Ap− ai‖2 = p>A>Ap + a>i ai − 2p>A>ai , (3)

where the two terms (a>i ai and A>ai) are simply subsets
of the full matrix A>A. Next we apply the kernel trick:

(A>A)m,n =
1

NSmNSn

∑

i∈Sm

∑

j∈Sn
ϕ(xi)

>ϕ(xj)

=
1

NSmNSn

∑

i∈Sm

∑

j∈Sn
k(xi,xj) . (4)

The dual problem of Eq. (2) can now be used to derive
a primal-dual algorithm for optimizing Eq. (2) (cf. [10]).

The algorithm is shown in Alg. 1, where T is the de-
sired number of optimization steps. By running the algo-
rithm for various values of γ, the optimal hyperparameter
can be found as γ∗ = argmax

γ∈R
R(γ), where R is the radius

of the MEB inH.

Algorithm 1 Primal-dual MEB algorithm
1: Let q0 ← [ 1

K ,
1
K , . . . ,

1
K ]> and p0 ← q0

2: for t = 1 to T do
3: for all i ∈ [K] do
4: qti = qt−1

i exp(−||Apt−1 − ai||2) {Eq. (3)-(4)}
5: end for
6: qt = qt/||qt||
7: pt = (1− 1/t)qt−1 + 1/t · qt
8: end for
9: k = argmax qT

10: R = ||ApT − ak||2

When deriving the algorithm we exploit that the point
corresponding to the largest value of q is the one farthest
from the center. Hence, the radius of the ball can be found
as the distance between the estimated center, c∗ ≈ ApT ,
and the farthest cluster mean, ak. In line 7, we assume
that A is invertible, which translates to requiring that the K
cluster means span a K-dimensional subspace of H. If A
is degenerate, line 7 becomes an approximation. However,
since the columns of A are constructed as linear combina-
tions of the ϕ-mapped observations this is a fair assumption,
since for any positive definite kernel all ϕ(xi)’s are linearly
independent as long as xi = xj iff i = j.

In order to reduce the time complexity, the primal-dual
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algorithm can be randomized [10]. Instead of calculating
Ap, we sample index j ∈ [K] with probability pj and sub-
stitute Ap with aj . Since j is chosen randomly, aj is an
unbiased estimator of Ap. The randomized MEB (RMEB)
algorithm is given in Alg. 2.

Algorithm 2 RMEB algortihm
1: Let q0 ← [ 1

K ,
1
K , . . . ,

1
K ]> and p0 ← q0

2: for t = 1 to T do
3: for all i ∈ [K] do
4: Choose jt−1 ∈ [K] by jt−1 ← j with prob. pt−1

i

5: qti = qt−1
i exp(−||ajt−1 − ai||2)

6: end for
7: qt = qt/||qt||
8: pt = (1− 1/t)qt−1 + 1/tqt

9: end for
10: k = argmax qT

11: R = ||ApT − ak||2

The time complexity can be reduced further by random-
izing the radius estimate in Line 11 of Alg. 2, leading to
the randomized radius MEB (R2MEB) algorithm, where
the full ApT is approximated by choosing index l ∈ [K]
with probability pTl and the radius is then estimated as R =
||ApTl − ak||2. For large-scale problems randomization of
the radius estimate will lead to a significant speed up, as
only one column of ApT is calculated. Since this random-
ization approximates the center of the MEB by a single data
point, some variability of the estimate is inevitable, how-
ever, by construction the estimate converges in expectation.

Evidently, the radius of the MEB is upperbounded by
half of the maximum of the pairwise distances between the
cluster means.

2.4. Other Heuristics for Measuring Class Dispersion

Other natural measures of the class seperation include the
minimum, mean, median or maximum of the pairwise dis-
tances between the cluster means which can all be found
based on the kernel matrix A>A.

However, these heuristics all suffer from instability in
different scenarios. If two cluster means are located very
close in the RKHS, the class dispersion measure based on
maximizing the minimum distance will collapse. In this
case the MEB approach is still robust as long as only a small
fraction of the classes are ”very close”, i.e., the pseudo-
inverse of A is still well-defined. In the other extreme,
if one class is very distinct from the rest, maximizing the
maximum pairwise distance, are not guaranteed to provide
good class separation of the remaining classes. However,
in this case the MEB approach will not only separate the
”odd” class but also optimize the class separation of the
more ”similar” classes in order to achieve the largest pos-

sible minimum enclosing ball. While both the mean and the
median is slightly more robust in such scenarios, it will still
fail in extreme cases. Finally, a potential issue regarding
the median measure is that it allows for large variability in
the distances as long as the median distance do not change,
thereby not necessarily identifying the optimal class separa-
tion for all classes.

In terms of time complexity the considered methods all
requireO(N2) operations for computing the Gram matrix3,
but onlyO(K2) storage since only intercluster distances be-
tween class means in the RKHS are required by the heuris-
tics, i.e., we only store A>A. Since the mean, maximum
and minimum distances can be updated in an online fashion,
these can be calculated on the fly using simple bookkeep-
ing while computing A>A, hence, these only add a con-
stant term to the overall time complexity. On the other hand
there exist no O(1) online update for the median, so this
quantity requires an additional O(K · log(K))4 for sorting
the distances. For the MEB algorithm the additional time
complexity becomes O(T · K2) due to the matrix opera-
tions in the inner loop of Alg. 1, whereas the RMEB can
be computed in O(T · K). According to our results suffi-
cient convergence was achieved using T < log(K) itera-
tions, i.e., the RMEB has an average lower time complex-
ity than the median. However, for all aforementioned ap-
proachesO(N2) remains the dominating factor. The coarse
approximation exploited by the R2MEB algorithm can fur-
ther reduce the overall time complexity considerably. As-
suming that the classes are fairly balanced, i.e., each class
will contain approximately N

K samples, the time complexity
for computing the Gram matrix is reduced to O( min(T,K)

K ·
N2) since elements can be cached and computed in a lazy
fashion. Also for this implementation our results show that
reasonable results are obtained for T < log(K).

3. EXPERIMENTS

For efficient computation of all of the heuristics we pre-
compute the tensor (A>A)γ ∈ RK×K×Γ, where the third
dimension corresponds to different choices of the hyperpa-
rameter, γ, in the Gaussian kernel, selected from the range
γ ∈ {2−6, 2−5, . . . , 25}. The performance of the heuristics
are evaluated using image features distorted by uncorrelated
gaussian noise having standard deviation σ ∈ {0.0, 0.1, 0.2}.
We compare the heuristics against the multi-class SVM im-
plementation found in LIBSVM [12], where 5-fold cross-
validation is applied to obtain a ground truth estimate of
both γ and the slack value, C ∈ {10−5, 10−4, . . . , 1010}.

3For simplicity we ignore symmetry of A>A
4This is the average time complexity of quicksort.
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Fig. 2. The panels left to right show the different noise levels (σ = 0.0, σ = 0.1 and σ = 0.2 respectively). The upper panel
shows the median, mean, min, max distances between the clusters as well as the radius of the MEB for varying γ values. The
results have been normalized for easier comparison of the peaks. The lower panel shows the 5-fold cross validation accuracy.
The parameters are given as C = 10y and γ = 2x. For σ = 0.00 and σ = 0.1 it is evident that only the MEB approach peaks
at the optimal γ as seen from the CV plot. For σ = 0.2 the MEB approach saturates at optimal γ value but no well-defined
peak occurs.Update missing labels in figure image.

in the dataset we compute a set of Speeded Up Robust Fea-
tures (SURF) inspired by the Scale Invariant Feature Trans-
form (SIFT), both used to detect and describe local features
in images citation needed. Since the number of extracted
features may vary across the considered images we apply
principal component analysis (PCA) to the extracted fea-
tures of an image, and select the first principal axis to rep-
resent the entire image in a compact low dimensional repre-
sentation.

Even though all of the heuristics can be computed easily
for the entire dataset, we restrict our analysis to a subset of
100 objects from the library. This is necessary, since the
establishment of a ground-truth estimate by complete CV
proves computationally infeasible for more classes.

The results are summarized in Figure 2 and Table 1.
Figure 2 shows the results from the heuristics for varying
γ as well as the CV results for comparison. It is evident
from the lower panel that the performance is very sensitive
to the choice of γ. For the three MEB approaches we use
T = 5 to obtain an algorithm (RMEB) with a strictly lower
time complexity than the median. For illustrative purposes
we only show the non-randomized MEB approach. Table
1 show the classification accuracy of the SVM when using
the hyperparameter selected by the various heuristics. It is
evident that using the MEB approaches for hyperparameter
selection leads to better classification for all noise levels.

When comparing the location of the peaks of the class-

separation-measures in the upper panel of Figure 2 to the
CV results from the SVM in the lower panel, it is evident
that using the minimum intercluster distance for hyperpa-
rameter selection leads to too large γ-values, while the other
standard heuristics all suggest too small hyperparameters
and thereby too linear kernel embeddings. On the contrary,
the MEB approach identifies the optimal γ-value for both
σ = 0.0 and σ = 0.1. In the very noisy setting (σ = 0.2)
the MEB estimate saturates around the optimal γ-value but
no significant peak occurs. However, by Occam’s razor one
could argue to choose the simplest model (smallest γ in this
case). Interestingly, the RMEB algorithm is found to actu-
ally peak at γ∗ for σ = 0.2, thereby yielding a better classi-
fication accuracy than the MEB implementation in this case.
This could be caused by different convergence characteris-
tics of the algorithms.

4. CONCLUSIONS

We have shown how miximizing the radius of the minimum
enclosing ball of the cluster means in the RKHS provide a
meaningful heuristic for finding the optimal hyperparame-
ter (and hence, RKHS) for kernel machines in multi-class
classification problems.

The MEB approach for hyperparameter selection was
found to be provide superior better results when compared
to the standard measures of class dispersion. Under noisy

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5

Di
st
an
ce

MEB
Median
Mean
Max
Min

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5

Di
st
an
ce

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5

! = 0

 

 

0

10

20

30

40

50

60

70

! = 0.1

 

 

0

10

20

30

40

50

60

70

! = 0.2

 

 

0

10

20

30

40

50

60

70

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5

! = 0

 

 

0

10

20

30

40

50

60

70

! = 0.1

 

 

0

10

20

30

40

50

60

70

! = 0.2

 

 

0

10

20

30

40

50

60

70

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5

Di
st
an
ce

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5

! = 0

 

 

0

10

20

30

40

50

60

70

! = 0.1

 

 

0

10

20

30

40

50

60

70

! = 0.2

 

 

0

10

20

30

40

50

60

70

! = 0

 

 

0

10

20

30

40

50

60

70

! = 0.1

 

 

0

10

20

30

40

50

60

70

! = 0.2

 

 

0

10

20

30

40

50

60

7070%
60%
50%
40%
30%
20%
10%
0%

-4
-2
0
2
4
6
8
10

-4
-2
0
2
4
6
8
10

-4
-2
0
2
4
6
8
10

y y y

x x x

Fig. 2. The panels left to right show the different noise levels (σ = 0.0, σ = 0.1 and σ = 0.2 respectively). The upper panel
shows the median, mean, min, max distances between the clusters as well as the radius of the MEB for varying γ values. The
results have been normalized for easier comparison of the peaks. The lower panel shows the 5-fold cross validation accuracy.
The parameters are given as C = 10y and γ = 2x. For σ = 0.00 and σ = 0.1 it is evident that only the MEB approach peaks
at the optimal γ as seen from the CV plot. For σ = 0.2 the MEB approach saturates at optimal γ value but no well-defined
peak occurs.Update missing labels in figure image.

in the dataset we compute a set of Speeded Up Robust Fea-
tures (SURF) inspired by the Scale Invariant Feature Trans-
form (SIFT), both used to detect and describe local features
in images citation needed. Since the number of extracted
features may vary across the considered images we apply
principal component analysis (PCA) to the extracted fea-
tures of an image, and select the first principal axis to rep-
resent the entire image in a compact low dimensional repre-
sentation.

Even though all of the heuristics can be computed easily
for the entire dataset, we restrict our analysis to a subset of
100 objects from the library. This is necessary, since the
establishment of a ground-truth estimate by complete CV
proves computationally infeasible for more classes.

The results are summarized in Figure 2 and Table 1.
Figure 2 shows the results from the heuristics for varying
γ as well as the CV results for comparison. It is evident
from the lower panel that the performance is very sensitive
to the choice of γ. For the three MEB approaches we use
T = 5 to obtain an algorithm (RMEB) with a strictly lower
time complexity than the median. For illustrative purposes
we only show the non-randomized MEB approach. Table
1 show the classification accuracy of the SVM when using
the hyperparameter selected by the various heuristics. It is
evident that using the MEB approaches for hyperparameter
selection leads to better classification for all noise levels.

When comparing the location of the peaks of the class-

separation-measures in the upper panel of Figure 2 to the
CV results from the SVM in the lower panel, it is evident
that using the minimum intercluster distance for hyperpa-
rameter selection leads to too large γ-values, while the other
standard heuristics all suggest too small hyperparameters
and thereby too linear kernel embeddings. On the contrary,
the MEB approach identifies the optimal γ-value for both
σ = 0.0 and σ = 0.1. In the very noisy setting (σ = 0.2)
the MEB estimate saturates around the optimal γ-value but
no significant peak occurs. However, by Occam’s razor one
could argue to choose the simplest model (smallest γ in this
case). Interestingly, the RMEB algorithm is found to actu-
ally peak at γ∗ for σ = 0.2, thereby yielding a better classi-
fication accuracy than the MEB implementation in this case.
This could be caused by different convergence characteris-
tics of the algorithms.

4. CONCLUSIONS

We have shown how miximizing the radius of the minimum
enclosing ball of the cluster means in the RKHS provide a
meaningful heuristic for finding the optimal hyperparame-
ter (and hence, RKHS) for kernel machines in multi-class
classification problems.

The MEB approach for hyperparameter selection was
found to be provide superior better results when compared
to the standard measures of class dispersion. Under noisy
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Fig. 2. The panels left to right show the different noise levels (σ = 0.0, σ = 0.1 and σ = 0.2 respectively). The upper panel
shows the median, mean, min, max distances between the clusters as well as the radius of the MEB for varying γ values. The
results have been normalized for easier comparison of the peaks. The lower panel shows the 5-fold cross validation accuracy.
The parameters are given as C = 10y and γ = 2x. For σ = 0.00 and σ = 0.1 it is evident that only the MEB approach peaks
at the optimal γ as seen from the CV plot. For σ = 0.2 the MEB approach saturates at optimal γ value but no well-defined
peak occurs.Update missing labels in figure image.

in the dataset we compute a set of Speeded Up Robust Fea-
tures (SURF) inspired by the Scale Invariant Feature Trans-
form (SIFT), both used to detect and describe local features
in images citation needed. Since the number of extracted
features may vary across the considered images we apply
principal component analysis (PCA) to the extracted fea-
tures of an image, and select the first principal axis to rep-
resent the entire image in a compact low dimensional repre-
sentation.

Even though all of the heuristics can be computed easily
for the entire dataset, we restrict our analysis to a subset of
100 objects from the library. This is necessary, since the
establishment of a ground-truth estimate by complete CV
proves computationally infeasible for more classes.

The results are summarized in Figure 2 and Table 1.
Figure 2 shows the results from the heuristics for varying
γ as well as the CV results for comparison. It is evident
from the lower panel that the performance is very sensitive
to the choice of γ. For the three MEB approaches we use
T = 5 to obtain an algorithm (RMEB) with a strictly lower
time complexity than the median. For illustrative purposes
we only show the non-randomized MEB approach. Table
1 show the classification accuracy of the SVM when using
the hyperparameter selected by the various heuristics. It is
evident that using the MEB approaches for hyperparameter
selection leads to better classification for all noise levels.

When comparing the location of the peaks of the class-

separation-measures in the upper panel of Figure 2 to the
CV results from the SVM in the lower panel, it is evident
that using the minimum intercluster distance for hyperpa-
rameter selection leads to too large γ-values, while the other
standard heuristics all suggest too small hyperparameters
and thereby too linear kernel embeddings. On the contrary,
the MEB approach identifies the optimal γ-value for both
σ = 0.0 and σ = 0.1. In the very noisy setting (σ = 0.2)
the MEB estimate saturates around the optimal γ-value but
no significant peak occurs. However, by Occam’s razor one
could argue to choose the simplest model (smallest γ in this
case). Interestingly, the RMEB algorithm is found to actu-
ally peak at γ∗ for σ = 0.2, thereby yielding a better classi-
fication accuracy than the MEB implementation in this case.
This could be caused by different convergence characteris-
tics of the algorithms.

4. CONCLUSIONS

We have shown how miximizing the radius of the minimum
enclosing ball of the cluster means in the RKHS provide a
meaningful heuristic for finding the optimal hyperparame-
ter (and hence, RKHS) for kernel machines in multi-class
classification problems.

The MEB approach for hyperparameter selection was
found to be provide superior better results when compared
to the standard measures of class dispersion. Under noisy

Fig. 2. The panels left to right show the different noise levels (σ = 0.0, σ = 0.1 and σ = 0.2 respectively). The upper panel
shows the median, mean, min, and max distances between the class means as well as the radius of the MEB for varying γ
values. The results have been normalized for easier comparison. The lower panel shows the 5-fold cross validation accuracy.
The parameters are given as C = 10y and γ = 2x. For σ = 0.00 and σ = 0.1 it is evident that only the MEB approach peaks
at the optimal γ as seen from the CV plot. For σ = 0.2 the MEB approach saturates at optimal γ value, but no well-defined
peak occurs.

3.1. The Amsterdam Library of Object Images

The Amsterdam Library of Object Images (ALOI) is a col-
lection of 1.000 objects that have been recorded for scien-
tific purposes [11]. In the present we consider object clas-
sification where the object viewpoint is shifted in steps of
5◦ yielding a total of 72 images of each object. For each
image in the dataset we compute a set of Speeded Up Ro-
bust Features (SURF) inspired by the Scale Invariant Fea-
ture Transform (SIFT). Both are used to detect and describe
local features in images [14, 15]. Since the number of ex-
tracted features may vary across the considered images we
apply principal component analysis (PCA) to the extracted
features of an image, and select the first principal axis to
represent the entire image in a compact low dimensional
representation.

Even though all of the heuristics can be computed easily
for the entire dataset, we restrict our analysis to a subset of
100 objects from the library. This is necessary, since the
establishment of a ground-truth estimate by complete SVM
CV proves computationally infeasible for more classes.

The results are summarized in Figure 2 and Table 1.
Figure 2 shows the results from the heuristics for varying
γ as well as the CV results for comparison.The lower panel
clearly shows that the performance is very sensitive to the
choice of γ. For the three MEB approaches we use T = 5 to
obtain an algorithm (RMEB) with a strictly lower time com-
plexity than the median. For illustrative purposes we only

show the non-randomized MEB approach in Fig. 2. Table
1 show the classification accuracy of the SVM when using
the hyperparameter selected by the various heuristics. It is
evident that using the MEB approaches for hyperparameter
selection leads to better classification for all noise levels.

When comparing the location of the peaks of the class-
separation-measures in the upper panel of Figure 2 to the
CV results from the SVM in the lower panel, it is evident
that using the minimum intercluster distance for hyperpa-
rameter selection leads to too large γ-values, while the other
standard heuristics all suggest a too small hyperparameter
and thereby too linear kernel embeddings. On the contrary,
the MEB approach identifies the optimal γ-value for both
σ = 0.0 and σ = 0.1. In the very noisy setting (σ = 0.2)
the MEB estimate saturates around the optimal γ-value but
no significant peak occurs. However, by Occam’s razor one
could argue to choose the simplest model (smallest γ in this
case). Interestingly, the RMEB algorithm is found to actu-
ally peak at γ∗ for σ = 0.2, thereby yielding a better classi-
fication accuracy than the MEB implementation in this case.
This could be caused by different convergence characteris-
tics of the two algorithms.

4. CONCLUSIONS

We have shown how maximizing the radius of the minimum
enclosing ball of the cluster means in the RKHS provide a
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Noise level MEB RMEB R2MEB Median Mean Max Min
σ = 0.0 67.11 % 66.04 % (1.18) 65.03 % (2.50) 65.83 % 65.83 % 65.83 % 65.83 %
σ = 0.1 31.25 % 29.58 % (1.88) 28.32 % (2.78) 28.65 % 28.65 % 28.65 % 9.71 %
σ = 0.2 8.82 % 12.49 % (1.33) 11.61 % (1.39) 12.38 % 12.38 % 10.85 % 0.71 %

Table 1. The table shows the classification accuracy of the SVM when using the hyperparameter suggested by the various
heuristics on the ALOI dataset for various noise levels. For the three MEB methods five optimization steps were taken (T = 5)
and for the randomized approaches the standard deviation is given in brackets. For each noise level, the best classification
rate is marked in bold. Clearly the MEB approaches lead to more optimal γ-values and thereby higher accuracy of the SVM.

meaningful heuristic for finding the optimal hyperparameter
(and hence, RKHS) for kernel machines in multi-class clas-
sification problems. Compared to other standard distance
metrics in RKHSs we found that the MEB approach pro-
vides better results together with a highly competitive time
complexity for large scale multi-class data. Under noisy
conditions, the performance of the randomized MEB ap-
proach indicated a faster convergence of the RMEB than
the MEB approach in this setting.

Due to the low time complexity and improved perfor-
mance, we suggest to use the minimum enclosing ball for
crude hyperparameter selection in large-scale problems.

Future work includes testing on a wider range of large
scale multi-class classification problems. Furthermore, out-
lier detection by fitting a MEB in the RKHS is a natural
unsupervised extension.
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Abstract. Human decision making is complex and influenced by many
factors on multiple time scales, reflected in the numerous brain networks
and connectivity patterns involved as revealed by fMRI.
We address mislabeling issues in paradigms involving complex cognition,
by considering a manifold regularizing prior for modeling a sequence of
neural events leading to a decision. The method is directly applicable for
online learning in the context of real-time fMRI, and our experimental
results show that the method can efficiently avoid model degeneracy
caused by mislabeling.

1 Introduction

The study of human decision and other higher cognitive functions with fMRI
is hampered by several methodological issues including the lack of realism of
the experimental situation and lack of interactivity in the decision making pro-
cess [9]. In particular most experiments involve a predefined set of choices and
decision making scenarios. It is well know that open ended active learning proto-
cols can significantly enhance the information extracted in experimental settings
and improve the generalizability and learning curve [3]. Working towards active
learning protocols in neuroimaging we here discuss the possibility of combining
real-time fMRI and online machine learning which will allow experimental inter-
ventions dependent on the cognitive state of the subject. Such interventions are
crucial for establishing causal relations in the human brain and to study human
cognition in general.

1.1 Contributions

Nonlinear algorithms have been used to decode complex cognitive states with an
improved generalization performance compared to linear approaches, suggesting
that complex interactions in brain patterns are important for distinguishing cog-
nitive states [2, 4–6]. Furthermore, recent experimental results indicate that the
manifold assumption is valid for fMRI data, and that augmenting unlabeled rest-
ing state data can improve classification performance [1]. Also, spectral methods
have successfully been applied in fMRI analyses, e.g., in [8] the intrinsic man-
ifold structure of fMRI data is exploited to construct a low-dimensional graph
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of brain states, by embedding the data using a few eigenvectors of graph Lapla-
cian. Moreover, [7] considers a manifold based generative model for inter-subject
diffusion maps based on a Gaussian likelihood modeling embedding coordinates,
to capture a general atlas of functional connectivity across subjects. Compared
to our study they consider coherent and functionally equivalent regions across
subject, whereas we consider coherent structures in the intra-subject decision
process. In this contribution we build upon nonlinear manifold methods, and
address the important challenge of modeling a sequence of neural events lead-
ing to a decision. As an example, consider a paradigm where each trial consists
of multiple scanned volumes that must be associated with a response variable
obtained at the end of each trial. A traditional but likely degenerate approach
is to average the samples, or to assume that all samples reflect the same cogni-
tive state, nevertheless that numerous cognitive states can be present during a
single trial. To model the intrinsic decision process more naturally we impose a
manifold regularizing prior, and thereby rely on the smoothness of fMRI data to
infer the brain state of each individual sample. Our primary focus in the follow-
ing will be on online learning in the context of real-time fMRI, but our findings
are also applicable to other settings where the cognitive state can be difficult to
explicitly quantify. Figure 3 illustrates the experimental setup of our real-time
Brain Computer Interface (BCI) fMRI pipeline.

fMRI ClientfMRI ServerSpatial smoothing

Feature extraction

High-pass filtering

Paradigm 
implementationNormalization Classification

0 100 200 300 400 500 600 700 800 900 1000
!3

!2
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3

4

5
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94 Implementation

Figure 5.4: Shows the four main views of the developed game. The initial view is
shown in the upper left corner, and the arrows indicate subsequent views. Note
that the view corresponding to the Cheat-state is omitted.

152 Contributions

fi(n) =

{
1 sample n from model i was correctly classified

0 sample n from model i was misclassified
(A.4)

x − µ

σ
(A.5)

Brain-computer 
interface

Fig. 1: Shows the component organization of our Brain Computer Interface (BCI)
pipeline. Volumes are streamed over a network connection to a computer responsi-
ble for various usual preprocessing stages, where arrows indicate the direction of the
flow. The classification stage receives preprocessed fMRI volumes and communicates
with the paradigm implementation, by sending predictions and receiving subject events
in the form of button presses.
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2 Methods

Given a graph G = (V,E) where the vertices V are the data points, xi, and edges
E are represented by an N×N matrixW , i.e., an entryWij is a weight between
node i and j, typically chosen to be the Radial Basis Function (RBF) Wij =
k(xi,xj) = exp(−γ‖xi − xj‖2). Hence, W represents the similarity between
sampled volumes, i.e., xi correspond to a sampled fMRI volume represented in a
vector space. We form the normalized graph Laplacian L = I−D−1/2WD−1/2,
where I is the identity and D is the degree diagonal matrix with elements Dii =∑

j Wij . Using the graph Laplacian we can define a smoothness operator that
takes the unlabeled data into account, i.e., we seek functions f that agree with
the labeled data but are also smooth with respect to the graph. The smoothness
measured by the graph Laplacian is given by f>Lf that we can view as a zero
mean Gaussian process f ∼ N (0,L−1).

We model a C class classification problem by considering a likelihood based
on a Softmax Function Model (SFM)

p(zi|fi) =
C∏

j=1

(
exp(f j

i )∑C
k=1 exp(f

k
i )

)zj
i

(1)

where fi = f(xi) are latent variables generated by the process x→ f → z, and
zi = [0, . . . , 0, zji = 1, 0, . . . , 0] encodes that xi belongs to class j (j = 1, 2 . . . , C),
where zi = 0 corresponds to an unlabeled sample. Note that the likelihood is only
valid for labeled samples, which implies that no probability mass is assigned for
remaining unlabeled. To aggregate a trial decision yk, we consider the extended
process x→ f → z → y, and seek a good point estimate of the joint posterior

p(fi∈K,θ|yk) ∝
∫
p(yk|θ, zi∈K)p(zi∈K|fi∈K)p(fi∈K)p(θ)∂zi∈K, (2)

where K is the set of volume indices associated with the kth trial, and θ is a
model parameter. To make the optimization problem tractable, we will approx-
imate the point estimate by first optimize for f in p(zi∈K|fi∈K)p(fi∈K) based
on few relevant labeled samples from each trial, followed by a second classifica-
tion model, parameterized by θ, used for aggregating zi∈K to yk, i.e., the trial
decision. In the remaining part we focus on optimizing for f , and for notational
convince we encode

FN = [f1
1 ,f

1
2 , . . . ,f

1
N , . . . ,f

C
1 ,f

C
2 , . . . ,f

C
N ]> (3)

ZN = [z11 , z
1
2 , . . . ,z

1
N , . . . ,z

C
1 , z

C
2 , . . . ,z

C
N ]> (4)

and we then incorporate the prior FN ∼ N (0, (IC ⊗ L)−1) into the posterior
likelihood, p(FN |ZN ) ∝ p(ZN |FN )p(FN ), where the Kronecker product simply
corrects for the change in dimensionally caused by the encoding in Eq. 3 and 4.

