
DISSERTATION

SCALABLE LARGE MARGIN PAIRWISE LEARNING ALGORITHMS

Submitted by

Majdi Khalid Alnnfiai

Department of Computer Science

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Summer 2019

Doctoral Committee:

Advisor: Dr. Indrakshi Ray

Co-Advisor: Dr. Hamidreza Chitsaz

Dr. Sangmi Lee Pallickara

Dr. Tawfik Aboellail

ABSTRACT

SCALABLE LARGE MARGIN PAIRWISE LEARNING ALGORITHMS

Classification is a major task in machine learning and data mining applications. Many of these

applications involve building a classification model using a large volume of imbalanced data. In

such an imbalanced learning scenario, the area under the ROC curve (AUC) has proven to be a

reliable performance measure to evaluate a classifier. Therefore, it is desirable to develop scalable

learning algorithms that maximize the AUC metric directly.

The kernelized AUC maximization machines have established a superior generalization ability

compared to linear AUC machines. However, the computational cost of the kernelized machines

hinders their scalability. To address this problem, we propose a large-scale nonlinear AUC max-

imization algorithm that learns a batch linear classifier on approximate feature space computed

via the k-means Nyström method. The proposed algorithm is shown empirically to achieve com-

parable AUC classification performance or even better than the kernel AUC machines, while its

training time is faster by several orders of magnitude.

However, the computational complexity of the batch linear model compromises its scalability when

training sizable datasets. Hence, we develop a second-order online AUC maximization algorithms

based on a confidence-weighted model. The proposed algorithms exploit the second-order infor-

mation to improve the convergence rate and implement a fixed-size buffer to address the multivari-

ate nature of the AUC objective function. We also extend our online linear algorithms to consider

an approximate feature map constructed using random Fourier features in an online setting. The

results show that our proposed algorithms outperform or are at least comparable to the competing

online AUC maximization methods.

Despite their scalability, we notice that online first and second-order AUC maximization methods

are prone to suboptimal convergence. This can be attributed to the limitation of the hypothesis

ii

space. A potential improvement can be attained by learning stochastic online variants. However,

the vanilla stochastic methods also suffer from slow convergence because of the high variance

introduced by the stochastic process.

We address the problem of slow convergence by developing a fast convergence stochastic AUC

maximization algorithm. The proposed stochastic algorithm is accelerated using a unique combi-

nation of scheduled regularization update and scheduled averaging. The experimental results show

that the proposed algorithm performs better than the state-of-the-art online and stochastic AUC

maximization methods in terms of AUC classification accuracy.

Moreover, we develop a proximal variant of our accelerated stochastic AUC maximization algo-

rithm. The proposed method applies the proximal operator to the hinge loss function. Therefore,

it evaluates the gradient of the loss function at the approximated weight vector. Experiments on

several benchmark datasets show that our proximal algorithm converges to the optimal solution

faster than the previous AUC maximization algorithms.

iii

TABLE OF CONTENTS

ABSTRACT . ii

LIST OF TABLES . vii

LIST OF FIGURES . viii

Chapter 1 Introduction . 1

1.1 Motivation . 2

1.2 Problem Statement . 6

1.3 Summary of Contributions . 7

1.4 Thesis Outline . 7

Chapter 2 Preliminaries and Background . 9

2.1 Definition of AUC metric . 9

2.2 Linear and Nonlinear AUC Maximization 11

2.3 Nyström Low-Rank Approximation . 14

2.4 Random Fourier Features . 16

Chapter 3 Scalable Batch Nonlinear AUC Maximization 19

3.1 Introduction . 19

3.2 Related work . 20

3.3 Nonlinear AUC Maximization Methods 21

3.3.1 Nyström AUC Maximization . 22

3.3.2 Random Fourier AUC Maximization 24

3.4 Experiments . 24

3.4.1 Benchmark Datasets . 25

3.4.2 Compared Methods and Model Selection 25

3.4.3 Results and Discussion . 27

3.5 Conclusion . 29

Chapter 4 Second-Order Online AUC Maximization 30

4.1 Introduction . 30

4.2 Related work . 31

4.3 Confidence-Weighted Bipartite Ranking 32

4.4 Diagonal Confidence-Weighted Bipartite Ranking 37

4.5 Experiments . 39

4.5.1 Real World Datasets . 39

4.5.2 Compared Methods and Model Selection 41

4.5.3 Results on Benchmark Datasets . 42

4.5.4 Results on High-Dimensional Datasets 44

4.6 Conclusion . 45

iv

Chapter 5 Kernelized Second-Order Online AUC Maximization 47

5.1 Introduction . 47

5.2 Related Work . 48

5.3 Kernelized Confidence-Weighted AUC Maximization 49

5.3.1 Fourier Confidence-Weighted AUC Maximization 51

5.4 Experiments . 54

5.4.1 Benchmark Datasets . 55

5.4.2 Compared Methods and Model Selection 56

5.5 Results and Discussion . 59

5.6 Conclusion . 60

Chapter 6 Accelerated Stochastic AUC Maximization 63

6.1 Introduction . 63

6.2 Related work . 64

6.3 Accelerated Stochastic AUC Maximization Algorithm 65

6.4 Extension to Approximate Kernel . 67

6.5 Experiments for Linear AUC Maximization Methods 69

6.5.1 Benchmark Datasets . 69

6.5.2 Compared Methods and Model Selection 70

6.5.3 Results for Linear AUC Algorithms on Benchmark Datasets 71

6.5.4 Results for Linear AUC Algorithms on High Dimensional Datasets . . . 71

6.5.5 Study on the Convergence Rate . 73

6.6 Experiments for kernelized AUC Maximization Methods 74

6.6.1 Compared Methods and Model Selection 74

6.6.2 Results and Discussion . 77

6.6.3 Study on the Convergence Rate . 77

6.7 Experiments of NASAM vs. FASAM . 79

6.8 Conclusion . 82

Chapter 7 Proximal Stochastic AUC Maximization Algorithm 85

7.1 Introduction . 85

7.2 Related Work . 86

7.3 Proximal Algorithm . 87

7.4 Experiments . 90

7.4.1 Datasets . 90

7.4.2 Compared Methods and Model Selection 91

7.4.3 Results and Discussion . 92

7.4.4 Study on the Convergence Rate . 93

7.5 Conclusion . 101

Chapter 8 Conclusion and Future Work . 102

8.1 Future Work . 103

Bibliography . 104

v

Appendix A The Proximal Operator of the Hinge Loss 116

vi

LIST OF TABLES

3.1 Description of the data sets . 25

3.2 Comparison of AUC performance (%) for different batch classifiers 28

3.3 Comparison of training time (in seconds) for different batch classifiers 28

4.1 Benchmark data sets . 40

4.2 High-dimensional data sets . 40

4.3 AUC performance on the benchmark data sets . 42

4.4 Comparison of classification accuracy at OPTROC on the benchmark data sets 43

4.5 AUC performance on the high-dimensional data sets 44

4.6 Comparison of classification accuracy at OPTROC on the high-dimensional data sets . 45

5.1 Benchmark data sets . 56

5.2 AUC classification accuracy and running time for different online AUC classifiers . . . 58

6.1 Description of the benchmark data sets . 70

6.2 Description of the high dimensional data sets . 70

6.3 AUC classification accuracy and training time (in seconds) for linear AUC maximiza-

tion algorithms on the benchmark data . 72

6.4 AUC classification accuracy and training time (in seconds) for linear AUC maximiza-

tion algorithms on the high dimensional data . 73

6.5 AUC classification accuracy and training time (in seconds) for NASAM and the other

kernelized AUC maximization algorithms . 78

6.6 Comparison of NASAM vs. FASAM . 82

7.1 Benchmark data sets . 90

7.2 High dimensional data sets . 91

7.3 Comparison of AUC classification accuracy and training time (in seconds) for different

AUC maximization algorithms . 94

7.4 Comparison of AUC classification accuracy and training time (in seconds) for different

AUC maximization algorithms on the high dimensional datasets 95

7.5 Comparison of AUC classification accuracy and training time (in seconds) for the non-

linear variants of the batch and the stochastic AUC maximization algorithms 95

vii

LIST OF FIGURES

1.1 Linear classifier trained on one-dimensional imbalanced data 3

1.2 Comparison of classification accuracy for two linear SVM classifiers 4

1.3 High level structure of recommender systems . 5

1.4 Typical Architecture of continuous integration systems 6

2.1 Receiver Operating Characteristic curve (ROC curve) 11

4.1 Running time (in milliseconds) of CBR and the other online learning algorithms on

the benchmark datasets . 43

4.2 Running time (in milliseconds) of CBR-diagFIFO algorithm and the other online learn-

ing algorithms on the high-dimensional datasets . 46

5.1 Study on the classification accuracy of random Fourier AUC maximization methods

with a different number of random features . 62

6.1 AUC classification accuracy of stochastic linear AUC maximization algorithms with

respect to the number of epochs . 76

6.2 AUC classification accuracy of the kernelized stochastic AUC algorithms with respect

to the number of epochs . 81

6.3 AUC classification accuracy of NASAM and FASAM with a different number of features 84

7.1 AUC classification accuracy with respect to the number of epochs for the stochastic

linear AUC methods . 98

7.2 AUC classification accuracy with respect to the number of epochs for the kernelized

stochastic AUC maximization algorithms . 100

viii

Chapter 1

Introduction

Machine learning is fundamentally about building statistical models that are able to learn and fore-

cast in an automatic manner. Classification is one of the primary machine learning tasks. The

development of efficient, effective, and robust classification algorithms is of paramount impor-

tance in designing intelligent systems that can be deployed in a variety of applications, such as

recommender systems, bioinformatics, information retrieval, computer vision, fraud detection, so-

cial network analysis, and medical diagnosis.

In the era of "big data," most of the real-world applications involve building a predictive model

using a tremendous amount of data. This large volume of data makes most classical learning al-

gorithms impractical. For example, the complexity of training nonlinear kernel support vector

machines grows quadratically with the number of instances. Further, the complexity of their pre-

dictive models depend on the set of support vectors, which grows linearly with the number of

training instances.

The support vector machines (SVM) literatures contain different approaches to scale up clas-

sical kernel SVM from different perspectives. This includes methods that approximate the kernel

matrix using low-rank approximation, such as Nyström methods [1, 2] and incomplete Cholesky

factorization [3]. Instead of approximating the kernel matrix, other methods such as the random

kitchen sink [4] approximate the kernel function by projecting the input space into a higher di-

mensional space via a random matrix. The works in [5, 6] scale up nonlinear kernel SVM by

building sparse kernels. Recent approaches exploit the local structure of the data (i.e., clusters and

manifolds) [7, 8, 9] to approximate complex nonlinear decision boundaries using linear classifiers.

Online learning has also been used to approximate kernel SVM by training an online model

using a predefined number of support vectors [10] or using online kernel approximation techniques

[11]. Another recent method addresses the scalability of kernel SVM by integrating random fea-

tures and a functional gradient [12], where random features are computed on the fly for a sample

1

of data in each iteration. In this stochastic setting, the random features can be increased in each

iteration.

Most of the recent scalable learning algorithms focus on optimizing the error rate or accuracy.

These algorithms fail to construct a robust model when applied to imbalanced datasets. For im-

balanced learning, the AUC has been shown to be a reliable measure to evaluate the performance

of classifiers [13]. The direct optimization of the AUC measure requires a learning algorithm that

can deal with pairwise loss functions instead of classical univariate loss functions that are defined

based on a single instance.

In the following subsections, we discuss the importance of developing learning algorithms that

directly optimize the AUC measure. We then briefly summarize our contributions in this line of

research.

1.1 Motivation

This research aims to devise supervised classification algorithms that address both large-scale and

heavily imbalanced class distribution data. The thesis focuses on maximum margin classifiers,

such as SVM [14, 15]. The concept of maximum margin has a sound theoretical foundation in

reducing the uncertainty of the predictive model [16], which in turns improves the generalization

capability of the classifier. Among several metrics that can be optimized by the SVM classifier,

this thesis is restricted to optimizing the area under the ROC curve (AUC) metric [17] to deal with

imbalanced datasets.

For binary classification task, the vanilla SVM, which minimizes the error rate, trained on

an extremely imbalanced dataset is prone to a bias problem, which results in a low classification

accuracy for the minority class. This bias phenomenon is demonstrated in Figure 1.1. The figure

shows a linear SVM classifier trained to maximize the accuracy on one-dimensional imbalanced

data. The classifier is accurate in classifying the majority class (blue points) but at the expense of

the minority class (red points). Further, the error rate or accuracy becomes a misleading indicator

of the quality of the predictive model as the ratio of one class label outnumbers the another class

2

label. In Figure 1.2, we can notice that as the ratio of the positive to negative is increasing as the

accuracy of the vanilla SVM classifier decreases, while the SVM classifier trained to maximize the

AUC shows a reliable classification accuracy, obtained at the optimal operating point.

Figure 1.1: Linear classifier trained on one-dimensional imbalanced data is shown to be biased. The one-

dimensional data comprise positive instances, the minority, and negative instances, the majority. Each class

is generated from normal distributions. The underlying distributions of both positive and negative instances

are shown. The minority class includes five instances while the majority has 100 instances. The solid line

represents the linear SVM classifier. The authors of [18] describe a similar figure to support their argument

about the bias problem.

Re-sampling techniques such as under-sampling [20] and over-sampling [21] have been pro-

posed to deal with imbalanced datasets, but these methods are not efficient. Cost sensitive classi-

fiers [22, 23] have also been developed for imbalanced learning. However, these methods require

prior knowledge about the class distribution, which is hard to obtain in real-world applications.

Therefore, it is important to develop learning algorithms that can directly optimize the proper mea-

sures for imbalanced learning.

Unlike error rate, the AUC metric does not consider the class distribution when assessing the

performance of classifiers. Therefore, the AUC metric is a threshold-independent measure. In fact,

3

0 5 10 15 20 25 30 35

ratios

69

69.5

70

70.5

71

71.5

72

72.5

73

m
e

tr
ic

s

Letter dataset (ptr= 5938, ntr = 6062)

Acc at OptROC

1-ER

Figure 1.2: Comparison of classification accuracy for two linear SVM classifiers on the letter test set. The

letter dataset is obtained from [9]. Both classifiers are trained on the training dataset with varying ratios

of positive to negative classes. The number of positive and negative training instances is 5938 and 6062,

respectively. The first classifier optimizes the AUC metric, and its classification accuracies, shown by the

blue dashed line, are obtained using the threshold corresponding to the optimal operating point. The second

classifier optimizes the accuracy, and its classification accuracies are shown by the solid red line.

it evaluates a classifier over all possible thresholds, hence eliminating the effect of imbalanced

class distribution. This property renders the AUC a reliable measure to evaluate classification

performance on datasets with strongly unbalanced classes [13], which are not uncommon in real-

world applications such as recommender systems [24], bioinformatics[25], continuous integration

systems [26] ,and anomaly detection [27].

A typical recommender system consists of a graphical user interface (GUI) and an internal

recommendation policy. A high level paradigm of recommender systems is shown in Figure 1.3

The recommendation policy can be constructed using a machine learning algorithm, which makes

predictions that will be displayed by the GUI. The GUI also feeds the learning algorithm with any

feedback solicited from the users (e.g., click, rating). For example, in personalized advertisement

recommendation (PAR), a user interacts with the system by visiting a web page where the system

displays a predicted ad from a set of ads for the user.

4

Figure 1.3: High level structure of recommender systems. In the front-end, there is a graphical user interface

(GUI) that displays the prediction (e.g., ads) to users while sending information (e.g., clicks) to the machine

learner in the back-end. The draw of this figure is inspired by [19].

The step of predicting the ad is performed by the predictive model trained on the users’ profiles,

which contains pertinent information about the users, such as demographics, geo-location, the

frequency of visits, and browser type, etc.. Then, the recommendation policy is updated whether

the user clicks or ignores that ad. The main problem with such PAR systems is that the users are

usually ignoring the ads, which results in sparse feedback. This problem is known as click sparsity

[28]. In relating to our context, this problem eventually poses an imbalanced learning problem,

where the AUC is the proper measure to evaluate the learning algorithm.

Another effective application of the AUC measure is multiple instance learning (MIL). MIL

is a variant of supervised learning, where labels are assigned to groups (bags) of instances rather

than individual instances. In a binary classification task, the positive bags contain at least one

positive instance while the negative bags hold all negative instances. The ultimate objective of

MIL is to classify novel bags or instances based on a classifier trained on the labeled bags. Many

problems with weakly annotated labels can be formulated as MIL (e.g., drug activity prediction

[29], diagnosis of neurological diseases [30]). One successful formulation of MIL is to transform

the objective function into an AUC maximization problem [31].

5

Figure 1.4: Typical Architecture of continuous integration systems

The AUC is also a proper metric for continuous integration systems. In software engineering,

continuous integration is a widely used system to facilitate and expedite the software development.

A paradigm architecture of continuous integration is illustrated in Figure 1.4. In this development

cycle, the continuous integration executes an automated build whenever code changes are com-

mitted by a developer through the version control server. The continuous integration server then

reports to the developers if the build is successful or failed.

For large systems, the build step requires impractical time, which degrades the efficiency of

the continuous integration [32]. To address this issue, the outcome prediction [26, 33, 34] can be

involved to forecast the success or the fail of the build, hence, reducing the time required by the

build step. The outcome prediction task is similar to just-in-time defect prediction [35, 36].

1.2 Problem Statement

The area under the ROC curve (AUC) is an accurate measure to evaluate a model applied to highly

imbalanced data. It is, therefore, a measure of interest for wide range of applications. The main

challenge in developing a robust learning algorithm for AUC maximization is to accommodate the

scalability of optimizing a pairwise loss function and the optimality of the solution. This work

is devoted to devising scalable and robust AUC maximization learning algorithms to deal with

6

large-scale imbalanced data. In particular, we propose robust algorithms for AUC maximization in

different learning settings.

1.3 Summary of Contributions

To address the scalability problem of the batch kernel AUC machines, we develop nonlinear AUC

maximization algorithms that use Nyström and random Fourier features to approximate a nonlinear

kernel map. In an online setting, we develop linear and nonlinear second-order AUC maximiza-

tion algorithms to address the suboptimality of the solutions achieved by the state-of-the-art online

methods. In the stochastic regime, we devise an accelerated stochastic AUC maximization algo-

rithm that improves the convergence rate by scheduling both the regularization and the averaging

steps. We extend our accelerated AUC maximization algorithm to deal with nonlinear decision

boundaries using Nyström and random Fourier approaches. We also develop a proximal AUC

maximization algorithm that promotes the convergence rate of our accelerated stochastic AUC

maximization algorithm.

1.4 Thesis Outline

This dissertation is organized as follows. Chapter 2 reviews the definition of the AUC measure

and different formulations for the AUC maximization problem. It also reviews the mathematical

derivation of Nyström and random Fourier approaches, which are popular methods for approxi-

mating kernel maps. In Chapter 3, we propose a large-scale batch nonlinear AUC machines using

Nyström and random Fourier methods. We solve the batch nonlinear AUC maximization algorithm

using truncated Newton optimization, which minimizes the pairwise squared hinge loss function.

In Chapter 4, we develop a linear online confidence-weighted bipartite ranking algorithm. We

also develop a diagonal variation of the proposed confidence-weighted bipartite ranking algorithm

to deal with high-dimensional data. Chapter 5 extends the confidence-weighted bipartite ranking

algorithm to address nonlinear problems. Chapter 6 proposes a linear and nonlinear accelerated

stochastic AUC maximization algorithms. In Chapter 7 we develop a proximal stochastic AUC

7

maximization algorithm. Appendix A presents the derivation for the closed-form solution of the

proximal operator for the pairwise hinge loss function.

8

Chapter 2

Preliminaries and Background

In this section, we seek to detail the definition and formulation of the AUC maximization problem.

We begin by defining the AUC metric. We then briefly describe the linear and nonlinear support

vector machine formulations that directly maximize the AUC metric. We finish this chapter by

reviewing Nyström low-rank kernel approximation and random Fourier features, which are widely

used approaches to scale up kernel machines.