Because the expression for the posterior likelihood is convex, we optimize FN

by Newton-Raphson to get a MAP estimate that we can then be use to calculate
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ZN by direct substitution into the expression for the SFM, i.e., a transductive
step.

Ψ(FN ) = −log p(ZN |FN )− log p(FN ), F new
N = FN − (∇∇Ψ)−1∇Ψ (5)

∇Ψ = αN + (IC ⊗L)FN , αN = ∇FN
(−log p(ZN |FN )) (6)

∇∇Ψ = ∇∇FN
(−log p(ZN |FN )) + IC ⊗L (7)

To keep things compact we refer to [11] for the derivation of∇FN
(−log p(ZN |FN ))

and ∇∇FN
(−log p(ZN |FN )).

We make the model applicable in the online setting by augmentingW when
new samples arrive, i.e., updating W is bound by O(N). Since the square
root of a diagonal matrix D is again a diagonal matrix, formed by taking
a square root of each of the entries on the diagonal we can write D−1/2 =
diag((

∑
j W1j)

−1/2, (
∑

j W2j)
−1/2, . . . , (

∑
j WNj)

−1/2), hence, updatingD is also
bound by O(N). Recalculating the normalized graph Laplacian is bound by
O(N2) due to D being diagonal, and to reduce the complexity bound O(N3) of
the consecutive Newton-Raphson iterations, we can maintain a Cholesky factor-
ization of the Hessian in Eq. 7.

2.1 Synthetic Data

To highlight the purpose of our modeling technique we demonstrate the model
in greater detail in terms of an easily visualizable data set. We consider an
online binary classification task where we assume a fixed stationary probability
distribution for flipping labels in a trial. In relation to fMRI data, we assume
that samples temporally near the actual decision are trustworthy, i.e., with high
probability these reflect the observed decision. Hence, we can think of the samples
to reside on two manifolds, one for each decision, and during a trial we receive
samples from both manifolds, modeling the decision process.

For comparison we consider the popular support vector machine (SVM) ob-
jective, that has proven to yield good generalization performance in a variety of
fMRI studies, see for example [6]. Given training data D = {xi, yi}Ni=1, x ∈ RDX ,
y ∈ {1,−1}, the SVM objective is given by

LSVM = min
θ∈H

N∑

i=1

max(0, 1− yiθ>ϕ(xi)) + λ‖θ‖22, (8)

and is applicable for the kernel trick k(xi,xj) = ϕ(xi)
Tϕ(xj), where ϕ : X 7→ H

is a possibly nonlinear map from the DX -dimensional input space X to the DH-
dimensional feature space H [10]. Morover, for both approaches we use an SVM
for aggregating the final trial decisions. We consider each trial to be composed of
8 samples, and Figure 2 illustrates three simulations for variations of the misla-
beling probabilities and additive Gaussian noise. See the description underneath
the figure for more details.
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Fig. 2: Shows three simulations (one per row) for three considered approaches; 1)
the semi-supervised approach where we only label the final two samples (blue),
2) an SVM based on all trial samples (green), 3) an SVM based on the final
two samples (red). For each simulation the first column shows the accumulated
classification accuracy, the second shows the probability for a sample to reflect
to the observed trial decision, and the third column shows the observed samples
after 100 trials that are used for training of the semi-supervised approach (col-
ors represent labeled samples). Finally, error bars are obtained by resampling,
corresponding to a 95% confidence interval.

All approaches will initially produce bad predictions as the intrinsic mani-
fold structure has yet to be learned. However, compared to the other, the semi-
supervised model quickly learns the manifold structure and achieves a signifi-
cantly better classification accuracy for the majority of trials. In the first simu-
lation (top row), it is immediate that the high label uncertainty hurts the SVM
approach trained on all trial samples, whereas the SVM trained on the same
window as the semi-supervised approach converges much slower, as the unla-
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beled samples are not taken into account. In the middle row we reduce the label
uncertainty, and as expected the SVM trained on all samples now recovers the
structure faster than the one trained on the final two samples. In the bottom row
we increase the noise level, and the accuracy gap between the models narrows,
as mass can now bleed from one manifold to the other. However, the learning
rate of the semi-supervised approach is still better than the others.

3 Brain Imaging Results

We tested the method on Blood Oxygenation Level Dependent (BOLD) sensitive
fMRI data acquired on a 3 Tesla MR scanner (Siemens Magnetom Trio). During
the scanning session (800 volumes) the subject was engaged in a simple motor
paradigm in which the subject was asked to respond by either left or right index
finger keypress when a visual cue was presented. The model was used to predict
which finger (left or right) the subject selected to press the button with. Pre-
processing steps included: rigid body realignment, spatial smoothing (6 mm full
width at half maximum isotropic Gaussian kernel), high-pass filtering (cut-off
frequency 1/128 Hz), and static masking of premotor cortex. In terms of our ap-
proach, we consider a 3 class classification problem, classifying between baseline,
left, and right, and as in Section 2.1 we consider the SVM as point of reference.
Figure 3 illustrates a conceptual overview of the training approach. We aggregate
the trial decision using a kernelized SVM for both approaches. Besides, for both
classification stages we applied an RBF kernel, and in the first stage we cross
validated in the parameter range given by γ1 = 2x, x ∈ {−12,−11.9, . . . ,−5},
whereas in the next aggregating stage γ2 = 10x, x ∈ {−10,−9.75, . . . , 15}. We
analyzed a single 44 trial scanning session, and measured performance on the
final 29 trials, i.e., as we learn and predict in an online fashion we let both
approaches stabilize using the first 15 trials. Our method reached a best clas-
sification rate of ≈ 0.76, whereas the SVM yields ≈ 0.73, hence we need more
data to state significant performance gains, but we do see indications support-
ing our hypothesis. One reason why the SVM performs relatively well on the
ambiguous data may be explained through slackness regularization, but from
a modeling perspective the approach is less attractive since mislabeled samples
are then treated as outliers, hence, in the SVM mislabeled samples will become
support vectors. The suggested "lazy" learning scheme makes few assumptions
about the temporal dynamics of the brain state by only assigning hard labels
to only a few volumes within each block, while still benefitting from unlabeled
samples by identifying the manifold on which the data reside. In essence the
suggested classification scheme allows the non-stationary temporal dynamics of
a decision process to be captured thereby enabling the identification sequences
of related neural events which leads to a decision.
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Fig. 3: Illustrates a conceptual overview (best viewed in color) of the training process
of our approach and the SVM used for comparison. The SVM (upper plot) is trained
on both the preparation and response samples (highlighted in blue), whereas remaining
samples correspond to predictions, i.e., the SVM is trained using samples in this interval
through all preceding trials. The semi-supervised approach (lower plot) is trained on a
few baseline samples (highlighted in red) and 3 samples around the end of each trial
(highlighted in blue), i.e., the three time series correspond to the probability of baseline
(red), left (blue) and right (green). Common for both approaches; highlighted in grey are
the preparation predictions that must be aggregated into the decision of the current trial,
before the subject reveals the actual decision. The classification accuracy is measured
as the number of correctly aggregated trial decisions.

4 Conclusion

In the current work we demonstrated how semi-supervised learning can be used
to relax the labeling scheme typically used in brain state classification models
based on fMRI data. The suggested lazy labeling scheme makes few assump-
tions about the temporal dynamics of the brain state by only assigning hard
labels to only a few volumes within each block, while still benefitting from un-
labeled samples by identifying the manifold on which the data reside. In essence
the suggested classification scheme allows the non-stationary temporal dynam-
ics of a decision process to be captured thereby enabling the identification of
sequences of related neural events which leads to a decision. Our current results
in this preliminary study indicate that the labeling scheme performs on par with
existing state of the art nonlinear methods. Future work will focus on compre-
hensive evaluation and handling of label uncertainty. Furthermore the framework
would be particularly for the investigations into how generic the human decision
making process is. This could be achieved by investigating the stationarity of
p(yk|θ, zi∈K) over subjects.
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Abstract

In many applications, one has side information, e.g., labels that are provided
in a semi-supervised manner, about a specific target region of a large data set,
and one wants to perform machine learning and data analysis tasks “nearby”
that pre-specified target region. Locally-biased problems of this sort are partic-
ularly challenging for popular eigenvector-based machine learning and data anal-
ysis tools. At root, the reason is that eigenvectors are inherently global quanti-
ties. In this paper, we address this issue by providing a methodology to construct
semi-supervised eigenvectors of a graph Laplacian, and we illustrate how these
locally-biased eigenvectors can be used to perform locally-biased machine learn-
ing. These semi-supervised eigenvectors capture successively-orthogonalized di-
rections of maximum variance, conditioned on being well-correlated with an input
seed set of nodes that is assumed to be provided in a semi-supervised manner. We
also provide several empirical examples demonstrating how these semi-supervised
eigenvectors can be used to perform locally-biased learning.

1 Introduction

We consider the problem of finding a set of locally-biased vectors that inherit many of the “nice”
properties that the leading nontrivial global eigenvectors of a graph Laplacian have—for example,
that capture “slowly varying” modes in the data, that are fairly-efficiently computable, that can be
used for common machine learning and data analysis tasks such as kernel-based and semi-supervised
learning, etc.—so that we can perform what we will call locally-biased machine learning in a prin-
cipled manner.

By locally-biased machine learning, we mean that we have a very large data set, e.g., represented as
a graph, and that we have information, e.g., given in a semi-supervised manner, that certain “regions”
of the data graph are of particular interest. In this case, we may want to focus predominantly on those
regions and perform data analysis and machine learning, e.g., classification, clustering, ranking, etc.,
that is “biased toward” those pre-specified regions. Examples of this include the following.

• Locally-biased community identification. In social and information network analysis, one
might have a small “seed set” of nodes that belong to a cluster or community of interest [2,
13]; in this case, one might want to perform link or edge prediction, or one might want to
“refine” the seed set in order to find other nearby members.

• Locally-biased image segmentation. In computer vision, one might have a large corpus
of images along with a “ground truth” set of pixels as provided by a face detection algo-
rithm [7, 14, 15]; in this case, one might want to segment entire heads from the background
for all the images in the corpus in an automated manner.

1
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• Locally-biased neural connectivity analysis. In functional magnetic resonance imaging ap-
plications, one might have small sets of neurons that “fire” in response to some external
experimental stimulus [16]; in this case, one might want to analyze the subsequent tem-
poral dynamics of stimulation of neurons that are “nearby,” either in terms of connectivity
topology or functional response.

These examples present considerable challenges for spectral techniques and traditional eigenvector-
based methods. At root, the reason is that eigenvectors are inherently global quantities, thus limiting
their applicability in situations where one is interested in very local properties of the data.

In this paper, we provide a methodology to construct what we will call semi-supervised eigenvectors
of a graph Laplacian; and we illustrate how these locally-biased eigenvectors inherit many of the
properties that make the leading nontrivial global eigenvectors of the graph Laplacian so useful in
applications. To achieve this, we will formulate an optimization ansatz that is a variant of the usual
global spectral graph partitioning optimization problem that includes a natural locality constraint as
well as an orthogonality constraint, and we will iteratively solve this problem.

In more detail, assume that we are given as input a (possibly weighted) data graph G = (V,E), an
indicator vector s of a small “seed set” of nodes, a correlation parameter κ ∈ [0, 1], and a positive
integer k. Then, informally, we would like to construct k vectors that satisfy the following bicriteria:
first, each of these k vectors is well-correlated with the input seed set; and second, those k vectors
describe successively-orthogonalized directions of maximum variance, in a manner analogous to the
leading k nontrivial global eigenvectors of the graph Laplacian. (We emphasize that the seed set s
of nodes, the integer k, and the correlation parameter κ are part of the input; and thus they should
be thought of as being available in a semi-supervised manner.) Somewhat more formally, our main
algorithm, Algorithm 1 in Section 3, returns as output k semi-supervised eigenvectors; each of these
is the solution to an optimization problem of the form of GENERALIZED LOCALSPECTRAL in Fig-
ure 1, and thus each “captures” (say) κ/k of the correlation with the seed set. Our main theoretical
result states that these vectors define successively-orthogonalized directions of maximum variance,
conditioned on being κ/k-well-correlated with an input seed set s; and that each of these k semi-
supervised eigenvectors can be computed quickly as the solution to a system of linear equations.

From a technical perspective, the work most closely related to ours is that of Mahoney et al. [14].
The original algorithm of Mahoney et al. [14] introduced a methodology to construct a locally-biased
version of the leading nontrivial eigenvector of a graph Laplacian and showed (theoretically and em-
pirically in a social network analysis application) that the resulting vector could be used to partition
a graph in a locally-biased manner. From this perspective, our extension incorporates a natural or-
thogonality constraint that successive vectors need to be orthogonal to previous vectors. Subsequent
to the work of [14], [15] applied the algorithm of [14] to the problem of finding locally-biased cuts
in a computer vision application. Similar ideas have also been applied somewhat differently. For
example, [2] use locally-biased random walks, e.g., short random walks starting from a small seed
set of nodes, to find clusters and communities in graphs arising in Internet advertising applications;
[13] used locally-biased random walks to characterize the local and global clustering structure of
a wide range of social and information networks; [11] developed the Spectral Graph Transducer
(SGT), that performs transductive learning via spectral graph partitioning. The objectives in both
[11] and [14] are considered constrained eigenvalue problems, that can be solved by finding the
smallest eigenvalue of an asymmetric generalized eigenvalue problem, but in practice this procedure
can be highly unstable [8]. The SGT reduces the instabilities by performing all calculations in a sub-
space spanned by the d smallest eigenvectors of the graph Laplacian, whereas [14] perform a binary
search, exploiting the monotonic relationship between a control parameter and the corresponding
Lagrange multiplier.

In parallel, [3] and a large body of subsequent work including [6] used eigenvectors of the graph
Laplacian to perform dimensionality reduction and data representation, in unsupervised and semi-
supervised settings. Many of these methods have a natural interpretation in terms of kernel-based
learning [18]. Many of these diffusion-based spectral methods also have a natural interpretation
in terms of spectral ranking [21]. “Topic sensitive” and “personalized” versions of these spectral
ranking methods have also been studied [9, 10]; and these were the motivation for diffusion-based
methods to find locally-biased clusters in large graphs [19, 1, 14]. Our optimization ansatz is a
generalization of the linear equation formulation of the PageRank procedure [17, 14, 21], and the
solution involves Laplacian-based linear equation solving, which has been suggested as a primitive
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of more general interest in large-scale data analysis [20]. Finally, the form of our optimization
problem has similarities to other work in computer vision applications: e.g., [23] and [7] find good
conductance clusters subject to a set of linear constraints.

2 Background and Notation

Let G = (V,E,w) be a connected undirected graph with n = |V | vertices and m = |E| edges,
in which edge {i, j} has non-negative weight wij . In the following, AG ∈ RV×V will denote the
adjacency matrix of G, while DG ∈ RV×V will denote the diagonal degree matrix of G, i.e.,
DG(i, i) = di =

∑
{i,j}∈E wij , the weighted degree of vertex i. Moreover, for a set of vertices

S ⊆ V in a graph, the volume of S is vol(S)
def
=
∑
i∈S di. The Laplacian of G is defined as

LG
def
= DG − AG. (This is also called the combinatorial Laplacian, in which case the normalized

Laplacian of G is LG def
= D

−1/2
G LGD

−1/2
G .)

The Laplacian is the symmetric matrix having quadratic form xTLGx =
∑
ij∈E wij(xi − xj)

2,
for x ∈ RV . This implies that LG is positive semidefinite and that the all-one vector 1 ∈ RV is
the eigenvector corresponding to the smallest eigenvalue 0. The generalized eigenvalues of LGx =
λiDGx are 0 = λ1 < λ2 ≤ · · · ≤ λN . We will use v2 to denote smallest non-trivial eigenvector,
i.e., the eigenvector corresponding to λ2; v3 to denote the next eigenvector; and so on. Finally, for
a matrix A, let A+ denote its (uniquely defined) Moore-Penrose pseudoinverse. For two vectors
x, y ∈ Rn, and the degree matrix DG for a graph G, we define the degree-weighted inner product
as xTDGy

def
=
∑n
i=1 xiyidi. In particular, if a vector x has unit norm, then xTDGx = 1. Given a

subset of vertices S ⊆ V , we denote by 1S the indicator vector of S in RV and by 1 the vector in
RV having all entries set equal to 1.

3 Optimization Approach to Semi-supervised Eigenvectors

3.1 Motivation for the Program

Recall the optimization perspective on how one computes the leading nontrivial global eigenvectors
of the normalized Laplacian LG. The first nontrivial eigenvector v2 is the solution to the problem
GLOBALSPECTRAL that is presented on the left of Figure 1. Equivalently, although GLOBALSPEC-
TRAL is a non-convex optimization problem, strong duality holds for it and it’s solution may be
computed as v2, the leading nontrivial generalized eigenvector of LG. The next eigenvector v3 is
the solution to GLOBALSPECTRAL, augmented with the constraint that xTDGv2 = 0; and in gen-
eral the tth generalized eigenvector of LG is the solution to GLOBALSPECTRAL, augmented with
the constraints that xTDGvi = 0, for i ∈ {2, . . . , t − 1}. Clearly, this set of constraints and the
constraint xTDG1 = 0 can be written as xTDGQ = 0, where 0 is a (t − 1)-dimensional all-zeros
vector, and where Q is an n× (t− 1) orthogonal matrix whose ith column equals vi (where v1 = 1,
the all-ones vector, is the first column of Q).

Also presented in Figure 1 is LOCALSPECTRAL, which includes a constraint requiring the solution
to be well-correlated with an input seed set. This LOCALSPECTRAL optimization problem was in-
troduced in [14], where it was shown that the solution to LOCALSPECTRAL may be interpreted as
a locally-biased version of the second eigenvector of the Laplacian. In particular, although LOCAL-
SPECTRAL is not convex, it’s solution can be computed efficiently as the solution to a set of linear
equations that generalize the popular Personalized PageRank procedure; in addition, by performing
a sweep cut and appealing to a variant of Cheeger’s inequality, this locally-biased eigenvector can
be used to perform locally-biased spectral graph partitioning [14].

3.2 Our Main Algorithm

We will formulate the problem of computing semi-supervised vectors in terms of a primitive op-
timization problem of independent interest. Consider the GENERALIZED LOCALSPECTRAL opti-
mization problem, as shown in Figure 1. For this problem, we are given a graph G = (V,E), with
associated Laplacian matrix LG and diagonal degree matrix DG; an indicator vector s of a small

3
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GLOBALSPECTRAL

minimize xTLGx

s.t xTDGx = 1

xTDG1 = 0

LOCALSPECTRAL

minimize xTLGx

s.t xTDGx = 1

xTDG1 = 0

xTDGs ≥
√
κ

GENERALIZED LOCALSPECTRAL

minimize xTLGx

s.t xTDGx = 1

xTDGQ = 0

xTDGs ≥
√
κ

Figure 1: Left: The usual GLOBALSPECTRAL partitioning optimization problem; the vector achiev-
ing the optimal solution is v2, the leading nontrivial generalized eigenvector of LG with respect
to DG. Middle: The LOCALSPECTRAL optimization problem, which was originally introduced
in [14]; for κ = 0, this coincides with the usual global spectral objective, while for κ > 0, this
produces solutions that are biased toward the seed vector s. Right: The GENERALIZED LOCAL-
SPECTRAL optimization problem we introduce that includes both the locality constraint and a more
general orthogonality constraint. Our main algorithm for computing semi-supervised eigenvectors
will iteratively compute the solution to GENERALIZED LOCALSPECTRAL for a sequence of Q ma-
trices. In all three cases, the optimization variable is x ∈ Rn.

“seed set” of nodes; a correlation parameter κ ∈ [0, 1]; and an n×ν constraint matrixQ that may be
assumed to be an orthogonal matrix. We will assume (without loss of generality) that s is properly
normalized and orthogonalized so that sTDGs = 1 and sTDG1 = 0. While s can be a general unit
vector orthogonal to 1, it may be helpful to think of s as the indicator vector of one or more vertices
in V , corresponding to the target region of the graph.

In words, the problem GENERALIZED LOCALSPECTRAL asks us to find a vector x ∈ Rn that min-
imizes the variance xTLGx subject to several constraints: that x is unit length; that x is orthogonal
to the span of Q; and that x is

√
κ-well-correlated with the input seed set vector s. In our applica-

tion of GENERALIZED LOCALSPECTRAL to the computation of semi-supervised eigenvectors, we
will iteratively compute the solution to GENERALIZED LOCALSPECTRAL, updating Q to contain
the already-computed semi-supervised eigenvectors. That is, to compute the first semi-supervised
eigenvector, we let Q = 1, i.e., the n-dimensional all-ones vector, which is the trivial eigenvector of
LG, in which case Q is an n×1 matrix; and to compute each subsequent semi-supervised eigenvec-
tor, we let the columns of Q consist of 1 and the other semi-supervised eigenvectors found in each
of the previous iterations.

To show that GENERALIZED LOCALSPECTRAL is efficiently-solvable, note that it is a quadratic
program with only one quadratic constraint and one linear equality constraint. In order to remove the
equality constraint, which will simplify the problem, let’s change variables by defining the n×(n−ν)
matrix F as {x : QTDGx = 0} = {x : x = Fy}. That is, F is a span for the null space of QT ;
and we will take F to be an orthogonal matrix. Then, with respect to the y variable, GENERALIZED
LOCALSPECTRAL becomes

minimize
y

yTFTLGFy

subject to yTFTDGFy = 1,

yTFTDGs ≥
√
κ.

(1)

In terms of the variable x, the solution to this optimization problem is of the form

x∗ = cF
(
FT (LG − γDG)F

)+
FTDGs

= c
(
FFT (LG − γDG)FF

T
)+
DGs, (2)

for a normalization constant c ∈ (0,∞) and for some γ that depends on
√
κ. The second line follows

from the first since F is an n×(n−ν) orthogonal matrix. This so-called “S-procedure” is described
in greater detail in Chapter 5 and Appendix B of [4]. The significance of this is that, although it is
a non-convex optimization problem, the GENERALIZED LOCALSPECTRAL problem can be solved
by solving a linear equation, in the form given in Eqn. (2).

Returning to our problem of computing semi-supervised eigenvectors, recall that, in addition to the
input for the GENERALIZED LOCALSPECTRAL problem, we need to specify a positive integer k
that indicates the number of vectors to be computed. In the simplest case, we would assume that
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we would like the correlation to be “evenly distributed” across all k vectors, in which case we will
require that each vector is

√
κ/k-well-correlated with the input seed set vector s; but this assumption

can easily be relaxed, and thus Algorithm 1 is formulated more generally as taking a k-dimensional
vector κ = [κ1, . . . , κk]

T of correlation coefficients as input.

To compute the first semi-supervised eigenvector, we will let Q = 1, the all-ones vector, in which
case the first nontrivial semi-supervised eigenvector is

x∗1 = c (LG − γ1DG)
+
DGs, (3)

where γ1 is chosen to saturate the part of the correlation constraint along the first direction. (Note
that the projections FFT from Eqn. (2) are not present in Eqn. (3) since by design sTDG1 = 0.)
That is, to find the correct setting of γ1, it suffices to perform a binary search over the possible
values of γ1 in the interval (−vol(G), λ2(G)) until the correlation constraint is satisfied, that is,
until (sTDGx)

2 is sufficiently close to κ21, see [8, 14].

To compute subsequent semi-supervised eigenvectors, i.e., at steps t = 2, . . . , k if one ultimately
wants a total of k semi-supervised eigenvectors, then one lets Q be the n× (t− 1) matrix with first
column equal to 1 and with jth column, for i = 2, . . . , t − 1, equal to x∗j−1 (where we emphasize
that x∗j−1 is a vector not an element of a vector). That is, Q is of the form Q = [1, x∗1, . . . , x

∗
t−1],

where x∗i are successive semi-supervised eigenvectors, and the projection matrix FFT is of the
form FFT = I −DGQ(QTDGDGQ)−1QTDG, due to the degree-weighted inner norm. Then, by
Eqn. (2), the tth semi-supervised eigenvector takes the form

x∗t = c
(
FFT (LG − γtDG)FF

T
)+
DGs. (4)

Algorithm 1 Semi-supervised eigenvectors
Input: LG, DG, s, κ = [κ1, . . . , κk]

T , ε
Require: sTDG1 = 0, sTDGs = 1, κT 1 ≤ 1

1: Q = [1]
2: for t = 1 to k do
3: FFT ← I −DGQ(QTDGDGQ)−1QTDG

4: > ← λ2 where FFTLGFFT v2 = λ2FF
TDGFF

T v2
5: ⊥ ← −vol(G)
6: repeat
7: γt ← (⊥+>)/2 (Binary search over γt)
8: xt ← (FFT (LG − γtDG)FF

T )+FFTDGs
9: Normalize xt such that xTt DGxt = 1

10: if (xTt DGs)
2 > κt then ⊥ ← γt else > ← γt end if

11: until ‖(xTt DGs)
2 − κt‖ ≤ ε or ‖(⊥+>)/2− γt‖ ≤ ε

12: Augment Q with x∗t by letting Q = [Q, x∗t ].
13: end for

In more detail, Algorithm 1 presents pseudo-code for our main algorithm for computing semi-
supervised eigenvectors. Several things should be noted about our implementation. First, note
that we implicitly compute the projection matrix FFT . Second, a naı̈ve approach to Eqn. (2) does
not immediately lead to an efficient solution, since DGs will not be in the span of (FFT (LG −
γDG)FF

T ), thus leading to a large residual. By changing variables so that x = FFT y, the solu-
tion becomes x∗ ∝ FFT (FFT (LG − γDG)FF

T )+FFTDGs. Since FFT is a projection matrix,
this expression is equivalent to x∗ ∝ (FFT (LG − γDG)FF

T )+FFTDGs. Third, we exploit that
FFT (LG − γiDG)FF

T is an SPSD matrix, and we apply the conjugate gradient method, rather
than computing the explicit pseudoinverse. That is, in the implementation we never represent the
dense matrix FFT , but instead we treat it as an operator and we simply evaluate the result of ap-
plying a vector to it on either side. Fourth, we use that λ2 can never decrease (here we refer to
λ2 as the smallest non-zero eigenvalue of the modified matrix), so we only recalculate the upper
bound for the binary search when an iteration saturates without satisfying ‖(xTt DGs)

2 − κt‖ ≤ ε.
In case of saturation one can for instance recalculate λ2 iteratively by using the inverse iteration
method, vk+1

2 ∝ (FFTLGFF
T − λest

2 FF
TDGFF

T )+FFTDGFF
T vk2 , and normalizing such

that (vk+1
2 )T vk+1

2 = 1.
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4 Illustrative Empirical Results

In this section, we will provide a detailed empirical evaluation of our method of semi-supervised
eigenvectors and how they can be used for locally-biased machine learning. Our goal will be two-
fold: first, to illustrate how the “knobs” of our method work; and second, to illustrate the usefulness
of the method in a real application. To do so, we will consider:

• Toy data. In Section 4.1, we will consider one-dimensional examples of the popular “small
world” model [22]. This is a parameterized family of models that interpolates between
low-dimensional grids and random graphs; and, as such, it will allow us to illustrate the
behavior of our method and it’s various parameters in a controlled setting.

• Handwritten image data. In Section 4.2, we will consider the data from the MNIST digit
data set [12]. These data have been widely-studied in machine learning and related areas
and they have substantial “local heterogeneity”; and thus these data will allow us to illus-
trate how our method may be used to perform locally-biased versions of common machine
learning tasks such as smoothing, clustering, and kernel construction.

4.1 Small-world Data

To illustrate how the “knobs” of our method work, and in particular how κ and γ interplay, we con-
sider data constructed from the so-called small-world model. To demonstrate how semi-supervised
eigenvectors can focus on specific target regions of a data graph to capture slowest modes of local
variation, we plot semi-supervised eigenvectors around illustrations of (non-rewired and rewired)
realizations of the small-world graph; see Figure 2.

p = 0,
λ2 = 0.000011,
λ3 = 0.000011,
λ4 = 0.000046,
λ5 = 0.000046.

(a) Global eigenvectors

p = 0.01,
λ2 = 0.000149,
λ3 = 0.000274,
λ4 = 0.000315,
λ5 = 0.000489.

(b) Global eigenvectors

p = 0.01, κ = 0.005,
γ1 = 0.000047,
γ2 = 0.000052,
γ3 = −0.000000,
γ4 = −0.000000.

(c) Semi-supervised eigenvectors

p = 0.01, κ = 0.05,
γ1 = −0.004367,
γ2 = −0.001778,
γ3 = −0.001665,
γ4 = −0.000822.

(d) Semi-supervised eigenvectors

Figure 2: In each case, (a-d) the data consist of 3600 nodes, each connected to it’s 8 nearest-
neighbors. In the center of each subfigure, we show the nodes (blue) and edges (black and light
gray are the local edges, and blue are the randomly-rewired edges). In each subfigure, we wrap a
plot (black x-axis and gray background) visualizing the 4 smallest semi-supervised eigenvectors,
allowing us to see the effect of random edges (different values of rewiring probability p) and degree
of localization (different values of κ). Eigenvectors are color coded as blue, red, yellow, and green,
starting with the one having the smallest eigenvalue. See the main text for more details.

In Figure 2.a, we show a graph with no randomly-rewired edges (p = 0) and a locality parameter
κ such that the global eigenvectors are obtained. This yields a symmetric graph with eigenvectors
corresponding to orthogonal sinusoids, i.e., for all eigenvectors, except the all-ones with eigenvalue
0, the algebraic multiplicity is 2, i.e., the first two capture the slowest mode of variation and cor-
respond to a sine and cosine with equal random phase-shift (rotational ambiguity). In Figure 2.b,
random edges have been added with probability p = 0.01 and the locality parameter κ is still cho-
sen such that the global eigenvectors of the rewired graph are obtained. In particular, note small
kinks in the eigenvectors at the location of the randomly added edges. Since the graph is no longer
symmetric, all of the visualized eigenvectors have algebraic multiplicity 1. Moreover, note that the
slow mode of variation in the interval on the top left; a normalized-cut based on the leading global
eigenvector would extract this region since the remainder of the ring is more well-connected due
to the degree of rewiring. In Figure 2.c, we see the same graph realization as in Figure 2.b, except
that the semi-supervised eigenvectors have a seed node at the top of the circle and the correlation
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parameter κt = 0.005. Note that, like the global eigenvectors, the local approach produces modes
of increasing variation. In addition, note that the neighborhood around “11 o-clock” contains more
mass, when compared with Figure 2.b; the reason for this is that this region is well-connected with
the seed via a randomly added edge. Above the visualization we also show the γt that saturates κt,
i.e., γt is the Lagrange multiplier that defines the effective correlation κt. Not shown is that if we
kept reducing κ, then γt would tend towards λt+1, and the respective semi-supervised eigenvector
would tend towards the global eigenvector. Finally, in Figure 2.d, the desired correlation is increased
to κ = 0.05 (thus decreasing the value of γt), making the different modes of variation more local-
ized in the neighborhood of the seed. It should be clear that, in addition to being determined by the
locality parameter, we can think of γ as a regularizer biasing the global eigenvectors towards the
region near the seed set.

4.2 MNIST Digit Data

We now demonstrate the semi-supervised eigenvectors as a feature extraction preprocessing step in
a machine learning setting. We consider the well-studied MNIST dataset containing 60000 training
digits and 10000 test digits ranging from 0 to 9. We construct the complete 70000 × 70000 k-NN
graph with k = 10 and with edge weights given by wij = exp(− 4

σ2
i
‖xi − xj‖2), where σ2

i being
the Euclidean distance to it’s nearest neighbor, and we define the graph Laplacian in the usual way.
We evaluate the semi-supervised eigenvectors in a transductive learning setting by disregarding the
majority of labels in the entire training data. We then use a few samples from each class to seed
our semi-supervised eigenvectors, and a few others to train a downstream classification algorithm.
Here we choose to apply the SGT of [11] for two main reasons. First, the transductive classifier is
inherently designed to work on a subset of global eigenvectors of the graph Laplacian, making it
ideal for validating that our localized basis constructed by the semi-supervised eigenvectors can be
more informative when we are solely interested in the “local heterogeneity” near a seed set. Second,
using the SGT based on global eigenvectors is a good point of comparison, because we are only
interested in the effect of our subspace representation. (If we used one type of classifier in the local
setting, and another in the global, the classification accuracy that we measure would obviously be
biased.) As in [11], we normalize the spectrum of both global and semi-supervised eigenvectors
by replacing the eigenvalues with some monotonically increasing function. We use λi = i2

k2 , i.e.,
focusing on ranking among smallest cuts; see [5]. Furthermore, we fix the regularization parameter
of the SGT to c = 3200, and for simplicity we fix γ = 0 for all semi-supervised eigenvectors,
implicitly defining the effective κ = [κ1, . . . , κk]

T . Clearly, other correlation distributions and
values of γ may yield subspaces with even better discriminative properties1.

#Semi-supervised eigenvectors for SGT #Global eigenvectors for SGT
Labeled points 1 2 4 6 8 10 1 5 10 15 20 25

1 : 1 0.39 0.39 0.38 0.38 0.38 0.36 0.50 0.48 0.36 0.27 0.27 0.19
1 : 10 0.30 0.31 0.25 0.23 0.19 0.15 0.49 0.36 0.09 0.08 0.06 0.06
5 : 50 0.12 0.15 0.09 0.08 0.07 0.06 0.49 0.09 0.08 0.07 0.05 0.04

10 : 100 0.09 0.10 0.07 0.06 0.05 0.05 0.49 0.08 0.07 0.06 0.04 0.04
50 : 500 0.03 0.03 0.03 0.03 0.03 0.03 0.49 0.10 0.07 0.06 0.04 0.04

Table 1: Classification error for the SGT based on respectively semi-supervised and global eigenvec-
tors. The first column from the left encodes the configuration, e.g., 1:10 interprets as 1 seed and 10
training samples from each class (total of 22 samples - for the global approach these are all used for
training). When the seed is well determined and the number of training samples moderate (50:500)
a single semi-supervised eigenvector is sufficient, where for less data we benefit from using multiple
semi-supervised eigenvectors. All experiments have been repeated 10 times.

Here, we consider the task of discriminating between fours and nines, as these two classes tend to
overlap more than other combinations. (A closed four usually resembles nine more than an “open”
four.) Hence, we expect localization on low order global eigenvectors, meaning that class separation
will not be evident in the leading global eigenvector, but instead will be “buried” further down the
spectrum. Thus, this will illustrate how semi-supervised eigenvectors can represent relevant hetero-
geneities in a local subspace of low dimensionality. Table 1 summarizes our classification results
based on respectively semi-supervised and global eigenvectors. Finally, Figure 3 and 4 illustrates
two realizations for the 1:10 configuration, where the training samples are fixed, but where we vary

1A thorough analysis regarding the importance of this parameter will appear in the journal version.
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the seed nodes, to demonstrate the influence of the seed. See the caption in these figures for further
details.

s+ = { }

←−
−−
−−
−−
−−
−

Te
st

da
ta
−−
−−
−−
−−
−−
→

l+ = { }
s− = { }

l− = { }

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.08 0.07 0.06 0.05 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

Classification error
Unexplained correlation

1 vs. 2 1 vs. 3 1 vs. 4 1 vs. 5

2 vs. 3 2 vs. 4 2 vs. 5

3 vs. 4 3 vs. 5

4 vs. 5

#Semi-supervised eigenvectors

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 3: Left: Shows a subset of the classification results for the SGT based on 5 semi-supervised
eigenvectors seeded in s+ and s−, and trained using samples l+ and l−. Misclassifications are
marked with black frames. Right: Visualizes all test data spanned by the first 5 semi-supervised
eigenvectors, by plotting each component as a function of the others. Red (blue) points correspond
to 4 (9), whereas green points correspond to remaining digits. As the seed nodes are good repre-
sentatives, we note that the eigenvectors provide a good class separation. We also plot the error as
a function of local dimensionality, as well as the unexplained correlation, i.e., initial components
explain the majority of the correlation with the seed (effect of γ = 0). The particular realization
based on the leading 5 semi-supervised eigenvectors yields an error of ≈ 0.03 (dashed circle).
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.48

0.31 0.30 0.30 0.30 0.29 0.27
0.24

0.20
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0.2
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Figure 4: See the general description in Figure 3. Here we illustrate an instance where the s+ shares
many similarities with s−, i.e., s+ is on the boundary of the two classes. This particular realization
achieves a classification error of ≈ 0.30 (dashed circle). In this constellation we first discover
localization on low order semi-supervised eigenvectors (≈ 12 eigenvectors), which is comparable
to the error based on global eigenvectors (see Table 1), i.e., further down the spectrum we recover
from the bad seed and pickup the relevant mode of variation.

In summary: We introduced the concept of semi-supervised eigenvectors that are biased towards
local regions of interest in a large data graph. We demonstrated the feasibility on a well-studied
dataset and found that our approach leads to more compact subspace representations by extracting
desired local heterogeneities. Moreover, the algorithm is scalable as the eigenvectors are computed
by the solution to a sparse system of linear equations, preserving the low O(m) space complexity.
Finally, we foresee that the approach will prove useful in a wide range of data analysis fields, due to
the algorithm’s speed, simplicity, and stability.
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Abstract

Kernel Principal Component Analysis (PCA) has proven a powerful tool for

nonlinear feature extraction, and is often applied as a pre-processing step

for classification algorithms. In denoising applications Kernel PCA provides

the basis for dimensionality reduction, prior to the so-called pre-image prob-

lem where denoised feature space points are mapped back into input space.

This problem is inherently ill-posed due to the non-bijective feature space

mapping. We present a semi-supervised denoising scheme based on kernel

PCA and the pre-image problem, where class labels on a subset of the data

points are used to improve the denoising. Moreover, by warping the Re-

producing Kernel Hilbert Space (RKHS) we also account for the intrinsic

manifold structure yielding a Kernel PCA basis that also benefit from un-

labeled data points. Our two main contributions are; 1) A generalization

of Kernel PCA by incorporating a loss term, leading to an iterative algo-

rithm for finding orthonormal components biased by the class labels, and 2)

A fixed-point iteration for solving the pre-image problem based on a man-

ifold warped RKHS. We prove viablity of the proposed methods on both

Email address: tjha@imm.dtu.dk, +45 45253888 (Toke Jansen Hansen)
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synthetic data and images from The Amsterdam Library of Object Images

(Geusebroek et al., 2005).

Keywords: Semi-supervised denoising, kernel PCA, pre-image problem

1. Introduction1

In Principal Component Analysis (PCA) we seek an orthogonal basis that2

maximizes the explained variance of a data set. This basis can be found by3

computing eigenvectors of the centered covariance matrix, where the mag-4

nitude of an eigenvalue λi equals the amount of variance in the direction of5

the corresponding eigenvector vi, also denoted as the ithprincipal component.6

In data compression, data is represented by a subset of the principal com-7

ponents having the largest eigenvalues, thereby ensuring that we retain as8

much variance as possible, whereas in denoising applications we deliberately9

drop directions with small variance (Mika et al., 1999).10

When the data set contain nonlinear structures we cannot rely on linear11

PCA to provide a meaningful representation. Kernel PCA is the natural12

generalization of PCA, leveraging on the well known kernel trick to explain13

complicated nonlinear relations. We can think of the kernel PCA procedure14

as employing a function ϕ : X 7→ H that maps data from a DX -dimensional15

input space X to a DH-dimensional feature space H (possibly infinite dimen-16

sional), followed by performing linear PCA in H. In practice we do never17

carry out the explicit mapping, but instead exploit the kernel trick stating18

that inner products inH can be computed in terms of kernel evaluations in X ,19

i.e., k(xi,xj) = ϕ(xi)
Tϕ(xj). Hence, all algorithms that can be formulated20

solely in terms of inner products are applicable for the kernel trick, where the21

2
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function k(xi,xj) must fulfill Mercers condition, stating that Kij = k(xi,xj)22

must be a positive definite matrix. A popular choice of kernel function is the23

Gaussian, k(xi,xj) = exp(−γ‖xi−xj‖2), that has been successfully applied24

in both classification and denoising applications (Schölkopf et al., 1998).25

For denoising purposes, we are interested in estimating the inverse map-26

ping, ϕ−1, known as the pre-image problem. For the Gaussian kernel the27

implicit mapping defined by ϕ is non-bijective leading to the inherently ill-28

posed pre-image problem. The fixed-point iteration described by Mika et al.29

(1999), provides an efficient scheme for determining the pre-images for Gaus-30

sian kernels, building upon standard gradient descent methods.31

In this contribution we apply semi-supervised learning to construct a label32

informed kernel PCA basis. We achieve this, by extending the kernel PCA33

objective with a loss term and derive an efficient algorithm for computing an34

orthonormal basis biased towards a set of labeled training points. Further-35

more, we derive a fixed-point iteration for finding an approximate pre-image36

for the kernel function introduced by Sindhwani et al. (2005). This Graph37

based kernel warps the corresponding RKHS to account for the manifold38

structure imposed by both labeled and unlabeled data points. The common39

goal for these two methods is to exploit labeled data to determine a more40

descriptive manifold representation. I.e., when using a fixed number of com-41

ponents we claim to achieve ”better” denoised reconstructions than standard42

kernel PCA.43

1.1. Related work44

There is a vast literature on both kernel methods and semi-supervised45

learning, hence, for a general overview we refer to, e.g., Chapelle et al. (2006).46

3
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The pre-image problem was initially studied by Mika et al. (1999), who de-47

rived a fixed-point iteration for the Gaussian kernel. Bakir et al. (2004b) con-48

sidered the pre-image problem for undirected graphs, and suggested a scheme49

for reconstructing graphs from the RKHS representation. Later studies con-50

sidered regularization to make the pre-image problem more well behaved, see51

for instance Abrahamsen and Hansen (2011).52

Walder et al. (2010) introduced the notion of semi-supervised kernel PCA53

by including a loss term, and derived solutions for objectives based on both54

squared and logistic losses. In particular, the squared loss can be inter-55

preted as the Spectral Graph Transducer (SGT) by Joachims (2003), when56

the RKHS is defined by a graph based regularizer. In terms of the objective57

both Walder et al. (2010) and Joachims (2003) consider variations of a con-58

strained eigenvalue problem and rely on a neat result by Gander et al. (1989)59

for a unique closed-form solution.60

Another way of incorporating label information was introduced by Sind-

hwani et al. (2005) through the idea of warping the RKHS to account for the

manifold structure imposed by both labeled and unlabeled data points, and

derived the kernel

k̃(x,y) = k(x,y)− k>x (I +LK)−1Lky (1)

where ky = [k(y,x1), . . . , k(y,xN)]> andL is the combinatorial graph Lapla-61

cian, defined by L = D − K, where D is a diagonal matrix with Dii =62

∑N
i=1Kij. In the remainder of this paper, we will denote the above kernel63

function as the Graph kernel.64

Our work can be considered extensions of Walder et al. (2010) and Joachims65

(2003), in that we generalize the objective with an orthogonality constraint66

4
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to enable the construction of more than one orthogonal basis vectors. Fur-67

thermore, we derive a fixed-point iteration for the pre-image problem based68

on the Graph kernel by Sindhwani et al. (2005), that directly relates to the69

SGT. However, we emphasize that generalizing the semi-supervised kernel70

PCA objective to allow for an arbitrary number orthogonal components is71

relevant, along the same line as extracting more than a single kernel PCA72

component when higher dimensional representations are needed to describe73

the signal manifold.74

2. Methods75

The remainder of this section will be outlined as follows. In Section 2.176

we extend the usual kernel PCA objective with a squared loss term, similar77

to the work of Walder et al. (2010), and develop a scheme for finding a78

semi-supervised kernel PCA basis of arbitrary dimensionality. In Section79

2.2 we leverage on the ideas of Sindhwani et al. (2005) and apply them in80

the context of the pre-image problem, by deriving a fixed-point iteration for81

Graph kernel.82

2.1. Semi-supervised kernel PCA83

In semi-supervised kernel PCA we incorporate knowledge of the class84

labels on a subset of the data points. In this section we generalize the result85

of Walder et al. (2010) to account for multiple orthonormal components,86

thereby allowing us to compute a kernel PCA basis where the nth direction87

is biased towards training labels with the constraint of being perpendicular88

to the previous n− 1 components.89

5
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Figure 1 shows the original kernel PCA objective together with our modi-90

fication that incorporates a least squares loss term in the form of an additional91

constraint. Note that we are explicit about the kernel PCA components be-92

ing perpendicular in both the original objective and our modification, since93

in the latter case this constraint must be handled by an explicit projection94

onto the null space of previous components.95

Kernel PCA

max
fn∈H

N∑

i=1

(
fn(xi)−

1

N

N∑

j=1

fn(xj)

)2

s.t ‖fn‖2H = 1

n−1∑

i=1

〈fn, fi〉2H = 0

Semi-supervised kernel PCA

max
fn∈H

N∑

i=1

(
fn(xi)−

1

N

N∑

j=1

fn(xj)

)2

s.t ‖fn‖2H = 1

n−1∑

i=1

〈fn, fi〉2H = 0

∑

i∈L
(fn(xi)− yi)2 ≤ ω

Figure 1: Left: The usual kernel PCA objective. Right: Our modified kernel PCA objec-

tive incorporating a least squares loss term. L is the set of labeled training data and ω

determines the allowed derivation from the true labels.

For the original kernel PCA objective we can apply the representer theo-

rem f ?(·) =
∑N

i=1 α
?
i k(xi, ·) and form the derivative with respect to α of the

Lagrangian, leading to the following generalized eigenvalue problem

Kα = λ(K>K −K>ENK)α, (2)

where EN is a matrix of size N with entries 1
N

.96

To solve the extended semi-supervised objective efficiently we rewrite it

in a similar manner as in Walder et al. (2010), where we minimize the norm

6
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together with the squared loss term while keeping the variance fixed.

minimize
fn∈H

‖fn‖2H + c
∑

i∈L
(fn(xi)− yi)2 (3)

s.t
N∑

i=1

(
fn(xi)−

1

N

N∑

j=1

fn(xj)

)2

= s2 (4)

n−1∑

i=1

〈fn, fi〉2H = 0 (5)

The main reason for the above formulation is that the linear part of the

squared loss term makes the relationship between s and f ? non-trivial, but

in this constellation we can control the relative importance of the respective

terms via the parameters c and s2. Applying the representer theorem yields

minimize
αn∈RN

α>nKαn + c‖KLαn − t‖2 (6)

s.t α>n (KK −KENK)αn = s2 (7)

n−1∑

i=1

(α>nKαi)
2 = 0 (8)

where t ∈ R|L| is a sub-vector of y that only takes indices L, and likewise

does KL denote the sub-matrix of K by taking rows L. To account for

the orthogonality constraint in Equation (8) we apply a projection operator

on αn, forcing the solution to be in the null space of previous solutions,

see for instance Golub (1973). Let A = [α1, . . . ,αn−1] be the previous

components, then the S = Null(KAA>K) is an orthonormal basis of size

N × (N − n + 1) for the null space of KA obtained from a singular value

decomposition (SVD). Hence, by projectin Sαn, the Lagrangian of the semi-

supervised kernel PCA problem in Equation (6)-(8) can be formulated as a

7
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(N − n+ 1)-dimensional problem

L = α>nS
>KSαn + c||KLSαn − t||2

+ λ(α>nS
>(KK −KENK)Sαn − s2) (9)

Setting the partial derivatives to zero gives

δL

δαn
= 2S>KSαn + 2cS>KLKLSαn

− 2cS>KLt+ 2λS>(KK −KENK)Sαn

= 0 (10)

δL

δλ
= α>nS

>(KK −KENK)Sαn − s2 = 0 (11)

Leading to the following system of coupled equations

S>(K + cKLKL)Sαn =

−λS>(KK −KENK)Sαn + cS>KLt (12)

α>nS
>(KK −KENK)Sαn = s2 (13)

Substituting C = S>(K + cKLKL)S, b = cS>KLt, and P = S>(KK −
KENK)S, these simplify to

Cαn = −λPαn + b (14)

α>nPαn = s2 (15)

The first equation leads to

αn = (C + λP )−1b (16)

8
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To saturate the second equation we can make use of the ideas in Gander et al.

(1989), stating that λ should equal the smallest eigenvalue of the following

generalized eigenvalue problem


 C −P
− 1

s2
bb> C




γ
η


 = λ


P 0

0 P




γ
η


 (17)

Typically this system is badly conditioned, so in practical applications we97

must solve this by other means. For λ < δ where δ is the smallest eigenvalue98

of the generalized eigenvalue problem Cx = δPx, the solution will be unique99

if and only if the secular equation α>nPαn − s2 = 0 can be satisfied. Since100

the secular equation is strictly increasing for λ ∈] − ∞, δ), we can instead101

perform a binary search in this range, in order to saturate α>nPαn = s2 with102

a sufficiently high precision. For more details we refer to Walder et al. (2010)103

and Gander et al. (1989).104

2.2. The pre-image problem105

Given a basis parameterized by a set of α’s determined by either stan-

dard kernel PCA or semi-supervised kernel PCA as described in the previous

section, we are now interested in projecting a ϕ-mapped test point onto a

principal subspace. For denoising applications we are interested in the pro-

jection onto the signal manifold, defined as a subspace of the RKHS spanned

by the leading principal components. From the Representer Theorem, the

projection of a feature space mapped test point onto the n’th principal com-

ponent is

βn(x) =
N∑

i=1

αnikc(x,xi) (18)

9
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where kc is the centered kernel. The projection of ϕ(x) onto the subspace

spanned by the first q components will be denoted Pqϕ(x) and are given by

Pqϕ(x) =

q∑

n=1

βn

N∑

i=1

αniϕc(xi) + ϕ̄ (19)

where ϕ̄ = 1
N

∑N
i=1 ϕ(xi) is the mean of the ϕ-mapped data points and106

ϕc(xi) = ϕ(xi) − ϕ̄ is the centered feature space mapping of x (Schölkopf107

et al., 1998).108

For denoising purposes it is of interest to reconstruct a data point in input109

space that corresponds to a specific linearly denoised point in feature space,110

hence, applying the inverse map of ϕ. Thus, we are interested in finding a111

point z ∈ X such that ϕ(z) = Pqϕ(x) and we will call z the pre-image of112

Pqϕ(x).113

The standard pre-image problem of reconstructing kernel PCA projec-114

tions have been faced in a variety of ways, most of which are limited to a115

specific choice of kernel embedding (see e.g., Mika et al. (1999); Kwok and116

Tsang (2003); Dambreville et al. (2006); Bakir et al. (2004a)).117

We follow the original work by Mika et al. (1999) and relax the problem

to that of finding an approximate pre-image, i.e., a point in input space

which maps into a point in feature space ”as close as possible” to Pqϕ(x).

To implement this search we seek to minimize the distance in the RKHS

between ϕ(z) and Pqϕ(x) with respect to z. Thus, we use a quadratic

objective function, which can be simplified as

ρ = ||ϕ(z)− Pqϕ(x)||2

= k(z, z)− 2
N∑

n=1

ξnk(z,xn) + Ω (20)

10
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where all the z-independent terms are collected in Ω, and ξn = ξ̃n + 1
N

(1 −118

∑N
j=1 ξ̃j), with ξ̃n =

∑q
i=1 βiαin.119

In extrema, the derivative with respect to z is zero, which leads to the

following fixed-point iteration for Gaussian kernels (Mika et al., 1999)

zt+1 =

∑N
n=1 ξn exp(−γ||zt − xn||2)xn∑N
n=1 ξn exp(−γ||zt − xn||2)

=
[ξ ◦ kzt ]>X
ξ>kzt

(21)

The cost in Equation (20) may be highly multi modal, leading to a nonlinear120

optimization problem, and hence the fixed-point iteration scheme can suffer121

from convergence to local minima. This typically implies sensitivity to the122

initial point z and can lead to instability of the denoising solution, see e.g.,123

Abrahamsen and Hansen (2011).124

Similarly, we now seek a fixed-point iteration for determining the pre-125

image when using the Graph kernel, k̃, as defined in Equation (1). When126

updating the pre-image estimate we will for simplicity assume that the pre-127

image itself is not part of K. Thereby, we avoid the inversion of (I+LK)−1128

at every iteration that scales cubically. The effects of this relaxation will be129

reduced if the manifold is well defined by the training samples. By letting130

M := (I + LK)−1L, the Graph kernel simplifies to k̃(x,y) = k(x,y) −131

k>xMky.132

We now expand the z dependent terms of the cost function in Eq. (20)

11
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for this kernel

ρ = k̃(z, z)− 2
N∑

n=1

ξnk̃(z, sn) (22)

= exp(−γ||z − z||2)

−
N∑

i,j=1

exp(−γ||z − si||2)Mij exp(−γ||z − sj||2)

− 2
[ N∑

n=1

ξn
[

exp(−γ||z − sn||2)−

N∑

i,j=1

exp(−γ||z − si||2)Mij exp(−γ||sn − sj||2)
]]

(23)

Again the minima of Equation (23) are among points in which the derivative

with respect to z is zero

N∑

i,j=1

[
Mij(2z − si − sj) exp(−γ(||z − si||2 + ||z − sj||2))

−
[ N∑

n=1

ξn
[
− 2(z − sn) exp(−γ||z − sn||2)

+
N∑

i,j=1

2Mij(z − si + sn − sj)·

exp(−γ(||z − si||2 + ||sn − sj||2))
]]]

= 0 (24)

Hence, we arrive at the following fixed-point iteration scheme for the Graph

kernel

zt+1 =

[
(M ◦ (kztk

>
zt − kzt(Kξ)> − (Kξ)k>zt))1

]>
X

(k>ztM + ξ> − 2ξ>KM)kzt

+
[M ◦ ξ ◦ kzt ]>X

(k>ztM + ξ> − 2ξ>KM)kzt
(25)

12
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3. Experimental results133

In the following we evaluate the performance of denoising by semi-supervised134

kernel PCA on two data sets. To get some insights on the properties of the135

proposed methods we design a two-dimensional two-class problem with non-136

linear-separable manifolds by two intertwined spirals. Furthermore, we test137

the performance on a subset of The Amsterdam Library of Object Images138

(ALOI) database of images (Geusebroek et al., 2005).139

3.1. Simulated data140

To investigate the denoising performance of the proposed methods we141

construct a simple two class two dimensional synthetic data set as shown in142

the left panel of Figure 2. The data consists of two noisy entangled spirals143

where a random subset of the observations have label information.144

For the experiments we retain 3 principal components and measure the145

quality of the denoising scheme by the mean squared error (MSE) of the146

reconstruction of a test set. Initially, we investigate the performance for147

varying signal-to-noise ratios by adding i.i.d. Gaussian noise to the data with148

zero mean and variance, σ2. For all experiments we fixed the parameters of149

the semi-supervised model to s = 10 and c = 2.150

We use 300 observations for training of which the label is known for 50151

randomly chosen points from each class. The test set contains 100 unla-152

beled test points. The kernel-parameter is fixed to γ = 5. The results are153

summarized in the right panel of Figure 2, where we show error bars on the154

MSE as a function of the standard deviation of the Gaussian noise. It is155

evident that the semi-supervised reconstructions outperform their unsuper-156
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Figure 2: The left panel ilustrates the synthetic data used for our experiments. Colored

samples are labeled whereas black samples are unlabeled. The right panel shows the mean

squared error as a function of the standard deviation of the added Gaussian noise, σ. The

green bars are kernel PCA with the Graph kernel, while the blue bars are semi-supervised

kernel PCA with Graph kernel. Similarly, the red bars are kernel PCA with the Gaussian

kernel, while the black bars are semi-supervised kernel PCA with the Gaussian kernel.