2.1 Definition of AUC metric

We borrow the definition of the AUC metric from [13, 37]. The AUC is principally the performance

measure of a bipartite ranking function. To define the AUC metric, we consider the task at hand

is a binary problem, which can be generalized to a multi-class problem using different techniques,

such as one-vs-one or one-vs-all.

Let X ∈ Rd denote the input space that contains positive and negative instances, where d is

the dimension of the input space. Given a training set S =
{
S+ ∪ S− ∈ Xn+ × Xn−

}
, where

S+ = {x1, . . . , xn+} is the positive instances of size n+, and S− = {x1, . . . , xn−} is the negative

instances of size n−. The positive and negative instances are drawn i.i.d. according to D+ and

D−, respectively. The goal is to learn a real-valued function f : X → R that scores a random

positive instance higher than any negative instance. In binary classification task, the new instance

is classified based on the score function along with an appropriate threshold. In bipartite ranking,

the score function provides an accurate rank for a new instance.

The AUC yields a single value totalizing the performance of a classifier on average over a set

of possible thresholds. For a given classifier f and positive threshold ρ, the true positive rate (TPR)

of the classifier is defined as the probability of correctly classifying a random positive instance as

positive.

9

TPRf (ρ) = Prx+∼D+

[
f(x+) > ρ

]
,

and the false positive rate (FPR) is defined as the probability of incorrectly classifying a random

negative instance as positive.

FPRf (ρ) = Prx−∼D−

[
f(x−) > ρ

]
.

The results of plotting TPRf (ρ) versus FPRf (ρ) for different values of the threshold ρ is the

ROC curve, which is shown in Figure 2.1. The AUC is defined as [37]:

AUCf =

∫ 1

0

TPRf (FPR−1
f (u))du,

where FPR−1
f (u) = inf{ρ ∈ R|FPRf (ρ) ≤ u}. Therefore, the AUC can be defined as the prob-

ability of scoring a random positive instance higher than a random negative instance [13]. This

definition can be written as the following:

AUCf = Pr(x+,x−)∼(D+D−)

[
f(x+) > f(x−)

]
,

where the assumption of assigning the same score to random positive and negative instances is

ignored.

The empirical ROC curve of the classifier f can be plotted by computing the TPR and FPR for

all instances of the given sample S with respect to each distinct value of threshold ρ as follows:

T̂PRf (ρ) =
1

n+

n+∑

i=1

I(f(x+i) > ρ) and F̂PRf (ρ) =
1

n−

n−∑

j=1

I(f(x−j) > ρ),

where I(·) is an indicator function that returns one if its argument is true and zero otherwise. The

empirical AUC can be written as follows:

ÂUCf =
1

n+n−

n+∑

i=1

n−∑

j=1

I(f(x+i) > f(x−j)) (2.1)

10

Figure 2.1: Receiver Operating Characteristic curve (ROC Curve). The ROC plots the true positive rate

(TPR) versus the false positive rate (FPR). The computation of the AUC results in a single value assessing

the performance of the model on average over multiple thresholds (the whole region under the curve).

The lower left and the upper right corners correspond to classifying all instances as negative and positive,

respectively. The ideal classifier has TPR=1 and FPR=0, which corresponds to the upper left corner.

2.2 Linear and Nonlinear AUC Maximization

The support vector machines are widely used to optimize the empirical AUC loss function. We

name the SVM algorithms that optimize the AUC loss function as pairwise classifiers. The pairwise

classifier builds a large margin bipartite ranking model that can be employed to rank a set of

instances based on their relevance. In other words, the minimization of a pairwise SVM can be

boiled down to a minimization of a binary classification problem. Given the training set S, and

assuming the model is a linear classifier f(x) = wTx for some w ∈ Rd, the empirical pairwise

learning is defined as the minimization of the following objective function:

R̂AUC(w, S) = 1− 1

n+n−

n+∑

i=1

n−∑

j=1

I(wTx+i ≤ wTx−j). (2.2)

The minimization of this objective function is equivalent to maximizing the AUC. In general,

the optimization of the indicator function I(·) is difficult because of its discontinuous nature [37].

A common practical approach to circumvent the indicator function is to use a proxy to the loss

11

called a surrogate loss function. Therefore, the objective function that maximizes the AUC can be

written as follows:

R̂AUC(w, S) =
1

n+n−

n+∑

i=1

n−∑

j=1

ℓ(wTx+i − wTx−j), (2.3)

where the loss function ℓ(z) = max(0, 1 − z)p. This loss function is known as a pairwise hinge

loss function (L1-loss) when the exponent p = 1, and a pairwise quadratic hinge loss (L2-loss)

when the exponent p = 2. Other loss functions (e.g., Huber loss) can also be used as a pairwise

loss function. Both hinge and quadratic loss functions upper bound the indicator function. The

study by [38] argues that the L1-loss is inconsistent with the AUC compared to the quadratic hinge

loss. This means that the minimization of the pairwise hinge loss function might not lead to the

minimization of the real loss function. The regularized objective function that maximizes the AUC

is defined as

min
w

λ

2
||w||2 + 1

n+n−

n+∑

i=1

n−∑

j=1

ℓ(wTx+i − wTx−j), (2.4)

where λ > 0 is a regularization hyper-parameter that can be tuned via the cross-validation method.

The norm in the first term ||w|| is L2 norm regularization. L1 norm regularization can also be used

to yield a sparse model. The kernelized variation of objective 2.4 with L1-loss can be obtained

using the kernel trick [39], then solving the following constrained objective function [40]

min
w, ξ

1

2
||w||2 + C

∑

i,j ∈π
ξi,j

s.t. wT
(
φ(x+i)− φ(x−j)

)
≥ 1− ξi,j,

ξi,j ≥ 0, ∀(i, j) ∈ π,

(2.5)

where C > 0 is the regularization hyper-parameter and φ is a linear or nonlinear function that

maps instances to higher dimensional space (feature space). π represents the set of correct pairs

12

π ≡ {(i, j) | yi > yj}, where y ∈ {−1, 1}. For L2-loss, the slack variable is turned into quadratic

form ξ2i,j . This constrained objective function can be solved using any SVM solver. However,

the large number of constraints makes the solution inefficient. The work by [41] reformulates the

constrained objective as 1-slack structural SVM that adopts a cutting plane optimization method

to solve the following problem:

min
w, ξ

1

2
||w||2 + Cξ

s.t. wT
∑

(i,j)∈π
ci,jφi,j ≥

∑

(i,j)∈π
ci,j − ξ,

ci,j ∈ {0, 1}, ∀(i, j) ∈ π,

(2.6)

where φi,j ≡ φ(xi) − φ(xj), ∀(i, j) ∈ π. This problem is solved by considering a subset of the

dual variables to solve in each iteration and adding the most violated constraint into a working set.

In practice, the resulting solution has been shown to be sparse.

The kernelized pairwise SVM can also be formulated as an unconstrained objective function

[42]

min
β

1

2
βT K β + C

∑

AiKβ<1

(1− AiKβ)2, (2.7)

where A is a matrix of size n+n−× (n++n−), n+n− is the number of pairs, (n++n−) is the sum

of positive and negative instances (size of the training set), andK = {k(xi, xj)}n
++n−

i,j=1 is the kernel

matrix. The matrix A seems very large, but it is also very sparse, which makes its computation

and storage inexpensive. Each row has only two non-zero columns that indicate a correct pair.

For example, row v has only two non-zero columns Avi = 1 and Avj = −1, which indicates this

correct pair (xi − xj). The work [42] uses non-linear conjugate gradient and truncated Newton

techniques to optimize this objective function. The work [42] also proposes a faster algorithm to

deal with the pairwise loss function. Both of the proposed algorithms in [42] scale linearly with

13

the number of instances. However, the kernelized variations of the proposed algorithms in [42]

become infeasible when dealing with large-scale and nonlinearly distributed data.

2.3 Nyström Low-Rank Approximation

The Nyström approximation [1, 43, 2, 44] is a popular approach to approximate the feature maps

of linear and nonlinear kernels, and hence scaling up the kernel learning algorithms. The Nys-

tröm method relies on the input data points in approximating the feature maps. It was originally

proposed to provide a numerical approximation for the following integral equations,

∫
p(y)k(x, y)φi(y)dy = λiφi(x), (2.8)

where p(·) is the probability density function of the vector y, k denotes a positive semidefinite

kernel function, λ1 ≥ λ2 ≥ · · · ≥ 0 are the eigenvalues, and φ1, φ2, · · · are the eigenfunctions.

Given a set of data points X = {x1, x2, · · · , xn} drawn from the probability p(·), a kernel

function K, and a set of landmark data points L = {l1, l2, · · · , lm}, which are sampled from X ,

with m ≪ n, then for any x in X , the Nyström method approximates the integral equation by the

following empirical average:

1

m

m∑

j=1

k(x, lj)φi(lj) ≃ λiφi(x). (2.9)

Replacing x with any lj , the equation 2.9 can be solved indirectly via eigenvalue decomposi-

tion: KU = UΛ, where Kij = k(xi, xj) for i, j = 1, 2, · · · ,m, U ∈ Rl×l is the eigenvectors,

Λ ∈ Rl×l is the diagonal matrix of the eigenvalues. Therefore, the eigenfunctions and eigenvalues

in 2.8 can be approximated as follows [1]:

φi(xj) ≃
√
mUji , λi ≃ q−1λi. (2.10)

When considering equation 2.9, and for non-landmark point x, the j-th eigenfunction at x can

be approximated as follows [44]:

14

φi(x) ≃
1

mλj

m∑

i=1

k(x, li)φj(li). (2.11)

This means that the eigenvectors of the landmark points can be used to approximate the eigen-

vector for any given vector x.

This approximation method can be applied to a full kernel matrix by using the approximated

eigenvectors and the eigenvalues of a set of landmark points to approximate the eigen-system of

the full kernel matrix. The full kernel matrix K can be reconstructed as follows:

K ≈ (E Ur Σ
1

2
r)(E Ur Σ

1

2
r)

T

K ≈ E W−1 ET ,

where Wij = κ(li, lj) is a kernel matrix computed on landmark points and W−1 is its pseudo-

inverse. The matrix Eij = κ(xi, lj) is a kernel matrix representing the intersection between the

input space and the landmark points. To derive W−1, the matrix W is factorized using singular

value decomposition or eigenvalue decomposition as follows: W = UΣ−1UT , where the columns

of the matrix U hold the orthonormal eigenvectors while the diagonal matrix Σ holds the eigenval-

ues of W . Assume the eigenvalues is ordered in descending order, then W−1 = Σr
i=1σ

− 1

2

i U iU iT ,

where r ≤ rank(W), σi denotes the i-th diagonal element, and U i is the i-th column of U [43].

The Nyström approximation can be utilized to transform the kernel machines into linear machines

by embedding the input space nonlinearly in a finite-dimensional feature space. The nonlinear

embedding for an instance x is defined as follows,

ψ(x) = Ur Σ
− 1

2
r φT (x),

where φ(x) = [κ(x, l1), . . . , κ(x, lm)], the diagonal matrix Σr holds the top r eigenvalues, and

Ur is the corresponding eigenvectors. The rank-r, r ≤ v, is the best rank-r approximation of

W . The choice of the landmark points has a crucial influence on the quality of the Nyström

15

approximation. The optimal landmark points are hard to choose because of the combinatorial

nature of the problem. Therefore, different strategies have been proposed to find a sound landmark

points. The work in [45] uses uniform sampling without replacement to select the landmark points.

Multiple studies [46, 2, 47, 48] propose non-uniform sampling approaches to select the landmarks

points.

2.4 Random Fourier Features

Random Fourier features [4] is another approach to scale up kernel learning methods. Specifically,

it is used in approximating positive-definite shift-invariant kernels. A shift-invariant kernel is any

kernel K(x, y) that can be written as K(x, y) = k(z), where z = (x − y). This is the property of

the well-known kernels such as Gaussian kernel and Laplacian kernel. Unlike Nyström method,

the random Fourier is data-independent, meaning it approximates the kernel function in isolation

from the input data points.

The random Fourier embedding is constructed based on the classical Bochner’s theorem [49],

which states that a function k : Rd → C is positive definite if and only if it is the Fourier transform

of a finite non-negative measure on Rd. The Fourier transform of a positive definite function k(z)

can be written as the following integral equation,

p(θ) =
1

2π

∫
e−iθ

T zk(z)d(z),

where p(θ) can be expressed as a probability distribution [49] and i denotes the imaginary unit.

The inverse Fourier features of p(θ) can be written in the form,

k(z) =
1

2π

∫
p(θ)e−iθ

T zdθ.

According to Bochner’s theorem [49], the kernel function k(·) can be reformulated as an ex-

pectation with a random variable θ [4, 50]:

16

k(x− y) = 1

2π

∫
p(θ)e−iθ

T (x−y)dθ

k(x− y) = 2 Eθ∼p(θ) [e
−iθT (x) e−iθ

T (y)∗], (2.12)

where x∗ denotes the complex conjugate of x. As the probability distribution p(θ) and the kernel

are real-valued, we ignore the imaginary part of 2.12 and use cosines to replace the complex

exponentials [4]. Therefore, the expectation 2.12 can be rewritten as follows,

k(x− y) = 2 E θ∼p(θ)
b∼U(0,2π)

[cos(θTx+ b) cos(θTy + b)],

where U(0, 2π) is the uniform distribution on [0, 2π]. For a given embedding of size D dimension,

we sample D random Fourier components {θi, bi}Di=1 independently from the distribution p(θ).

Therefore, the expectation above can be approximated using Monte Carlo sampling

k(x− y) ≈
√

2/D
D∑

j=1

cos(θTj x+ bj) cos(θ
T
j y + bj). (2.13)

Therefore, we can approximate the original feature maps by defining the approximate mapping

ψ(x) for the input vector x as follows [4],

ψ(x) =
√

2/D[cos(θT1 x+ b1) , · · · , cos(θTDx+ bD)].

Notice that the inner products of the approximate feature maps approximate the inner products

of the original ones in the reproducing kernel Hilbert space (RKHS). Therefore, a shift-invariant

kernel function can be approximated as the inner products of two nonlinear approximate mapping,

k(x, y) ≈ ψ(x)Tψ(y).

For Gaussian kernel k(x, y) = exp(− ||x−y||2
2

2σ2) the embedding is obtained by sampling each ran-

dom Fourier component θi from the distribution p(θ) = N (0, σ−2I). The embedding for Lapla-

17

cian kernel k(x, y) = exp(− ||x−y||1
σ

) is obtained by sampling θi from the distribution p(θ) =

σ
∏

d
1

π(1+σ2θ2
d
)
.

The embedding based on the Fourier transform p(θ) can be expressed by another form [4]. In

this variant, the expectation is defined as below,

k(x− y) = 2 Eθ∼p(θ) [e
iθT (x) e−iθ

T (y)]

k(x− y) = 2 Eθ∼p(θ) [cos(θ
Tx) cos(θTy) + sin(θTx) sin(θTy)]

k(x− y) = 2 Eθ∼p(θ) [[sin(θ
Tx), cos(θTy)] · [sin(θTx), cos(θTy)]].

Therefore, the representation for an embedding of size D dimension is obtained as follows,

ψ(x) =
√

2/D[sin(θT1 x), cos(θ
T
1 x) , · · · , sin(θTDx), cos(θTDx)].

18

Chapter 3

Scalable Batch Nonlinear AUC Maximization

3.1 Introduction

Kernelized AUC classifiers can model a complex nonlinear structure of datasets. As it is the case

with the kernel methods, the kernelized AUC maximization methods use a positive semi-definite

kernel function K that implicitly models a nonlinear mapping φ such that K(x, y) = 〈φ(x), φ(y)〉.

This rich representation enables the kernelized AUC classifiers to learn hard nonlinear decision

boundary and thus to achieve a powerful classification accuracy.

However, the kernelized AUC maximization methods inherit the curse of kernelization that

hinders their scalability for training large-scale datasets. The kernel methods entail building a

kernel function of size n × n, where n is the number of instances in the original input space.

Therefore, the complexity of training a kernelized AUC algorithm is quadratic in the number of

instances O(n2), while the complexity of testing the classifier is linear in the number of support

vectors, which also grows linearly with the number of training instances.

On the other hand, a linear AUC classifier can scale up for large-scale datasets compared to

kernelized AUC machines. This because the complexity of training a linear AUC classifier is

linear in the dimensionality of the training dataset O(nd). However, the linear classifiers fail to

model the complex nonlinear structure underlying most real-world datasets.

Kernel approximation methods, such as Nyström low-rank approximation [46] and random

Fourier features [4], are practical solutions to speed up kernel methods. The Nyström method

is a data-dependent, while random Fourier method is a data-independent method. Such methods

approximate the feature maps explicitly, and hence a linear classifier can be exploited to learn on

the approximate feature space. Though kernel approximation methods have been widely used to

scale up standard kernel SVM, it still has not been adopted for kernel AUC maximization.

19

In this work, we present two scalable batch nonlinear AUC classifiers that adopt the kernel ap-

proximation methods. The first algorithms model nonlinearity by approximating the kernel matrix

via the k-means Nyström approximation [2]. A batch linear AUC maximization classifier is then

applied to the approximate feature space. The second algorithm approximates the kernel function

using random Fourier features [4]. For the batch AUC classifier, we solve the pairwise squared

hinge loss function using the truncated Newton solver [42].

3.2 Related work

The multivariate nature of the AUC loss function makes its optimization using vanilla support

vector machine (SVM) infeasible. The work in [51] proposes to use a subset of the positive and

negative instances based on their proximity to optimize the AUC metric using a quadratic program-

ming solver. However, this simple approximation can yield a reduction in the generalization ability

of the classifier due to neglecting some instances. The structural SVM formulation is adopted by

[52, 41] to solve the AUC metric and other nonlinear measures. This algorithm optimizes the AUC

loss function in the dual formulation using the cutting-plane method. Although using a sophisti-

cated optimization problem, this method shows slow convergence [53].

Further, most ranking algorithms can be used to solve the AUC maximization problem. The

large-scale kernel RankSVM is proposed in [54] to address the high complexity of learning non-

linear kernel ranking machines. Several linear RankSVM methods are presented in [42, 53, 55].

These methods implement different approaches to address the complexity of computing the pair-

wise loss function per iteration. To further reduce the complexity of optimizing the pairwise loss

function for AUC, the work [56] approximates the real AUC using a polynomial approximation

function and then uses gradient descent to optimize this approximated AUC.

However, the kernelized SVM algorithms designed to maximize the AUC metric require large

memory and computation complexity, which grows quadratically with the number of instances.

Therefore, they are infeasible for large-scale applications. Meanwhile, the linear SVM algorithms

20

for AUC maximization are more efficient but cannot model the complex nonlinear structures un-

derlying most real-world datasets.

A recent study [57] explores the Nyström approximation to speed up the training of the nonlin-

ear kernel ranking function. This work does not address the AUC maximization problem. Another

recent method [58] attempts to speed up the training of nonlinear AUC classifiers by learning a

sparse model constructed incrementally based on chosen criteria [5]. However, the sparsity can

deteriorate the generalization ability of the classifier.

3.3 Nonlinear AUC Maximization Methods

To address the scalability problem of kernelized AUC machines, we build our nonlinear models by

learning linear AUC machines on a nonlinear space. The vantage of the linear classifier is that its

complexity is linear to the dimension of the input space. The nonlinear representation is introduced

by approximating the kernel representation using data-dependent or data-independent approaches.