Incorporating label information by the Graph kernel is seen to outperform the Gaussian

kernel, and for both choices of kernel, semi-supervised learning is found to improve per-

formance.

vised counterparts for both the Gaussian and the Graph kernel for all noise157

levels. Furthermore, using the Graph kernel clearly leads to a better recon-158

struction measured by a lower MSE indicating a more descriptive manifold159

representation.160

In order to investigate how much we learn from the unlabeled versus la-161

beled samples we generate learning curves by fixing the noise level to σ = 0.15162

and vary the number of observations used to learn the manifold structure.163

We learn the manifold fully supervised (with all labels known), unsupervised164

(standard kernel PCA), and semi-supervised (1/3 of the labels known) and165
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compare the MSE of the pre-image reconstructions. The results are sum-166

marized in Figure 3, where the left panel shows the results achieved using167

the Gaussian kernel, and the right panel shows the results using the Graph168

kernel. As expected, for a fixed training set size fully supervised learning is169

preferable while completely unsupervised learning performs the worst. This170

tendency is less clear when only few samples are available. For the Graph171

kernel having 1/3 of the labels yields results comparable to knowing all la-172

bels. This is due to correct label propagation since the manifold assumption173

holds. It is important to notice how adding unlabeled samples significantly174

lower the MSE for both kernels. This is evident by comparing, e.g., the MSE175

for the supervised methods for N = 100 with the MSE achieved using the176

semi-supervised scheme for N = 300 (i.e, 100 labeled samples and 200 unla-177

beled). For both kernel functions adding unlabeled observations leads to a178

significant lower MSE.179

3.2. Amsterdam Library of Object Images180

The Amsterdam Library of Object Images is a collection of images of 1000181

objects that have been recorded for scientific purposes (Geusebroek et al.,182

2005). We consider a subset of 15 objects from the view point data set from183

this collection, where the view point is shifted in steps of 5◦ yielding a total of184

72 images of each object. We treat each object as a class and assume to have185

5 labeled samples (and 67 unlabeled) per class. Due to space constraints, we186

limit this section to a comparison between the unsupervised Gaussian kernel187

PCA approach and the semi-supervised Graph kernel PCA approach, as the188

two other combinations have shown to fall in-between the performance of the189

these two methodologies.190
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Figure 3: Illustrates the learning curves (mean squared error as a function of the training

set size) for the synthetic data set depicted in Figure 2. The left panel shows the learning

rates for the Gaussian kernel, while the right panel shows the learning rates for Graph

kernel. The red bars are usual kernel PCA, i.e., unsupervised. Green bars: supervised

kernel PCA, i.e., all training samples are labeled. Blue bars: semi-supervised kernel PCA

with 1/3 of the training samples are labeled.

We construct a denoising problem by randomly adding two images from191

the database. The intensity of one of the images will be half of the intensity192

of the other, and the goal is to reconstruct the dominant image. For the193

semi-supervised methods we assume that the class label of the test image194

is known. Knowing the label of the test sample is justified by the fact that195

we are not focusing on classification, but merely aiming to incorporate side196

information for improved denoising. In case the test label was unknown an197

initial classification step can be performed using the semi-supervised kernel198

PCA basis, since each leading eigenvector can be interpreted as an one-vs-rest199

classifier.200

Figure 4 shows examples of the results using our proposed methods. For201

all experiments, we retain q = 10 PC’s and for the semi-supervised model202
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Figure 4: Examples of denoised images form the ALOI database. The first row shows

the original test images that we seek to reconstruct, while the second row shows the

constructed noisy test images. Above each image in row 2-6 are shown the MSE with

respect to the original test image. The third and fourth row shows denoised images based

on respectively unsupervised Gaussian and semi-supervised Graph kernel PCA; for both

methods the kernel width has been fixed to γ = 0.0204 (leftmost point in Figure 5), and

both utilize q = 10 PC’s for the denosing task. The final two rows shows similar results

but these are based on a more nonlinear kernel, where the parameter was fixed to γ = 0.5.
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we set s = 10 and c = 2 as for the synthetic data. The top panel shows the203

original dominant test image, whereas the second panel shows the artificially204

constructed ”noisy” image. The remaining panels show the denoised recon-205

structions for two choices of γ using unsupervised Gaussian kernel PCA and206

semi-supervised Graph kernel PCA respectively. The MSE with respect to207

the original test image is given above each image. It is evident both visually208

and from the MSE that the semi-supervised approach yields better results in209

all cases and it is more robust to the choice of kernel width, and aligns bet-210

ter with the original image (note the slight rotations of the reconstructions).211

For the most linear choice of kernel as measured by the kernel width, using212

the unsupervised Gaussian kernel is seen to fail in all cases while the semi-213

supervised version reconstruct meaningful images. For the more non-linear214

embedding the two reconstructions visually appear to be similar, however in215

terms of the MSE the semi-supervised kernel PCA is found to still be slightly216

superior.217

Figure 5 shows the MSE as a function of the non-linearity of the kernel218

embedding. We find that a nearest neighbor reconstruction (large γ) is close219

to optimal measured by the MSE as seen in Figure 5. This can be explained220

by the fine angular sampling within each class and by the complex nature of221

the signal manifold relative to the low number of PC’s retained. However,222

we emphasize that the MSE for the Graph kernel has an significantly lower223

envelope than the other method, and that good results are obtained for a224

much broader range of kernel width parameters, making the Graph kernel225

easier to deploy in practice.226

For the unsupervised Gaussian kernel, the poor performance in the linear227
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Figure 5: Shows the mean squared error as a function of the kernel width using a varying

number of PCs to describe the manifold. Each point correspond to the MSE of one of

the images in Figure 4 while the solid lines are the mean across all images. By comparing

the right and left plots, it can be seen that the semi-supervised approach leads to better

performance across all values of γ and in particular in the very linear regime. For both

methods it is evident that the MSE is minimal for very large values of γ and hence very

non-linear kernel embeddings, thereby suggesting that the optimal reconstruction is close

a 1-nearest-neighbor approach.

regime can be explained as the consequence of the recovered leading prin-228

cipal components being unrelated to the denoising task of interest, thereby229

resulting in a high MSE. However, it should be noted that the task related230

components are still ”hidden” in the span of the eigenvectors of the kernel231

matrix as long as it is not rank deficient. The key to the success of the semi-232

supervised approach is that the labeled samples forces the leading principal233

components to align with the task relevant directions independently of the234

choice γ. Thereby making this approach much less sensitive to the kernel235

width.236
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4. Conclusions237

We have proposed two variants for incorporating label information into238

kernel PCA denoising. By extending the work of Walder et al. (2010) we239

derived an iterative scheme for finding more than one basis vector, leading to240

a semi-supervised kernel PCA framework that extends to a multidimensional241

orthonormal basis biased towards the labeled data.242

Additionally, we derived a fixed-point iteration for the pre-image problem243

for the Graph kernel introduced by Sindhwani et al. (2005) as another way244

of including label information in the kernel PCA denoising scheme.245

Viability was proven on both simulated data and images from the ALOI246

database. The experiments validated that semi-supervised learning can yield247

a more descriptive representation of the signal manifold in kernel PCA, and248

thereby improve the denoising performance compared to classical unsuper-249

vised kernel PCA denoising.250
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Abstract

In many applications, one has side information, e.g., labels that are provided in a semi-
supervised manner, about a specific target region of a large data set, and one wants to perform
machine learning and data analysis tasks “nearby” that prespecified target region. For example,
one might be interested in the clustering structure of a data graph near a prespecified “seed set”
of nodes, or one might be interested in finding partitions in an image that are near a prespecified
“ground truth” set of pixels. Locally-biased problems of this sort are particularly challenging for
popular eigenvector-based machine learning and data analysis tools. At root, the reason is that
eigenvectors are inherently global quantities, thus limiting the applicability of eigenvector-based
methods in situations where one is interested in very local properties of the data.

In this paper, we address this issue by providing a methodology to construct semi-supervised
eigenvectors of a graph Laplacian, and we illustrate how these locally-biased eigenvectors can
be used to perform locally-biased machine learning. These semi-supervised eigenvectors cap-
ture successively-orthogonalized directions of maximum variance, conditioned on being well-
correlated with an input seed set of nodes that is assumed to be provided in a semi-supervised
manner. We show that these semi-supervised eigenvectors can be computed quickly as the so-
lution to a system of linear equations; and we also describe several variants of our basic method
that have improved scaling properties. We provide several empirical examples demonstrating
how these semi-supervised eigenvectors can be used to perform locally-biased learning; and we
discuss the relationship between our results and recent machine learning algorithms that use
global eigenvectors of the graph Laplacian.

Keywords: Semi-supervised eigenvectors, spectral, local, kernel, machine learning

1 Introduction

In many applications, one has information about a specific target region of a large data set, and
one wants to perform common machine learning and data analysis tasks “nearby” the pre-specified
target region. In such situations, eigenvector-based methods such as those that have been popular
in machine learning in recent years tend to have serious difficulties. At root, the reason is that
eigenvectors, e.g., of Laplacian matrices of data graphs, are inherently global quantities, and thus
they might not be sensitive to very local information. Motivated by this, we consider the problem of
finding a set of locally-biased vectors—we will call them semi-supervised eigenvectors—that inherit
many of the “nice” properties that the leading nontrivial global eigenvectors of a graph Laplacian

∗A preliminary version of parts of this paper appeared in the Proceedings of the 2012 NIPS Conference [24].
†Department of Applied Mathematics and Computer Science, Technical University of Denmark, tjha@imm.dtu.dk.
‡Department of Mathematics, Stanford University. mmahoney@cs.stanford.edu.
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have—for example, that capture “slowly varying” modes in the data, that are fairly-efficiently
computable, that can be used for common machine learning and data analysis tasks such as kernel-
based and semi-supervised learning, etc.—so that we can perform what we will call locally-biased
machine learning in a principled manner.

1.1 Locally-biased Learning

By locally-biased machine learning, we mean that we have a data set, e.g., represented as a graph,
and that we have information, e.g., given in a semi-supervised manner, that certain “regions” of the
data graph are of particular interest. In this case, we may want to focus predominantly on those
regions and perform data analysis and machine learning, e.g., classification, clustering, ranking,
etc., that is “biased toward” those pre-specified regions. Examples of this include the following.

• Locally-biased community identification. In social and information network analysis, one
might have a small “seed set” of nodes that belong to a cluster or community of interest [2, 35];
in this case, one might want to perform link or edge prediction, or one might want to “refine”
the seed set in order to find other nearby members.

• Locally-biased image segmentation. In computer vision, one might have a large corpus of
images along with a “ground truth” set of pixels as provided by a face detection algorithm [18,
37, 38]; in this case, one might want to segment entire heads from the background for all the
images in the corpus in an automated manner.

• Locally-biased neural connectivity analysis. In functional magnetic resonance imaging ap-
plications, one might have small sets of neurons that “fire” in response to some external
experimental stimulus [42]; in this case, one might want to analyze the subsequent temporal
dynamics of stimulation of neurons that are “nearby,” either in terms of connectivity topology
or functional response, members of the original set.

In each of these examples, the data are modeled by a graph—which is either “given” from the ap-
plication domain or is “constructed” from feature vectors obtained from the application domain—
and one has information that can be viewed as semi-supervised in the sense that it consists of
exogeneously-specified “labels” for the nodes of the graph. In addition, there are typically a
relatively-small number of labels and one is interested in obtaining insight about the data graph
nearby those labels.

These examples present considerable challenges for standard global spectral techniques and
other traditional eigenvector-based methods. (Such eigenvector-based methods have received at-
tention in a wide range of machine learning and data analysis applications in recent years. They
have been useful, for example, in non-linear dimensionality reduction [3, 13]; in kernel-based ma-
chine learning [53]; in Nyström-based learning methods [65, 58]; spectral partitioning [50, 54, 41],
and so on.) At root, the reason is that eigenvectors are inherently global quantities, thus limiting
their applicability in situations where one is interested in very local properties of the data. That is,
very local information can be “washed out” and essentially invisible to these globally-optimal vec-
tors. For example, a sparse cut in a graph may be poorly correlated with the second eigenvector and
thus invisible to a method based only on eigenvector analysis. Similarly, if one has semi-supervised
information about a specific target region in the graph, as in the above examples, one might be in-
terested in finding clusters near this prespecified local region in a semi-supervised manner; but this
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local region might be essentially invisible to a method that uses only global eigenvectors. Finally,
one might be interested in using kernel-based methods to find “local correlations” or to regularize
with respect to a “local dimensionality” in the data, but this local information might be destroyed
in the process of constructing kernels with traditional kernel-based methods.

1.2 Semi-supervised Eigenvectors

In this paper, we provide a methodology to construct what we will call semi-supervised eigenvectors
of a graph Laplacian; and we illustrate how these locally-biased eigenvectors (locally-biased in the
sense that they will be well-correlated with the input seed set of nodes or that most of their “mass”
will be on nodes that are “near” that seed set) inherit many of the properties that make the leading
nontrivial global eigenvectors of the graph Laplacian so useful in applications. In order to make this
method useful, there should ideally be a “knob” that allows us to interpolate between very local and
the usual global eigenvectors, depending on the application at hand; we should be able to use these
vectors in common machine learning pipelines to perform common machine learning tasks; and
the intuitions that make the leading k nontrivial global eigenvectors of the graph Laplacian useful
should, to the extent possible, extend to the locally-biased setting. To achieve this, we will formulate
an optimization ansatz that is a variant of the usual global spectral graph partitioning optimization
problem that includes a natural locality constraint as well as an orthogonality constraint, and we
will iteratively solve this problem.

In more detail, assume that we are given as input a (possibly weighted) data graph G = (V,E),
an indicator vector s of a small “seed set” of nodes, a correlation parameter κ ∈ [0, 1], and a
positive integer k. Then, informally, we would like to construct k vectors that satisfy the following
bicriteria: first, each of these k vectors is well-correlated with the input seed set; and second,
those k vectors describe successively-orthogonalized directions of maximum variance, in a manner
analogous to the leading k nontrivial global eigenvectors of the graph Laplacian. (We emphasize
that the seed set s of nodes, the integer k, and the correlation parameter κ are part of the input;
and thus they should be thought of as being available in a semi-supervised manner.) Somewhat
more formally, our main algorithm, Algorithm 1 in Section 3, returns as output k semi-supervised
eigenvectors; each of these is the solution to an optimization problem of the form of Generalized
LocalSpectral in Figure 1, and thus each “captures” (say) κ/k of the correlation with the seed
set. Our main theoretical result, described in Section 3, states that these vectors define successively-
orthogonalized directions of maximum variance, conditioned on being κ/k-well-correlated with an
input seed set s; and that each of these k semi-supervised eigenvectors can be computed quickly
as the solution to a system of linear equations. To extend the practical applicability of this basic
result, we will in Section 4 describe several heuristic extensions of our basic framework that will
make it easier to apply the method of semi-supervised eigenvectors at larger size scales. These
extensions involve using the so-called Nyström method, computing one locally-biased eigenvector
and iteratively “peelling off” successive components of interest, as well as performing random walks
that are “local” in a stronger sense than our basic method considers.

Finally, in order to illustrate how the method of semi-supervised eigenvectors performs in prac-
tice, we also provide a detailed empirical evaluation using a wide range of both small-scale as well as
larger-scale data. In particular, we consider two small data sets, one consisting of graphs generated
from a popular network generation model and the other data drawn from Congressional roll call
voting patterns, in order to illustrate the basic method; we consider graphs constructed from the
widely-studied MNIST digit data, in order to illustrate how the method performs on a data set
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that is widely-known in the machine learning community; and we consider two larger data sets, one
consisting of Internet graphs and the other consisting of graphs constructed from fMRI medical
imaging, in order to illustrate how the method performs in larger-scale applications.

1.3 Related Work

From a technical perspective, the work most closely related to ours is the recently-developed “local
spectral method” of Mahoney et al. [37]. The original algorithm of Mahoney et al. [37] introduced
a methodology to construct a locally-biased version of the leading nontrivial eigenvector of a graph
Laplacian and also showed (theoretically and empirically in a social network analysis application)
that that the resulting vector could be used to partition a graph in a locally-biased manner. From
this perspective, our extension incorporates a natural orthogonality constraint that successive vec-
tors need to be orthogonal to previous vectors. Subsequent to the work of [37], [38] applied the
algorithm of [37] to to the problem of finding locally-biased cuts in a computer vision application.
Similar ideas have also been applied somewhat differently. For example, [2] use locally-biased ran-
dom walks, e.g., short random walks starting from a small seed set of nodes, to find clusters and
communities in graphs arising in Internet advertising applications; [35] used locally-biased random
walks to characterize the local and global clustering structure of a wide range of social and infor-
mation networks; and [29] developed the Spectral Graph Transducer, which performs transductive
learning via spectral graph partitioning.

The objectives in both [29] and [37] are constrained eigenvalue problems that can be solved by
finding the smallest eigenvalue of an asymmetric generalized eigenvalue problem; but in practice this
procedure can be highly unstable [20]. The algorithm of [29] reduces the instabilities by performing
all calculations in a subspace spanned by the d smallest eigenvectors of the graph Laplacian; whereas
the algorithm of [37] performs a binary search, exploiting the monotonic relationship between
a control parameter and the corresponding Lagrange multiplier. The form of our optimization
problem also has similarities to other work in computer vision applications: e.g., [66] and [18] find
good conductance clusters subject to a set of linear constraints.

In parallel, [3] and a large body of subsequent work including [13] used (the usual global)
eigenvectors of the graph Laplacian to perform dimensionality reduction and data representation,
in unsupervised and semi-supervised settings [59, 51, 67]. Typically, these methods construct some
sort of local neighborhood structure around each data point, and they optimize some sort of global
objective function to go “from local to global” [52]. In some cases, these methods can be understood
in terms of data drawn from an hypothesized manifold [5], and more generally they have proven
useful for denoising and learning in semi-supervised settings [4, 6]. These methods are based on
spectral graph theory [12]; and thus many of these methods have a natural interpretation in terms
of diffusions and kernel-based learning [53, 31, 57, 11, 23]. These interpretations are important for
the usefulness of these global eigenvector methods in a wide range of applications. As we will see,
many (but not all) of these interpretations can be ported to the “local” setting, an observation that
was made previously in a different context [14].

Many of these diffusion-based spectral methods also have a natural interpretation in terms
of spectral ranking [61]. “Topic sensitive” and “personalized” versions of these spectral ranking
methods have also been studied [26, 28]; and these were the motivation for diffusion-based methods
to find locally-biased clusters in large graphs [55, 1, 37]. Our optimization ansatz is a generalization
of the linear equation formulation of the PageRank procedure [43, 37, 61]; and its solution involves
Laplacian-based linear equation solving, which has been suggested as a primitive is of more general
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interest in large-scale data analysis [60].

1.4 Outline of the Paper

In the next section, Section 2, we will provide notation and some background and discuss related
work. Then, in Section 3 we will present our main algorithm and our main theoretical result
justifying the algorithm; and in Section 4 we will present several extensions of our basic method
that will help for certain larger-scale applications of the method of semi-supervised eigenvectors. In
Section 5, we present an empirical analysis, including both toy data to illustrate how the “knobs” of
our method work, as well as applications to realistic machine learning and data analysis problems;
and in Section 6 we present a brief discussion and conclustion.

2 Background and Notation

Let G = (V,E,w) be a connected undirected graph with n = |V | vertices and m = |E| edges,
in which edge {i, j} has weight wij . For a set of vertices S ⊆ V in a graph, the volume of S is

vol(S)
def
=
∑

i∈S di, in which case the volume of the graph G is vol(G)
def
= vol(V ) = 2m. In the

following, AG ∈ RV×V will denote the adjacency matrix of G, while DG ∈ RV×V will denote the
diagonal degree matrix of G, i.e., DG(i, i) = di =

∑
{i,j}∈E wij , the weighted degree of vertex i.

The Laplacian of G is defined as LG
def
= DG−AG. (This is also called the combinatorial Laplacian,

in which case the normalized Laplacian of G is LG def
= D

−1/2
G LGD

−1/2
G .)

The Laplacian is the symmetric matrix having quadratic form xTLGx =
∑

ij∈E wij(xi − xj)2,
for x ∈ RV . This implies that LG is positive semidefinite and that the all-one vector 1 ∈ RV is
the eigenvector corresponding to the smallest eigenvalue 0. The generalized eigenvalues of LGx =
λiDGx are 0 = λ1 < λ2 ≤ · · · ≤ λN . We will use v2 to denote smallest non-trivial eigenvector, i.e.,
the eigenvector corresponding to λ2; v3 to denote the next eigenvector; and so on. We will overload
notation to use λ2(A) to denote the smallest non-zero generalized eigenvalue of A with respect to
DG. Finally, for a matrix A, let A+ denote its (uniquely defined) Moore-Penrose pseudoinverse. For
two vectors x, y ∈ Rn, and the degree matrix DG for a graph G, we define the degree-weighted inner

product as xTDGy
def
=
∑n

i=1 xiyidi. In particular, if a vector x has unit norm, then xTDGx = 1.
Given a subset of vertices S ⊆ V , we denote by 1S the indicator vector of S in RV and by 1 the
vector in RV having all entries set equal to 1.

3 Optimization Approach to Semi-supervised Eigenvectors

In this section, we provide our main technical results: a motivation and statement of our optimiza-
tion ansatz; our main algorithm for computing semi-supervised eigenvectors; and an analysis that
our algorithm computes solutions of our optimization ansatz.

3.1 Motivation for the Program

Recall the optimization perspective on how one computes the leading nontrivial global eigenvectors
of the normalized Laplacian LG or, equivalently, of the leading nontrivial generalized eigenvectors
of LG. The first nontrivial eigenvector v2 is the solution to the problem GlobalSpectral that
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GlobalSpectral

minimize xTLGx

s.t xTDGx = 1

xTDG1 = 0

LocalSpectral

minimize xTLGx

s.t xTDGx = 1

xTDG1 = 0

xTDGs ≥
√
κ

Generalized
LocalSpectral

minimize xTLGx

s.t xTDGx = 1

xTDGX = 0

xTDGs ≥
√
κ

Figure 1: Left: The usual GlobalSpectral partitioning optimization problem; the vector achiev-
ing the optimal solution is v2, the leading nontrivial generalized eigenvector of LG with respect to
DG. Middle: The LocalSpectral optimization problem, which was originally introduced in [37];
for κ = 0, this coincides with the usual global spectral objective, while for κ > 0, this produces
solutions that are biased toward the seed vector s. Right: The Generalized LocalSpectral
optimization problem we introduce that includes both the locality constraint and a more general
orthogonality constraint. Our main algorithm for computing semi-supervised eigenvectors will it-
eratively compute the solution to Generalized LocalSpectral for a sequence of X matrices.
In all three cases, the optimization variable is x ∈ Rn.

is presented on the left of Figure 1. Equivalently, although GlobalSpectral is a non-convex
optimization problem, strong duality holds for it and it’s solution may be computed as v2, the
leading nontrivial generalized eigenvector of LG. (In this case, the value of the objective is λ2, and
global spectral partitioning involves then doing a “sweep cut” over this vector and appealing to
Cheeger’s inequality.) The next eigenvector v3 is the solution to GlobalSpectral, augmented
with the constraint that xTDGv2 = 0; and in general the tth generalized eigenvector of LG is
the solution to GlobalSpectral, augmented with the constraints that xTDGvi = 0, for i ∈
{2, . . . , t − 1}. Clearly, this set of constraints and the constraint xTDG1 = 0 can be written as
xTDGX = 0, where 0 is a (t − 1)-dimensional all-zeros vector, and where X is an n × (t − 1)
orthogonal matrix whose ith column equals vi (where v1 = 1, the all-ones vector, is the first column
of X).

Also presented in Figure 1 is LocalSpectral, which includes a constraint that the solution be
well-correlated with an input seed set. This LocalSpectral optimization problem was introduced
in [37], where it was shown that the solution to LocalSpectral may be interpreted as a locally-
biased version of the second eigenvector of the Laplacian.1 In particular, although LocalSpectral
is not convex, it’s solution can be computed efficiently as the solution to a set of linear equations
that generalize the popular Personalized PageRank procedure; in addition, by performing a sweep
cut and appealing to a variant of Cheeger’s inequality, this locally-biased eigenvector can be used
to perform locally-biased spectral graph partitioning [37].

1In [37], the locality constraint was actually a quadratic constraint, and thus a somewhat involved analysis was
required. In retrospect, given the form of the solution, and in light of the discussion below, it is clear that the
quadratic part was not “real,” and thus we present this simpler form of LocalSpectral here. This should make
the connections with our Generalized LocalSpectral objective more immediate.
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3.2 Our Main Algorithm

We will formulate the problem of computing semi-supervised vectors in terms of a primitive op-
timization problem of independent interest. Consider the Generalized LocalSpectral opti-
mization problem, as shown in Figure 1. For this problem, we are given a graph G = (V,E), with
associated Laplacian matrix LG and diagonal degree matrix DG; an indicator vector s of a small
“seed set” of nodes; a correlation parameter κ ∈ [0, 1]; and an n × ν constraint matrix X that
may be assumed to be an orthogonal matrix. We will assume (without loss of generality) that s
is properly normalized and orthogonalized so that sTDGs = 1 and sTDG1 = 0. While s can be a
general unit vector orthogonal to 1, it may be helpful to think of s as the indicator vector of one
or more vertices in V , corresponding to the target region of the graph.

In words, the problem Generalized LocalSpectral asks us to find a vector x ∈ Rn that
minimizes the variance xTLGx subject to several constraints: that x is unit length; that x is
orthogonal to the span of X; and that x is

√
κ-well-correlated with the input seed set vector

s. In our application of Generalized LocalSpectral to the computation of semi-supervised
eigenvectors, we will iteratively compute the solution to Generalized LocalSpectral, updating
X to contain the already-computed semi-supervised eigenvectors. That is, to compute the first semi-
supervised eigenvector, we let X = 1, i.e., the n-dimensional all-ones vector, which is the trivial
eigenvector LG, in which case X is an n×1 matrix; and to compute each subsequent semi-supervised
eigenvector, we let the columns of X consist of 1 and the other semi-supervised eigenvectors found
in each of the previous iterations.

To show that Generalized LocalSpectral is efficiently-solvable, note that it is a quadratic
program with only one quadratic constraint and one linear equality constraint.2 In order to remove
the equality constraint, which will simplify the problem, let’s change variables by defining the
n× (n− ν) matrix F as

{x : XTDGx = 0} = {x : x = Fx̂}.
That is, F is a span for the null space of XT ; and we will take F to be an orthogonal matrix. In
particular, this implies that F TF is an (n− ν)× (n− ν) Identity and FF T is an n× n Projection.
Then, with respect to the x̂ variable, Generalized LocalSpectral becomes

minimize
y

x̂TF TLGFy

subject to x̂TF TDGFx̂ = 1,

x̂TF TDGs ≥
√
κ.

(1)

In terms of the variable x, the solution to this optimization problem is of the form

x∗ = cF
(
F T (LG − γDG)F

)+
F TDGs

= c
(
FF T (LG − γDG)FF T

)+
DGs, (2)

for a normalization constant c ∈ (0,∞) and for some γ that depends on
√
κ. The second line

follows from the first since F is an n× (n− ν) orthogonal matrix. This so-called “S-proceudre” is
described in greater detail in Chapter 5 and Appendix B of [10]. The significance of this is that,

2Alternatively, note that it is an example of an constrained eigenvalue problem [20]. We thank the numerous
individuals who pointed this out to us subsequent to our dissemination of the original version of this paper.
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although it is a non-convex optimization problem, the Generalized LocalSpectral problem
can be solved by solving a linear equation, in the form given in Eqn. (2).

Returning to our problem of computing semi-supervised eigenvectors, recall that, in addition to
the input for the Generalized LocalSpectral problem, we need to specify a positive integer
k that indicates the number of vectors to be computed. In the simplest case, we would assume
that we would like the correlation to be “evenly distributed” across all k vectors, in which case
we will require that each vector is

√
κ/k-well-correlated with the input seed set vector s; but this

assumption can easily be relaxed, and thus Algorithm 1 is formulated more generally as taking a
k-dimensional vector κ = [κ1, . . . , κk]

T of correlation coefficients as input.
To compute the first semi-supervised eigenvector, we will let X = 1, the all-ones vector, in

which case the first nontrivial semi-supervised eigenvector is

x∗1 = c (LG − γ1DG)+DGs, (3)

where γ1 is chosen to saturate the part of the correlation constraint along the first direction. (Note
that the projections FF T from Eqn. (2) are not present in Eqn. (3) since by design sTDG1 = 0.)
That is, to find the correct setting of γ1, it suffices to perform a binary search over the possible
values of γ1 in the interval (−vol(G), λ2(G)) until the correlation constraint is satisfied, that is,
until (sTDGx1)

2 is sufficiently close to κ1.
To compute subsequent semi-supervised eigenvectors, i.e., at steps t = 2, . . . , k if one ultimately

wants a total of k semi-supervised eigenvectors, then one lets X be the n× t matrix of the form

X = [1, x∗1, . . . , x
∗
t−1], (4)

where x∗1, . . . , x
∗
t−1 are successive semi-supervised eigenvectors; and the projection matrix FF T is

of the form
FF T = I −DGX(XTDGDGX)−1XTDG,

due to the the degree-weighted inner norm.
Then, by Eqn. (2), the tth semi-supervised eigenvector takes the form

x∗t = c
(
FF T (LG − γtDG)FF T

)+
DGs.

In more detail, Algorithm 1 presents pseudo-code for our main algorithm for computing semi-
supervised eigenvectors. The algorithm takes as input a graph G = (V,E), a seed set s (which could
be a general vector s ∈ Rn, subject for simplicity to the normalization constraints sTDG1 = 0 and
sTDGs = 1, but which is most easily thought of as an indicator vector for the local “seed set” of
nodes), a number k of vectors we want to compute, and a vector of locality parameters (κ1, . . . , κk),
where κi ∈ [0, 1] and

∑k
i=1 κi = 1 (where, in the simplest case, one could choose κi = κ/k, ∀i, for

some κ ∈ [0, 1]). Several things should be noted about our implementation of our main algorithm.
First, as we will discuss in more detail below, we compute the projection matrix FF T only implicitly.
Second, a näıve approach to Eqn. (2) does not immediately lead to an efficient solution, since DGs
will not be in the span of (FF T (LG − γDG)FF T ), thus leading to a large residual. By changing
variables so that x = FF T y, the solution becomes

x∗t ∝ FF T (FF T (LG − γtDG)FF T )+FF TDGs.

Since FF T is a projection matrix, this expression is equivalent to

x∗t ∝
(
FF T (LG − γtDG)FF T

)+
FF TDGs. (5)
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Algorithm 1 Main algorithm to compute semi-supervised eigenvectors

Require: LG, DG, s, κ = [κ1, . . . , κk]
T , ε such that sTDG1 = 0, sTDGs = 1, κT 1 ≤ 1

1: X = [1]
2: for t = 1 to k do
3: FF T ← I −DGX(XTDGDGX)−1XTDG

4: > ← λ2 where FF TLGFF
T v2 = λ2FF

TDGFF
T v2

5: ⊥ ← −vol(G)
6: repeat
7: γt ← (⊥+>)/2 (Binary search over γt)
8: xt ← (FF T (LG − γtDG)FF T )+FF TDGs
9: Normalize xt such that xTt DGxt = 1

10: if (xTt DGs)
2 > κt then ⊥ ← γt else > ← γt end if

11: until ‖(xTt DGs)
2 − κt‖ ≤ ε or ‖(⊥+>)/2− γt‖ ≤ ε

12: Augment X with x∗t by letting X = [X,x∗t ].
13: end for

Third, regarding the solution xi, we exploit that FF T (LG − γiDG)FF T is an SPSD matrix, and
we apply the conjugate gradient method, rather than computing the explicit pseudoinverse. That
is, in the implementation we never explicitly represent the dense matrix FF T , but instead we
treat it as an operator and we simply evaluate the result of applying a vector to it on either side.
Fourth, we use that λ2 can never decrease (here we refer to λ2 as the smallest non-zero eigenvalue
of the modified matrix), so we only recalculate the upper bound for the binary search when an
iteration saturates without satisfying ‖(xTt DGs)

2 − κt‖ ≤ ε. Estimating the bound is critical for
the semi-supervised eigenvectors to be able to interpolate all the way to the global eigenvectors
of the graph, so in Section 3.4 we return to a discussion on efficient strategies for computing the
leading nontrivial eigenvalue of LG projected down onto the space perpendicular to the previously
computed solutions.

From this discussion, it should be clear that Algorithm 1 solves the semi-supervised eigenvector
problem by solving in an iterative manner optimization problems of the form of Generalized
LocalSpectral; and that the running time of Algorithm 1 boils down to solving a sequence of
linear equations.

3.3 Discussion of Our Main Algorithm

There is a natural “regularization” interpretation underlying our construction of semi-supervised
eigenvectors. To see this, recall that the first step of our algorithm can be computed as the solution
of a set of linear equations

x∗ = c (LG − γDG)+DGs, (6)

for some normalization constant c and some γ that can be determined by a binary search over
(−vol(G), λ2(G)); and that subsequent steps compute the analogous quantity, subject to addi-
tional constraints that the solution be orthogonal to the previously-computed vectors. The quan-
tity (LG − γDG)+ can be interpreted as a “regularized” version of the pseudoinverse of L, where
γ ∈ (−∞, λ2(G)) serves as the regularization parameter. This interpretation has recently been
made precise: [36] show that running a PageRank computation—as well as running other diffusion-
based procedures—exactly optimizes a regularized version of the GlobalSpectral (or Local-
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Spectral, depending on the input seed vector) problem; and [47] provide a precise statistical
framework justifying this.

The usual interpretation of PageRank involves “random walkers” who uniformly (or non-
uniformly, in the case of Personalized PageRank) “teleport” with a probability α ∈ (0, 1). As
described in [37], choosing α ∈ (0, 1) corresponds to choosing γ ∈ (−∞, 0). By rearranging Eqn. (6)
as

x∗ = c ((DG −AG)− γDG)+DGs

=
c

1− γ

(
DG −

1

1− γAG
)+

DGs

=
c

1− γD
−1
G

(
I − 1

1− γAGD
−1
G

)+

DGs,

we recognize AGD
−1
G as the standard random walk matrix, and it becomes immediate that the

solution based on random walkers,

x∗ =
c

1− γD
−1
G

(
I +

∞∑

i=1

(
1

1− γD
−1
G AG

)i)
DGs,

is divergent for γ > 0. Since γ = λ2(G) corresponds to no regularization and γ → −∞ corresponds
to heavy regularization, viewing this problem in terms of solving a linear equation is formally more
powerful than viewing it in terms of random walkers. That is, while all possible values of the reg-
ularization parameter—and in particular the (positive) value λ2(·)—are achievable algorithmically
by solving a linear equation, only values in (−∞, 0) are achievable by running a PageRank diffu-
sion. In particular, if the optimal value of γ that saturates the κ-dependent locality constraint is
negative, then running the PageRank diffusion could find it; otherwise, the “best” one could do will
still not saturate the locality constraint, in which case some of the intended correlation is “unused.”

An important technical and practical point has to do with the precise manner in which the
ith vector is well-correlated with the seed set s. In our formulation, this is captured by a locality
parameter γi that is chosen (via a binary search) to “saturate” the correlation condition, i.e., so that
the ith vector is κ/k-well-correlated with the input seed set. As a general rule, successive γis need to
be chosen that successive vectors are less well-localized around the input seed set. (Alternatively,
depending on the application, one could choose this parameter so that successive γis are equal; but
this will involve “sacrificing” some amount of the κ/k correlation, which will lead to the last or
last few eigenvectors being very poorly-correlated with the input seed set. These tradeoffs will be
described in more detail below.) Informally, if s is a seed set consisting of a small number of nodes
that are “nearby” each other, then to maintain a given amount of correlation, we must “view” the
graph over larger and larger size scales as we compute more and more semi-supervised eigenvectors.
More formally, we need to let the value of the regularization parameter γ at the ith round, we call it
γi, vary for each i ∈ {1, . . . , k}. That is, γi is not pre-specified, but it is chosen via a binary search
over the region (−vol(G), λ2(·)), where λ2(·) is the leading nontrivial eigenvalue of LG projected
down onto the space perpendicular to the previously-computed vectors (which is in general larger
than λ2(G)). In this sense, our semi-supervised eigenvectors are both “locally-biased”, in a manner
that depends on the input seed vector and correlation parameter, and “regularized”, in a manner
that depends on the local graph structure.
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4.2 Semi-supervised Eigenvectors 27

By locally-biased machine learning, we mean that we have a data set, e.g.,
represented as a graph, and that we have information, e.g., given in a semi-
supervised manner, that certain “regions” of of the data graph are of particular
interest. In this case, we may want to focus predominantly on those regions
and perform data analysis and machine learning, e.g., classification, clustering,
ranking, etc., that is “biased toward” those pre-specified regions. Examples of
this include the following.

• Locally-biased community identification. In social and information net-
work analysis, one might have a small “seed set” of nodes that belong to a
cluster or community of interest [AL06, LLDM08]; in this case, one might
want to perform link or edge prediction, or one might want to “refine” the
seed set in order to find other nearby members.

• Locally-biased image segmentation. In computer vision, one might have a
large corpus of images along with a “ground truth” set of pixels as provided
by a face detection algorithm [EOK07, MOVa, MVM11]; in this case, one
might want to segment entire heads from the background for all the images
in the corpus in an automated manner.

• Locally-biased neural connectivity analysis. In functional magnetic reso-
nance imaging applications, one might have small sets of neurons that
“fire” in response to some external experimental stimulus [NPDH06a]; in
this case, one might want to analyze the subsequent temporal dynamics
of stimulation of neurons that are “nearby,” either in terms of connectivity
topology or functional response, members of the original set.

In each of these examples, the data are modeled by a graph—which is either
“given” from the application domain or is “constructed” from feature vectors
obtained from the application domain—and one has information that can be
viewed as semi-supervised in the sense that it consists of exogeneously-specified
“labels” for the nodes of the graph. In addition, there are typically a relatively-
small number of labels and one is interested in obtaining insight about the data
graph nearby those labels.
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4.2 Semi-supervised Eigenvectors 27

By locally-biased machine learning, we mean that we have a data set, e.g.,
represented as a graph, and that we have information, e.g., given in a semi-
supervised manner, that certain “regions” of of the data graph are of particular
interest. In this case, we may want to focus predominantly on those regions
and perform data analysis and machine learning, e.g., classification, clustering,
ranking, etc., that is “biased toward” those pre-specified regions. Examples of
this include the following.

• Locally-biased community identification. In social and information net-
work analysis, one might have a small “seed set” of nodes that belong to a
cluster or community of interest [AL06, LLDM08]; in this case, one might
want to perform link or edge prediction, or one might want to “refine” the
seed set in order to find other nearby members.

• Locally-biased image segmentation. In computer vision, one might have a
large corpus of images along with a “ground truth” set of pixels as provided
by a face detection algorithm [EOK07, MOVa, MVM11]; in this case, one
might want to segment entire heads from the background for all the images
in the corpus in an automated manner.

• Locally-biased neural connectivity analysis. In functional magnetic reso-
nance imaging applications, one might have small sets of neurons that
“fire” in response to some external experimental stimulus [NPDH06a]; in
this case, one might want to analyze the subsequent temporal dynamics
of stimulation of neurons that are “nearby,” either in terms of connectivity
topology or functional response, members of the original set.

In each of these examples, the data are modeled by a graph—which is either
“given” from the application domain or is “constructed” from feature vectors
obtained from the application domain—and one has information that can be
viewed as semi-supervised in the sense that it consists of exogeneously-specified
“labels” for the nodes of the graph. In addition, there are typically a relatively-
small number of labels and one is interested in obtaining insight about the data
graph nearby those labels.
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(c) (xT1 DGs)2 = 0.1

Figure 2: Interplay between the γ parameter and the correlation κ that a semi-supervised eigenvec-
tor has with a seed s on a two-dimensional grid. In Figure 2(a)-2(c), we vary the locality parameter
for the leading semi-supervised eigenvector, which in each case leads to a value of γ which is marked
by the black dot on the blue curve. This allows us to illustrate the influence on the relationship
between γ and κ on the next semi-supervised eigenvector. Figure 2(a) also highlights the range
(γ < 0) in which Personalized PageRank can be used for computing solutions to semi-supervised
eigenvectors.

To illustrate the previous discussion, Figure 2 considers the two-dimensional grid. In each
subfigure, the blue curve shows the correlation with a single seed node as a function of γ for the
leading semi-supervised eigenvector, and the black dot illustrates the value of γ for three different
values of the locality parameter κ. This relationship between κ and γ is in general non-convex,
but it is monotonic for γ ∈ (−vol(G), λ2(G)). The red curve in each subfigure shows the decay for
the second semi-supervised eigenvector. Recall that it is perpendicular to the first semi-supervised
eigenvector, that the decay is monotonic for γ ∈ (−vol(G), λ′2(G)), and that λ2 < λ′2 ≤ λ3. In
Figure 2(a), the first semi-supervised eigenvector is not “too” close to λ2, and so λ′2 (i.e., the
second eigenvalue of the next semi-supervised eigenvector) increases just slightly. In Figure 2(b),
we consider a locality parameter that leads to a value of γ that is closer to λ2, thereby increasing the
value of λ′2. Finally, in Figure 2(c), the locality parameter is such that the leading semi-supervised
eigenvector almost coincides with v2; this results in λ′2 ≈ λ3, as required if we were to compute the
global eigenvectors.

3.4 Bounding the Binary Search

For the following derivations it is more convenient to consider the normalized graph Laplacian, in
which case we define the first solution as

y1 = c (LG − γ1I)+D
1/2
G s (7)

where x∗1 = D
−1/2
G y1. This approach is convenient since the projection operator with null space

defined by previous solutions can be expressed as FF T = I−Y Y T , assuming that Y TY = 1. That
is, Y is of the form

Y = [D
1/2
G , y∗1, . . . , y

∗
t−1],

where y∗i are successive solutions to Eqn. (7). In the following the type of projection operator will
be implicit from the context, i.e., when working with the combinatorial graph Laplacian FF T =
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I −DGX(XTDGDGX)−1XTDG, whereas for the normalized graph Laplacian FF T = I − Y Y T .
For the normalized graph Laplacian LG, the eigenvalues of LGv = λv equal the eigenvalues of

the generalized eigenvalue problem LGv = λDGv. The binary search employed in Algorithm 1 uses
a monotonic relationship between the γ ∈ (−vol(G), λ2(·)) parameter and the correlation with the
seed xTDGs, that can be deduced from the KKT-conditions [37]. Note, that if the upper bound
for the binary search > = λ2(FF

TLGFF T ) is not determined with sufficient precision, the search
will (if we underestimate >) fail to satisfy the constraint, or (if we overestimate >) fail to converge
because the monotonic relationship no longer hold.

By Lemma 1 in Appendix A it follows that λ2(FF
TLGFF T ) = λ2(LG +ωY Y T ) when ω →∞.

Since the latter term is a sum of two PSD matrices, the value of the upper bound can only increase as
stated by Lemma 2 in Appendix A. This is an important property, because if we do not recalculate
>, the previous value is guaranteed to be an underestimate, meaning that the objective will remain
convex. Thus, it may be more efficient to first recompute > when the binary search fails to satisfy
(xTDGs)

2 = κ, meaning that > must be recomputed to increase the search range.
We compute the value for the upper bound of the binary search by transforming the problem in

such a way that we can determine the greatest eigenvalue of a new system (fast and robust), and
from that, deduce the new value of > = λ2(FF

TLGFF T ). We do so by expanding the expression
as

FF TLGFF T = FF T
(
I −D−1/2G AGD

−1/2
G

)
FF T

= FF T − FF TD−1/2G AGD
−1/2
G FF T

= I −
(
FF TD

−1/2
G AGD

−1/2
G FF T + Y Y T

)
.

Since all columns of Y will be eigenvectors of FF TLGFF T with zero eigenvalue, these will all be

eigenvectors of FF TD
−1/2
G AGD

−1/2
G FF T + Y Y T with eigenvalue 1. Hence, the largest algebraic

eigenvalue λLA(FF TD
−1/2
G AGD

−1/2
G FF T ) can be used to compute the upper bound for the binary

search as

> = λ2(FF
TLGFF T ) = 1− λLA(FF TD

−1/2
G AGD

−1/2
G FF T ). (8)

The reason for not considering the largest magnitude eigenvalue, is that AG may be indefinite.
Finally, with respect to our implementation we emphasize that FF T is used as a projection operator,
and not represented explicitly.

4 Extension of Our Main Algorithm and Implementation Details

In this section, we present two variants of our main algorithm that are more well-suited for very
large-scale applications; the first uses a column-based low-rank approximation, and the second
uses random walk ideas. In Section 4.1, we describe how to use the Nyström method, which
constructs a low-rank approximation to the kernel matrix by sampling columns, to construct a
general solution for semi-supervised eigenvectors, where the low-rankness is exploited for very
efficient computation. Then, in Section 4.2, we describe a “Push-peeling heuristic,” based on
the efficient Push algorithm by [1]. The basic idea is that if, rather than iteratively computing
locally-biased semi-supervised eigenvectors using the procedure described in Algorithm 1, we instead
compute solutions to LocalSpectral and then construct the semi-supervised eigenvectors by
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“projecting away” pieces of these solutions, then we can take advantage of local random walks that
have improved algorithmic properties.

4.1 A Nyström-based Low-rank Approach

Here we describe the use of the recently-popular Nyström method to speed up the computation
of semi-supervised eigenvectors. We do so by considering how a low-rank decomposition can be
exploited to yield solutions to the Generalized LocalSpectral objective in Figure 1, where
the running time largely depends on a matrix-vector product. These methods are most appropriate
when the kernel matrix is reasonably well-approximated by a low-rank matrix [15, 22, 64].

Given some low-rank approximation LG ≈ I −V ΛV T , we apply the Woodbury matrix identity,
and we derive an explicit solution for the leading semi-supervised eigenvector

y1 ≈ c
(
(1− γ)I − V ΛV T

)+
D

1/2
G s

≈ c
(

1

1− γ I +
1

(1− γ)2
V

(
Λ−1 − 1

1− γ I
)−1

V T

)
D

1/2
G s

≈ c

1− γ
(
I + V ΣV T

)
D

1/2
G s,

where Σii = 1
1−γ
λi
−1 . In order to compute efficiently the subsequent semi-supervised eigenvectors we

must accommodate for the projection operator FF T = I − Y Y T , while yet exploiting the explicit
closed-form inverse (LG − γI)+ ≈ 1

1−γ
(
I + V ΣV T

)
. However, the projection operator complicates

the expression, since the previous solution can be spanned by multiple global eigenvectors, so
leveraging from the low-rank decomposition is more difficult for the inverse (FF T (LG−γI)FF T )+.

Conveniently, we can decouple the projection operator by treating the orthogonality constraint
using a Lagrangian approach, such that the solution can be expressed as

yt = c
(
LG − γI + ωY Y T

)+
D

1/2
G s,

where ω ≥ 0 denotes the associated Lagrange multiplier, and where the sign is deduced from the
KKT conditions. Applying the Woodbury matrix identity is now straightforward

(
Pγ + ωY Y T

)+
= Pγ

+ − ωPγ+Y
(
I + ωY TPγ

+Y
)+
Y TPγ

+,

where for notational convenience we have introduced Pγ = LG − γI. By decomposing Y TPγ
+Y

with an eigendecomposition USUT the equation simplifies as follows

(
Pγ + ωY Y T

)+
= Pγ

+ − ωPγ+Y
(
I + ωUSUT

)+
Y TPγ

+

= Pγ
+ − Pγ+Y UΩUTY TPγ

+,

where Ωii = 1
1
ω
+Sii

. Note how this result gives a well defined way of controlling the amount

of “orthogonality”, and by Lemma 1 in Appendix A, we get exact orthogonality in the limit of
ω →∞, in which case the expression simplifies to

(
Pγ + ωY Y T

)+
= Pγ

+ − Pγ+Y (Y TPγ
+Y )+Y TPγ

+.
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Using the explicit expression for Pγ
+, the solution now only involves matrix-vector products and

the inverse of a small matrix

yt = c
(
Pγ

+ − Pγ+Y (Y TPγ
+Y )+Y TPγ

+
)
D

1/2
G s. (9)

To conclude this section, let us also consider how we can optimize the efficiency of the calculation
of λ2(FF

TLGFF T ) used for bounding the binary search in Algorithm 1. According to Eqn. (8)

the bound can be calculated efficiently as > = 1 − λLA(FF TD
−1/2
G AGD

−1/2
G FF T ). However, by

substituting with D
−1/2
G AGD

−1/2
G ≈ V ΛV T , we can exploit low-rankness since

> = 1− λLA(FF TV ΛV TFF T ) = 1− λLA(Λ1/2V TFF TV Λ1/2),

where the latter is a much smaller system.

4.2 A Push-peeling Heuristic

Here we present a variant of our main algorithm that exploits the connections between diffusion-
based procedures and eigenvectors, allowing semi-supervised eigenvectors to be efficiently computed
for large networks. This is most well-known for the leading nontrivial eigenvectors of the graph
Laplacian [12]; but recent work has exploited these connections in the context of performing locally-
biased spectral graph partitioning [55, 1, 37]. In particular, we can compute the locally-biased vector
using the first step of Algorithm 1, or alternatively we can compute it using a locally-biased random
walk of the form used in [55, 1]. Here we present a heuristic that works by peeling off components
from a solution to the PageRank problem, and by exploiting the regularization interpretation of γ,
we can from these components obtain the subsequent semi-supervised eigenvectors.

Specifically, we focus on the Push algorithm by [1]. This algorithm approximates the solution to
PageRank very efficiently, by exploiting the local modifications that occur when the seed is highly
concentrated. This makes our algorithm very scalable and applicable for large-scale data, since
only the local neighborhood near the seed set will be touched by the algorithm. In comparison, by
solving the linear system of equations we explicitly touch all nodes in the graph, even though most
spectral rankings will be below the computational precision [8].

We adapt a similar notation as in [1] and start by defining the usual PageRank vector pr(α, spr)
as the unique solution of the linear system

pr(α, spr) = αspr + (1− α)AGD
−1
G pr(α, spr), (10)

where α is the teleportation parameter, and spr is the sparse starting vector. For comparison, the
push algorithm by [1] computes an approximate PageRank vector prε(α

′, spr) for a slightly different
system

prε(α
′, spr) = α′spr + (1− α′)Wprε(α

′, spr),

where W = 1
2(I + AGD

−1
G ) and not the usual random walk matrix AD−1G as used in Eqn. (10).

However, these equations are only superficially different, and equivalent up to a change of the
respective teleportation parameter. Thus, it is straightforward to verify that these teleportation
parameters and the γ parameter of Eqn. (6) are related as

α =
2α′

1 + α′
⇔ α′ =

α

2− α ⇔ α′ =
γ

γ − 2
,
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and that the leading semi-supervised eigenvector for γ ∈ (−∞, 0) can be approximated as

x∗1 ≈
c

−γD
−1
G prε

(
γ

γ − 2
, DGs

)
.