The AUC optimization problem can be solved for w in the embedded space as follows,

min
w

1

2
||w||2 + C

n+∑

i=1

n−∑

j=1

max(0, 1− wT (ψ(x+i)− ψ(x−j)))2, (3.1)

where ψ(·) is a nonlinear mapping. The minimization of (3.1) can be solved using truncated

Newton methods [42] as shown in Algorithm 1. The matrix A in Algorithm 1 is a sparse matrix

of size r × n, where r is the number of pairs. It holds all possible pairs in which each row of A

has only two nonzero values. That is, if (i, j) | yi > yj , the matrix A has a k-th row such that

Aki = 1, Akj = −1. However, the complexity of this Newton batch learning is dependent on the

number of pairs. Chapelle and Keerthi [42] also proposed the PSVM+ algorithm, which avoids the

direct computation of pairs by reformulating the pairwise loss function as follows [42],

21

L =
n∑

k=1

αkŷ
2
k − βkŷk,

where αi = |Bi|, i ∈ A; αj = |Aj|, j ∈ B; βi =
∑

j∈Bi
ŷj , i ∈ A; βj =

∑
i∈Aj

ŷi, j ∈ B, the set

A = {i : x+i }, the set B = {i : x−i }, and ŷ is defined as,

ŷ =

wTxi − 1
2

if i ∈ A

wTxi +
1
2

if i ∈ B.

The gradient of the loss function can be computed as follows [42]:

gL :=
∂L

∂w
= XT ∂L

∂y
; and

∂L

∂yk
= 2(αkŷk − βk), ∀k = 1, · · · , n.

The Hessian vector multiplication is defined as follows [42],

HLs = 2XT z, where zk = (αkδk − γk), ∀k = 1, · · · , n,

where γi =
∑

j∈Bi
xjs, i ∈ A, γj =

∑
i∈Aj

xis, j ∈ B, and s is a given vector. The time

complexity of computing gL is O(n log n+nd), while the time complexity of each Hessian vector

multiplication is O(nd+ n+ n) [53].

3.3.1 Nyström AUC Maximization

To define the approximate feature maps in equation 3.1, we use Nyström low-rank kernel approx-

imation [2]. In the embedding steps, we construct the nonlinear mapping (embedding) based on

a given kernel function and landmark points. The landmark points are computed by the k-means

clustering algorithm applied to the input space. Once the landmark points are obtained, the matrix

W and its decomposition are computed. The original input space is then mapped nonlinearly to a

22

Algorithm 1: Batch Nonlinear AUC Maximization

Input: embedded data X̃
Output: the ranking model w
initial vector w←0
while stopping criterion is not satisfied do

D = max(0, 1− A(wT X̃))
Compute gradient g = w − (CDTAX̃)T

Compute a search direction st by applying conjugate gradient to solve

∇2F (wk)s = −∇F (wk)
Update wk+1 = wk + sk

end while

finite-dimensional feature space in which the nonlinear problem can be solved using linear AUC

machines.

The complexity of the k-means algorithm is linear O(nd), while the complexity of singular

value decomposition or eigenvalue decomposition is O(v3). Therefore, the complexity of the k-

means Nyström approximation is linear in the input space. The steps of constructing the embedding

using Nytröm method are illustrated in Algorithm 2 and the mathematical explanation of Nyström

approximation is illustrated in Chapter 2.

Algorithm 2: Nyström AUC Maximization

Embedding Steps:

Compute the centroid points {ul}ml=1

Form the matrix W : Wij = κ(ui, uj)
Compute the eigenvalue decomposition: W = UΣUT

Form the matrix E: Ei = φ(xi) = [κ(xi, u1), . . . , κ(xi, um)]

Construct the feature space: ϕ(X) = UrΣ
− 1

2
r ET

Training:

Learn the batch model described in Algorithm 1

Prediction:

Map a test point x: ϕ(x) = UrΣ
− 1

2
r φT (x)

Score value: wTϕ(x)

23

3.3.2 Random Fourier AUC Maximization

We use random Fourier features [4] to define the approximate feature maps in equation 3.1. Given

a shift-invariant kernel function k and the dimension m of the approximate mapping, we compute

its Fourier transform p and samplem components from the distribution p. The steps of constructing

the feature maps using random Fourier features are shown in Algorithm 3. As described in Chapter

2, Rahimi and Recht [4] proposed two approaches to approximate the kernel function using Fourier

features. Experimentally, we did not notice a signification difference in accuracy between the two

approaches. In our method, we implement the following transformation,

ψ(x) =
√

2/m[cos(θT1 x+ b1) , · · · , cos(θTmx+ bm)]. (3.2)

Algorithm 3: Random Fourier AUC Maximization

Embedding Steps:

Compute the Fourier transform of a given kernel function k
Sample the corresponding random Fourier components θ1 · · · , θm
Sample b1, · · · , bv from [0, 2π] uniformly at random

Construct the feature space as in equation 3.2

Training:

Learn the batch model described in Algorithm 1

Prediction:

Map a test point as in equation 3.2

Score value: wTϕ(x)

3.4 Experiments

We evaluate the proposed method on several benchmark datasets and compare it with the kernel

AUC algorithm and other state-of-the-art online AUC maximization algorithms. The experiments

are implemented in MATLAB, while the learning algorithms are written in C++ language via MEX

24

Table 3.1: Description of the data sets

Data #training #test #feat ratio

spambase 3,680 921 57 1.53

usps 7,291 2,007 256 1.40

magic04 15,216 3,804 10 1.84

protein 17,766 6,621 357 2.11

ijcnn1 49,990 91,701 22 9.44

connect-4 54,045 13,512 126 3.06

acoustic 78,823 19,705 50 3.31

skin 196,045 49,012 3 3.83

cod-rna 331,152 157,413 8 2.0

covtype 464,809 116,203 54 10.65

files. The experiments were performed on a computer equipped with an Intel 4GHz processor with

32G RAM.

3.4.1 Benchmark Datasets

The datasets we use in our experiments can be downloaded from LibSVM website1 or UCI2. The

datasets (i.e., spambase, magic04, connect-4, skin, and covtype) that are not split into training and

test sets are divided into 80%-20% for training and testing. The multi-class datasets are converted

into class-imbalanced binary data by grouping the instances into two sets, where each set has

roughly the same number of class labels. To speed up the experiments that include the kernelized

AUC algorithm, we train all the compared methods on 80k instances, randomly selected from the

training set. The features of each dataset are standardized to have zero mean and unit variance.

The characteristics of the datasets along with their imbalance ratios are shown in Table 3.1.

3.4.2 Compared Methods and Model Selection

We compare the proposed method with kernel RankSVM and linear RankSVM, which can be

used to solve the AUC maximization problem. The random Fourier method that approximates the

1https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

2http://archive.ics.uci.edu/ml/index.php

25

kernel function is also involved in the experiments where the resulting classifier is solved by linear

RankSVM.

1. RBF-RankSVM: This is the nonlinear kernel RankSVM [54]. We use Gaussian kernel

K(x, y) = exp(−γ||x−y||2) to model the nonlinearity of the data. The best width of the ker-

nel γ is chosen by 3-fold cross validation on the training set via searching in {2−6, . . . , 2−1}.

The regularization hyper-parameter C is also tuned by 3-fold cross validation by searching

in the grid {2−5, . . . , 25}. The searching grids are selected based on [54]. We also train the

RBF-RankSVM on 1/5 subsamples, selected randomly.

2. Linear RankSVM (PRSVM+): This is the linear RankSVM that optimizes the squared

hinge loss function using truncated Newton [42]. The best regularization hyper-parameter C

is chosen from the grid {2−15, . . . , 210} via 3-fold cross validation.

3. FBAM: This is the proposed batch AUC maximization trained on the approximate feature

space constructed by random Fourier features [4]. We use PRSVM+ to solve the AUC max-

imization problem on the projected space. The hyperparameters C and γ are selected via

3-fold cross validation by searching on the grids {2−15, . . . , 210} and {1, 10, 100}, respec-

tively.

4. NBAM: This is the proposed batch AUC maximization algorithm trained on the embedded

space. We solve it using the PRSVM+ algorithm [42]. The hyper-parameter C is tuned

similarly to the linear RankSVM.

For our algorithm that involves the k-means Nyström approximation, we compute 1600 land-

mark points using the k-means clustering algorithm, which is implemented in C++ language. We

select a Gaussian kernel function to be used with the k-means Nyström approximation. The band-

width of the Gaussian function is set to be the average square distance between the first 80k in-

stances and the mean, which is computed over these instances. For a fair comparison, we also set

the number of random Fourier features to 1600.

26

3.4.3 Results and Discussion

The comparison of batch AUC maximization methods in terms of AUC classification accuracy

on the test set is shown in Table 3.2, while Table 3.3 compares these batch methods in terms of

training time. For connect-4 dataset, the results of RBF-RankSVM are not reported because the

training runs over five days.

We observe that the proposed NBAM outperforms the competing batch methods in terms of

AUC classification accuracy. The AUC performance of RBF-RankSVM might be improved for

some datasets if the best hyperparameters are selected on a more restricted grid of values. Never-

theless, the training of NBAM is several orders of magnitude faster than RBF-RankSVM. The fast

training of NBAM is demonstrated on the large datasets.

The proposed NBAM shows a robust AUC performance compared to FBAM on most datasets.

This can be attributed to the robust capability of the k-means Nyström method in approximating

complex nonlinear structures. It also indicates that a better generalization can be attained by capi-

talizing on the data to construct the feature maps, which is the main characteristic of the Nyström

approximation, while the random Fourier features are oblivious to the data.

We also observe that the AUC performance of both RBF-RankSVM and its variant applied

to random subsamples outperform the linear RankSVM, except for the protein dataset. However,

RBF-RankSVM methods require longer training time, especially for large datasets. We see that the

linear RankSVM performs better than the kernel AUC machines on the protein dataset. This im-

plies that the protein dataset is linearly separable. However, the AUC performance of the proposed

method NBAM is even better than linear RankSVM on this dataset.

The optimization of PRSVM+ to maximize the AUC metric still requires O(nd̂+ 2n+ d̂) op-

erations to compute each of the gradient and the Hessian-vector product in each iteration, where d̂

is the dimension of the embedded space. This makes the training of PRSVM+ expensive for mas-

sive datasets embedded using a large number of landmark points. A large set of landmark points

is desirable to improve the approximation of the feature maps; hence boosting the generalization

ability of the involved classifier. In the next section, we attempt to address the scalability of AUC

27

Table 3.2: Comparison of AUC performance (%) for different batch classifiers

Data
RBF-

RankSVM
RBF-
RankSVM(subsample)

Linear

RankSVM
FBAM NBAM

spambase 98.00 96.02 97.47 97.75 98.04

usps 99.08 98.54 90.27 97.42 99.24

magic04 92.18 91.34 84.47 92.83 93.06

protein 80.97 77.60 83.30 58.43 84.33

ijcnn1 99.68 99.35 91.56 98.86 99.57

connect-4 - 91.32 88.20 91.10 94.09

acoustic 93.60 93.02 87.38 91.82 94.14

skin 99.92 99.92 94.81 100 99.98

cod-rna 99.07 99.07 98.85 99.12 99.12

covtype 93.94 94.05 87.75 95.99 96.03

Table 3.3: Comparison of training time (in seconds) for different batch classifiers

Data
RBF-

RankSVM
RBF-
RankSVM(subsample)

Linear

RankSVM
FBAM NBAM

spambase 3.08 0.10 0.13 3.59 7.71

usps 492.30 0.83 1.42 6.77 27.68

magic04 518.04 3.71 0.08 21.51 25.46

protein 2614.7 4.81 4.47 14.20 73.81

ijcnn1 15,434 282 0.57 80.17 88.87

connect-4 - 12,701 3.42 62.60 164.48

acoustic 134,030 5,610 1.88 92.74 151.78

skin 2037.30 78.20 0.20 73.18 23.71

cod-rna 5,715 255.4 0.44 83.01 113.66

covtype 133,270 11,670 2.54 273.67 220.90

28

maximization by developing online (one-pass) AUC maximization algorithms that can scale up to

massively large datasets.

3.5 Conclusion

In this chapter, we have proposed two scalable kernelized AUC maximization methods. We use

both Nyström and random Fourier features methods to speed up the kernel AUC maximization.

The proposed methods can scale well compared to standard kernel AUC maximization while

achieving AUC classification accuracy on par with the kernel AUC maximization method. The

proposed Nyström AUC algorithm has shown a robust AUC classification performance compared

to the Fourier AUC algorithm.

However, these two proposed methods are operating in a batch setting, meaning their training

complexities depend on the number of training instances for each iteration in the learning algo-

rithms. Therefore, these methods are suitable for mid-size datasets. Designing a scalable AUC

maximization algorithm that can scale well with large-scale datasets is important future work.

29

Chapter 4

Second-Order Online AUC Maximization

4.1 Introduction

Online learning is an appealing learning paradigm for large-scale datasets. The merit of online

learning is the ability to learn from a sequence or large batches of data points by carrying out a

single pass over them. Unlike batch algorithms, online algorithms can update the model for any

new single instance or a bunch of instances without a need to retrain the model from scratch. This

property makes online algorithms desirable for large-scale applications.

Specifically, online learning is carried out by making a single pass over the training data. In

each iteration, the algorithm receives a new instance and is required to predict its class label. Then

the true class label is revealed, and the learner suffers a loss, which can be used to measure the

quality of the learner. The loss is also involved in deciding whether to update the model or not.

Among many online learning algorithms, confidence-weighted has shown to be very effective

in improving the classification performance [59]. Confidence-weighted (CW) learning [60, 61, 59]

takes the advantage of the underlying structure between features by modeling the classifier as a

Gaussian distribution parameterized by a mean vector and covariance matrix [61].

The confidence-weighted model captures the notion of confidence for each weight coordinate

via the covariance matrix. A large diagonal value corresponding to the i-th feature in the covariance

matrix results in less confidence in its weight (i.e., its mean). Therefore, an aggressive update is

performed on the less confident weight coordinates. This adaptive approach is analogous to the

adaptive subgradient method [62] that involves the geometric structure of the data seen so far in

regularizing the weights of sparse features (i.e., less occurring features) as they are deemed more

informative than dense features.

30

The confidence-weighted algorithm [61] has also been improved by introducing the adaptive

regularization (AROW) that deals with inseparable data [63]. The soft confidence-weighted (SCW)

algorithm improves upon AROW by maintaining an adaptive margin [59].

In this work, we present scalable and robust online AUC maximization algorithms. We develop

a linear online soft confidence-weighted bipartite ranking algorithm that maximizes the AUC met-

ric via optimizing a pairwise loss function. The complexity of the pairwise loss function is miti-

gated in our algorithm by employing a finite buffer that is updated using one of the stream oblivious

policies (i.e., reservoir sampling and first-in-first-out). We also develop a diagonal variation of our

confidence-weighted bipartite ranking algorithm to deal with high-dimensional data by maintain-

ing only the diagonal elements of the covariance matrix instead of the full covariance matrix.

4.2 Related work

Multiple online learning algorithms are developed to optimize the AUC objective function. The

work [64] optimizes the AUC indirectly by learning a weighted univariate loss function. Although

this method has linear time and space complexities, it neglects the pairwise structure of the AUC

metric. Therefore, it is prone to a suboptimal convergence to the local surrogate minimum. To

optimize the surrogate AUC pairwise loss function in an online setting, the work in [65] proposes

to use buffers of fixed size for storing positive and negative instances. The buffers are updated

using the reservoir sampling technique to allow them to store an accurate representation of all

received training instances.

The work by [66] proposes a one-pass AUC maximization algorithm (OPAUC) that optimizes

the pairwise least square loss function. This algorithm is capable of eliminating the need for

buffers by storing the first-order (mean) and second-order (covariance) of each received instance.

The OPAUC algorithm shows improvement in the convergence rate over the first-order method

[65] due to the incorporation of second-order information. To further enhance the convergence

of OPAUC, the work [67] makes use of the geometric information [62] of received instances in

31

updating the weight vector (i.e., mean). That is, sparse features will be penalized higher than the

dense ones.

The work by [68] formulates the AUC maximization problem as a convex-concave saddle point

problem. The proposed algorithm in [68] solves a pairwise squared hinge loss function without the

need to access the buffered instances or the second-order information. Therefore, it shows linear

space and time complexities per iteration with respect to the number of features.

A recent study [69] suggests optimizing the real AUC metric instead of its surrogate to achieve

fast convergence. The authors of [69] attempt to optimize the real AUC loss function using a

nonparametric learning algorithm. However, learning the nonparametric algorithm on high dimen-

sional datasets is not reliable.

4.3 Confidence-Weighted Bipartite Ranking

We consider a linear online bipartite ranking function that learns from a sequence of imbalanced

dataset. Let S = {x+i ∪ x−j ∈ Rd|i = {1, . . . , n+}, j = {1, . . . , n−}} denotes the input space of

dimension d generated from unknown distributionD, where x+i is the i-th positive instance and x−j

is the j-th negative instance. The n+ and n− denote the number of positive and negative instances

received thus far. The linear bipartite ranking function f : Rd → R is a real valued function that

maximizes the AUC metric by minimizing the following loss function:

L(f ;S) = 1

n+n−

n+∑

i=1

n−∑

j=1

I(f(x+i) ≤ f(x−j)),

where f(x) = wTx and I(·) is an indicator function that outputs 1 if the condition is held, and 0

otherwise. It is common to replace the indicator function with a convex surrogate function,

L(f ;S) = 1

n+n−

n+∑

i=1

n−∑

j=1

ℓ(f(x+i)− f(x−j)), (4.1)

32

where ℓ(·) is a surrogate loss function such as hinge loss ℓ(z) = max(0, 1− z).

It is easy to see that the complexity of optimizing (4.1) will grow quadratically with respect

to the number of training instances. Following the approach suggested by [65] to deal with the

complexity of the pairwise loss function, we reformulate the pairwise loss function (4.1) as a sum

of two losses for a pair of instances,

T∑

t=1

I(yt=+1)g
+
t (w) + I(yt=−1)g

−
t (w), (4.2)

where T = n+ + n−, and gt(w) is defined as follows

g+t (w) =
t−1∑

t′=1

I(yt′=−1)ℓ(f(xt)− f(xt′)), (4.3)

g−t (w) =
t−1∑

t′=1

I(yt′=+1)ℓ(f(xt′)− f(xt)). (4.4)

Instead of maintaining all the received instances to compute the gradients ∇gt(w), we store

random instances from each class in the corresponding buffer. Therefore, two buffers B+ and B−

with predefined capacity are maintained for positive and negative classes, respectively. The buffers

are updated using a stream oblivious policy. The current stored instances in a buffer are used to

update the classifier as in equation (4.2) whenever a new instance from the opposite class label is

received.

The framework of the online confidence-weighted bipartite ranking is shown in Algorithm

4. The two main components of this framework are UpdateBuffer and UpdateRanker, which are

explained below.

33

Algorithm 4: Framework for Confidence-Weighted Bipartite Ranking (CBR)

Input:

• the penalty parameter C

• the capacity of the buffers M+ and M−

• η parameter

• ai = 1 for i ∈ 1, . . . , d

Initialize: µ1 = {0, . . . , 0}d, B+ = B− = ∅, M1
+ =M1

− = 0
Σ1 = diag(a) or G1 = a

for t = 1, . . . , T do

Receive a training instance (xt, yt)
if yt = +1 then

Bt+1
− = Bt

−, M t+1
+ =M t

+ + 1, M t+1
− =M t

−
Ct = C
Bt+1

+ = UpdateBuffer(xt, B
t
+,M+,M t+1

+)

[µt+1,Σt+1] = UpdateRanker(µt,Σt, xt, yt, Ct, B
t+1
− , η) or

[µt+1, Gt+1] = UpdateRanker(µt, Gt, xt, yt, Ct, B
t+1
− , η) (CBR-diag)

else

Bt+1
+ = Bt

+,M t+1
− =M t

− + 1, M t+1
+ =M t

+

Ct = C
Bt+1

− = UpdateBuffer(xt, B
t
−,M−,M t+1

−)

[µt+1,Σt+1] = UpdateRanker(µt,Σt, xt, yt, Ct, B
t+1
+ , η) or

[µt+1, Gt+1] = UpdateRanker(µt, Gt, xt, yt, Ct, B
t+1
+ , η) (CBR-diag)

end if

end for

Update Buffer

One effective approach to deal with pairwise learning algorithms is to maintain a buffer with a fixed

capacity. This raises the problem of updating the buffer to store the most informative instances. In

our online Bipartite ranking framework, we investigate the following two stream oblivious policies

to update the buffer:

Reservoir Sampling (RS): Reservoir Sampling is a common oblivious policy to deal with

streaming data [70]. In this approach, the new instance (xt, yt) is added to the corresponding

buffer if its capacity is not reached, |Bt
yt
| < Myt . If the buffer is at capacity, it will be updated with

34

Algorithm 5: Reservoir Sampling Approach

Input: xt, B
t, M , Mt+1

Output: updated buffer Bt+1

if |Bt| < M then

Bt+1 = Bt ∪ {xt}
else

Sample Z from a Bernoulli distribution with Pr(Z = 1) =M/Mt+1

if Z = 1 then

Randomly delete an instance from Bt

Bt+1 = Bt ∪ {xt}
end if

end if

Return Bt+1

probability
Myt

Mt+1
yt

by randomly replacing one instance in Bt
yt

with xt. Algorithm 5 shows the steps

of the Reservoir sampling approach for updating the buffers.