To generalize subsequent semi-supervised eigenvectors to this diffusion based framework, we need
to accommodate for the projection operator such that subsequent solutions can be expressed in
terms of graph diffusions. By requiring distinct values of γ for all semi-supervised eigenvectors, we
may use the solution for the leading semi-supervised eigenvector and then systematically “peel off”
components, thereby obtaining the solution of one of the consecutive semi-supervised eigenvectors.
By Lemma 5, in Appendix A the general solution in Eqn. (5) can be approximated by

x∗t ≈ c
(
I −XXTDG

)
(LG − γtDG)+DGs, (11)

under the assumption that all γk for 1 < k ≤ t are sufficiently apart. If we think about γk as
being distinct eigenvalues of the generalized eigenvalue problem LGxk = γkDGxk, then it is clear
that Eqn. (11), correctly computes the sequence of generalized eigenvectors. This is explained
by the fact that (LG − γtDG)+DGs can be interpreted as the first step of the Rayleigh quotient
iteration, where γt is the estimate of the eigenvalue, and DGs is the estimate of the eigenvector.
Given that the estimate of the eigenvalue is right, this algorithm will in the initial step compute
the corresponding eigenvector, and the operator

(
I −XXTDG

)
will be superfluous, as the global

eigenvectors are already orthogonal in the degree-weighted norm. To quantify the failure modes of
the approximation, let us consider what happens when γ2 starts to approach γ1. What constitutes
the second solution for a particular value of γ2 is the perpendicular component with respect to the
projection onto the solution given by γ1. As γ2 approaches γ1, this perpendicular part diminishes
and the solution becomes ill-posed. Fortunately, we can easily detect such issues during the binary
search in Algorithm 1, and in general the approximation has turned out to work very well in practice
as our experimental results in Section 5 show.

In terms of the approximate PageRank vector prε(α
′, spr) , the general approximate solution

takes the following form

x∗t ≈ c
(
I −XXTDG

)
D−1G prε

(
γt

γt − 2
, DGs

)
. (12)

As already stated in Section 3.3, the impact of using a diffusion based procedure is that we cannot
interpolate all the way to the global eigenvectors, and that the main challenge is that the solutions
do not become too localized. The ε parameter of the Push algorithm controls the threshold for
propagating mass away from the seed set and into the adjacent nodes in the graph. If the threshold
is too high, the solution will be very localized and make it difficult to find more than a few semi-
supervised eigenvectors, as characterized by Lemma 3 in Appendix A, because the leading ones will
then span the entire space of the seed set. As the choice of ε is important for the applicability of
our algorithm, we will in Section 5 investigate the influence of this parameter on large data graphs.

To conclude this section, we consider an important implementation detail that have been omit-
ted so far. In the work of [37] the seed vector was defined to be perpendicular to the all-ones vector,
and for the sake of consistency we have chosen to define it in the same way. The impact of pro-
jecting the seed set to a space that is perpendicular to the all-ones vector is that the resulting seed
vector is no longer sparse, making the use of the Push algorithm in Eqn. (12) inefficient. The seed

vector can, however, without loss of generality, be defined as s ∝ D
−1/2
G

(
I − v0vT0

)
s0 where s0 is
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the sparse seed, and v0 ∝ diag
(
D

1/2
G

)
is the leading eigenvector of the normalized graph Laplacian

(corresponding to the all-ones vector of the combinatorial graph Laplacian). If we substitute with
this expression for the seed in Eqn. (12), it follows by plain algebra (see Appendix B) that

x∗t ≈ c
(
I −XXTDG

)(
D−1G prε

(
γt

γt − 2
, D

1/2
G s0

)
−D−1/2G v0v

T
0 s0

)
. (13)

Now the Push algorithm is only defined on the sparse seed set making the the expression very
scalable. Finally, the Push algorithm maintains a queue of high residual nodes that are yet to
be processed. The order in which nodes are processed influences the overall running time, and in
[8] preliminary experiments showed that a FIFO queue resulted in the best performance for large
values of γ, as compared to a priority queue that scales logarithmically. For this reason we have
chosen to use a FIFO queue in our implementation.

5 Empirical Results

In this section, we provide a detailed empirical evaluation of the method of semi-supervised eigen-
vectors and how it can be used for locally-biased machine learning. Our goal is two-fold: first,
to illustrate how the “knobs” of the method work; and second, to illustrate the usefulness of the
method in real applications. To do this, we consider several classes of data.

• Toy data. In Section 5.1, we consider one-dimensional examples of the popular “small
world” model [62]. This is a parameterized family of models that interpolates between low-
dimensional grids and random graphs; and, as such, it allows us to illustrate the behavior of
the method and its various parameters in a controlled setting.

• Congressional voting data. In Section 5.2, we consider roll call voting data from the
United States Congress that are based on [49]. This is an example of realistic data set that
has relatively-simple global structure but nontrivial local structure that varies with time [14];
and thus it allows us to illustrate the method in a realistic but relatively-clean setting.

• Handwritten image data. In Section 5.3, we consider data from the MNIST digit data
set [34]. These data have been widely-studied in machine learning and related areas and
they have substantial “local heterogeneity.” Thus, these data allow us to illustrate how the
method may be used to perform locally-biased versions of common machine learning tasks
such as smoothing, clustering, and kernel construction.

• Functional brain imaging data. In Section 5.4, we consider functional magnetic resonance
imaging (fMRI) data. Single subject fMRI data is characterized by high dimensionality and
relatively few samples, in contrast to the MNIST data that consist of many samples and a
relatively low dimensionality. We demonstrate how our semi-supervised eigenvectors can be
applied to construct a data-driven spatially-biased basis by incorporating a priori knowledge
from a functional brain atlas [17].

• Large-scale network data. In Section 5.5, we consider large-scale network data, and
demonstrate significant performance improvements of the push-peeling heuristic compared
to solving the same equations using a conjugate gradient solver. These improvements are
demonstrated on datasets from the DIMACS implementation challenge, as well as on large
web-crawls with more then 3 billion non-zeros in the adjacency matrix [44, 45, 46].
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5.1 Small-world Data

The first data sets we consider are networks constructed from the so-called small-world model. This
model can be used to demonstrate how semi-supervised eigenvectors focus on specific target regions
of a large data graph to capture slowest modes of local variation; and it can also be used to illustrate
how the “knobs” of the method work, e.g., how κ and γ interplay, in a practical setting. In Figure 3,
we plot the usual global eigenvectors, as well as locally-biased semi-supervised eigenvectors, around
illustrations of non-rewired and rewired realizations of the small-world graph, i.e., for different
values of the rewiring probability p and for different values of the locality parameter κ.

To start, in Figure 3(a) that we show a graph with no randomly-rewired edges (p = 0) and
a parameter κ such that the global eigenvectors are obtained. This yields a symmetric graph
with eigenvectors corresponding to orthogonal sinusoids, i.e., the first two capture the slowest
mode of variation and correspond to a sine and cosine with equal random phase-shift (up to a
rotational ambiguity). In Figure 3(b), random edges have been added with probability p = 0.01
and the parameter κ is still chosen such that the global eigenvectors—now of the rewired graph—
are obtained. Note the many small kinks in the eigenvectors at the location of the randomly added
edges. Note also the slow mode of variation in the interval on the top left; a normalized-cut based
on the leading global eigenvector would extract this region, since the remainder of the ring is more
well-connected due to the random rewiring.

In Figure 3(c), we see the same graph realization as in Figure 3(b), except that the semi-
supervised eigenvectors have a seed node at the top of the circle, i.e., at “12 o-clock,” and the
locality parameter κt = 0.005, which corresponds to moderately well-localized eigenvectors. As
with the global eigenvectors, the locally-biased semi-supervised eigenvectors are of successively-
increasing (but still localized) variation. Note also that the neighborhood around “11 o-clock”
contains more mass, e.g., when compared with the same parts of the circle in Figure 3(b) or with
other parts of the circle in Figure 3(c), even though it is not very near the seed node in the original
graph geometry. The reason for this is that this region is well-connected with the seed via a
randomly added edge, and thus it is close in the modified graph topology. Above this visualization,
we also show the value of γt that saturates κt, i.e., γt is the Lagrange multiplier that defines the
effective locality κt. Not shown is that if we kept reducing κt, then γt would tend towards λt+1,
and the respective semi-supervised eigenvectors would tend towards the global eigenvectors that
are illustrated in Figure 3(b). Finally, in Figure 3(d), the desired locality is increased to κ = 0.05
(which has the effect of decreasing the value of γt), making the semi-supervised eigenvectors more
localized in the neighborhood of the seed. It should be clear that, in addition to being determined
by the locality parameter, we can think of γ as a regularizer biasing the global eigenvectors towards
the region near the seed set. That is, variation in eigenvectors that are near the initial seed (in the
modified graph topology) are most important, while variation that is far away from the initial seed
matters much less.

5.2 Congressional Voting Data

The next data set we consider is a network constructed from a time series of roll call voting patterns
from the United States Congress that are based on [49]. This is a particularly well-structured social
network for which there is a great deal of meta-information, and it has been studied recently with
graph-based methods [40, 63, 14]. Thus, it permits a good illustration of the method of semi-
supervised eigenvectors in a real application [48]. This data set is known to have nontrivial time-
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p = 0,
λ2 = 0.000011λ2 = 0.000011λ2 = 0.000011λ2 = 0.000011λ2 = 0.000011λ2 = 0.000011, λ3 = 0.000011λ3 = 0.000011λ3 = 0.000011λ3 = 0.000011λ3 = 0.000011λ3 = 0.000011,
λ4 = 0.000046λ4 = 0.000046λ4 = 0.000046λ4 = 0.000046λ4 = 0.000046λ4 = 0.000046, λ5 = 0.000046λ5 = 0.000046λ5 = 0.000046λ5 = 0.000046λ5 = 0.000046λ5 = 0.000046.

(a) Global eigenvectors (p = 0)

p = 0.01,
λ2 = 0.000149λ2 = 0.000149λ2 = 0.000149λ2 = 0.000149λ2 = 0.000149λ2 = 0.000149, λ3 = 0.000274λ3 = 0.000274λ3 = 0.000274λ3 = 0.000274λ3 = 0.000274λ3 = 0.000274,
λ4 = 0.000315λ4 = 0.000315λ4 = 0.000315λ4 = 0.000315λ4 = 0.000315λ4 = 0.000315, λ5 = 0.000489λ5 = 0.000489λ5 = 0.000489λ5 = 0.000489λ5 = 0.000489λ5 = 0.000489.

(b) Global eigenvectors (p = 0.01)

p = 0.01, κ = 0.005,
γ1 = 0.000047γ1 = 0.000047γ1 = 0.000047γ1 = 0.000047γ1 = 0.000047γ1 = 0.000047, γ2 = 0.000052γ2 = 0.000052γ2 = 0.000052γ2 = 0.000052γ2 = 0.000052γ2 = 0.000052,

γ3 = −0.000000γ3 = −0.000000γ3 = −0.000000γ3 = −0.000000γ3 = −0.000000γ3 = −0.000000, γ4 = −0.000000γ4 = −0.000000γ4 = −0.000000γ4 = −0.000000γ4 = −0.000000γ4 = −0.000000.

(c) Semi-supervised eigenvectors

p = 0.01, κ = 0.05,
γ1 = −0.004367γ1 = −0.004367γ1 = −0.004367γ1 = −0.004367γ1 = −0.004367γ1 = −0.004367, γ2 = −0.001778γ2 = −0.001778γ2 = −0.001778γ2 = −0.001778γ2 = −0.001778γ2 = −0.001778,
γ3 = −0.001665γ3 = −0.001665γ3 = −0.001665γ3 = −0.001665γ3 = −0.001665γ3 = −0.001665, γ4 = −0.000822γ4 = −0.000822γ4 = −0.000822γ4 = −0.000822γ4 = −0.000822γ4 = −0.000822.

(d) Semi-supervised eigenvectors

Figure 3: Illustration of small-world graphs with rewiring probability of p = 0 or p = 0.01 and
with different values of the κ parameter. For each subfigure, the data consist of 3600 nodes, each
connected to it’s 8 nearest-neighbors. In the center of each subfigure, we show the nodes (blue) and
edges (black and light gray are the local edges, and blue are the randomly-rewired edges). We wrap
around the plots (black x-axis and gray background), visualizing the 4 smallest semi-supervised
eigenvectors. Eigenvectors are color coded as blueblueblueblueblueblue, redredredredredred, yellowyellowyellowyellowyellowyellow, and greengreengreengreengreengreen, starting with the one
having the smallest eigenvalue.
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varying structure at different time steps, and we will illustrate how the method of semi-supervised
eigenvectors can perform locally-biased classification with a traditional kernel-based algorithm.

In more detail, we evaluate our method by considering the known Congress data-set containing
the roll call voting patterns in the U.S Senate across time. We considered Senates in the 70th

Congress through the 110th Congress, thus covering the years 1927 to 2008. During this time, the
U.S went from 48 to 50 states, hence the number of senators in each of these 41 Congresses was
roughly the same. We constructed an N × N adjacency matrix, with N = 4196 (41 Congresses
each with ≈ 100 Senators) where Aij ∈ [0, 1] represents the extent of voting agreement between
legislators i and j, and where identical senators in adjacent Congresses are connected with an inter-
Congress connection strength. We then considered the Laplacian matrix of this graph, constructed
in the usual way [14].

95th Congress Congress adjacency matrix99th Congress 103th Congress 107th Congress

A

B 20000 4000

Figure 4: Shows the Congress adjacency matrix, along with four of the individual Congresses. Nodes
are scaled according to their degree, blue nodes correspond to Democrats, red to Republicans, and
green to Independents.

Figure 4 visualizes the adjacency matrix, along with four of the individual Congresses, color
coded by party. This illustrates that these data should be viewed—informally—as a structure
(depending on the specific voting patterns of each Congress) evolving along a one-dimensional
temporal axis, confirming the results of [14]. Note that the latter two Congresses are significantly
better described by a simple two-clustering than the former two Congresses, and an examination
of the clustering properties of each of the 40 Congresses reveals significant variation in the local
structure of individual Congresses, in a manner broadly consistent with [48] and [49]. In particular,
the more recent Congresses are significantly more polarized.

The first vertical column of Figure 5 illustrates the first three global eigenvectors of the full data
set, illustrating fluctuations that are sinusoidal and consistent with the one-dimensional temporal
scaffolding. Also shown in the first column are the values of that eigenfunction for the members
of the 99th Congress, illustrating that there is not a good separation based on party affiliations.
The next three vertical columns of Figure 5 illustrate various localized eigenvectors computed by
starting with a seed node in the 99th Congress. For the second column, we visualize the semi-
supervised eigenvectors for a very low correlation (κ = 0.001), which corresponds to only a weak
localization—in this case one sees eigenvectors that look very similar to the global eigenvectors, and
the elements of the eigenvector on that Congress do not reveal partitions based on the party cuts.

The third and fourth column of Figure 5 illustrate the semi-supervised eigenvectors for a much
higher correlation (κ = 0.1), meaning a much stronger amount of locality. In particular, the third
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x1, κ= 0.001

0 2000 4000

x1, κ= 0.1

0 2000 4000

x1, κ= 0.1

0 2000 4000

v3

0 2000 4000

x2, κ= 0.001

0 2000 4000

x2, κ= 0.1

0 2000 4000

x2, κ= 0.1

0 2000 4000

v4

0 2000 4000

x3, κ= 0.001

0 2000 4000

x3, κ= 0.1

0 2000 4000

x3, κ= 0.1

0 2000 4000

Figure 5: First column: The leading three nontrivial global eigenvectors. Second column: The
leading three semi-supervised eigenvectors seeded (circled node) in an articulation point between
the two parties in the 99th Congress (see Figure 4), for correlation κ = 0.001. Third column:
Same seed as previous column, but for a correlation of κ = 0.1. Notice the localization on the
third semi-supervised eigenvector. Fourth column: Same correlation as the previous column, but
for another seed node well within the cluster of Republicans. Notice the localization on all three
semi-supervised eigenvectors.

column starts with the seed node marked A in Figure 4, which is at the articulation point between
the two parties, while the fourth column starts with the seed node marked B, which is located
well within the cluster of Republicans. In both cases the eigenvectors are much more strongly
localized on the 99th Congress near the seed node, and in both cases one observes the partition
into two parties based on the elements of the localized eigenvectors. Note, however, that when the
initial seed is at the articulation point between two parties then the situation is much noisier: in
this case, this “partitionability” is seen only on the third semi-supervised eigenvector, while when
the initial seed is well within one party then this is seen on all three eigenvectors. Intuitively,
when the seed set is strongly within a good cluster, then that cluster tends to be found with semi-
supervised eigenvectors (and we will observe this again below). This is consistent with the diffusion
interpretation of eigenvectors. This is also consistent with [14], who observed that the properties
of eigenvector localization depended on the local structure of the data around the seed node, as
well as the larger scale structure around that local cluster.

20

143



N
th Congress

C
la

s
s
ifi

c
a
t
io

n
a
c
c
u
r
a
c
y

Global eigenvectors

70 80 90 100 110
0

1

4

1

2

3

4

1

N
th Congress

C
la

s
s
ifi

c
a
t
io

n
a
c
c
u
r
a
c
y

Global eigenvectors, single Congress

70 80 90 100 110
0

1

4

1

2

3

4

1

N
th Congress

C
la

s
s
ifi

c
a
t
io

n
a
c
c
u
r
a
c
y

Semi-supervised eigenvectors

70 80 90 100 110
0

1

4

1

2

3

4

1

Figure 6: Classification accuracy measured in individual Congresses. For each Congress we perform
5-fold cross validation based on ≈ 80 samples and leave out the remaining 20 samples to estimate
an unbiased test error. Error bars are obtained by resampling and they correspond to 1 standard
deviation. For each approach we consider features based on the 1st (blue), 2nd (green), and 3rd

(red) smallest eigenvector(s), excluding the all-one vector. We also plot the probability of the most
probable class as a baseline measure (black) as some Congresses are very imbalanced.

To illustrate how these structural properties manifest themselves in a more traditional machine
learning task, we also consider the classification task of discriminating between Democrats and
Republicans in single Congresses, i.e., we measure to what extent we can extract local discriminative
features. To do so, we apply L2-regularized L2-loss support vector classification with a linear
kernel, where features are extracted using the global eigenvectors of the entire data set, global
eigenvectors from a single Congress (best case measure), and our semi-supervised eigenvectors.
Figure 6 illustrates the classification accuracy for 1, 2, and 3 eigenvectors. As reported by [14],
locations that exhibit discriminative information are best found on low-order eigenvectors of this
data, explaining why the classifier based global eigenvectors performs poorly. In the classifier
based on global eigenvectors in the single Congress we exploit a priori knowledge to extract the
relevant data, that in a usual situation would be impossible. Hence, this is simply to define
a baseline point of reference for the best case classification accuracy. The classifier based on
semi-supervised eigenvectors is seeded using a few training samples and performs in-between the
two other approaches. Compared to our point of reference, Congresses in the range 88 to 96 do
worse with the semi-supervised eigenvectors; whereas for Congresses after 100 the semi-supervised
approach almost performs on par, even for a single single eigenvector. This is consistent with the
visualization in Figure 4 illustrating that earlier Congresses are less cleanly separable, as well as
with empirical evidence indicating heterogeneity due to Southern Democrats in earlier Congresses
and the recent increase in party polarization in more recent Congresses, as described in [48] and [49].

5.3 MNIST Digit Data

The next data set we consider is the well-studied MNIST data set containing 60, 000 training
digits and 10, 000 test digits ranging from 0 to 9; and, with these data, we demonstrate the use
of semi-supervised eigenvectors as a feature extraction preprocessing step in a traditional machine
learning setting. We construct the full 70, 000 × 70, 000 k-NN graph, with k = 10 and with edge
weights given by wij = exp(− 4

σ2
i
‖xi − xj‖2), where σ2i is the Euclidian distance of the ith node
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to it’s nearest neighbor; and from this we define the graph Laplacian in the usual way. We then
evaluate the semi-supervised eigenvectors in a transductive learning setting by disregarding the
majority of labels in the entire training data. We use a few samples from each class to seed our
semi-supervised eigenvectors as well as a few others to train a downstream classification algorithm.
For this evaluation, we use the Spectral Graph Transducer (SGT) of [29]; and we choose to use it
for two main reasons. First, the transductive classifier is inherently designed to work on a subset
of global eigenvectors of the graph Laplacian, making it ideal for validating that the localized
basis constructed by the semi-supervised eigenvectors can be more informative when we are solely
interested in the “local heterogeneity” near a seed set. Second, using the SGT based on global
eigenvectors is a good point of comparison, because we are only interested in the effect of our
subspace representation. (If we used one type of classifier in the local setting, and another in the
global, the classification accuracy that we measure would obviously be confounded.) As in [29], we
normalize the spectrum of both global and semi-supervised eigenvectors by replacing the eigenvalues
with some monotonically increasing function. We use λi = i2

k2
, i.e., focusing on ranking among

smallest cuts; see [11]. Furthermore, we fix the regularization parameter of the SGT to c = 3200,
and for simplicity we fix γ = 0 for all semi-supervised eigenvectors, implicitly defining the effective
κ = [κ1, . . . , κk]

T . Clearly, other correlation distributions κ and other values of γ parameter may
yield subspaces with even better discriminative properties (which is an issue to which we will return
in Section 5.3.2 in greater detail).

#Semi-supervised eigenvectors for SGT #Global eigenvectors for SGT
Labeled points 1 2 4 6 8 10 1 5 10 15 20 25

1 : 1 0.39 0.39 0.38 0.38 0.38 0.36 0.50 0.48 0.36 0.27 0.27 0.19
1 : 10 0.30 0.31 0.25 0.23 0.19 0.15 0.49 0.36 0.09 0.08 0.06 0.06
5 : 50 0.12 0.15 0.09 0.08 0.07 0.06 0.49 0.09 0.08 0.07 0.05 0.04

10 : 100 0.09 0.10 0.07 0.06 0.05 0.05 0.49 0.08 0.07 0.06 0.04 0.04
50 : 500 0.03 0.03 0.03 0.03 0.03 0.03 0.49 0.10 0.07 0.06 0.04 0.04

Table 1: Classification error for discriminating between 4s and 9s for the SGT based on, respectively,
semi-supervised eigenvectors and global eigenvectors. The first column from the left encodes the
configuration, e.g., 1:10 interprets as 1 seed and 10 training samples from each class (total of 22
samples—for the global approach these are all used for training). When the seed is well-determined
and the number of training samples moderate (50:500), then a single semi-supervised eigenvector
is sufficient; whereas for less data, we benefit from using multiple semi-supervised eigenvectors. All
experiments have been repeated 10 times.

5.3.1 Discriminating between pairs of digits

Here, we consider the task of discriminating between two digits; and, in order to address a partic-
ularly challenging task, we work with 4s and 9s. (This is particularly challenging since these two
classes tend to overlap more than other combinations since, e.g., a closed 4 can resemble a 9 more
than an open 4.) Hence, we expect that the class separation axis will not be evident in the leading
global eigenvector, but instead it will be “buried” further down the spectrum; and we hope to find
a “locally-biased class separation axis” with locally-biased semi-supervised eigenvectors. Thus, this
example will illustrate how semi-supervised eigenvectors can represent relevant heterogeneities in
a local subspace of low dimensionality. See Table 1, which summarizes our classification results
based on, respectively, semi-supervised eigenvectors and global eigenvectors, when we use the SGT.
See also Figure 7 and Figure 8, which illustrate two realizations for the 1:10 configuration. In

22

145



these two figures, the training samples are fixed; and, to demonstrate the influence of the seed,
we have varied the seed nodes. In particular, in Figure 7 the seed nodes s+ and s− are located
well-within the respective classes; while in Figure 8, they are located much closer to the boudary
between the two classes. As intuitively expected, when the seed nodes fall well within the classes
to be differentiated, the classification is much better than when the seed nodes are located closer
to the boundary between the two classes. See the caption in these figures for further details.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Figure 7: Discrimination between 4s and 9s. Left: Shows a subset of the classification results for
the SGT based on 5 semi-supervised eigenvectors seeded in s+ and s−, and trained using samples
l+ and l−. Misclassifications are marked with black frames. Right: Visualizes all test data spanned
by the first 5 semi-supervised eigenvectors, by plotting each component as a function of the others.
Red (blue) points correspond to 4 (9), whereas green points correspond to remaining digits. As the
seed nodes are good representatives, we note that the eigenvectors provide a good class separation.
We also plot the error as a function of local dimensionality, as well as the unexplained correlation,
i.e., initial components explain the majority of the correlation with the seed (effect of γ = 0). The
particular realization based on the leading 5 semi-supervised eigenvectors yields an error of ≈ 0.03
(dashed circle).

5.3.2 Effect of choosing the κ correlation/locality parameter

Here, we discuss the effect of the choice of the correlation/locality parameter κ at different steps
of Algorithm 1, e.g., how {κt}kt=1 should be distributed among the k components. For example,
will the downstream classifier benefit the most from a uniform distribution or will there exist some
other nonuniform distribution that is better? Although this will be highly problem specific, one
might hope that in realistic applications the classification performance is not too sensitive to the
actual choice of distribution. To investigate the effect in our example of discriminating between
4s and 9s, we consider 3 semi-supervised eigenvectors for various κ distributions. Our results are
summarized in Figure 9.

Figures 9(a), 9(b), and 9(c) show, for the global eigenvectors and for semi-supervised eigenvec-
tors, where the κ vector has been chosed to be very nonuniform and very uniform, the top three
(global or semi-supervised) eigenvectors plotted against each other as well as the ROC curve for
the SGT classifier discriminating between 4s and 9s; and Figure 9(d) shows the test error as the
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Figure 8: Discrimination between 4s and 9s. See the general description in Figure 7. Here we
illustrate an instance where the s+ shares many similarities with s−, i.e., s+ is on the boundary
of the two classes. This particular realization achieves a classification error of ≈ 0.30 (dashed
circle). In this constellation we first discover localization on low order semi-supervised eigenvectors
(≈ 12 eigenvectors), which is comparable to the error based on global eigenvectors (see Table 1), i.e.,
further down the spectrum we recover from the bad seed and pickup the relevant mode of variation.

κ vector is varied over the unit simplex. In more detail, red (respectively, blue) corresponds to 4s
(respectively, 9s), and green points are the remaining digits; and, for Figures 9(b) and 9(c), the
semi-supervised eigenvectors are seeded using 50 samples from each target class (4s vs. 9s) and
having a non-uniform distribution of κ, as specified. As seen from the visualization of the semi-
supervised eigenvectors in Figures 9(b) and 9(c), the classes are much better separated than by
using the global eigenvectors, which are shown in Figure 9(a). For example, this is supported by the
Area Under the Curve (AUC) and Error Rate (ERR), being the point on the Receiver Operating
Characteristic (ROC) curve that corresponds to having an equal probability of miss-classifying a
positive or negative sample, which is a fair estimate as the classes in the MNIST data set is fairly
balanced. For Figure 9(c), where we use a uniform distribution of κ, the classifier performs slightly
better than in Figure 9(b), which uses the non-uniform κ distribution (but both semi-supervised
approaches are significantly better than the using the global eigenvectors). For Figure 9(d), we
see the test error on the simplex defined by κ. To obtain this plot we sampled 500 different κ
distributions according to a uniform Dirichlet distribution. With the exception of one extreme
very nonuiform corner, the classification accuracy is not too sensitive to the choice of κ distribu-
tion. Thus, if we think of the semi-supervised eigenvectors as a locally-regularized version of the
global eigenvectors, the desired discriminative properties are not too sensitive to the details of the
locally-biased regularization.