First-In-First-Out (FIFO): This simple strategy replaces the oldest instance with the new in-

stance if the corresponding buffer reaches its capacity. Otherwise, the new instance is simply added

to the buffer.

Update Ranker

Inspired by the robust performance of second-order learning algorithms, we apply the soft confidence-

weighted learning approach [59] to updated the bipartite ranking function. Therefore, our confidence-

weighted bipartite ranking model (CBR) is formulated as a ranker with a Gaussian distribution

parameterized by mean vector µ ∈ Rd and covariance matrix Σ ∈ Rd×d. The mean vector µ

represents the model of the bipartite ranking function, while the covariance matrix captures the

confidence in the model. The ranker is more confident about the model value µp as its diagonal

value Σp,p is smaller. The model distribution is updated once the new instance is received while

being close to the old model distribution. This optimization problem is performed by minimiz-

ing the Kullback-Leibler divergence between the new and the old distributions of the model. The

online confidence-weighted bipartite ranking (CBR) is formulated as follows:

35

(µt+1,Σt+1) = argmin
µ,Σ

DKL(N (µ,Σ)||N (µt,Σt)) (4.5)

+Cℓφ(N (µ,Σ); (z, yt)),

where z = (xt − x), C is the the penalty hyperparamter, φ = Φ−1(η), and Φ is the normal

cumulative distribution function. The loss function ℓφ(·) is defined as:

ℓφ(N (µ,Σ); (z, yt)) = max(0, φ
√
zTΣz − ytµ · z).

The solution of 4.5 is given by the following proposition.

Proposition 1. The optimization problem 4.5 has a closed-form solution as follows:

µt+1 = µt + αtytΣtz,

Σt+1 = Σt − βtΣtz
T zΣt.

The coefficients α and β are defined as follows:

αt = min{C,max{0, 1
υtζ

(−mtψ +
√
m2
t
φ4

4
+ υtφ2ζ)}},

βt =
αtφ√

ut+υtαtφ
. where ut =

1
4
(−αtυtφ+

√
α2
tυ

2
t φ

2 + 4υt)
2,

υt = zTΣtz, mt = yt(µt · z) , φ = Φ−1(η), ψ = 1 + φ2

2
, ζ = 1 + φ2, and

z = xt − x.

The proposition 1 is analogous to the one derived in [59].

36

4.4 Diagonal Confidence-Weighted Bipartite Ranking

Though modeling the full covariance matrix lends the CW algorithms a powerful capability in

learning [71, 72, 59], it raises potential concerns with high-dimensional data. The covariance

matrix grows quadratically with respect to the data dimension. This makes the CBR algorithm

impractical with high-dimensional data due to high computational and memory requirements.

We remedy this deficiency by a diagonalization technique [71, 62]. Therefore, we present

a diagonal confidence-weighted bipartite ranking (CBR-diag) that models the ranker as a mean

vector µ ∈ Rd and diagonal matrix Σ̂ ∈ Rd×d. Let G denotes diag(Σ̂), and the optimization

problem of CBR-diag is formulated as follows:

(µt+1, Gt+1) = argmin
µ,G

DKL(N (µ,G)||N (µt, Gt)) (4.6)

+Cℓφ(N (µ,G); (z, yt)).

Proposition 2. The optimization problem (4.6) has a closed-form solution as follows:

µt+1 = µt +
αtytz

Gt

,

Gt+1 = Gt + βtz
2.

The coefficients α and β are defined as follows

αt = min{C,max{0, 1
υtζ

(−mtψ +
√
m2
t
φ4

4
+ υtφ2ζ)}},

βt =
αtφ√

ut+υtαtφ
,

where ut =
1
4
(−αtυtφ+

√
α2
tυ

2
t φ

2 + 4υt)
2, υt =

∑d

i=1
z2i

Gi+C
, mt = yt(µt · z),

φ = Φ−1(η), ψ = 1 + φ2

2
, ζ = 1 + φ2, and z = xt − x.

37

The propositions 1 and 2 can be proved similarly to the proof in [59]. The steps of updating

the online confidence-weighted bipartite ranking with full covariance matrix or with the diagonal

elements are summarized in Algorithm 6.

Algorithm 6: Update Ranker

Input:

• µt : current mean vector

• Σt or Gt : current covariance matrix or diagonal elements

• (xt, yt) : a training instance

• B : the buffer storing instances from the opposite class label

• Ct : weighting parameter

• η : the predefined probability

Output: updated ranker:

• µt+1

• Σt+1 or Gt+1

Initialize: µ1 = µt, (Σ
1 = Σt or G1 = Gt), i = 1

for x ∈ B do

Update the ranker (µi,Σi) with z = xt − x and yt by

(µi+1,Σi+1) = argmin
µ,Σ

DKL(N (µ,Σ)||N (µi,Σi)) + Cℓφ(N (µ,Σ); (z, yt))

or

Update the ranker (µi, Gi) with z = xt − x and yt by

(µi+1, Gi+1) = argmin
µ,G

DKL(N (µ,G)||N (µi, Gi)) + Cℓφ(N (µ,G); (z, yt))

i = i+ 1
end for

Return µt+1 = µ|B|+1

Σt+1 = Σ|B|+1 or Gt+1 = G|B|+1

38

4.5 Experiments

In this section, we conduct extensive experiments on several real world datasets in order to demon-

strate the effectiveness of the proposed algorithms. We also compare the performance of our

methods with existing online learning algorithms in terms of AUC and classification accuracy at

the optimal operating point of the ROC curve (OPTROC). The running time comparison is also

presented. The experiments are implemented in MATLAB and performed on a computer equipped

with an Intel 4GHz processor with 32G RAM.

4.5.1 Real World Datasets

We conduct extensive experiments on various benchmark and high-dimensional datasets. All

datasets can be downloaded from LibSVM3 and the machine learning repository UCI4 except the

Reuters5 dataset that is used in [73]. If the data are provided as training and test sets, we combine

them together in one set. For cod-rna data, only the training and validation sets are grouped to-

gether. For rcv1 and news20, we only use their training sets in our experiments. The multi-class

datasets are transformed randomly into class-imbalanced binary datasets. For glass, vehicle, and

svmguide4 datasets, we transform the classification task to distinguish between class label one

from other classes. For segment dataset, we transform it into an imbalanced binary classification

task by partitioning its classes equally into two groups. For covtype dataset, the classification

task is transformed to distinguish the class label seven from the rest of classes. For news20 and

Reuters, we distinguish between classes whose labels are less than five and the rest of classes. For

sector dataset, we distinguish between classes whose labels are less than or equal ten and the rest

of classes. For rcv1 dataset, we transform the classification task to separate labels less than four

from the rest. We randomly choose 8k instances if the data exceeds this size. For high-dimensional

datasets, we experiment only on 2k random instances from each dataset because of the high dimen-

3https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/

4https://archive.ics.uci.edu/ml/

5http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html

39

sionality. Tables 4.1 and 4.2 show the characteristics of the benchmark and the high-dimensional

datasets, respectively.

Table 4.1: Benchmark data sets

Data #inst #feat

glass 214 10

heart 270 13

ionosphere 351 34

svmguide4 612 10

australian 690 14

diabetes 768 8

vehicle 846 18

german 1,000 24

svmguide3 1,284 21

segment 2,310 19

spambase 4,601 57

magic04 19,020 11

acoustic 78,823 50

cod-rna 331,152 8

covtype 581,012 54

Table 4.2: High-dimensional data sets

Data #inst #feat

farm-ads 4,143 54,877

Reuters 8,293 18,933

sector 9,619 55,197

rcv1 15,564 47,236

news20 15,937 62,061

real-sim 72,309 20,958

40

4.5.2 Compared Methods and Model Selection

1. Online Uni-Exp [64]: An online pointwise ranking algorithm that optimizes the weighted

univariate exponential loss. The learning rate is tuned by 3-fold cross validation on the

training set by searching in 2[−10:10].

2. OPAUC [66]: An online learning algorithm that optimizes the AUC in one-pass through

square loss function. The learning rate is tuned by 3-fold cross validation by searching in

2[−10:10], and the regularization hyperparameter is set to a small value 0.0001.

3. OPAUCr [66]: A variation of OPAUC that approximates the covariance matrices using low-

rank matrices. The model selection step is carried out similarly to OPAUC, while the value

of rank τ is set to 50 as suggested in [66].

4. OAMseq [65]: The online AUC maximization (OAM) is the state-of-the-art first-order learn-

ing method. We implement the algorithm with the Reservoir Sampling as a buffer updating

scheme. The size of the positive and negative buffers is fixed at 50. The penalty hyperpa-

rameter C is tuned by 3-fold cross validation on the training set by searching in 2[−10:10].

5. AdaOAM [67]: This is a second-order AUC maximization method that adapts the classifier

to the importance of features. The smooth hyperparameter δ is set to 0.5, and the regulariza-

tion hyperparameter is set to 0.0001. The learning rate is tuned by 3-fold cross validation on

the training set by searching in 2[−10:10].

6. CBRRS and CBRFIFO: The proposed confidence-weighted bipartite ranking algorithms with

the Reservoir Sampling and First-In-First-Out buffer updating policies, respectively. The

size of the positive and negative buffers is fixed at 50. The hyperparameter η is set to 0.7,

and the penalty hyperparameterC is tuned by 3-fold cross validation by searching in 2[−10:10].

7. CBR-diagFIFO: The proposed diagonal variation of confidence-weighted bipartite ranking

that uses the First-In-First-Out policy to update the buffer. The buffers are set to 50, and the

hyperparameters are tuned similarly to CBRFIFO.

41

Table 4.3: AUC performance on the benchmark data sets

Data CBRRS CBRFIFO Online Uni-Exp OPAUC OAMseq AdaOAM

glass 0.825 ± 0.043 0.823 ± 0.046 0.714 ± 0.075 0.798 ± 0.061 0.805 ± 0.047 0.794 ± 0.061

ionosphere 0.950 ± 0.027 0.951 ± 0.028 0.913 ± 0.018 0.943 ± 0.026 0.946 ± 0.025 0.943 ± 0.029

german 0.782 ± 0.024 0.780 ± 0.019 0.702 ± 0.032 0.736 ± 0.034 0.731 ± 0.028 0.770 ± 0.024

svmguide4 0.969 ± 0.013 0.974 ± 0.013 0.609 ± 0.096 0.733 ± 0.056 0.771 ± 0.063 0.761 ± 0.053

svmguide3 0.755 ± 0.022 0.764 ± 0.036 0.701 ± 0.025 0.737 ± 0.029 0.705 ± 0.033 0.738 ± 0.033

cod-rna 0.983 ± 0.000 0.984 ± 0.000 0.928 ± 0.000 0.927 ± 0.001 0.951 ± 0.025 0.927 ± 0.000

spambase 0.941 ± 0.006 0.942 ± 0.006 0.866 ± 0.016 0.849 ± 0.020 0.897 ± 0.043 0.862 ± 0.011

covtype 0.816 ± 0.003 0.835 ± 0.001 0.705 ± 0.033 0.711 ± 0.041 0.737 ± 0.023 0.770 ± 0.010

magic04 0.799 ± 0.006 0.801 ± 0.006 0.759 ± 0.006 0.748 ± 0.033 0.757 ± 0.015 0.773 ± 0.006

heart 0.908 ± 0.019 0.909 ± 0.021 0.733 ± 0.039 0.788 ± 0.054 0.806 ± 0.059 0.799 ± 0.079

australian 0.883 ± 0.028 0.889 ± 0.019 0.710 ± 0.130 0.735 ± 0.138 0.765 ± 0.107 0.801 ± 0.037

diabetes 0.700 ± 0.021 0.707 ± 0.033 0.633 ± 0.036 0.667 ± 0.041 0.648 ± 0.040 0.675 ± 0.034

acoustic 0. 879 ± 0.006 0.892 ± 0.003 0.876 ± 0.003 0.878 ± 0.003 0.863 ± 0.011 0.882 ± 0.003

vehicle 0.846 ± 0.031 0.846 ± 0.034 0.711 ± 0.053 0.764 ± 0.073 0.761 ± 0.078 0.792 ± 0.049

segment 0.900 ± 0.013 0.903 ± 0.008 0.689 ± 0.061 0.828 ± 0.024 0.812 ± 0.035 0.855 ± 0.008

For a fair comparison, the datasets are scaled similarly in all experiments. We randomly divide

each dataset into 5 folds, where 4 folds are used for training and one fold is used as a test set.

The results on the benchmark and the high-dimensional datasets are averaged over 10 and 5 runs,

respectively. A random permutation is performed on the datasets with each run. All experiments

are conducted with Matlab 15 on a workstation computer with 8x2.6G CPU and 32 GB memory.

4.5.3 Results on Benchmark Datasets

The comparison in terms of AUC is shown in Table 4.3, while the comparison in terms of classifi-

cation accuracy at OPTROC is shown in Table 4.4. The running time (in milliseconds) comparison

is illustrated in Figure 4.1.

The results show the robust performance of the proposed methods CBRRS and CBRFIFO in

terms of AUC and classification accuracy compared to other first and second-order online learning

algorithms. We can observe that the improvement of the second-order methods such as OPAUC

and AdaOAM over first-order method OAMseq is not reliable, while our CBR algorithms often

outperform the OAMseq. Also, the proposed methods are faster than OAMseq, while they incur

more running time compared to AdaOAM except with spambase, covtype, and acoustic datasets.

The pointwise method online Uni-Exp maintains fastest running time, but at the expense of the

AUC and classification accuracy. We also notice that the performance of CBRFIFO is often slightly

better than CBRRS in terms of AUC, classification accuracy, and running time.

42

Table 4.4: Comparison of classification accuracy at OPTROC on the benchmark data sets

Data CBRRS CBRFIFO Online Uni-Exp OPAUC OAMseq AdaOAM

glass 0.813 ± 0.044 0.811 ± 0.049 0.732 ± 0.060 0.795 ± 0.046 0.788 ± 0.040 0.783 ± 0.047

ionosphere 0.946 ± 0.028 0.946 ± 0.022 0.902 ± 0.028 0.936 ± 0.018 0.943 ± 0.017 0.938 ± 0.018

german 0.780 ± 0.022 0.787 ± 0.019 0.741 ± 0.027 0.754 ± 0.022 0.751 ± 0.028 0.770 ± 0.030

svmguide4 0.951 ± 0.014 0.956 ± 0.012 0.829 ± 0.021 0.843 ± 0.024 0.839 ± 0.022 0.848 ± 0.020

svmguide3 0.784 ± 0.015 0.793 ± 0.016 0.784 ± 0.019 0.777 ± 0.024 0.780 ± 0.020 0.777 ± 0.024

cod-rna 0.948 ± 0.002 0.949 ± 0.000 0.887 ± 0.001 0.887 ± 0.001 0.910 ± 0.019 0.887 ± 0.001

spambase 0.899 ± 0.009 0.898 ± 0.009 0.818 ± 0.019 0.795 ± 0.022 0.849 ± 0.053 0.809 ± 0.014

covtype 0.746 ± 0.005 0.766 ± 0.003 0.672 ± 0.018 0.674 ± 0.021 0.685 ± 0.016 0.709 ± 0.008

magic04 0.769 ± 0.011 0.771 ± 0.006 0.734 ± 0.007 0.731 ± 0.015 0.736 ± 0.013 0.752 ± 0.008

heart 0.883 ± 0.032 0.875 ± 0.026 0.716 ± 0.021 0.753 ± 0.038 0.777 ± 0.043 0.772 ± 0.053

australian 0.841 ± 0.023 0.842 ± 0.022 0.711 ± 0.056 0.725 ± 0.070 0.742 ± 0.064 0.768 ± 0.036

diabetes 0.714 ± 0.029 0.705 ± 0.032 0.683 ± 0.037 0.692 ± 0.040 0.694 ± 0.044 0.689 ± 0.040

acoustic 0. 844 ± 0.005 0.850 ± 0.003 0.840 ± 0.005 0.839 ± 0.002 0.832 ± 0.005 0.841 ± 0.003

vehicle 0.816 ± 0.018 0.814 ± 0.018 0.764 ± 0.027 0.797 ± 0.014 0.790 ± 0.029 0.805 ± 0.021

segment 0.838 ± 0.015 0.836 ± 0.008 0.691 ± 0.031 0.768 ± 0.027 0.755 ± 0.024 0.796 ± 0.014

glass ionosphere german svmguide4 svmguide3 cod-rna spambase covtype magic04 heart australian diabetes acoustic vehicle segment

datasets

10
-1

10
0

10
1

10
2

10
3

10
4

ru
n
n
in

g
 t

im
e

(m
il

li
se

co
n
d
s)

Online Uni-Exp

OPAUC

OAM
seq

AdaOAM

CBR
RS

CBR
FIFO

Figure 4.1: Running time (in milliseconds) of CBR and the other online learning algorithms on the bench-

mark datasets. The y-axis is displayed in log- scale.

43

Table 4.5: AUC performance on the high-dimensional data sets

Data CBR-diagFIFO Online Uni-Exp OPAUCr OAMseq

farm-ads 0.961 ± 0.004 0.942 ± 0.006 0.951 ± 0.004 0.952 ± 0.005

rcv1 0.950 ± 0.007 0.927 ± 0.015 0.914 ± 0.016 0.945 ± 0.008

sector 0.927 ± 0.009 0.846 ± 0.019 0.908 ± 0.013 0.857 ± 0.008

real-sim 0.982 ± 0.001 0.969 ± 0.003 0.975 ± 0.002 0.977 ± 0.001

news20 0.956 ± 0.003 0.939 ± 0.005 0.942 ± 0.006 0.944 ± 0.005

Reuters 0.993 ± 0.001 0.985 ± 0.003 0.988 ± 0.002 0.989 ± 0.003

4.5.4 Results on High-Dimensional Datasets

We study the performance of the proposed CBR-diagFIFO and compare it with online Uni-Exp,

OPAUCr, and OAMseq that avoid constructing the full covariance matrix. Table 4.5 compares our

method and the other online algorithms in terms of AUC, while Table 4.6 shows the classification

accuracy at OPTROC. Figure 4.2 displays the running time (in milliseconds) comparison.

The results show that the proposed method CBR-diagFIFO yields a better performance on both

measures. We observe that the CBR-diagFIFO presents a competitive running time compared to its

counterpart OAMseq as shown in Figure 4.2. We can also see that the CBR-diagFIFO takes more

running time compared to the OPAUCr. However, the CBR-diagFIFO achieves better AUC and

classification accuracy compared to the OPAUCr. The online Uni-Exp algorithm requires the least

running time, but it presents lower AUC and classification accuracy compared to our method.