5.3.3 Effect of approximately computing semi-supervised eigenvectors

Here, we discuss of the push-peeling procedure from Section 4 that is designed to compute efficient
approximations to the semi-supervised eigenvectors by using local random walks to compute an
approximation to personalized PageRank vectors. Consider Figure 10, which shows results for two
values of the ε parameter (i.e., the parameter in the push algorithm that implicitly determines
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Figure 9: The effect of varying the correlation/locality parameter κ on the classification accuracy.
9(a), 9(b), 9(c) show the top three (global or semi-supervised) eigenvectors plotted against each
other as well as the ROC curve for the SGT classifier discriminating between 4s and 9s; and 9(d)
shows the test error as the κ vector is varied over the unit simplex.

how many nodes will be touched). Again we construct the full 70, 000× 70, 000 k-NN graph, with
k = 10 and with edge weights given by wij = exp(− 4

σ2
i
‖xi − xj‖2), where σ2i is the Euclidian

distance of the ith node to it’s nearest neighbor; and from this we define the graph Laplacian in
the usual way. Using this representation we compute 3 semi-supervised eigenvectors seeding using
50 samples from each class (4s vs. 9s). However, in this case, we fix the regularization parameter
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vector as γ = [−0.0150,−0.0093,−vol(G)]; and note that choosing these specific values correspond
to the solutions visualized in Figure 9(c) when the equations are solved exactly. Figure 10(a) shows
the results for ε = 0.001. This approximation gives us sparse solutions, and the histogram in the
second row illustrates the digits that are assigned a nonzero value in the respective semi-supervised
eigenvector. In particular, note that most of the mass of the eigenvector is distributed on 4s and
9s; but, for this choose of ε, only few digits of interest (≈ 2.8243%, meaning, in particular, that
not all of the 4s and 9s) have been touched by the algorithm. This results in the lack of a clean
separation between the two classes as one sweeps along the leading semi-supervised eigenvector, as
illustrated in the first row; the very uniform correlation distribution κ = [0.8789, 0.0118, 0.1093];
and the high classification error, as shown in the ROC curve in the bottom panel.

Consider, next, Figure 10(b), which shows the results for ε = 0.0001, i.e., where the locality
parameter ε has been reduced by an order of magnitude. In this case, the algorithm reproduces
the solution by touching only ≈ 25.177% of the nodes in the graph, i.e., basically all of the 4s and
9s and only a few other digits. This leads to a much cleaner separation between the two classes as
one sweeps over the leading semi-supervised eigenvector; a much more uniform distribution over κ;
and a classification accuracy that is much better and is similar to what we saw in Figure 9(c). This
example illustrates that this push-peeling approximation provides a principled manner to generalize
the concept of semi-supervised eigenvectors to large-scale settings, where it will be infeasible to
touch all nodes of the graph.

5.3.4 Effect of low-rank Nyström approximation

Here we discuss the use of the low-rank Nyström approximation which is commonly used in large-
scale kernel-based machine learning. The memory requirements for representing the explicit kernel
matrix, that we here take to be our graph, scales with O(N2), whereas inverting the matrix scales
with O(N3), which, in large-scale settings, is infeasible. The Nyström technique subsamples the
dataset to approximate the kernel matrix, and the memory requirements scales with O(nN) and
runs in O(n2N), where n is size of the subsample. For completeness we include the derivation of
the Nyström approximation for the normalized graph Laplacian in Appendix C.

In the beginning of Section 5.3 we constructed the 70, 000 × 70, 000 k-nearest neighbor graph,
with k = 10 and with edge weights given by wij = exp(− 4

σ2
i
‖xi − xj‖2). Such a sparse construction

reduces the effect of “hubs”, as well as being fairly insensitive to the choice of kernel parameter, as
the 10 nearest neighbors are likely to be very close in the Euclidian norm. Because the Nyström
method will approximate the dense kernel matrix, the choice of kernel parameter is more important,
so in the following we will consider the interplay between this parameter, as well as the rank
parameter n of the Nyström approximation. Moreover, to allow us to compare a rank-n Nyström
approximation with the full rank-N kernel matrix, we choose to subsample the dataset for all of the
following experiments, due to the O(N2) memory requirements. Thus, to provide a baseline, Figure
11 shows results based on a k-nearest neighbor graph constructed from 5% and 10% percent of the
training data, where in both cases we used 10% for the test data. For both cases, when compared
with the results of Figure 9(c), the classification quality is degraded, and so we emphasize that the
goal of the following results are not to outperform the results reported in Figure 9(c), but to be
comparable with this baseline.

In light of this baseline, Figure 12 provides a thorough analysis for the choices of σ2i that we used.
Figures 12(a) and 12(b) show the classification error when using the global eigenvectors, for various
rank approximations based on the Nyström method as well as the exact method (corresponding to
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(b) Locality parameter ε = 0.0001

Figure 10: Illustration of the push-peeling procedure to compute 3 semi-supervised eigenvectors
for γ = [−0.0150,−0.0093,−vol(G)]. 10(a) shows results for ε = 0.001; and 10(b) shows results for
ε = 0.0001. First row shows the entries in the leading semi-supervised eigenvector corresponding
to test points, color-coded and sorted according to magnitude; second row shows the distribution
of digits touched in the full graph when executing the push algorithm; and bottom panels provide
visualizations similar to the ones in Figure 9 (and shown above these is the correlation vector κ
obtained for the fixed choice of γ.
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Figure 11: Example of the impact of subsampling the data set down to 5% (in 11(a)) and 10% (in
11(b)) of the original size. Remaining parameters are the same as in Figure 9(c), which shows the
result to which these two plots should be compared.

rank = n). Interestingly, these two plots are very dissimilar in terms of their behavior as a function
of the number of components. In particular, the plot in Figure 12(b) shows that the low rank
approximations for a given set of components outperform the high rank approximations, and the
exact representation fails to reduce the error beyond 0.4 for any of the considered set of components.
This may seem counterintuitive, but the reason for this type of behavior is that the relevant global
eigenvectors, for σ2i = 200, are located far from the end of the spectrum (if we visualized more
components for rank = n the classification error would eventually drop). For the same reason, the
low rank approximations improve more rapidly than the high rank approximations, as the latter
approximate the lower part of the spectrum better, and these turn out to have poor discriminative
properties. In contrast, the results shown in Figure 12(a) provide good class separation in the lower
part of the spectrum, resulting in the high rank approximations to reduce the error most rapidly.

Finally, Figures 12(c) and 12(d) show the classification error for the SGT trained using the semi-
supervised eigenvectors. (Note that the scale of the x-axis is much smaller in these subfigures.) For
both kernel widths (in both Figures 12(c) and 12(d)), the ordering of the approximations are similar,
i.e., the semi-supervised eigenvectors constructed from the rank = n approximation performs the
best. Moreover, the gap between the rank = 400 and rank = n is largest for σ2i = 200, again
suggesting this approximation is of insufficient rank to model the relevant local heterogeneities
deep down in the spectrum; whereas for σ2i = 80, the rank = 400 the approximation comes very
close to the exact representation, suggesting that local structures are well modeled near the end of
the spectrum.

To summarize these results, the method of semi-supervised eigenvectors successfully extracts
relevant local structures to perform locally-biased classification, even when they are located far
from the end of the spectrum. Moreover, in both cases we considered, the classification error is
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reduced significantly by using only a few locally-biased components. This contrasts with the global
eigenvectors, where for σ2i = 80 at least 20 eigenvectors are needed in order to obtain similar
performance; and for σ2i = 200, the classification error remains high even for 200 eigenvectors in
case of rank = n.
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Figure 12: We consider 10% of the MNIST training and test data and investigate the classification
accuracy of a downstream SGT classifier for various approximations of the dense similarity matrix.
12(a) and 12(b): Classification error for the SGT evaluated directly on global eigenvectors, based on
various Nyström approximations and the two choices of the kernel width parameter (respectively,
σ2i = 80 and σ2i = 200). 12(c) and 12(d): Classification error we have used the Nyström approxi-
mations as basis for computing semi-supervised eigenvectors that are then used in the downstream
SGT classifier. All plots show the mean over 30 repetitions.

5.3.5 Implementation issues and running time considerations

Here, we discuss implementation details and investigate the advantage of using the Graphics Pro-
cessing Unit (GPU) for computing semi-supervised eigenvectors. Although the computations under-
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lying the construction of semi-supervised eigenvectors could be performed in many computational
environments, the GPU architecture fits well with the dense semi-supervised eigenvector computa-
tion in Eqn. (9); for each component, this expression will be executed O(log2((λ2(G) + vol(G)))/ε)
times within the binary search of Algorithm 1.

Compared to a Central Processing Unit (CPU), which is well-suited for processing code with a
complex control flow, a GPU is much better suited for addressing problems that can be expressed
as data-parallel computations with a high arithmetic intensity [33, 9, 25]. A GPU consists of a set
of Multi Processors (MPs), each containing multiple Scalar Processors (SPs), as well as different
types of local memories that the SPs may access. All MPs have also access to a large global memory
that, compared to their internal memories, is much slower to access. A computation task to be
executed on such a device is usually setup in a grid, where each element in the grid gets assigned to
a thread. The grid is then decomposed into blocks that are scheduled onto the MPs with available
resources, and the assigned MP will schedule the elements of the block onto its SPs in warps with 32
threads. The best performance is obtained when all threads in a warp execute the same instruction
and when the total number of threads in the grid is large, as this allows various latencies to be
overlapped with arithmetic operations.

We compare most recent CPU and GPU devices in computing the solution to Eqn. (9). In
terms of the GPUs we test both consumer devices (GeForce) and professional devices (Tesla), where
the latter provides enhanced performance for double-precision floating point arithmetic. For a fair
comparison, we decided to rely on the BLAS3 and CUBLAS implementations as used in Matlab
2012b, i.e., avoiding to favor specific architecturally dependent implementation optimizations,
since BLAS and CUBLAS should be optimal in terms of the underlying architecture. Figure 13
shows performance measures (wall-clock-time as a function of the rank parameter) of CPU and
GPU experiments. For single precision arithmetic the GTX 680 scales very well, and it ends up
being more than three times faster than the i7-3820, as well as noticeably faster than the previous
generation high-end Tesla C2070, and it even outperforms the latest generation Tesla K20c, as
seen in Figure13(a). As seen in Figure 13(a) and 13(b), the GPUs perform poorly in the low-rank
regime, and this is explained by the overhead of transferring data back and forth from the main
memory and to the device. However, for the high-rank matrices the arithmetic intensity increases
and the overhead is less dominant. Also evident is the performance improvement of the latest CPU
generation (i7-3820), that for the considered operation ends up being more than twice as fast as a
previous generation E5620, that primarily is due to the higher clock frequency. For double precision
arithmetic, the GTX 680 and GTX 590 are due to memory constraints stopped prematurely in the
experiments, as they respectively are equipped with 2048MB and 1536MB (per GPU). Note that
even though the GTX 590 is a dual GPU card, it is from the GPU computing perspective setup
as two individual devices, and only one of these are used for the experiments. Interestingly the
older GTX 590 outperforms the recent GTX 680, which may be explained by a higher memory
bandwidth. In Figure 13(d) the Tesla K20c outperforms all other devices by a fair margin, being
≈ 1.5 times as fast as the Tesla C2070, and four times faster than the i7-3820.

Using GPU computing we are able to reduce the computation time considerably. Depending
on the application of the semi-supervised eigenvectors, the advantage may be significant, for exam-
ple if applied in time critical applications such as online and real-time applications or large-scale
simulations.

3The BLAS implementation uses all physical CPU cores.
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Figure 13: Running time performance measurements for solving Eqn. (9), given a specific value
of the parameter γ, on the entire MNIST data set consisting of 70, 000 samples, as a function of
the rank parameter. Single and double precision arithmetic results are respectively shown in 13(a)
and 13(b) for the task of computing the 25th solution, i.e., constrained to be perpendicular to the
previous 24 solutions. Similar does 13(c) and 13(d) show performance results for computing the
500th solution, and here the advantage of using recent GPU architectures become even more evident,
as the operation is dominated by a high arithmetic intensity that fit well with such architectures.

5.4 Functional Magnetic Resonance Imaging Data

The next dataset we consider is from functional Magnetic Resonance Imaging (fMRI). Here data
analysis usually considers the characterization of relations between cognitive variables and indi-
vidual brain voxels, for instance using the mass-univariate General Linear Model (GLM), where
statistical parametric maps are used to identify regions of gray matter that are significantly related
to particular effects under study [19]. Even though such a voxel-wise univariate approach has been
tremendously productive, there are obvious limits on what can be learned about cognitive states
by only examining isolated voxels [42]. Multivariate methods have therefore paved the way for
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more advanced paradigms involving complex cognition, where the latent brain state cannot solely
be determined from looking at individual voxel time series [16, 30, 7]. However, an immediate
challenge for multivariate approaches is that weak signals carried by a sparse set of voxels can be
very hard to detect, and for this reason multivariate approaches are often accompanied by spatial
priors, to improve on the signal-to-noise ratio (SNR).

Searchlight is an algorithm that scans through the whole brain by running multiple multivariate
region-of-interest (ROI) analyses, measuring the respective generalization performance, and out-
puts a brain map showing which regions exhibit the best discriminative properties, for example
measured by classification accuracy for a particular subject task [32]. This approach was for in-
stance applied by [27], who used it to find regions in the brain that are predictive with respect to
human intentions. Compared to a univariate approach, searchlight takes advantage of the power of
multivariate techniques, with the caveat that it only performs well if the target signal is available
within the area covered by the ROI. This limitation is indeed shared by the univariate approaches,
but with searchlight we have the freedom to increase or decrease the ROI, depending on the struc-
ture of the considered problem. If the ROI is small we approach a univariate analysis, whereas if
the ROI is large, the information localization becomes less specific. Thus, if the multivariate signal
is spatially distributed the searchlight approach will fall short, and simply increasing the ROI may
not be a solution as irrelevant time series will decrease the SNR.

The semi-supervised eigenvectors can be used to construct a spatially-guided basis that natu-
rally allows for spatially distributed signal representations. This strategy shares many similarities
with there searchlight approach, but it is not tied to a particular ROI, and it can span distributed
voxel time series that are similar in terms of our graph representation. Using the semi-supervised
eigenvectors on the voxel × voxel similarity graph in this way will yield a low dimensional repre-
sentation that we can project the fMRI voxel time series onto, and in that projected space we can
apply any suitable classification algorithm.

We tested the method on Blood Oxygenation Level Dependent (BOLD) sensitive fMRI data
acquired on a 3 Tesla MR scanner (Siemens Magnetom Verio). Additional sequence parameter were
as follows: 25 interleaved echo planar imaging gradient echo slices, echo time 30 ms, repetition time
1390 ms, flip angle 90 degrees. During the scanning session (1300 volumes) the subject was engaged
in a simple motor paradigm in which the subject was asked to respond with key-presses when a
visual cue was presented, and the classification task is to detect such key-presses. Pre-processing
steps included: rigid body realignment, spatial smoothing (6 mm full width at half maximum
isotropic Gaussian kernel), and high-pass filtering (cut-off frequency 1/128 Hz). See [56] for more
details.

We construct a voxel × voxel 10-nearest neighbor graph using the nonlinear affinity wij =
exp(−‖zi − zj‖2). Figure 14 shows the 4 leading non-trivial global eigenvectors projected onto
a sliced brain. Note that the first slice (top left) in such an image corresponds to the bottom
of the brain, whereas the last slice (bottom right) corresponds to the top of the brain. The
non-trivial global eigenvectors aim to span the most dominant sources of variation in the data,
which in this particular dataset appears to stem mainly from the primary visual cortex (V1), and
a frontal/posterior contrast apparent in the second global eigenvector. Importantly, the global
eigenvectors are typically not associated with the interesting features of the task but rather general
signal variation, which may be due to visual presentation of the stimuli (visual cortex) and often
physiological noise sources typically dominant in the lower slices of the brain near large arteries.

Using a probabilistic functional atlas created by averaging across multiple subjects [17], we
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Figure 14: Visualization of the leading 4 nontrivial global eigenvectors.

carry out two experiments based on semi-supervised eigenvectors. Specifically, we construct semi-
supervised eigenvectors seeded in Primary Motor Cortex (PMC), known to be highly involved in
the subject task [21], as well as semi-supervised eigenvectors seeded in Primary Auditory Cortex
(PAC), that is not expected to carry much signal with respect to our target variable [39]. The seed
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(c) Classification accuracy

Figure 15: Figure 15(a) shows the seed region in PMC, and Figure 15(b) shows the seed region
in PAC. The plot in Figure 15(c) shows the classification accuracy for the 5 different features
extraction approaches. The dashed lines mark the reference where all voxel time series, as covered
by the seed, are used in the downstream classifier, and the solid ones correspond to the accuracy
obtained from projecting the data onto the semi-supervised eigenvectors seeded in PAC and PMC,
as well as the global eigenvectors.

regions are highlighted in Figure 15(a) and 15(b).
Figure 16 and 17 shows respectively the leading 4 semi-supervised eigenvectors, each having a

correlation of 0.25 with the seed, and respectively seeded in PMC and PAC. As expected the semi-
supervised eigenvectors are dominant near the seed region but are able to spread to related regions
which carry information about important signal variation. For the PAC seed the first eigenvector
appears to capture the general pattern of signal variation in part of the cortex that focus on auditory
processing. The remaining three eigenvectors appear to span specific signal variations in the PAC
that are more specific to subregions with the auditory cortex.

34

157



−35 −30 −25 −20 −15

−10  −5  +0  +5 +10

+15 +20 +25 +30 +35

+40 +45 +50 +55 +60

+65 +70 +75 +80

−0.05

0

0.05

(a) Semi-supervised eigenvector (PMC), x1

−35 −30 −25 −20 −15

−10  −5  +0  +5 +10

+15 +20 +25 +30 +35

+40 +45 +50 +55 +60

+65 +70 +75 +80

−0.05

0

0.05

(b) Semi-supervised eigenvectors (PMC), x2
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(c) Semi-supervised eigenvectors (PMC), x3
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(d) Semi-supervised eigenvectors (PMC), x4

Figure 16: Visualization of the leading 4 semi-supervised eigenvectors seeded in PMC, each corre-
lating 0.25 with the seed, that is visualized in Figure 15(a).

Likewise the first semi-supervised eigenvector from the seed in the PMC reveals other dominant
parts of the motor network including the remaining parts of the PMC (posterior part of Brodmann
area 4), somatosensory cortex (Brodmann areas 1,2 and 3) and the premotor cortex (Brodmann
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(a) Semi-supervised eigenvector (PAC), x1
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(b) Semi-supervised eigenvectors (PAC), x2
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(c) Semi-supervised eigenvectors (PAC), x3
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Figure 17: Visualization of the leading 4 semi-supervised eigenvectors seeded in PAC, each corre-
lating 0.25 with the seed, that is visualized in Figure 15(b).

area 5). The remaining semi-supervised eigenvectors again focus on more localized sources of signal
within these areas as well as signal variation in the primary visual cortex (Brodmann area 17), which
is to be expected as the visual presentation of stimuli is related to motor function in the present
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task.
For comparison in our classification task, we consider the leading global eigenvectors of the

graph Laplacian, as well as simply extracting the time series as specified by the seed regions. For
all of the considered feature extraction approaches we use either the projected or extracted time
series as data for a linear SVM that is responsible for the downstream classification task. Figure
15(c) summarizes the classification accuracies obtained by performing leave-one-out cross validation
as a function of the number of components. For each semi-supervised eigenvector we fix κ = 1

k
where k is the number of components. Hence, for two components, each correlates 0.5 with the
seed, and so forth. In the same plot, the dashed blue line corresponds to classifying the brain state
using only voxel time series in the region as defined by PAC. Unsurprisingly, for the dashed green
line, corresponding to PMC, it is evident that the primary motor cortex is a much better proxy
for predicting motor responses. Due to inter-subject variability there is no guarantee that the rigid
body realignment will align the seed perfectly with the physical region, which explains why the
data-driven global eigenvectors are able to yield an even higher accuracy than the PAC time series.
Also seen is the “bump” in classification accuracy for the global eigenvectors, when we reach 4-5
components. Thus, for this particular dataset, relevant parts of the are signal are captured in this
regime.

In the regime of few semi-supervised eigenvectors, the solutions are too localized to explain
relevant local heterogeneities both near and within the seed set. As we increase the number of
components they become less localized, and the semi-supervised eigenvectors seeded in PMC even-
tually surpasses the accuracy of global approach. As we consider more and more components,
while distributing the correlation evenly across the semi-supervised eigenvectors, they will eventu-
ally converge to the global eigenvectors. Complementary, in the limit of a single component, the
projection onto the leading trivial global eigenvector will simply correspond to the average time
series, whereas for a leading semi-supervised eigenvector the solution is simply the seed itself, i.e.,
the projection onto this corresponds to a weighted average in the region defined by the seed. Hence,
as seen in Figure 15(c) there exists a regime in which the semi-supervised approach performs better
as we are able to pickup the relevant local heterogeneities at that particular scale, given that the
seed is relevant with respect to the subject task.

5.5 Large-scale Network Data

The final datasets we consider are from a collection of large sparse networks [44, 45, 46]. On these
data, we demonstrate that the Push-peeling Heuristic introduced in Section 4.2 is attractive due
to an improved running time, as compared to solving a system of linear equations. Moreover, we
also show that the ability to obtain multiple semi-supervised eigenvectors depends on the degree
heterogeneity near the seed. Finally, we empirically evaluate the influence of the ε parameter of
the Push algorithm that implicitly determines how many nodes the algorithm will touch. This
parameter can be interpreted as a regularization parameter (different from γ parameter), and
setting it too large means we fail to distribute mass in the network, so that a few semi-supervised
eigenvectors will consume all of the correlation. In particular, this behavior was investigated on
the MNIST digits in Section 5.3.3. The basic properties for the networks considered in this section
are shown in Table 2.

We start by considering the moderately sized networks from the DIMACS implementation
challenge, as these networks are commonly used for the purpose of measuring realistic algorithm
performance. Figure 18 shows analysis results for 6 networks from this collection, where we evaluate
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the performance and feasibility of the Push algorithm for approximating the leading semi-supervised
eigenvector.

Network name Number of nodes Number of edges

DIMACS10/de2010 24,115 116,056
DIMACS10/ct2010 67,578 336,352
DIMACS10/il2010 451,554 2,164,464
DIMACS10/smallworld 100,000 999,996
DIMACS10/333SP 3,712,815 22,217,266
DIMACS10/AS365 3,799,275 22,736,152
LAW/arabic-2005 22,744,080 1,107,806,146
LAW/indochina-2004 7,414,866 301,969,638
LAW/it-2004 41,291,594 2,054,949,894
LAW/sk-2005 50,636,154 3,620,126,660
LAW/uk-2002 18,520,486 523,574,516
LAW/uk-2005 39,459,925 1,566,054,250

Table 2: Summary of the networks considered in this section. Some of these networks are directed
and have been symmetrized for the purpose of this analysis, i.e., the number edges in this table
refer to the number of edges in the undirected graph.

As stated in Section 3.3, diffusion based procedures such as the Push algorithm can be used
to solve our objective for γ < 0. The impact of the reduced search range is that such procedures
may not be able to produce a uniform correlation distribution for a set of semi-supervised eigen-
vectors. Hence, the leading solution(s) will instead pickup too much correlation, because sufficient
mass cannot to diffuse away from the seed set. However, the effect of a non-uniform correlation
distribution was analyzed on the MNIST data in Section 5.3, where we found that the performance
of a downstream classifier is fairly robust to such non-uniformities, as seen by the simplex in Figure
9. Consequently, we emphasize that in a large-scale setting such side effects of diffusion based
procedures is offset by the advantage of a greatly improved time complexity as compared to solving
the system of linear equations, that implicitly touch every node.

For each of the 6 analyzed networks in Figure 18, we run two experiments considering different
seeds, using respectively a high degree and low degree single seed node. Figure 18(a)-18(c) considers
census block networks characterized by heavy-tailed degree distributions, whereas Figure 18(d)-
18(f) considers more densely connected synthetic networks. For each of these 6 networks the
speedup is measured by comparing with a standard conjugate gradient implementation using a
tolerance of 1e-6, and we stress that this tolerance cannot be directly compared with ε in the Push
algorithm. Moreover, we test three different settings of the ε parameter, and we emphasize that
for ε = 1e-4, the Push algorithm produces a similar result as the conjugate gradient algorithm. In
Figure 18 this can be seen by the red curve (ε = 1e-4) in the correlation decay plots (see the figure
caption) being on top of the black curve (conjugate gradient).

Common for Figure 18(a)-18(c) are that low degree seed nodes yield very localized solutions for
the entire range of α, opposed to the high degree nodes that all succeed in gradually reducing the
correlation when α is reduced. Also, the choice of ε is obviously very important, i.e., choosing it
too large results in a solution that correlates too much with the seed, whereas choosing it too small
means that we will be touching more nodes than necessary, resulting in a performance penalty. In
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Figure 18: For each network the first row depicts how the correlation decays as α tends towards
0, whereas the bottom row shows the speedup relative to the standard approach using conjugate
gradient with a tolerance of 1e-6, that is the default approach in our software distribution. Besides
the three considered values of ε the correlation plots also illustrate the decay based on conjugate
gradient (black curve), however this may be difficult to see, as the Push algorithm for ε = 1e-4
coincides with that solution. Finally, seeds based on a high degree and low degree node are presented
in respectively the first and last column, and the degree distribution for the network is visualized
in a minor overlapping plot.

general the networks analyzed in Figure 18(a)-18(c) are too small to yield significant performance
improvements over the conjugate gradient algorithm, and the Push algorithm is only competitive
for large values of α.

For the network in Figure 18(d), we see similar performance characteristics as the networks
analyzed in Figure 18(a)-18(c) due to its small size. However, the two final networks analyzed
in Figure 18(e)-18(f) share similar characteristics in terms of the degree distribution, but due to
a much larger size they show significant performance improvements over the conjugate gradient
algorithm. Interestingly, the Push algorithm instantiated with ε = 1e-4 yields a greater speedup
in some settings, which may be explained by faster convergence, caused by a reduced threshold
for distributing mass. Hence, the running time of the Push algorithm may not always decrease
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monotonically as ε increases.
In general it seems that seeding in a sparsely connected region of a network results in a solution

having a large correlation with the seed for most values of α. This is obviously a limiting factor
if we are interested in using the peeling procedure to find multiple semi-supervised eigenvectors in
that particular region. However, for large networks and more densely connected regions the benefit
of the Push algorithm is immediate.
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Figure 19: Visualizes results for applying the Push algorithm to 6 very large web-crawl networks.
For all networks we seed in the node with the highest degree. The top plot in each subfigure shows
the correlation decay as a function of α, whereas in the bottom plot we resort to absolute timings
as the conjugate gradient algorithm is not feasible in this setting, as opposed to showing speedups
as in Figure 18.

Finally, we scale up to demonstrate that we can adapt the notion of semi-supervised eigenvectors
to large datasets, and we do so by analyzing 6 large web-crawl networks. These networks are large
enough that touching all nodes is infeasible, i.e., conjugate gradient is not a feasible option, so in
Figure 19 we resort to absolute timings. For the analysis results shown in Figure 19, we are solely
interested in giving the reader some intuition about the running time in a large-scale setting, as
well as an idea on how the parameters interplay. Hence, we only consider experiments where we
seed in a high degree node, as these are likely yield the worst running times, but also succeed in
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reducing the correlation the most. This will make the peeling procedure described in Section 4.2
applicable, allowing us to obtain multiple semi-supervised eigenvectors. As seen for all networks
analyzed in Figure 19(a)-19(f) the solution is highly sensitive to the choice of ε, but for all networks
we are able to reduce the correlation when α tends towards 0 in case of ε = 1e-6. We emphasize
that the reason for ε being smaller for these experiments, as compared to the previous is that the
seed is normalized to have unit norm, implicitly requiring a lower ε when the network increases in
size.