44

Table 4.6: Comparison of classification accuracy at OPTROC on the high-dimensional data sets

Data CBR-diagFIFO Online Uni-Exp OPAUCr OAMseq

farm-ads 0.897 ± 0.007 0.872 ± 0.012 0.885 ± 0.008 0.882 ± 0.007

rcv1 0.971 ± 0.001 0.967 ± 0.002 0.966 ± 0.003 0.970 ± 0.001

sector 0.850 ± 0.012 0.772 ± 0.011 0.831 ± 0.015 0.776 ± 0.008

real-sim 0.939 ± 0.003 0.913 ± 0.005 0.926 ± 0.002 0.929 ± 0.001

news20 0.918 ± 0.005 0.895 ± 0.005 0.902 ± 0.009 0.907 ± 0.006

Reuters 0.971 ± 0.004 0.953 ± 0.006 0.961 ± 0.006 0.961 ± 0.006

4.6 Conclusion

In this work, we have developed a linear online soft confidence-weighted bipartite ranking algo-

rithm that maximizes the AUC metric via optimizing a pairwise loss function. The complexity of

the pairwise loss function is mitigated in our algorithm by employing a finite buffer that is up-

dated using one of the stream oblivious policies. We have also developed a diagonal variation for

the proposed confidence-weighted bipartite ranking algorithm to deal with high-dimensional data

by maintaining only the diagonal elements of the covariance matrix instead of the full covariance

matrix.

The experimental results on several benchmark and high-dimensional datasets show that our

algorithms yield a robust performance. The results also show that the proposed algorithms outper-

form the first and second-order AUC maximization methods on most of the datasets. In the future,

we plan to use the proposed method with a kernel approximation technique to handle complex

nonlinear decision boundaries.

45

farm-ads rcv1 sector real-sim news20 Reuters

datasets

10
2

10
3

10
4

10
5

10
6

ru
n

n
in

g
 t

im
e

(m
il

li
se

co
n

d
s)

Online Uni-Exp

OPAUCr

OAM
seq

CBR-diag
FIFO

Figure 4.2: Running time (in milliseconds) of CBR-diagFIFO algorithm and the other online learning

algorithms on the high-dimensional datasets. The y-axis is displayed in log-scale.

46

Chapter 5

Kernelized Second-Order Online AUC Maximization

5.1 Introduction

Despite its scalability, online linear learning algorithms fail to model linearly inseparable datasets,

which is not uncommon in real-world applications. The lack of modeling nonlinearity motivates

online kernel learning approaches [74, 75, 76]. In the kernel-based online learning, the learner

maintains a set of support vectors in memory to build the kernel of the predictive model. Conven-

tionally, any misclassified instance is considered a support vector, and therefore, is added to the set

of support vectors. However, the number of support vectors quickly becomes too large, which in

turns reduces the efficiency of online learning. To address the unbounded growth of support vec-

tors, fixed budget size has been introduced to keep the most representative support vectors using

different updating techniques whenever the budget is excesses [77, 78, 79].

For maximizing the AUC objective function on a nonlinear space, the budget kernel learning is

adopted by [80]. However, the computation of this method inhibits its scalability when applied to

large-scale datasets. A sparse kernel AUC maximization algorithm is developed in [58] to speed

up the kernel learning and to overcome the low generalization capability of kernel online learning.

However, sparse algorithms are prone to the under-fitting problem due to the sparsity of the model,

especially for large datasets.

Embedding the input space into a finite approximate feature space is another approach to ap-

proximate online kernel learning. Specifically, the kernel matrix can be approximated by Nyström

low-rank approximation, while the random Fourier method is used to approximate the kernel func-

tion. Then a linear model can be applied to the approximate feature space to solve a classification

or regression tasks [11].

These embedding approaches are adopted by [81] for maximizing the AUC objective function.

However, no attempt has been made to learn an online second-order linear classifier on the embed-

47

ded space. While second-order learning algorithms, such as confidence-weighted classifier [82],

are able to handle linearly inseparable data, they fail to model complex nonlinear functions.

In this work, we propose an online nonlinear second-order classifier to optimize the AUC

objective function on a space embedded by random Fourier features. In particular, we extend our

online linear confidence-weighted AUC classifier to learn a nonlinear classifier, where nonlinearity

is induced via approximate feature mappings.

5.2 Related Work

Online Kernel Learning. Online kernel learning is proposed to address the problem of online

linear learning with modeling nonlinear decision boundary. It is common in online kernel learning

to bound the number of support vectors using a fixed budget size in order to reduce the computation

of constructing the kernel. Multiple budget update strategies are proposed such as removal [77, 78],

projection [79], and merging [10]. In order to reduce the training and test time of budget kernel

learning, kernel functional approximation approaches (i.e., Nyström and random Fourier features)

are explored in [11]. A dual space [83] uses random Fourier features to store the information of

the removed SV from the budget, and hence enhancing the accuracy using only a small number of

random features. Recently, the work by [84] improves the performance of online Fourier features

by optimizing the kernel parameters.

Online Kernel AUC Maximization. The work authors of [85] adopt the budget online kernel

learning technique in their online algorithm for AUC maximization. This framework [85] uses

a fixed-size buffer for each class label. These buffers are utilized to deal with the pairwise loss

function and to maintain positive and negative support vectors. However, the computation of the

kernel undermines this method, especially for extremely large datasets. In [81], nonlinear AUC

maximization methods are devised using Nyström approximation and random Fourier features. In

these methods [81], first-order online learning is utilized to optimize the AUC objective function

on the embedded feature space.

48

5.3 Kernelized Confidence-Weighted AUC Maximization

We consider a problem of learning a nonlinear function f : Rd → R from a sequence of imbalanced

labeled data points. Let (xt, yt) denotes the labeled data point received at the t-th trial, where

xt ∈ Rd is the training instance of d-dimension and yt ∈ {1, 1} is the associated class label. The

predictive model of the kernel AUC maximization f(x) for a new incoming instance x is identical

to the one of online kernel learning, and it can be defined by:

f(x) =
m∑

i=1

αi〈ϕ(xi), ϕ(x)〉 =
m∑

i=1

αiκ(xi, x),

where m is the number of support vector, ϕ(·) is a mapping from the input space into some Hilbert

space, αi indicates the coefficient of the i-th support vector, and κ(xi, x) is the kernel function

over a pair of instances. In practice, implementing the kernel function is what we need to compute

because it implied the computation of the inner products in the embedded space.

However, it is more practical to approximate the exact feature map and then solve the problem

in the primal space constructed by the approximate mappings. Let ψ(x) denotes an approximate

mapping that can replace the original feature map ϕ(x), and the predictive model of the kernel

AUC maximization can be reformulated as follows,

f(x) =
m∑

i=1

αiκ(xi, x) ≈
m∑

i=1

αiψ(xi)
Tψ(x) = wTψ(x),

where w ≡∑m

i=1 αiψ(xi) is the model learned in the approximate feature space obtained via ψ(x).

Prior to describing the approximate mapping that we use in our model, we briefly review the

AUC maximization problem. Given a training dataset S = {x+i ∪ x−j ∈ Rd|i = {1, . . . , n+}, j =

{1, . . . , n−}}, where x+i is the i-th positive instance and x−j is the j-th negative instance. The

n+ and n− denote the number of positive and negative instances received thus far. The AUC loss

function in the transformed space can be defined by:

49

L(f ;S) =
n+∑

i=1

n−∑

j=1

I(wTψ(x+i) > wTψ(x−j)) +
1
2
I(wTψ(x+i) = wTψ(x−j))

n+n− ,

where I(·) is the indicator function that outputs 1 if the condition is held, and 0 otherwise. Due

to its discrete nature and hence it is difficult to optimize, a convex surrogate function is used to

replace the indicator function. The AUC measure can then be defined as follows,

L(f ;S) =
n+∑

i=1

n−∑

j=1

ℓ(wT (ψ(x+i)− ψ(x−j)))
2n+n− ,

where ℓ(·) is a convex surrogate pairwise loss function (e.g., pairwise hinge loss function). The

pairwise loss function entails storing all the received instances from the opposite class label to

compute the loss function, which is impractical. We handle this problem using a fixed buffer size

for each class label to store a sample from the received instances of each class label.

Our proposed method optimizes the AUC loss function using a second-order classifier. In par-

ticular, we use a confidence-weighted classifier that maintains a model as Gaussian distribution

parameterized by mean vector µ ∈ Rm and covariance matrix Σ ∈ Rm×m, where m is the dimen-

sion of the embedded space. The mean vector represents the weight model, while the covariance

matrix scales the weight’s parameters adaptively.

The model distribution is updated based on minimizing the Kullback-Leibler divergence be-

tween the new and the old model distributions [61, 71, 59]. The confidence-weighted kernel AUC

maximization is formulated as follows:

(µt+1,Σt+1) = argmin
µ,Σ

DKL(N (µ,Σ)||N (µt,Σt)) (5.1)

+Cℓφ(N (µ,Σ); (ψ(xt)− ψ(x), yt),

50

whereC is the the penalty hyperparamter, φ = Φ−1(η), and Φ is the normal cumulative distribution

function. The loss function ℓφ(·) is defined as:

ℓφ(N (µ,Σ); (ψ(xt)− ψ(x), yt) = max(0, φ
√

(ψ(xt)− ψ(x))TΣ(ψ(xt)− ψ(x))

−yt µ (ψ(xt)− ψ(x))).

The solution of 5.1 is given by the following proposition.

Proposition 3. The optimization problem 5.1 has a closed-form solution as follows:

µt+1 = µt +
αt
2
ytΣtz,

Σt+1 = Σt − βtΣtz
T zΣt,

where z = ψ(xt)− ψ(x) and the coefficients α and β are defined as follows:

αt = min{C,max{0, 1
υtζ

(−qtδ +
√
q2t

φ4

4
+ υtφ2ζ)}},

βt =
αtφ√

ut+υtαtφ
. where ut =

1
4
(−αtυtφ+

√
α2
tυ

2
t φ

2 + 4υt)
2,

υt = zTΣtz, qt = yt(µt · z) , φ = Φ−1(η), δ = 1 + φ2

2
, ζ = 1 + φ2,

The proposition 3 is analogous to the one derived in [59].

5.3.1 Fourier Confidence-Weighted AUC Maximization

We use random Fourier features to approximate a shift-invariant kernel in an online fashion. The

approximated kernel mapping is plugged into the confidence-weighted classifier designed to max-

imize the AUC measure [82]. Based on Bochner’s theorem [49], the Fourier transform p(θ) of a

shift-invariant kernel is a proper probability distribution. Therefore, a shift-invariant kernel can be

expressed as below,

51

k(x− y) = 1

2π

∫
p(θ)e−iθ

T (x−y)dθ.

= 2 Eθ∼p(θ) [e
iθT (x−y)]

= 2 Eθ∼p(θ) [cos(θ
Tx) cos(θTy) + sin(θTx) sin(θTy)]

= 2 Eθ∼p(θ) [[sin(θ
Tx), cos(θTy)] · [sin(θTx), cos(θTy)]].

The embedding of a data point x is defined as the following concatenation of cosine and sine

functions ψ(x) = [cos(θTx), sin(θTx)]. For an embedding of size m dimension, we sample

{θi}mi=1 Fourier components, and the Fourier mapping function is then obtained as follows,

ψ(x) =
√

2/m[sin(θT1 x), cos(θ
T
1 x) , · · · , sin(θTmx), cos(θTmx)]. (5.2)

In this work, we use the shift-invariant Gaussian kernel k(x, y) = exp(− ||x−y||2
2

2σ2). Therefore,

the corresponding random Fourier component θ are sampled independently from the distribution

p(θ) = N (0, σ−2I).

The framework of the confidence-weighted kernel AUC maximization is illustrated in Algo-

rithm 8. The algorithm has three main steps. The first step is to embed the received instance into

a finite-dimensional feature space. The embedding is carried out by applying the Fourier mapping

function 5.2 to the received instances.

The second step is to update the corresponding buffer of the received instance’s class label. We

use two oblivious strategies to update the buffers when they are full. The first policy is Reservoir

sampling (RS), which imitates the uniform random sampling from the training data. Algorithm

7 shows the steps of the Reservoir sampling approach. The second policy is First-In-First-Out

52

Algorithm 7: Reservoir Sampling Approach

Input: xt, B
t, M , Mt+1

Output: updated buffer Bt+1

if |Bt| < M then

Bt+1 = Bt ∪ {xt}
else

Sample Z from a Bernoulli distribution with Pr(Z = 1) =M/Mt+1

if Z = 1 then

Randomly delete an instance from Bt

Bt+1 = Bt ∪ {xt}
end if

end if

Return Bt+1

(FIFO), which allows any received instance to be included in the buffer by letting the new instance

replaces the first added instance.

The third step updates the kernelized AUC classifier in the approximate features space by

solving the kernelized AUC confidence-weighted objective function described in equation 5.1.

The update steps of the classifier are outlined in Algorithm 9.

53

Algorithm 8: Framework for Kernelized Confidence-Weighted AUC Maximization

Input:

• the penalty parameter C and the probability value η

• the maximum buffer size M+ and M−

• the Gaussian kernel function k(·, ·) with the kernel width σ.

• the number of random Fourier components m

Initialize: ai = 1 for i ∈ 1, . . . ,m, µ1 = {0, . . . , 0}m, Σ1 = diag(a), B+ = B− = ∅
M1

+ =M1
+ = 0

Generate i.i.d. random Fourier components: θ1, · · · , θm sampled from the distribution

p(θ) = N (0, σ−2I).
for t = 1, . . . , T do

Receive a training instance (xt, yt)
Transform the received instance xt
ψ(x) = (sin(θT1 x), cos(θ

T
1 x), · · · , sin(θTmx), cos(θTmx))T .

if yt = +1 then

Bt+1
− = Bt

−, M t+1
+ =M t

+ + 1, M t+1
− =M t

−
Ct = C
Bt+1

+ = UpdateBuffer(ψ(xt), B
t
+,M+,M

t+1
+)

[µt+1,Σt+1] = UpdateClassifier(µt,Σt, ψ(xt), yt, Ct, B
t+1
− , η)

else

Bt+1
+ = Bt

+, M t+1
− =M t

− + 1, M t+1
+ =M t

+

Ct = C
Bt+1

− = UpdateBuffer(ψ(xt), B
t
−,M−,M

t+1
−)

[µt+1,Σt+1] = UpdateClassifier(µt,Σt, ψ(xt), yt, Ct, B
t+1
+ , η)

end if

end for

5.4 Experiments

In this section, we evaluate the proposed second-order algorithms on several benchmark datasets

and compare their performance in terms of AUC accuracy and running time to the existing linear

and kernelized AUC maximization methods. The aim of including the linear AUC maximization

methods in the experiments is to show the advantage of the kernelized methods over linear meth-

ods. We also study the performance of the proposed second-order methods on a different number

of random features and compare its AUC performance with their first-order counterpart method.

54

Algorithm 9: Update Classifier

Input:

• µt : current mean vector

• Σt : current covariance matrix

• (ψ(xt), yt) : a transformed labeled instance

• B : the buffer storing instances from the opposite class label

• Ct : weighting parameter

• η : the predefined probability

Output: updated classifier:

• µt+1

• Σt+1

Initialize: µ1 = µt, Σ
1 = Σt, i = 1

for ψ(x) ∈ B do

Update the classifier (µi,Σi) with z = ψ(xt)− ψ(x) and yt by

(µi+1,Σi+1) = argmin
µ,Σ

DKL(N (µ,Σ)||N (µi,Σi)) + Cℓφ(N (µ,Σ); (z, yt))

i = i+ 1
end for

Return µt+1 = µ|B|+1

Σt+1 = Σ|B|+1

5.4.1 Benchmark Datasets

We conduct the experiments on 12 benchmark datasets. We download the datasets from LibSVM6

and UCI7. The multi-class datasets (i.e., glass, vehicle, segment, pendigits, acoustic, and covtype)

are transformed randomly into class-imbalanced binary datasets. For glass, vehicle, and acoustic

datasets, we transform their classification tasks to distinguish class label one from the rest of the

classes. For segment dataset, we transform its task into imbalanced binary classification by group-

ing the labels less than or equal three into one class and the rest of the labels into another class.

The classification task of pendigits is transformed to distinguish classes less than or equal label

one from the rest of the classes. For covtype dataset, an imbalanced binary classification task is

generated to distinguish class label 7 from the rest of the classes. Tables 5.1 shows the characteris-

tics of the datasets. The ratio for each dataset is calculated by dividing the majority class label by

6https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/

7https://archive.ics.uci.edu/ml/

55

the minority one. Each dataset is standardized by removing the mean of each feature and dividing

the features by their corresponding standard deviation.

Table 5.1: Benchmark data sets

Data #inst #feat ratio

glass 214 9 2.05

vehicle 846 18 2.99

svmguide3 1,284 22 2.81

segment 2,310 19 1.33

spambase 4,601 57 1.53

magic04 19,020 10 1.84

pendigits 10,992 16 1.04

cod-rna 331,152 8 2.0

acoustic 78,823 50 3.30

ijcnn1 49,990 22 9.3

kddcup08 102,294 117 163.19

covtype 581,012 54 27.32

5.4.2 Compared Methods and Model Selection

1. OAMseq and OAMgra [65]: The online AUC maximization (OAM) is the state-of-the-art

first-order learning method. These algorithms are implemented with the Reservoir Sampling

as a buffer updating scheme. The size of the positive and negative buffers is fixed at 100. The

penalty hyperparameter C is tuned by 3-fold cross validation on the training set by searching

in 2[−10:10].

2. OPAUC [66]: An online learning algorithm that optimizes the AUC in one-pass through

square loss function. The learning rate is tuned by 3-fold cross validation by searching in

2[−10:10], and the regularization hyperparameter is set to a small value 0.0001.

3. AdaOAM [67]: This is a second-order AUC maximization method that adapts the classifier

to the importance of features. The smooth hyperparameter δ is set to 0.5, and the regulariza-

56

tion hyperparameter is set to 0.0001. The learning rate is tuned by 3-fold cross validation on

the training set by searching in 2[−10:10].

4. CBRRS and CBRFIFO [82]: These are the confidence-weighted AUC maximization meth-

ods with the Reservoir Sampling (CBRRS) and First-In-First-Out (CBRFIFO) buffer updating

policies. The size of the positive and negative buffers is fixed at 50. The hyperparameter η is

set to 0.7, and the penalty hyperparameter C is tuned by 3-fold cross-validation by searching

in 2[−10:10].

5. FOAM [81]: The kernelized first-order AUC maximization with random Fourier features.

This method implements the Reservoir sampling to update the buffer. The buffer size is set

to 100. The learning rate is tuned by 3-fold cross validation on the training set by searching

in 2[−10:10].

6. FCBRRS and FCBRFIFO: The proposed second-order AUC maximization methods with ran-

dom Fourier features. FCBRRS uses the Reservoir sampling and FCBRFIFO implements the

First-In-Firt-Out to update the buffers. The size of the positive and negative buffers is fixed

at 50. The hyperparameter η is set to 0.7, and the learning rate C is tuned by 3-fold cross

validation by searching in 2[−10:10].

For the kernelized AUC maximization algorithms (i.e., FOAM, FCBRRS, and FCBRFIFO), we

set the number of random Fourier components to 150. Consequently, the dimension of the approx-

imate feature space will be 300. In all experiments, we use Random Fourier to approximate the

Gaussian kernel and set its width to 100. Choosing the best width via cross-validation might also

improve the results. The reported results are the average of 3 runs. In each run, we also averaged

the results over 5-fold cross-validation.

57

Table 5.2: AUC classification accuracy and running time for different online AUC classifiers. The running

time is in seconds.