For diffusion based procedures to be useful with respect to the computation of semi-supervised
eigenvectors, mass must be able “bleed” away from the seed set and into the surrounding network.
Otherwise only few semi-supervised eigenvectors can be found as the leading solution(s) become
too correlated with the seed set. For moderately sized problems conjugate gradient performs very
well, but in a large-scale setting, as considered here, the presented approach proves very efficient,
allowing us to compute approximations to semi-supervised eigenvectors in networks consuming
more than 30GB of working memory. Obtaining an improved understanding of how the method of
semi-supervised eigenvectors can be used to perform common machine learning tasks on graphs of
that size is an obvious direction raised by our work.

6 Conclusion

We have introduced the concept of semi-supervised eigenvectors as local analogues of the global
eigenvectors of a graph Laplacian that have proven so useful in a wide range of machine learning
and data analysis applications. These vectors are biased toward prespecified local regions of interest
in a large data graph; and we have shown that since they inherit many of the nice properties of the
usual global eigenvectors, except in a locally-biased context, they can be used to perform locally-
biased machine learning. The basic method is conceptually simple and involves solving a sequence
of linear equation problems; we have also presented several extensions of the basic method that
have improved scaling properties; and we have illustrated the behavior of the method. Due to the
speed, simplicity, stability, and intuitive appeal of the method, as well as the range of applications in
which local regions of a large data set are of interest, we expect that the method of semi-supervised
eigenvectors can prove useful in a wide range of machine learning and data analysis applications.
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A Supplementary Proofs

Lemma 1 Given an SPSD matrix M and some vector x where x>x = 1, it holds that

lim
ω→∞

(
M + ωxx>

)+
=
((
I − xx>

)
M
(
I − xx>

))+
. (14)

Proof: Prior to applying the pseudo inverse, x is clearly an eigenvector with eigenvalue λ = 0 on
the right hand side, and for left hand side x is an eigenvector with eigenvalue λ = ∞. Hence,
without loss of generalizability we can decompose M = αxx> + X⊥ΛX>⊥ , where Λ is a diagonal
matrix, such that M+ = 1

αxx
> +X⊥Λ+X>⊥ . First we consider the expansion of the left hand side

of Eqn. (14)

lim
ω→∞

(
(α+ ω)xx> +X⊥ΛX>⊥

)+
= lim

ω→∞
1

α+ ω
xx> +X⊥Λ+X>⊥ = X⊥Λ+X>⊥ .

Similar, by expanding the right hand side we get

((
I − xx>

)(
αxx> +X⊥ΛX>⊥

)(
I − xx>

))+
=
(
X⊥ΛX>⊥

)+
= X⊥Λ+X>⊥ .

�

Lemma 2 For M ′ = M + ω
∑

i xix
>
i where ω ≥ 0 it holds that λk(M

′) ≥ λk(M).

Proof: All eigenvalues of the sum of rank-1 perturbations are non-negative

ω
∑

i

xix
>
i � 0⇒M ′ �M.

�

Lemma 3 Given an orthonormal basis, X = [x1, . . . , xn−1], i.e., X>DGX = I, and unit length seed
s>DGs = 1. Then, any unit length vector x>nDGxn = 1, perpendicular to the subspace X>DGxn =
0, will have a correlation with the seed bounded by

0 ≤ (x>nDGs)
2 ≤ 1−

n−1∑

i=1

(x>i DGs)
2.

Proof: The proof follows directly from the Pythagorean theorem. Let X = [x1, . . . , xN ] be the
orthonormal basis of RN , i.e., spanning s. Then

N∑

i=1

(x>i DGs)
2 = (s>DGs)

2 = 1.

�
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Lemma 4 For the matrix Pγ = LG − γI it holds that

P+
γ − P+

γ̂ = (γ − γ̂)P+
γ̂ P

+
γ , (15)

given that neither γ nor γ̂ coincides with an eigenvalue of LG.

Proof: The proof follows directly by plain algebra. Simply substitute the SVD Pγ = V ΛγV
T , where

Λγ is a diagonal matrix with the eigenvalues shifted by γ, into Eqn. (15)

V Λ+
γ V

T − V Λ+
γ̂ V

T = (γ − γ̂)V Λ+
γ̂ V

TV Λ+
γ V

T

V Λ+
γ V

T − V Λ+
γ̂ V

T = (γ − γ̂)V Λ+
γ̂ Λ+

γ V
T

⇒ Λ+
γ − Λ+

γ̂ = (γ − γ̂)Λ+
γ̂ Λ+

γ .

The system is decoupled so it will be sufficient to consider a single eigenvalue

1

λi − γ
− 1

λi − γ̂
=

γ − γ̂
(λi − γ̂)(λi − γ)

λi − γ̂
(λi − γ̂)(λi − γ)

− λi − γ
(λi − γ̂)(λi − γ)

=
γ − γ̂

(λi − γ̂)(λi − γ)

γ − γ̂
(λi − γ̂)(λi − γ)

=
γ − γ̂

(λi − γ̂)(λi − γ)
.

Also, this trivially holds for the rank deficient case, i.e., 0 = 0.
�

Lemma 5 As pointed out in Section 3.3, it is already immediate that the initial semi-supervised
eigenvector can be computed using a diffusion-based procedure, such as the Push algorithm. How-
ever, from that discussion it remains unclear how the approach can be generalized for the consecutive
k − 1 semi-supervised eigenvectors. It turns out that the kth solution is approximated by

xk ≈ c(I −XXTDG)(LG − γkDG)+DGs, (16)

given that (LG − γkDG)+DGs is linearly independent with respect to the previous k − 1 solutions
contained in X.

Proof: By Eqn. (9) the solution for the second semi-supervised eigenvector can be expressed as

y2 = c
(
Pγ2

+ − Pγ2+y1(yT1 Pγ2+y1)+yT1 Pγ2+
)
D

1/2
G s,

where (yT1 Pγ2
+y1)

+ is a constant. For notational convenience we start by substituting b = D
1/2
G s

together with the explicit solution y1 ∝ Pγ1+b

y2 = cPγ2
+b− cPγ2

+Pγ1
+bbTPγ1

+Pγ2
+b

bTPγ1
+Pγ2

+Pγ1
+b

,

and for the same reason we also introduce ργ1γ2 = b>Pγ1
+Pγ2

+b

y2 = cPγ2
+b− cργ1γ2Pγ2

+Pγ1
+b

bTPγ1
+Pγ2

+Pγ1
+b
.
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We can approximate this expression by exploiting the structural result of Lemma 4, namely that
Pγ1

+ − Pγ2+ = (γ1 − γ2)Pγ2+Pγ1+

y2 ≈ cPγ2+b−
cργ1γ2(Pγ1

+ − Pγ2+)b

bTPγ1
+(Pγ1

+ − Pγ2+)b

= cPγ2
+b− cργ1γ2(Pγ1

+ − Pγ2+)b

ργ1γ1 − ργ1γ2
.

We emphasize that this approximation is exact whenever Pγ1
+ − Pγ2

+ is well-conditioned, and

singular for γ1 = γ2. Then, substitute c =
ργ1γ1−ργ1γ2

ργ1γ1

y2 ≈
ργ1γ1Pγ2

+b− ργ1γ2Pγ2+b
ργ1γ1

− ργ1γ2(Pγ1
+ − Pγ2+)b

ργ1γ1

=
ργ1γ1Pγ2

+b− ργ1γ2Pγ2+b− ργ1γ2Pγ1+b+ ργ1γ2Pγ2
+b

ργ1γ1

=
ργ1γ1Pγ2

+b− ργ1γ2Pγ1+b
ργ1γ1

= Pγ2
+b− ργ1γ2Pγ1

+b

ργ1γ1
.

By resubstituting for the auxiliary variables we obtain the desired result

y2 ≈ c(I − y1yT1 )(LG − γI)+D
1/2
G s,

and by applying this procedure recursively it follows that

yk ≈ c(I − Y Y T )(LG − γkI)+D
1/2
G s.

Finally, we can relate this result to the combinatorial graph Laplacian as follows

yk ≈ c(I −D1/2
G XXTD

1/2
G )D

1/2
G (LG − γkDG)+DGs

= c(D
1/2
G −D1/2

G XXTDG)(LG − γkDG)+DGs

= cD
1/2
G (I −XXTDG)(LG − γkDG)+DGs,

and due to the relationship xk = D
−1/2
G yk it follows that

xk ≈ c(I −XXTDG)(LG − γkDG)+DGs.

�
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B Derivation of sparse graph diffusions.

To allow efficient computation of semi-supervised eigenvectors by graph diffusions, we must make
the relationship with the sparse seed vector explicit. Here we specifically consider the derivation of

Eqn. (13). Given a sparse seed indicator s0, we can write the seed vector s as s ∝ D−1/2G (I−v0vT0 )s0,
where v0 ∝ diag(D1/2) is the leading eigenvector of the normalized graph Laplacian (corresponding
to the all-one vector of the combinatorial graph Laplacian). Using this explicit form of s we can
rewrite the leading solution as

x1 = c(LG − γDG)+DGs

= cD
−1/2
G (LG − γI)+D

1/2
G s

= cD
−1/2
G (LG − γI)+D

1/2
G D

−1/2
G (I − v0vT0 )s0

= cD
−1/2
G

(
(LG − γI)+s0 − (LG − γI)+v0v

T
0 s0
)
.

Since LG − γI simply shifts the eigenvalues of LG by −γ, the latter term simplifies to

x1 = cD
−1/2
G

(
(LG − γI)+s0 −

(
1

−γ v0v
T
0

)
v0v

T
0 s0

)

= cD
−1/2
G

(
(LG − γI)+s0 +

1

γ
v0v

T
0 s0

)

= cD
−1/2
G

(
1

−γD
−1/2
G prε

(
γ

γ − 2
, D

1/2
G s0

)
+

1

γ
v0v

T
0 s0

)
.

Finally, by exploiting the peeling result in Eqn. (16), we can use the Push algorithm to approximate
the sequence of semi-supervised eigenvectors in an extremely efficient manner

x∗t ≈ c
(
I −XXTDG

)(
D−1G prε

(
γt

γt − 2
, D

1/2
G s0

)
−D−1/2G v0v

T
0 s0

)
,

as the Push algorithm is only applied on the sparse seed set.

C Nyström Approximation for the Normalized Graph Laplacian

The vanilla procedure is as follows; we choose m samples at random from the full data set, and for
notational simplicity we reorder the samples so that these m samples are followed by the remaining
n = N −m samples, i.e., we can partition the adjacency matrix as

AG =

(
A B
BT C

)
,

where A ∈ Rm×m, B ∈ Rm×n, and C ∈ Rn×n, with N = m+n and m� n. The Nyström extension
then approximates the huge C matrix in terms of A and B, so the resulting approximation to weight
matrix becomes

AG ≈ ÂG =

(
A B
BT BTA−1B

)
.
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Hence, rather than encoding only each nodes k-nearest-neighbors into the weight matrix, the
Nyström methods provides a low-rank approximation to the entire dense weight matrix. Since

the leading eigenvectors of D
−1/2
G AGD

−1/2
G correspond to the smallest of LG, our goal is to diago-

nalize D
−1/2
G AGD

−1/2
G . At the risk of washing out the local hetrogeneties the Nyström procedure

approximates the largest eigenvectors of D
−1/2
G AGD

−1/2
G using the normalized matrices Ã and B̃

Ãij =
Aij√
d̂id̂j

, i, j = 1, . . .m

B̃ij =
Bij√
d̂id̂j+m

, i = 1, . . .m, j = 1, . . . , n.

Finally, let UΛUT be the SVD of Ã + Ã−1/2B̃B̃T Ã−1/2, then the m leading eigenvectors are ap-
proximated by

V =

(
Ã

B̃T

)
Ã−1/2UΛ−1/2,

and the normalized graph Laplacian by LG ≈ I − V ΛV T .
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ABSTRACT
Modern audio systems are typically equipped with several user-adjustable parameters unfamiliar to most
listeners. Nevertheless, the user is forced to perform high-dimensional optimization with respect to the
user’s own preference using simple trial and error methods in order to obtain optimal system settings.
This possibly leads to extensive experimentation involving several tiresome adjustments-listening trials and
often results in suboptimal settings. To address this problem, this paper presents a simple yet general
framework for robust and intuitive personalization of audio systems with several (in principle infinite) free
system parameters. The framework is based on a Bayesian viewpoint building on Gaussian process regression
with corresponding sequential design methods for effectively selecting the next system configuration to be
evaluated. We demonstrate the framework in a real interactive loop, where twenty-four tests subjects are
given a personalized setting of a five-band constant-Q equalizer with thousands of possible settings. It
shows that the proposed preference modeling approach combined with sequential design is able to find a
significantly better solution than obtained with random experimentation in under the same model.

1. INTRODUCTION
The ever increasing number of features and process-
ing possibilities in many modern multimedia sys-
tems, such as personal computers, mobile phones,
hearing aids and home entertainment systems, has
made it possible for users to customize these de-
vices significantly. A downside in this trend is the
large number of user adjustable parameters which

makes it a daunting and complex task to actually
adjust/optimize the devices correctly. For audio sys-
tems, the optimization is further complicated by per-
ceptual and cognitive aspects of the human auditory
and cognitive system, which results in a significant
spread in subject’s opinions concerning the adjust-
ment of a particular device. As a consequence, users
often have to navigate in a high-dimensional parame-
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ter space, which makes it extremely difficult for users
to find even a local optimum. It is therefore of great
interest to find and evaluate fast and flexible tools
for optimizing user adjustable settings with the aim
to realize truly personalized audio systems.

We address this problem of optimizing settings that
span a high-dimensional space and for which the
preference typically induces a non-convex functions
over the setting space, by applying robust regression,
user feedback and global optimization techniques in
an interactive loop visualized in Fig. 1. The loop
constitutes a framework where we model the inher-
ent uncertainty in the user feedback with Gaussian
process regression and where we obtain user ratings
through an intuitive and simple interface. Finally,
we propose to use sequential optimization techniques
to quickly find a (possibly local) optima of the pref-
erence function.

We evaluate the usefulness of the framework in a
real-world experiment where personalization of a
5-band constant-Q equalizer (EQ) have been con-
ducted for twenty-four test subjects. As the EQ
has over fifty-nine thousands unique settings, the hy-
pothesis is that the preferred settings will be hard
to find without efficient sequential design. Further-
more, audio systems with a large number of param-
eters typically have an inherent correlation between
particular parameters, for instance due to a finite
number of frequency bands, for which correlation
can be expected between adjacent frequency bands.
In the particular EQ setting we may expect such
correlation to exist between adjacent bands of the
EQ and we therefore propose a specialized informa-
tive prior for including this knowledge into the sys-
tem. The results from the real-world listening exper-
iments focusing on the statistical difference between
random experimentation and sequential experimen-
tal design, show a clear advantage of the sequential
design approach.

The proposed framework is related to a number of
studies in the field of preference learning and gen-
eral personalization of audio systems. In particular
Pardo et. al. [5] presents a similar system to ours,
however the modeling framework presented in the
present work is more flexible due to a non-parametric
model, allows for easy inclusion of prior knowledge
and provides a principled probabilistic way to make

sequential decisions. Another related field is the in-
dividualization of hearing aids for which Birlutiu et.
al. [2] propose a similar Gaussian process approach
as ours, and furthermore consider the general notion
of active learning. The main difference is the exper-
imental paradigm which in [2] is based on pairwise
comparisons. Furthermore, they do not evaluate the
system in a real interactive loop and the active learn-
ing criterion is designed for generalization, not opti-
mization as in our case.

Our contribution is thus two fold: First in Sec. 2, we
propose a general personalization framework with
an intuitive user interface (Sec. 2.3), a principled
modeling approach using warped Gaussian processes
(Sec. 2.1) and a sequential design method (Sec. 2.2).
Secondly in Sec. 3, we evaluate the framework by an
extensive listening experiment in a real world inter-
active setting and analyze the results. The results
are discussed in Sec. 4 and the paper is concluded in
Sec. 5.

2. FRAMEWORK
The proposed personalization approach uses an in-
teractive loop to discover the user’s preferred setting
of a particular audio device, where we as an example
use a 5-band constant-Q equalizer. The interactive
loop is visualized in Fig. 1. The loop can conceptu-
ally be divided into three parts: a preference mod-
eling part, a sequential design part and an interface
part. The preference modeling part covers how to
learn a preference function over equalizer settings
based on user ratings. The sequential design part
covers how to choose new equalizer settings based
on what the model currently predicts. Finally, the
interface part covers the design of the graphical user
interface, such that it is both intuitive and easy to
use for the users. The three parts are described in
the following three sections.

2.1. Preference Model
We assume that for each system setting can be rep-
resented as a vector of parameters, xi - and that
for each unique setting we have a latent function
value, f(xi), expressing the user’s preference for the
particular setting. This function is to be learned
trough a number of experiments where we observe
the users expressed preference on a bounded scale,
y ∈ [0; 1]. At some point we have evaluated n
such distinct system settings xi ∈ X collected in
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Fig. 1: Shows a conceptual overview of the interactive preference modeling system. At step (1) we draw a
new equalizer from the current estimate of the subjects preference function. Next, at step (2) this particular
equalizer is associated with a ball, in this case number eight, in the visualized user interface. Finally, after
the user has rated the new equalizer, the preference function is updated to reflect current positions of all
previous balls, this update occurs at step (3). We emphasize that the user at any time may select between
previously sampled equalizers by clicking the balls, making the current song play through the newly selected
equalizer.

X = {xi|i = 1, ..., n}, and a related set of n re-
sponses denoted Y = {yi|i = 1, ..., n}.
We model the function which maps from settings,
xi, to ratings, yi, by a so-called warped Gaussian
process [7]. A standard Gaussian process (GP) is
a stochastic process defined as a collection of ran-
dom variables, any finite subset of which must have
a joint Gaussian distribution [6]. In effect, the GP is
placed as a prior over any finite set of functional val-
ues f = [f1, f2, ..., fn]T , where fi = f(xi), resulting
in a finite multivariate Gaussian distribution over
the set as p(f |X) ∼ N (0,K), where each element
of the covariance matrix K is given by a covariance
function k(·, ·) such that [K]i,j = k(xi,xj). The
GP prior can be used in non-parametric Bayesian
regression frameworks where either the outputs or
a likelihood can be parameterized by a smooth and
continuous function f(·).
However, our regression setup is special due to the
bounded nature of the ratings. We therefore use

the warped Gaussian process in which the original
data Y is transformed into a form where the data is
modeled by a traditional Gaussian noise model [6].
Several warping functions would apply, but a natural
choice is the inverse cumulative Gaussian (probit)
Φ−1(·)—with zero mean and unity variance—such
that observation is warped as zi = Φ−1(yi).

The final model is defined by,

σs|θs ∼ half student - t

σ`|θ` ∼ half student - t

fi|σs, σ` ∼ GP
(
m (xi) , k (xi, ·)σs,σ`

)

zi|fi ∼ N (fi, σi) (1)

zi = Φ−1 (yi) , (2)

where σ` is the length scale of the covariance func-
tion and σs is the variance of the latent function.
We have placed hyper priors over the covariance pa-
rameters in order to provide a robust inference and
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prediction scheme, especially in the sequential setup
with relatively few observations. These hyper pri-
ors are half student-t distributions with parameters,
θ = {ξ, υ}, with degree of freedom, ξ, and scale,
υ. We note that the observation noise, σi, can be
included in the covariance function.

Given this model, the main questions remains re-
garding the covariance function, which effectively
defines the smoothness of the function. We consider
two covariance functions based on the general form
of the squared exponential kernel

k (x,x′) = σs exp

(
− 1

σ`
(x− x′)

>
Λ−1 (x− x′)

)

(3)

In the first case, Λ is the identity matrix
leading to the well-knoen (isotropic) squared
exponential covariance function kiso (x,x′) =

σs exp
(
− 1
σ`
‖x− x′‖2

)
. In the second case, Λ is a

general positive semi-definite matrix defining a cor-
relation between settings in input space as explicit
prior information. We will denote this variant as the
Mahanalobis covariance function, kmah (x,x′). The
effect of the two options on the equalization example
will be evaluated with reference to the standard case
as iso and the Mahanalobis case as mah.

We turn to a standard GP inference scheme [6]
in which the covariance parameters, σs, σ`, are
approximated by point estimates by optimizing the
marginal likelihood (or evidence) using a BFGS
method and the posterior p(f |Y,X) is analytical
tractable. Extra terms are added to the standard
evidence scheme [6] due to the student-t hyper
priors. The predictive mean and (co)variance of
the latent function, E(f∗) and V(f∗), are given in
standard form as

E {f∗} = KXX∗
[
KXX + σ2

i I
]−1

Φ−1 (Y) (4)

V {f∗} = KX∗X∗ −KXX∗
[
KXX + σ2

i I
]−1

KXX∗
(5)

where KAB is the kernel matrix containing evalu-
ations between training inputs, A = B = X, test
inputs, A = B = X∗, or between training and test
inputs, A = X∗,B = X.

The predictive distribution and in particular the pre-
dictive uncertainty is a clear advantage of the prob-
abilistic GP framework, since the predictive mean
and predictive variance can be used to determine
the information gain in including a new candidate
point into the mode, as considered next.

2.2. Sequential Experimental Design
Classic experimental design such as Latin Square or
random experimentation [4] become increasing in-
feasible in high dimensions. As an alternative, we
propose to use sequential design methods which,
by greedy selection of the most informative next
sample, potentially achieve much faster convergence
than fixed designs [3].

The main purpose is to define a selection criterion
which finds the optimal of the (unknown) preference
function. The applied criterion is a slightly modi-
fied version of the so-called Expected Improvement
(EI) [3], a known criterion in the design of computer
experiment (DACE) community. The expected im-
provement is for each candidate point, xj , defined
as,

EI(xj) = σEI · N
(
µEI
σEI

)
+ µEI · Φ

(
µEI
σEI

)
, (6)

where N (·) is the standard Normal distribution and
Φ(·) is the standard cumulative Gaussian as before.
Given the predictive distribution we can define,

µEI = µj − µmax

σ2
EI = σ2

j + σ2
max − 2σj,max

where µj and σj is the predictive mean and variance
of the test point and µm and σm is the predictive
mean and variance of the current maximum of the
preference function (using the predictive mean as the
predictor), i.e., the current best setting, all of which
originate from Eq. 4-5. The correlation between the
two function values, σj,max, requires correlated pre-
dictions which we refrain from due to computation
burden, thus σj,max = 0,∀xj . Hence, the selection
of a new point to evaluate is given by

xnew = arg max
xj

EI (xj)

which is then included in the current set of training
points and evaluated by the user through the user
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interface. We refer to this as the active configu-
ration. A random configuration rnd is included in
which samples are selected randomly to provide a
baseline method.

The modeling framework leaves four strategies to
be investigated experimentally: rnd-iso, rnd-mah,
active-iso and active-mah.

2.3. Interface
When applying absolute ratings, it is important to
define anchor and/or reference points [1]. This al-
lows subjects to compare stimuli with a fixed refer-
ence, such that each rating is calibrated both with
respect to previous ratings, but also with respect to
yet unobserved stimulus, which might redefine the
end points of the rating scale. To address these two
issues a graphical user interface similar to [5] is de-
signed. Subjects can listen to previous equalizers
(references) and are allowed to change previous rat-
ings based on the new one. Obviously, this means
that ratings are not directly comparable across sub-
jects nor between iterations. However, it is not of
particular interest to use ratings across subject to
formulate one single optimal setting, but instead to
we are interested in personalized solutions - one for
each subject.

3. EXPERIMENT
To evaluate the different model configurations and
experimental designs in a real-world scenario, an ex-
periment, in which the gains of a 5-band constant-Q
equalizer is to be optimized by the 4 different ver-
sions of the proposed frameworks, was performed for
24 subjects. The procedure and results are described
in the following sections.

3.1. Procedure
The experiment consisted of three parts: (1), (2)
and (3) as visualized in Fig 2(a). During part (1),
the user rates ten randomly chosen balls to learn
how to use the interface and to get an impression
of the stimuli (equalizer processed music). Part (2)
consisted of three sessions for which the order of ses-
sions was balanced across subjects. In each of the
three sessions a particular model (iso or mah) and
sequential design (rnd or active) is used to find
a personalized setting of the EQ for the user. Fi-
nally in part (3), the preferred settings, found by
each of the four combinations of models and sequen-
tial designs after 10, 15, 20, 25 and 30 presented

(a) Procedure
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%
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p < 0.005 p < 0.001

p < 0.011

p < 0.011

p < 0.001

rnd−iso rnd−mah active−iso active−mah

(b) Results

Fig. 2: (a): Visualization of the experiment with its
3 sessions: (1) Training, (2) Sessions and (3) Tour-
nament. (b): The percentage of times the predicted
preferred setting by each of the four models wins
over the other models across users at each of the
five tournament points.

settings, are determined by which model predicted
the setting that is rated highest (in the tournament
- see Fig. 2(a)). Each tournament (as defined in
Fig. 2(a)) was repeated twice resulting in ten tour-
naments for which the sequence was randomized. In
all parts, the sound was played back to the user
through Sennheiser HD650 headphones and a Fire-
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stoneAudio FUBAR DACIII headphone amplifier at
constant level.

3.2. Results
The results are summarized in Fig. 2(b). The illus-
trated p-values gives the significance level for which
the hypothesis, that the total number of active wins
is equal to the total number of random wins at each
tournament point (#examples), can be accepted.

4. DISCUSSION AND FUTURE WORK
Averaged across subjects and repetitions, active se-
quential design is significantly better than random
design after any given number of examples, as shown
by the p–values. This is without differentiating
between the two applied covariance functions. It
demonstrates the potential of the Bayesian model
and active learning methods in audio applications.
It is furthermore noted that a standard fixed design
will approximate the random configuration in this
high-dimensional space.

The second aspect is if the more informative Maha-
lanobis (mah) prior results in a more accurate model
with few ratings available. This is generally not the
case, however, after 15 examples the Mahalanobis
prior has slightly more wins, which might indicate a
small window-of-opportunity in which the more in-
formative Mahalanobis prior actually prevails. It is
speculated that in an even higher dimensional space
(∼10), this window will grow, rendering the Maha-
lanobis prior advantageous.

Future work will investigate the feasibility of infer-
ring the correlation structure in the Mahalanobis
prior. Finally, other response types, such as paired
comparisons, is to be compared with the current ab-
solute paradigm, which is also left for future work.
We further plan to embed the current system in a
slightly modified version as a Web application in the
future.

5. CONCLUSION
We have proposed a method for obtaining true per-
sonalized systems—in particular audio systems—
which utilizes the probabilistic modeling approach
through sequential design. This improves the high-
dimensional preference optimization procedure in re-
spect to random (analogue to manual) experimenta-
tion. The solutions found by the sequential approach
is significantly preferred over the solutions found by

random experimentation. The results do not sup-
port any benefit in using the more informative Gaus-
sian process prior with the Mahalanobis kernel com-
pared to the less informative Gaussian process prior
with the isotropic kernel.
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