Algorithm
glass vehicle svmguide3

AUC time AUC time AUC time

OAMseq 0.8063 ± 0.0189 0.0001 0.7532 ± 0.0274 0.0016 0.7592 ± 0.0096 0.0032

OAMgra 0.7960 ± 0.0193 0.0001 0.7531 ± 0.0232 0.0013 0.7639 ± 0.0068 0.0024

OPAUC 0.8145 ± 0.0278 0.0003 0.7640 ± 0.0080 0.0021 0.7734 ± 0.0117 0.0038

AdaOAM 0.8098 ± 0.0299 0.0003 0.7683 ± 0.0199 0.0021 0.7903 ± 0.0100 0.0038

CBRRS 0.8088 ± 0.0380 0.0032 0.8533 ± 0.0098 0.0294 0.8081 ± 0.0048 0.0563

CBRFIFO 0.8120 ± 0.0283 0.0032 0.8558 ± 0.0098 0.0268 0.8153 ± 0.0098 0.0526

FOAM 0.8164 ± 0.0018 0.0325 0.7678 ± 0.0142 0.3010 0.7763 ± 0.0344 0.5152

FCBRRS 0.8228 ± 0.0222 0.5050 0.8961 ± 0.0067 2.2611 0.8275 ± 0.0063 4.1687

FCBRFIFO 0.8201 ± 0.0269 0.5415 0.9015 ± 0.0001 2.2933 0.8346 ± 0.0162 4.2970

Algorithm
segment spambase magic04

AUC time AUC time AUC time

OAMseq 0.8947 ± 0.0024 0.0045 0.9542 ± 0.0021 0.0181 0.6993 ± 0.0190 0.0267

OAMgra 0.8958 ± 0.0068 0.0038 0.9521 ± 0.0020 0.0174 0.7193 ± 0.0136 0.0227

OPAUC 0.9084 ± 0.0038 0.0060 0.9511 ± 0.0017 0.0635 0.8383 ± 0.0028 0.0275

AdaOAM 0.9097 ± 0.0035 0.0060 0.9536 ± 0.0009 0.0637 0.8384 ± 0.0026 0.0270

CBRRS 0.9176 ± 0.0032 0.0813 0.9669 ± 0.0001 0.5634 0.8357 ± 0.0023 0.4792

CBRFIFO 0.9191 ± 0.0038 0.0740 0.9669 ± 0.0014 0.5113 0.8406 ± 0.0014 0.4323

FOAM 0.9102 ± 0.0033 1.0225 0.9640 ± 0.0013 2.8374 0.8358 ± 0.0049 8.0778

FCBRRS 0.9885 ± 0.0035 5.3164 0.9685 ± 0.0011 11.667 0.9016 ± 0.0014 56.792

FCBRFIFO 0.9894 ± 0.0026 5.1665 0.9724 ± 0.0006 11.585 0.9201 ± 0.0013 55.475

Algorithm
pendigits cod-rna acoustic

AUC time AUC time AUC time

OAMseq 0.7968 ± 0.0152 0.0175 0.9670 ± 0.0066 0.2750 0.7809 ± 0.0139 0.2947

OAMgra 0.7752 ± 0.0131 0.0156 0.9709 ± 0.0095 0.2677 0.7644 ± 0.0029 0.2826

OPAUC 0.9030 ± 0.0028 0.0214 0.9856 ± 0.0003 0.3746 0.8627 ± 0.0010 0.8504

AdaOAM 0.9038 ± 0.0023 0.0210 0.9862 ± 0.0000 0.3666 0.8738 ± 0.0006 0.8579

CBRRS 0.9004 ± 0.0014 0.2810 0.9864 ± 0.0001 5.1410 0.8765 ± 0.0010 10.131

CBRFIFO 0.9056 ± 0.0016 0.2550 0.9869 ± 0.0000 4.7122 0.8920 ± 0.0005 9.1061

FOAM 0.9286 ± 0.0078 4.8981 0.9871 ± 0.0007 138.55 0.8767 ± 0.0003 46.847

FCBRRS 0.9983 ± 0.0000 24.493 0.9903 ± 0.0000 744.89 0.8855 ± 0.0003 269.05

FCBRFIFO 0.9988 ± 0.0001 23.620 0.9917 ± 0.0000 719.57 0.9049 ± 0.0005 257.14

Algorithm
ijcnn1 kddcup08 covtype

AUC time AUC time AUC time

OAMseq 0.8906 ± 0.0018 0.1027 0.8874 ± 0.0057 0.7741 0.9637 ± 0.0026 2.2459

OAMgra 0.8831 ± 0.0047 0.0901 0.8988 ± 0.0065 0.7841 0.9623 ± 0.0012 2.2127

OPAUC 0.9301 ± 0.0012 0.1463 0.5835 ± 0.0393 5.5734 0.5099 ± 0.0184 7.3215

AdaOAM 0.9322 ± 0.0011 0.1493 0.9250 ± 0.0007 5.6170 0.9769 ± 0.0002 7.4047

CBRRS 0.9249 ± 0.0005 1.9243 0.9074 ± 0.0017 44.626 0.9762 ± 0.0005 73.212

CBRFIFO 0.9350 ± 0.0009 1.7720 0.9245 ± 0.0028 41.214 0.9806 ± 0.0001 57.798

FOAM 0.9290 ± 0.0016 23.4473 0.9157 ± 0.0023 87.712 0.9752 ± 0.0007 370.31

FCBRRS 0.9758 ± 0.0004 114.85 0.9029 ± 0.0028 296.41 0.9831 ± 0.0008 1394.7

FCBRFIFO 0.9855 ± 0.0004 116.10 0.9272 ± 0.0033 303.39 0.9901 ± 0.0002 1365.5

58

5.5 Results and Discussion

The results in terms of AUC classification accuracy and running time are shown in Table 5.2. We

report the results of non-kernelized AUC maximization methods to show the advantage of using

approximate kernel techniques.

We observe that the AUC performance of our proposed nonlinear AUC maximization method

surpasses the linear methods. This includes its linear counterparts CBRRS and CBRFIFO. We also

noticed that the proposed FCBRRS and FCBRFIFO require more running time compared to FOAM

because of the matrix update step. However, the AUC classification performance of FCBRFIFO

consistently surpasses the AUC performance of FOAM. FCBRRS also demonstrates a competitive

AUC performance compared to FOAM except on kddcup08 dataset.

We see that the linear methods CBRRS and CBRFIFO perform well on most datasets compared

to OPAUC and AdaOAM, which optimize a squared AUC loss function. In addition, CBRRS and

CBRFIFO achieve higher AUC classification compared to FOAM on nine datasets. The methods

CBRRS and CBRFIFO also require less running time compared to FOAM. However, they are still

not able to handle complex nonlinear structure underlying some datasets.

In addition, the method FCBRFIFO consistently outperforms FCBRRS. This indicates that FIFO

policy is better than Reservoir sampling in updating the buffer. However, they do not differ signif-

icantly in terms of running time.

Study on the Number of Random Features

We study the performance of the proposed methods FCBRRS and FCBRFIFO on a different number

of random features and compare their AUC classification accuracies to the ones obtained by FOAM

method. The results are shown in Figure 5.1. We vary the number of Fourier features from 30 to

250. The y-axis shows the averaged AUC classification accuracy over 5 folds cross-validation.

We can observe that the classification accuracy of FCBRFIFO is better than FCBRRS and FOAM.

Further, The curves of our both methods FCBRFIFO and FCBRRS show less fluctuation with vary-

59

ing the number of random features compared to FOAM. This would facilitate the grid search for

finding the best number of features.

We also note that on some datasets the FOAM is susceptible to overfitting when increasing the

number of random features. However, our methods demonstrate that they are less sensitive to this

phenomenon. We attribute this virtue of our algorithms to confidence-weighted learning.

5.6 Conclusion

In this work, we have proposed a scalable online nonlinear AUC maximization algorithm. We

approximate the function of the Gaussian kernel using random Fourier features and implement our

confidence-weighted AUC classifier on the embedded space. We experiment with both First-In-

First-Out and Reservoir sampling to deal with the multivariate nature of the AUC loss function.

The results on several benchmark datasets show that our method outperforms linear and non-

linear AUC maximization methods. The advantage of our method is learning a second-order AUC

maximization classifier on the approximate space instead of using a first-order classifier, which is

implemented by FOAM.

In further research, we will study the usage of a data-dependent method (i.e., Nyström low-

rank approximation) with a second-order classifier to enhance the AUC classification accuracy.

Another future work can investigate to improve the efficiency of our method by approximating its

covariance matrix.

60

50 100 150 200 250

number of random features

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

A
U

C

FOAM

FCBR
RS

FCBR
FIFO

(a) glass

50 100 150 200 250

number of random features

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

A
U

C

FOAM

FCBR
RS

FCBR
FIFO

(b) vehicle

50 100 150 200 250

number of random features

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

A
U

C

FOAM

FCBR
RS

FCBR
FIFO

(c) svmguide3

50 100 150 200 250

number of random features

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

A
U

C

FOAM

FCBR
RS

FCBR
FIFO

(d) segment

50 100 150 200 250

number of random features

0.93

0.935

0.94

0.945

0.95

0.955

0.96

0.965

0.97

0.975

A
U

C

FOAM

FCBR
RS

FCBR
FIFO

(e) spambase

50 100 150 200 250

number of random features

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

A
U

C

FOAM

FCBR
RS

FCBR
FIFO

(f) magic04

Figure 5.1: Study on the classification accuracy of random Fourier AUC maximization methods with a

different number of random features

61

50 100 150 200 250

number of random features

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

A
U

C

FOAM

FCBR
RS

FCBR
FIFO

(g) pendigits

50 100 150 200 250

number of random features

0.985

0.986

0.987

0.988

0.989

0.99

0.991

0.992

0.993

A
U

C

FOAM

FCBR
RS

FCBR
FIFO

(h) cod-rna

50 100 150 200 250

number of random features

0.86

0.865

0.87

0.875

0.88

0.885

0.89

0.895

0.9

0.905

0.91

A
U

C

FOAM

FCBR
RS

FCBR
FIFO

(i) acoustic

50 100 150 200 250

number of random features

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

A
U

C

FOAM

FCBR
RS

FCBR
FIFO

(j) ijcnn1

100 120 140 160 180 200 220 240 260

number of random features

0.87

0.88

0.89

0.9

0.91

0.92

0.93

A
U

C

FOAM

FCBR
RS

FCBR
FIFO

(k) kddcup08

50 100 150 200 250

number of random features

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

A
U

C

FOAM

FCBR
RS

FCBR
FIFO

(l) covtype

Figure 5.1: Study on the classification accuracy of random Fourier AUC maximization methods with a

different number of random features

62

Chapter 6

Accelerated Stochastic AUC Maximization

6.1 Introduction

The optimization of the AUC objective function is typically solved using Batch methods (e.g., in-

exact Hessian using conjugate gradient [42]). These batch methods yield a high AUC classification

accuracy because they can reach to the optimal minimum. However, these batch methods have two

limitations. First, they are not able to deal with large-scale datasets because of their high compu-

tational time. Second, they cannot handle sequential data, due to the deterministic nature of their

optimization approaches.

On the other hand, online learning methods for AUC maximization [65, 66] tackle the scala-

bility of batch AUC maximization methods by running one-pass over the dataset. Such methods

lack optimal convergence because they do not benefit from second-order information. Hence, re-

cent online AUC maximization methods consider online second-order optimization techniques to

improve the convergence rate [67, 82]. However, forming the exact covariance matrix reduce the

scalability of these methods when learning on high dimensional data.

A challenging problem here lies in developing an AUC algorithm that converges to the optimal

minimum with respect to the surrogate loss function while its rate of convergence is fast. One

popular optimization technique is stochastic learning [86]. The appealing property of stochastic

gradient is that its convergence rate is not dependent on the size of the sample set.

However, stochastic learning suffers from slow convergence (sublinear rate of convergence),

due to the noisy gradient estimates. A plethora of methods have been developed to address the noise

reduction problem for univariate loss functions, but only a few studies have considered reducing

the noise in the presence of a pairwise loss function.

We propose a fast convergence first-order stochastic AUC maximization algorithm. The pro-

posed algorithm improves the sublinear convergence of the first-order stochastic algorithm by em-

63

ploying variance reduction methods. Specifically, we suggest a scheduled averaging and com-

bine it with a scheduled regularization to accelerate the convergence rate of the stochastic AUC

classifier. To deal with nonlinearly distributed datasets, we optimize our linear classifier on a

finite-dimensional approximate feature space constructed via the k-means Nyström low-rank ap-

proximation and the random Fourier features.

6.2 Related work

The proposed accelerated stochastic AUC maximization method is mostly related to noise reduc-

tion, adaptive stochastic gradient methods, and Fast convergence stochastic online AUC maximiza-

tion topics. In what follows, we briefly review the main approaches in these two areas.

Noise reduction

One of the main approaches to remedy the slow convergence of stochastic gradient is known as

noise reduction. The noise can be reduced by learning a basic stochastic algorithm in a mini-batch

setting where the batch size increases periodically [87]. Other stochastic algorithms are developed

based on the idea of utilizing the previously estimated directions (i.e., gradients) in improving the

quality of the new one. This approach includes SAG [88], SVRG [89], and SAGA [90].

Iterate averaging is another intuitive technique improving the final noisy model by averaging

not the gradients but the resulting estimators of each iteration [91]. This auxiliary averaged estima-

tor is not involved during the optimization process and only used as a final model. Scheduling the

regularization to improve the convergence of the standard stochastic gradient descent is proposed

in [92].

Adaptive stochastic gradient

Another approach to improve the sublinear rate of convergence of the standard stochastic gra-

dient is based on estimating adaptive learning rates for the coefficients of the model in each update

step. Examples of such adaptive approach including Momentum [93], Nesterov [94], RMSprop

[95], AdaGrad [62], and Adam [96]. These methods have been successfully applied to acceler-

64

ate the convergence of stochastic gradient solving non-convex optimization problems (e.g., Neural

network).

Fast convergence stochastic online AUC maximization

The work by [97] suggests using sampling with replacement to reduce the variance and hence

improving the convergence rate of the vanilla stochastic gradient. Our online AUC maximization

algorithm [82] improves the convergence rate by exploiting the second-order information in a

confidence-weighted style. However, the second-order information compensates the scalability of

the algorithm when solving high dimensional data or when embedding the input space into high

finite-dimensional approximate feature space.

Another work [68] views the problem of scaling up the AUC objective function lies on how

to handle its pairwise loss function. Therefore, the authors of [68] suggest to formulate the AUC

objective function as a convex-concave saddle point problem (SOLAM). This formulation enables

them to solve a univariate loss function for AUC maximization. Recently, an adaptive multi-stage

algorithm [98] and a proximal variant of SOLAM [99] are proposed to improve the convergence

rate of SOLAM.

6.3 Accelerated Stochastic AUC Maximization Algorithm

Given a training a dataset S = {xi, yi}ni=1 drawn from unknown distribution D, where the input

space has n instances with d dimensional features x ∈ Rd and y = {−1, 1}. The regularized em-

pirical risk maximizing the AUC measure can be formulated as the minimization of the following

cost function:

min
w

R(w) =
λ

2
||w||2 + 1

n+n−

n+∑

i=1

n−∑

j=1

ℓ(wT (x+i − x−j))

=
1

n+n−

n+∑

i=1

n−∑

j=1

(λ
2
||w||2 + ℓ(wT (x+i − x−j))

)
, (6.1)

65

where the hyper-parameter λ > 0 controls the effect of the regularization term and ℓ(·) is a surro-

gate loss function. The surrogate loss function can be twice differential, which has been proven to

be consistent with AUC measure [66, 38]. However, we opt to implement a hinge loss function,

which is nondifferentiable, because using first-order information is more efficient when working

on the large-scale regime.

While the hinge loss is nondifferentiable, it is still possible to apply the gradient descent by

using the subgradient instead of the gradient. The subgradient of the pairwise hinge loss function

at w can be defined as follows,

ℓ′(wT (x+ − x−)) =

0 if (wT (x+ − x−)) ≥ 1

−1 if (wT (x+ − x−)) < 1

In a standard stochastic learning sitting [92], we sample two opposite instances uniformly at

random and update the weight vector in each iteration as follows,

wt+1 = wt −
1

(t+ t0)
Mgt(wt) where gt(wt) = λwt − ℓ′(wTt (x+t − x−t))(x+ − x−),

where the rescaling matrix M is defined as M = λ−1I when updating the weight vector using

only the first-order information. Theoretically, the norm of the optimal weight vector w∗ is upper

bounded byB [100] {||w∗|| ≤ B}. And because any update step might push the weight vector out-

side the boundB, the positive constant t0 is utilized to circumvent the projection step by preventing

too large steps in the first few iterations [92], where the best t0 can be set experimentally.

However, the low complexity of the precedent standard stochastic gradient descent is associated

with its slow convergence rate, shown to be sublinear [87], and its low accuracy. Speeding up the

converges while maintaining the low complexity of the standard stochastic gradient is our main

aim in this study.

In this work, we optimize the pairwise hinge loss function using stochastic gradient descent

accelerated by scheduling both the regularization update [92] and averaging techniques [91, 101].

66

Regulating the regularization step allows the model to discover larger hypothesis classes most of

the time during the optimization process, while the averaging step reduces the variance of the

weight vector that stems from its stochastic nature. The advantage of scheduling the regularization

and averaging steps is to reduce the per-iteration complexity, while effectively accelerating the rate

of convergence.

Algorithm 10 describes the accelerated stochastic AUC maximization method. The algorithm

randomly selects a positive and negative instance and updates the model in each iteration as fol-

lows,

wt+1 = wt −
1

λ(t+ t0)
ℓ′(wT (x+t − x−t))(x+ − x−),

where ℓ′(z) is the gradient of the hinge loss function, wt is the solution after t iterations, and

(λ(t + t0))
−1 is the learning rate, which decreases in each iteration. The hyper-parameter λ can

be tuned on a validation set. We regulate the regularization update and averaging steps to be

performed each rskip and askip iterations respectively as follows,

wt+1 = wt+1 − rskip(t+ t0)
−1wt+1

w̃q+1 =
qw̃q + wt+1

q + 1
,

where w̃ is the averaged solution after q iterations with respect to the askip. The presented first-

order stochastic AUC maximization has linear complexity per iteration with respect to the number

of dimensions. Therefore, it is a feasible algorithm to train large-scale datasets. It also can be seen

as an averaging variant of the SVMSGD2 method proposed in [92].

6.4 Extension to Approximate Kernel

In many machine learning applications, the data are distributed nonlinearly, which results in a

highly nonlinear decision boundary. In these cases, a linear classifier would fail to learn the best

67

Algorithm 10: Accelerated Stochastic AUC Maximization

Input: training dataset X , λ, t0,T , rskip, askip
Set rcount = rskip, acount = askip, q = 0
Initialize w1←0 and w̃0←0
for t = 1, . . . , T do

Randomly pick a pair it ∈ 1, . . . , n+, jt ∈ 1, . . . , n−

xt = xit − xjt
wt+1 = wt − 1

λ(t+t0)
ℓ′(wTt xt)xt

rcount = rcount− 1
if rcount ≤ 0 then

wt+1 = wt+1 − rskip(t+ t0)
−1wt+1

rcount = rskip
end if

acount = acount− 1
if acount ≤ 0 then

w̃q+1 =
qw̃q+wt+1

q + 1

q = q + 1
acount = askip

end if

end for

set w = w̃q
return w

model. To address this problem, we can embed the input space into a finite-dimensional space

where a complex nonlinear decision boundary can be recognized using a linear classifier. In this

work, we investigate both random Fourier features [4] and improved Nyström method [2] to embed

the input space into highly but finite dimensional space.

Given an approximate feature map ϕ(x) defined either by random Fourier features or Nyström

methods, the objective function of our method can be written in the following form:

min
w

1

2
||w||2 + C

n+∑

i=1

n−∑

j=1

max(0, 1− wT (ϕ(x+i)− ϕ(x−j))). (6.2)

68

6.5 Experiments for Linear AUC Maximization Methods

In this section, we evaluate the performance of our proposed method on several benchmark datasets.

We compare our stochastic AUC maximization method with the state-of-the-art online and stochas-

tic AUC maximization algorithms. We also study the convergence rate of our stochastic AUC

maximization algorithm. The experiments are implemented in MATLAB, while the learning algo-

rithms are written in C++ language via MEX files. The experiments were performed on a computer

equipped with an Intel 4GHz processor with 32G RAM.

6.5.1 Benchmark Datasets

We use twelve datasets described in Table 6.1. We also experiment on high dimensional datasets

described in Table 6.2. The datasets can be downloaded from LibSVM website8 or UCI9. If any

of the data is not given as training and test sets, we partition it into 80% for training and 20% for

testing. The multi-class data are transformed into imbalanced binary data by grouping roughly

half of the classes into a label and the rest of classes into a different label. For sector dataset, we

transform the classification task to distinguish between classes whose labels are less than or equal

ten from the rest of classes. We also generate sector_v2 that differentiates between classes whose

labels less than or equal five and the rest of the classes. For news20 dataset, we use only its training

data due to its high dimensionality, and we transform it into imbalanced dataset by grouping the

topics of labels less than or equal five into a class and the rest of topics into another class. The

version news_v2 distinguishes the topics whose labels greater than 15 from the rest of the topics.

We standardize the features of each dataset to have zero mean and unit variance.

8https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

9http://archive.ics.uci.edu/ml/index.php

69

Table 6.1: Description of the benchmark data sets

Data #training #test #feat ratio

w8a 49,749 14,951 300 32.4

ijcnn1 49,990 91,701 22 9.44

cifar10 50,000 10,000 3072 2.33

connect-4 54,045 13,512 126 3.06

mnist 60,000 10,000 784 2.32

acoustic 78,823 19,705 50 3.31

skin 196,045 49,012 3 3.83

webspam 280,000 70,000 254 1.53

cod-rna 331,152 157,413 8 2.0

epsilon 400,000 100,000 2000 1.00

covtype 464,809 116,203 54 10.65

susy 4,500,000 500,000 18 1.18

Table 6.2: Description of the high dimensional data sets

Data #training #test #feat ratio

farm-ads 3,314 829 54877 1.14

sector 6,412 3,207 55197 9.13

sector_v2 6,412 3,207 55197 20.0

news20 12,748 3,187 62061 3.01

news20_v2 12,748 3,187 62061 2.98

real-sim 57,847 14,462 20958 2.25

6.5.2 Compared Methods and Model Selection

1. OAMseq and OAMgra The sequential and gradient variants of online AUC maximization

[65]. The hyperparameters are chosen as suggested by [65] via 3-fold cross validation. The

number of positive and negative buffers is set to 100.

2. SOLAM: This is the stochastic online AUC maximization [68]. The hyperparameters of the

algorithm (i.e., the learning rate and the bound on the weight vector) are selected via 3-fold

cross validation by searching in the grids {1 : 9 : 100} and {10−1, . . . , 105}, respectively.

The number of iterations is set to 15.

3. ASAM: This is our accelerated stochastic AUC maximization algorithm. The hyper-parameter

λ is chosen from the grid {10−10, . . . , 10−7} via 3-fold cross validation. For the experiment

70

with high dimensional data, we tune λ using 3-fold cross validation by searching in the grid

{1 : 9 : 100}.

4. BAM: This is the batch AUC maximization algorithm [42]. This algorithm optimizes the

squared hinge loss function using truncated Newton. The best regularization hyper-parameter

C is chosen from the grid {2−15, . . . , 210} via 3-fold cross validation.

6.5.3 Results for Linear AUC Algorithms on Benchmark Datasets

The comparison in terms of AUC classification accuracy and training time is shown in Table 6.3.

The reported AUC results are the average of 5 runs, except for the results of BAM, which are based

on a single run.

We observe that the AUC performance of our proposed method ASAM is on a par with the

batch method BAM on most datasets while its training time is shorter than BAM. We also observe

that ASAM achieves better AUC classification accuracy than BAM on cifar10, acoustic, and skin

datasets, but its AUC is lower than BAM on connect-4 dataset.

We can see that our method ASAM outperforms SOLAM, OAMseq, and OAMgrd in terms of

AUC classification accuracy. The training time of ASAM is marginally longer than the other

online and stochastic methods on most datasets. The method SOLAM shows significantly better

AUC performance compared to OAMseq and OAMgrd. The efficacy of SOLAM can be ascribed to

optimizing a squared loss function and performing multiple passes over the training data.

6.5.4 Results for Linear AUC Algorithms on High Dimensional Datasets

Table 6.4 shows the AUC classification accuracy and training time of the compared algorithms.

The reported AUC results are the average of two runs. We can observe that our algorithm ASAM

performs better than OAM algorithms on all the datasets. We can also see that the training time of

our method ASAM is shorter than those of all methods. We attribute the robust and efficient perfor-

mance of our ASAM to its neat and straightforward acceleration techniques. Note that scheduling

the averaging step avoids many vectors summation steps while retaining the effectiveness of the

standard iterate averaging method.

71

Table 6.3: AUC classification accuracy and training time (in seconds) for linear AUC maximization algo-

rithms on the benchmark data

Algorithm
w8a ijcnn1 cifar10

AUC
Training

time
AUC

Training

time
AUC

Training

time

OAMseq 94.379 ± 0.637 1.233 85.034 ± 2.049 0.1182 63.981 ± 4.590 13.248

OAMgra 95.339 ± 0.586 1.2274 86.398 ± 3.443 0.1101 64.058 ± 2.875 13.288

SOLAM 91.201 ± 4.222 0.9610 90.494 ± 0.070 0.0722 54.658 ± 6.595 14.664

ASAM 97.742 ± 0.019 1.2813 91.312 ± 0.209 0.2170 76.170 ± 0.098 12.876

BAM 97.876 10.338 91.557 0.5717 74.819 541.16

Algorithm
connect-4 mnist acoustic

AUC
Training

time
AUC

Training

time
AUC

Training

time

OAMseq 78.703 ± 1.823 0.6188 92.218 ± 0.921 3.9409 76.303 ± 5.619 0.3696

OAMgra 79.491 ± 1.312 0.6046 92.389 ± 0.313 3.9272 76.204 ± 6.561 0.3536

SOLAM 87.450 ± 0.113 0.4295 94.799 ± 0.047 3.0077 86.806 ± 0.130 0.2544

ASAM 87.755 ± 0.060 1.1328 95.909 ± 0.038 4.2642 88.452 ± 0.081 1.0420

BAM 88.197 3.3520 96.053 28.487 87.378 1.8684

Algorithm
skin webspam cod-rna

AUC
Training

time
AUC

Training

time
AUC

Training

time

OAMseq 89.823 ± 6.210 0.1282 94.328 ± 1.473 6.4626 96.710 ± 1.001 0.3482

OAMgra 92.899 ± 4.779 0.1138 94.882 ± 0.643 6.2794 96.945 ± 1.330 0.3311

SOLAM 94.698 ± 0.003 0.1293 96.218 ± 0.013 4.5160 98.734 ± 0.007 0.2438

ASAM 95.006 ± 0.189 0.2417 97.230 ± 0.057 9.3542 98.862 ± 0.020 1.7804

BAM 94.794 0.4737 97.289 16.430 98.861 1.9487

Algorithm
epsilon covtype susy

AUC
Training

time
AUC

Training

time
AUC

Training

time

OAMseq 87.511 ± 0.383 67.993 80.931 ± 1.491 2.3906 74.294 ± 3.727 9.0414

OAMgra 87.806 ± 0.382 67.284 77.883 ± 4.085 2.2848 72.740 ± 7.592 8.6058

SOLAM 95.957 ± 0.012 53.699 86.876 ± 0.049 1.6590 83.470 ± 0.003 5.6492

ASAM 95.907 ± 0.014 69.410 87.520 ± 0.037 6.7974 85.718 ± 0.086 41.608

BAM 95.967 800.1 87.858 14.916 85.807 64.418

72

Table 6.4: AUC classification accuracy and training time (in seconds) for linear AUC maximization algo-

rithms on the high dimensional data

Algorithm
farm-ads sector sector_v2

AUC
Training

time
AUC

Training

time
AUC

Training

time

OAMseq 89.412 ± 0.055 19.396 98.103 ± 0.378 40.164 97.840 ± 0.851 34.507

OAMgra 90.071 ± 0.503 19.515 98.266 ± 0.260 39.332 97.589 ± 0.774 34.126

SOLAM 92.422 ± 0.555 19.375 96.313 ± 0.021 36.863 97.805 ± 0.041 33.252

ASAM 95.701 ± 0.013 12.647 98.927 ± 0.010 24.791 98.326 ± 0.009 28.114

Algorithm
news20 news20_v2 real-sim

AUC
Training

time
AUC

Training

time
AUC

Training

time

OAMseq 97.907 ± 0.021 93.996 97.701 ± 0.060 81.000 94.789 ± 0.092 124.14

OAMgra 97.926 ± 0.120 90.831 97.681 ± 0.019 81.846 93.932 ± 0.429 124.20

SOLAM 97.967 ± 0.007 65.868 97.727 ± 0.054 63.530 99.053 ± 0.009 124.23

ASAM 98.715 ± 0.007 51.949 98.682 ± 0.011 61.441 99.612 ± 0.005 111.39

6.5.5 Study on the Convergence Rate

We investigate the convergence of ASAM and its counterpart SOLAM with respect to the num-

ber of epochs. We also include SAM algorithm that minimizes the pairwise hinge loss function

using SVMSGD2 [92]. The algorithm SAM is analogous to the proposed algorithm ASAM but

without the averaging technique. Figure 6.1 depicts the AUC performance of these stochastic

methods upon varying the number of epochs. We vary the number of epochs according to the grid

{1, 2, 3, 4, 5, 10, 30, 60, 100}, and run the stochastic algorithms using the same setup described in

the preceding subsection. In all subfigures, the x-axis represents the number of epochs, while the

y-axis is the AUC classification accuracy averaged over 3 runs on the test set.

We can observe that our ASAM algorithm achieves better AUC classification accuracy from

the first epoch compared to SOLAM. We can also see that the AUC performance of ASAM out-

performs its non-averaging variant SAM on all the datasets. Furthermore, the AUC performance

of ASAM does not fluctuate considerably with varying the number of epochs on all datasets. This

stable performance indicates the effectiveness of incorporating the scheduled averaging technique

with the scheduled regularization update. It also implies that choosing the best number of epochs

would be easy.

73

We can also see that increasing the number of iterations does not significantly improve the

AUC performance of SOLAM on most datasets. The reason might be that SOLAM reaches a

saddle point in the first few epochs and gets stuck there.

6.6 Experiments for kernelized AUC Maximization Methods

In this section, we evaluate the kernelized variant of our accelerated stochastic AUC maximization

algorithm on several datasets. We use the k-means Nyström method to approximate the feature

maps. We compare our algorithm with the batch AUC method and the state-of-the-art online and

stochastic algorithms. Further, we experimentally study the convergence rate of our algorithm

under the high dimensional approximate space.

6.6.1 Compared Methods and Model Selection

In this experiment, we use the same methods we implemented in the precedent section, but we

apply them on the approximate feature space constructed via k-means Nyström low-rank approx-

imation. We denote these methods as NOAMseq, NOAMgra, NSOLAM, NASAM, and NBAM.

Further, we use the same protocol of the precedent section for tuning the hyperparameters of each

algorithm. We also include the results of our scalable kernelized batch algorithm NBAM for refer-

ence.

The k-means Nyström approximation is implemented separately for each algorithm. We com-

pute landmark points using the k-means clustering algorithm, which is implemented in C++ lan-

guage. We set the number of landmark points to be 1600 for all datasets, except for cifar10, epsilon,

and susy, which have landmark points set to 3000, 2800, and 400, respectively. We select a Gaus-

sian kernel function to be used with the k-means Nyström approximation. The bandwidth of the

Gaussian function is set to be the average square distance between the first 80k instances and the

mean, which is computed over these instances.

74

1 2 3 4 5 10 30 60 100

number of epochs

88

90

92

94

96

98
A

U
C

ASAM

SAM

SOLAM

(a) w8a

1 2 3 4 5 10 30 60 100

number of epochs

84

85

86

87

88

89

90

91

92

A
U

C

ASAM

SAM

SOLAM

(b) ijcnn1

1 2 3 4 5 10 30 60 100

number of epochs

45

50

55

60

65

70

75

A
U

C

ASAM

SAM

SOLAM

(c) cifar10

1 2 3 4 5 10 30 60 100

number of epochs

80

81

82

83

84

85

86

87

88

A
U

C

ASAM

SAM

SOLAM

(d) connect-4

1 2 3 4 5 10 30 60 100

number of epochs

93.5

94

94.5

95

95.5

96

96.5

A
U

C

ASAM

SAM

SOLAM

(e) mnist

1 2 3 4 5 10 30 60 100

number of epochs

78

80

82

84

86

88

A
U

C

ASAM

SAM

SOLAM

(f) acoustic

Figure 6.1: AUC classification accuracy of stochastic linear AUC maximization algorithms with respect to

the number of epochs. We randomly pick a positive and negative instance in each iteration for ASAM and

SAM, where n iterations correspond to one epoch.

75

1 2 3 4 5 10 30 60 100

number of epochs

88

89

90

91

92

93

94

95

96

A
U

C

ASAM

SAM

SOLAM

(g) skin

1 2 3 4 5 10 30 60 100

number of epochs

95

95.5

96

96.5

97

97.5

A
U

C

ASAM

SAM

SOLAM

(h) webspam

1 2 3 4 5 10 30 60 100

number of epochs

95

95.5

96

96.5

97

97.5

98

98.5

99

A
U

C

ASAM

SAM

SOLAM

(i) cod-rna

1 2 3 4 5 10 30 60 100

number of epochs

93

93.5

94

94.5

95

95.5

96

96.5

A
U

C

ASAM

SAM

SOLAM

(j) epsilon

1 2 3 4 5 10 30 60 100

number of epochs

81

82

83

84

85

86

87

88

A
U

C

ASAM

SAM

SOLAM

(k) covtype

1 2 3 4 5 10 30 60 100

number of epochs

76

78

80

82

84

86

A
U

C

ASAM

SAM

SOLAM

(l) susy

Figure 6.1: AUC classification accuracy of stochastic linear AUC maximization algorithms with respect to

the number of epochs. We randomly pick a positive and negative instance in each iteration for ASAM and

SAM, where n iterations correspond to one epoch.

76

6.6.2 Results and Discussion

Table 6.5 shows the comparison of our methods with the other stochastic and online AUC maxi-

mization algorithms. The training time in Table 6.5 reports the time cost of learning including the

embedding steps. The reported AUC results are averaged over 3 runs.

We can observe that utilizing the kernel approximation improves the AUC classification ac-

curacy of all the algorithms. The proposed NASAM achieves a competitive AUC performance

compared to the proposed NBAM. However, NASAM requires shorter training time than NBAM

to yield an acceptable AUC accuracy. For example, on the covtype dataset, the AUC performance

of NASAM is on par with NBAM, while it only requires 49.17 seconds for training compared to

more than 18 minutes required by NBAM. In contrast to the online methods, the proposed NASAM

can converge to the optimal solution obtained by the batch method NBAM. We again attribute the

robust performance of NASAM to the effectiveness of scheduling both the regularization update

and averaging.

We observe that the training time of our proposed NASAM closely matches the training time

of those stochastic and online methods. Also, we see that NSOLAM performs better than NOAM

methods in terms of AUC classification accuracy. The robust performance of NSOLAM over

NOAM implies the advantage of optimizing the pairwise squared hinge loss function, performed

by NSOLAM, over the pairwise hinge loss function, carried out by NOAM methods.

6.6.3 Study on the Convergence Rate

In this experiment, we investigate the convergence rate of our method NASAM with respect to

the number of epochs. We compare it with NSAM and NSOLAM and follow the same protocol

implemented in the previous section for studying the rate of convergence of the stochastic linear

methods. For our method NASAM and NSAM, each epoch means n iteration wherein each itera-

tion we randomly pick a positive and negative instance. Figure 6.2 shows the AUC classification

accuracy with varying the number epochs. The reported AUC on the test set is averaged over 3

runs.

77

Table 6.5: AUC classification accuracy and training time (in seconds) for NASAM and the other kernelized

AUC maximization algorithms. The reported training time includes the embedding steps.

Algorithm
w8a ijcnn1 connect-4

AUC
Training

time
AUC

Training

time
AUC

Training

time

NOAMseq 96.648 ± 0.387 174.054 99.053 ± 0.165 22.610 85.934 ± 0.217 85.264

NOAMgra 96.351 ± 0.888 173.75 98.764 ± 0.166 22.589 86.004 ± 0.569 84.780

NSOLAM 95.458 ± 0.774 173.90 98.729 ± 0.156 21.262 89.855 ± 0.042 83.029

NASAM 98.547 ± 0.037 173.24 99.692 ± 0.011 22.589 93.602 ± 0.079 85.334

NBAM 98.579 216.95 99.505 96.807 94.069 159.768

Algorithm
mnist acoustic skin

AUC
Training

time
AUC

Training

time
AUC

Training

time

NOAMseq 98.341 ± 0.206 566.54 88.806 ± 0.667 57.562 99.979 ± 0.002 24.824

NOAMgra 98.078 ± 0.294 565.89 89.743 ± 0.999 56.966 99.960 ± 0.035 24.995

NSOLAM 98.094 ± 0.016 553.33 91.751 ± 0.029 54.223 99.950 ± 0.006 23.029

NASAM 99.375 ± 0.013 566.21 93.804 ± 0.083 56.957 99.982 ± 0.000 26.288

NBAM 99.424 650.79 94.188 176.375 99.978 62.280

Algorithm
webspam cod-rna covtype

AUC
Training

time
AUC

Training

time
AUC

Training

time

NOAMseq 98.895 ± 0.084 344.72 98.067 ± 0.325 93.295 89.750 ± 0.722 353.78

NOAMgra 98.895 ± 0.325 344.01 98.180 ± 0.135 93.022 89.637 ± 0.577 352.23

NSOLAM 99.065 ± 0.004 339.72 99.104 ± 0.002 83.339 91.842 ± 0.071 335.90

NASAM 99.720 ± 0.005 347.69 99.181 ± 0.007 91.866 96.033 ± 0.088 346.02

NBAM 99.726 598.17 99.184 467.80 96.765 2564.9

78

The results show that NASAM is able to achieve a better AUC classification accuracy from

the first run, while the other algorithms require multiple epochs. We can also see the stability of

NASAM over the different number of epochs compared to the other algorithms.

6.7 Experiments of NASAM vs. FASAM

In this experiment, we investigate the performance of our accelerated stochastic AUC maximiza-

tion algorithm (ASAM) with approximate feature space constructed via the k-means Nyström low-

rank matrix approximation and random Fourier features. The former is a data-dependent approx-

imation, while the later is data-independent as it approximates the kernel function. We name our

accelerated stochastic AUC maximization algorithm applied to random features as FASAM, while

NASAM refers to our accelerated algorithm applied to Nyström approximation.

We use these approximation methods to approximate a Gaussian kernel. The bandwidth of the

Gaussian kernel for Nyström approximation is set to be the average square distance between the

first 80k instances and the mean, which is computed over these instances. For Fourier features, the

bandwidth of the kernel is set to γ = 2/σ, where σ is tuned by 3-fold cross validation via the grid

{10, 20, 50, 100}.

Table 6.6 shows the AUC performance and training time of FASAM NASAM on seven bench-

mark datasets. The number of features is set to 1600 for both Nyström and Fourier features

methods. We can observe that the NASAM outperforms FASAM in terms of AUC classifica-

tion accuracy. This indicates that data-dependent approach is more robust than data-independent

in approximating the kernel. However, this is obtained at the expense of the computational time.

The computational time of k-means Nyström approximation can be reduced by restricting the com-

putation of the landmark points on a subset of the dataset.

We study the AUC performance of NASAM and FASAM with a different number of features.

The results are shown in Figure 6.3. We can observe that increasing the number of features im-

proves the AUC performance. This indicates that transforming the input space into a feature space

79

1 2 3 4 5 10 30 60 100

number of epochs

94

95

96

97

98

99
A

U
C

NASAM

NSAM

NSOLAM

(a) w8a

1 2 3 4 5 10 30 60 100

number of epochs

97

97.5

98

98.5

99

99.5

100

A
U

C

NASAM

NSAM

NSOLAM

(b) ijcnn1

1 2 3 4 5 10 30 60 100

number of epochs

78

79

80

81

82

83

84

85

86

A
U

C

NASAM

NSAM

NSOLAM

(c) cifar10

1 2 3 4 5 10 30 60 100

number of epochs

87

88

89

90

91

92

93

94

A
U

C

NASAM

NSAM

NSOLAM

(d) connect-4

1 2 3 4 5 10 30 60 100

number of epochs

97.5

98

98.5

99

99.5

A
U

C

NASAM

NSAM

NSOLAM

(e) mnist

1 2 3 4 5 10 30 60 100

number of epochs

90

90.5

91

91.5

92

92.5

93

93.5

94

A
U

C

NASAM

NSAM

NSOLAM

(f) acoustic

Figure 6.2: AUC classification accuracy of the kernelized stochastic AUC algorithms with respect to the

number of epochs. We use Nyström approximation to approximate the kernel matrix. We randomly pick a

positive and negative instance in each iteration for NASAM and NSAM, where n iterations correspond to

one epoch.

80

1 2 3 4 5 10 30 60 100

number of epochs

99.93

99.94

99.95

99.96

99.97

99.98

99.99
A

U
C

NASAM

NSAM

NSOLAM

(g) skin

1 2 3 4 5 10 30 60 100

number of epochs

99

99.1

99.2

99.3

99.4

99.5

99.6

99.7

99.8

A
U

C

NASAM

NSAM

NSOLAM

(h) webspam

1 2 3 4 5 10 30 60 100

number of epochs

98.2

98.4

98.6

98.8

99

99.2

99.4

A
U

C

NASAM

NSAM

NSOLAM

(i) cod-rna

1 2 3 4 5 10 30 60 100

number of epochs

92

92.5

93

93.5

94

94.5

95

95.5

96

A
U

C

NASAM

NSAM

NSOLAM

(j) epsilon

1 2 3 4 5 10 30 60 100

number of epochs

91

92

93

94

95

96

A
U

C

NASAM

NSAM

NSOLAM

(k) covtype

1 2 3 4 5 10 30 60 100

number of epochs

83

84

85

86

87

88

A
U

C

NASAM

NSAM

NSOLAM

(l) susy

Figure 6.2: AUC classification accuracy of the kernelized stochastic AUC algorithms with respect to the

number of epochs. We use Nyström approximation to approximate the kernel matrix. We randomly pick a

positive and negative instance in each iteration for NASAM and NSAM, where n iterations correspond to

one epoch.

81

boosts the AUC performance. We can also see that the AUC performance of NASAM surpasses

that of FASAM. This can be attributed to the superiority of the data-dependent approximation.

Table 6.6: Comparison of NASAM vs. FASAM in terms of AUC performance (%) and training time (in

seconds)

Data Metric FASAM NASAM

ijcnn1

AUC

Training time

98.70 ± 0.0038

6.77

99.69 ± 0.0000

21.80

connect-4

AUC

Training time

90.71 ± 0.0008

8.10

93.65 ± 0.0001

85.06

acoustic

AUC

Training time

91.95 ± 0.0012

11.33

93.80 ± 0.0002

55.99

skin

AUC

Training time

99.97 ± 0.0000

27.31

99.98 ± 0.0000

26.46

cod-rna

AUC

Training time

99.13 ± 0.0000

46.70

99.18 ± 0.0000

91.47

covtype

AUC

Training time

96.20 ± 0.0041

66.73

96.00 ± 0.0003

342.2

webspam

AUC

Training time

98.90 ± 0.0001

40.06

99.71 ± 0.0000

341.1

6.8 Conclusion

In this chapter, we have developed a fast convergence stochastic AUC maximization algorithm that

solves a first-order pairwise objective function. The acceleration technique is based on scheduling

the regularization and the averaging steps. Experimentally, we show that our accelerated stochas-

tic algorithm can achieve a competitive AUC accuracy compared to the batch algorithm, which

optimizes a second-order objective function. We also show that our algorithm is able to surpass

the state-of-the-art stochastic and online AUC maximization methods with a marginal increase in

82

the training time. Further, we extend our algorithm to handle nonlinear decision boundaries by

approximating the feature maps via the k-means Nyström and random Fourier methods. For future

work, we plan to improve the convergence rate of our accelerated stochastic AUC maximization

by utilizing different acceleration techniques such as a proximal operator [102].

83

0 500 1000 1500 2000 2500

number of features

88

90

92

94

96

98

100
A

U
C

NASAM

FASAM

(a) ijcnn1

0 500 1000 1500 2000

number of features

82

84

86

88

90

92

94

A
U

C

NASAM

FASAM

(b) connect-4

0 500 1000 1500 2000 2500 3000

number of features

88

89

90

91

92

93

94

A
U

C

NASAM

FASAM

(c) acoustic

500 1000 1500 2000

number of features

98.5

99

99.5

100

A
U

C

NASAM

FASAM

(d) webspam

0 200 400 600 800

number of features

90

92

94

96

98

100

A
U

C

NASAM

FASAM

(e) cod-rna

0 500 1000 1500 2000 2500 3000 3500

number of features

88

89

90

91

92

93

94

95

96

97

A
U

C

NASAM

FASAM

(f) covtype

Figure 6.3: AUC classification accuracy of NASAM and FASAM with a different number of features

84

Chapter 7

Proximal Stochastic AUC Maximization Algorithm

7.1 Introduction

Stochastic and online AUC maximization algorithms have been demonstrated successful optimiza-

tion techniques for large-scale settings. In contrast to batch AUC maximization methods, the

stochastic and online learning algorithms are capable of handling sizable data and dealing effi-

ciently with data arrive in a sequential manner. However, the batch methods converge to the op-

timal solution, while the stochastic and online methods suffer from suboptimal convergence. The

ability to reach the optimal solution makes batch methods achieve a higher accuracy compared to

the stochastic and online algorithms. However, the per-iteration complexity of the batch methods

is time and memory consuming.

The primary challenge here is to develop stochastic AUC algorithms that are able to achieve

AUC classification accuracy obtained by the batch methods while maintaining low training com-

plexity. The accelerated stochastic AUC maximization algorithm [103] shows a strong AUC per-

formance at the same level as a batch method. However, with complex data, the accelerated

stochastic AUC maximization algorithm requires a large number of iterations to achieve AUC

classification accuracy comparable to the batch method.

In this work, we develop a proximal stochastic AUC maximization algorithm. The proposed

proximal stochastic AUC maximization algorithm can be applied to a non-smooth regularization

term. Our method uses the proximal mapping of the hinge loss function to improve the convergence

rate of our stochastic AUC maximization algorithm. We experimentally verify the efficiency and

the efficacy of the proposed proximal stochastic AUC maximization algorithm on several bench-

mark datasets.

85

7.2 Related Work

Several learning approaches have been developed to optimize the AUC objective function effi-

ciently. First-order [65, 66] and second-order [82] online algorithms are devised to optimize a

pairwise convex surrogate loss function by utilizing different buffering schemes to handle the pair-

wise property. Another second-order approach [66] circumvent the need to buffer some instances

by maintaining a covariance matrix for each class, and it learns the model based on the first and

second moments. Among these online methods, the second-order algorithm [82] based on the soft

confidence-weighted learning shows a robust AUC classification accuracy. However, its learning

complexity of O(Bd2) makes it inefficient for high dimensional data, where B is the size of the

buffer and d is the number of features.

Recently, the work [68] finds that optimizing a pairwise least square loss function is equivalent

to min-max saddle point problem. Therefore, a stochastic online AUC maximization algorithm

is devised [68] based on minimizing the primal and maximizing the dual variables in a stochas-

tic manner. Building on the saddle point formulation for the AUC maximization, the work [99]

proposes a proximal stochastic algorithm, while [98] proposes an adaptive multi-stage algorithm.

These algorithms [99, 98] are shown to achieve a convergence rate of O(1
t
), which is faster than

the convergence rate O(1√
t
) of the standard saddle point algorithm for AUC maximization, where

t is the number of iteration or the number of instances.

We should point out that our proposed algorithm is similar to the proximal stochastic AUC

maximization [99] in terms of utilizing the proximal operator. However, the proximal operator is

used by [99] as a regularizer for the model updated based on the saddle point formulation, while

we apply the proximal operator to the hinge loss function optimized by accelerated stochastic gra-

dient descent. The proximal stochastic algorithm proposed in [104] is also similar to our proposed

method. However, the proximal stochastic algorithm [104] is designed to maximize the accuracy,

whereas our proximal stochastic algorithm minimizes a pairwise loss function for AUC maximiza-

tion.

86

7.3 Proximal Algorithm

Given a sequence of training instances (x1, y1), . . . , (xn, yn) independently drawn from unknown

distribution D on Z = X × Y , where x ∈ X ⊆ Rd represents an instance with d dimensional

features and y ∈ {1,−1} represents the label. Let h(x) = (wTx) denotes a linear classifier, then

the AUC score is defined as:

AUC(w) = Pr(h(x+) ≥ h(x−)) = E[Ih(x+)≥h(x−)],

where I(·) is an indicator function. In practice, the indicator function, which is discontinuous, is

replaced by a convex surrogate loss function. In this work, we define the AUC loss function by the

hinge loss max(0, 1−h(x+−x−)). The optimization problem for maximizing the AUC objective

function is defined as:

min
w∈Rd

F (w) ,
1

n+n−

n+∑

i=1

n−∑

j=1

f(w) + λψ(w), (7.1)

where f(w) = ℓ(wT (x+i − x−j)) = max{0, 1− wT (x+i − x−j)} is a convex differentiable function

and ψ(w) is a convex regularizer, which could be non-differentiable. The popular and scalable

approach to solve such an optimization problem is stochastic gradient descent (SGD) [86], which

enjoys a low per-iteration complexity. However, the convergence rate of the vanilla SGD is slower

than that of the gradient method. The accelerated stochastic AUC maximization algorithm [103]

improves the convergence rate by combining both the scheduled regularization and the scheduled

iterate averaging techniques.

In some cases with complex datasets, this algorithm [103] turns out to be inefficient in terms

of iteration complexity, meaning a large number of iterations is required to achieve an AUC per-

formance comparable to the batch AUC method. How to make a first-order SGD to generalize as

better as a batch method from the first few iterations is a challenging problem.

In this work we promote the convergence rate of the accelerated stochastic AUC maximization

via using the proximal mapping of the hinge loss function. The minimization of the proximal

87

variant of the objective function 7.1 using a stochastic algorithm comprises of drawing a random

positive and negative instance at each iteration and compute the model as,

wt+1 = wt −
1

(t+ t0)
M proxλt(wt),

where the rescaling matrixM is defined as M = λ−1I when updating the weight vector using only

the first-order information. The proposed algorithm is detailed in Algorithm 11. The main step in

our algorithm is the use of the proximal mapping of the pairwise hinge loss function. The operator

of the proximal mapping of f(wt) is defined as:

proxλt(w) = argmin
v∈Rd

{
λft(v) +

1

2
||v − w||2

}
. (7.2)

The solution of the proximal operator 7.2 can be derived analytically using its optimality con-

dition. The derivation steps are detailed in Appendix A. The proposed proximal algorithm applies

the scheduled regularization and averaging steps [103] to the weights of the model to speed up

the convergence. These two steps are regulated to be performed each rskip and askip iterations

respectively as follows,

wt+1 = wt+1 − rskip(t+ t0)
−1wt+1

w̃q+1 =
qw̃q + wt+1

q + 1
,

where w̃ is the averaged solution after q iterations with respect to the askip.

To show the difference between the proximal stochastic and the standard stochastic gradient

methods for AUC maximization, we can rewrite the update step of our proximal algorithm as:

wt+1 = wt −
1

λ(t+ t0)
g(wt+1),

whereas the update step of the vanilla stochastic algorithm is written as:

88

wt+1 = wt −
1

λ(t+ t0)
g(wt).

We can see that the proximal stochastic algorithm can evaluate the hinge loss function at wt+1

instead of wt without making an actual iteration. Moreover, the proximal operator makes small

update steps during training iterations. In contrast to the accelerated stochastic method [103], our

proximal algorithm averages a set of weights that received a small changing during training. The

averaging of such weights yields an improvement in accelerating the convergence rate.

Algorithm 11: Proximal Stochastic AUC Maximization

Input: training dataset X , γ,t0,T , rskip, askip
Set rcount = rskip, acount = askip, q = 0
Initialize w1 = 0 ∈ R

d and w̃0 = 0 ∈ R
d

for t = 1, . . . , T do

Randomly pick a pair it ∈ 1, . . . , n+, jt ∈ 1, . . . , n−

xt = xit − xjt
λt =

1
γ(t+t0)

wt+1 = proxλtft(wt)
rcount = rcount− 1
if rcount ≤ 0 then

wt+1 = wt+1 − rskip (t+ t0)
−1 wt+1

rcount = rskip
end if

acount = acount− 1
if acount ≤ 0 then

w̃q+1 =
qw̃q+wt+1

q + 1

q = q + 1
acount = askip

end if

end for

set w = w̃q
return w

89

7.4 Experiments

In this section, we evaluate the performance of our proposed method on several benchmark datasets.

We compare our proximal stochastic AUC maximization algorithm with the state-of-the-art online

and stochastic AUC maximization algorithms. The experiments are implemented in MATLAB,

while the learning algorithms are written in C++ language via MEX files. The experiments were

performed on a computer equipped with an Intel 4GHz processor with 32G RAM.

7.4.1 Datasets

We use several datasets described in Table 7.1. We also experiments on high dimensional datasets

described in Table 7.2. The datasets can be downloaded from LibSVM website10 and UCI11. For

datasets that are not split into training and test sets, we partition them into 80% for training and

20% for testing. The multi-class data are transformed into imbalanced binary data by grouping

roughly half of the classes into a label and the rest of classes into a different label.

Table 7.1: Benchmark data sets

Data #training #test #feat ratio

spambase 3,680 921 57 1.53

letter 15,000 5,000 16 2.07

a9a 26,048 6,513 123 3.15

w8a 49,749 14,951 300 32.4

ijcnn1 49,990 91,701 22 9.44

cifar10 50,000 10,000 3072 2.33

connect-4 54,045 13,512 126 3.06

mnist 60,000 10,000 784 2.32

acoustic 78,823 19,705 50 3.31

aloi 86,400 21,600 128 46.61

webspam 280,000 70,000 254 1.53

cod-rna 331,152 157,413 8 2.0

epsilon 400,000 100,000 2000 1.00

covtype 464,809 116,203 54 11.26

susy 4,500,000 500,000 18 1.18

10https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

11http://archive.ics.uci.edu/ml/index.php

90

Table 7.2: High dimensional data sets

Data #training #test #feat ratio

farm-ads 3,314 829 54,877 1.14

sector 6,412 3,207 55,197 9.13

news20 12,748 3,187 62,061 3.01

real-sim 57,847 14,462 20,958 2.25

7.4.2 Compared Methods and Model Selection

1. OAMseq and OAMgra [65]: The sequential and gradient variants of online AUC maximiza-

tion. The hyperparameters are chosen as suggested by [65] via 3-fold cross validation. The

number of positive and negative buffers is set to 100.

2. CBRFIFO [82]: The confidence-weighted bipartite ranking algorithms with the First-In-First-

Out buffer updating policy. The size of the positive and negative buffers is fixed at 50. The

hyperparameter η is set to 0.7, and the penalty hyperparameter C is tuned by 3-fold cross

validation by searching in 2[−10:10]. We use the diagonal variant when experimenting on the

high dimensional datasets.

3. SOLAM [68]: This is the stochastic online AUC maximization. The hyperparameters of the

algorithm (i.e., the learning rate and the bound on the weight vector) are selected via 3-fold

cross validation by searching in the grids {1 : 9 : 100} and {10−1, . . . , 105}, respectively.

The number of iterations is set to 15.

4. BAM [42]: This is the batch AUC maximization algorithm. This algorithm optimizes

the squared hinge loss function using truncated Newton. The best regularization hyper-

parameter C is chosen from the grid {2−15, . . . , 210} via 3-fold cross validation.

5. ASAM [103]: This is the accelerated stochastic AUC maximization algorithm. The hyper-

parameter λ is chosen from the grid {10−10, . . . , 10−7} via 3-fold cross validation. For the

91

experiment with high dimensional data, we tune λ using 3-fold cross validation by searching

in the grid {1 : 9 : 100}.

6. PSAM: This is the proposed proximal stochastic AUC maximization algorithm. The hyper-

parameter λ is chosen from the grid {10−10, . . . , 10−7} via 3-fold cross validation. For the

experiment with high dimensional data, we tune λ using 3-fold cross validation by searching

in the grid {1 : 9 : 100}.

7.4.3 Results and Discussion

Results for Linear AUC Maximization Methods:

The comparison in terms of AUC performance and training time on the benchmark datasets is

shown in Table 7.3, while the comparison on the high dimensional datasets are shown Table 7.4.

The reported AUC is averaged over 3 runs for experiments on the high dimensional datasets; oth-

erwise, the AUC results are averaged over 5 runs.

We observe that our algorithm PSAM outperforms the other online and stochastic methods in

terms of AUC classification accuracy. Further, we see that the AUC performance of PSAM is

comparable to the batch method, whereas the training of PSAM is faster than the batch method.

PSAM is also able to achieve better AUC classification accuracy compared to its non-proximal

counterpart ASAM, while its training time is on par with that of ASAM. CBRFIFO achieves a

robust AUC performance on most datasets. However, its training is significantly slower than the

other stochastic and online algorithms on most datasets, especially for datasets with a large number

of features.

Results for Nonlinear AUC Maximization Methods:

We compare the performance of the nonlinear variant of our proximal method with the other non-

linear batch and stochastic AUC maximization algorithms on six datasets (i.e., acoustic, aloi, cod-

rna, webspam, covtype, and susy). The results comparing the performance are shown in Table 7.5.

The Gaussian kernel matrix is approximated using the k-means Nyström method. The bandwidth

of the Gaussian function is set to be the average square distance between the first 80k instances

92

and the mean, which is computed over these instances. We set the number of landmark points to

be 1600 for acoustic, aloi, cod-rna, webspam, and covtype, while susy has landmark points set to

400. The results of the stochastic methods are averaged over 3 runs.

We can see that our method NPSAM achieves a robust performance compared to NSOLAM

and NASAM, while its AUC performance is on par with that of the batch method NBAM. However,

the training time of our method NPSAM is significantly shorter than NBAM. Among the stochastic

algorithms, NSOLAM performs poorly compared to our methods. The robust performance and the

fast training of our proximal algorithm make it appealing for large-scale applications.

7.4.4 Study on the Convergence Rate

We study the convergence of PSAM with respect to the number of epochs. We also compare

it with the other stochastic AUC maximization methods ASAM and SOLAM. The AUC results

of these stochastic methods upon varying the number of epochs are depicted in Figure 7.1. The

results of the nonlinear variants are shown in 7.2. We vary the number of epochs according to

the grid {1, 2, 3, 4, 5, 10, 30, 60}, and run the stochastic algorithms using the same setup described

in the preceding subsection. One epoch means n number of iterations, where n is the number of

instances. For PSAM and ASAM, we pick a positive and negative instance at random in each

iteration. In all subfigures, the x-axis represents the number of epochs, while the y-axis is the AUC

classification accuracy averaged over 3 runs on the test set.

We observe that PSAM and its nonlinear variant NPSAM are able to reach the optimal solution

from the first epoch in most datasets. We attribute this superior performance of our algorithms to

the formulation of the proximal operator with scheduling both the regularization and the averaging

steps. We also note that increasing the number of epochs improve the AUC performance of PSAM

and NPSAM on some datasets. Notice that the number of iterations in the first epoch is much

smaller than the number of pairs. This suggests that studying different sampling strategies is a

possible research direction to boost the rate of convergence.

93

Table 7.3: Comparison of AUC classification accuracy and training time (in seconds) for different AUC

maximization algorithms

Algorithm
spambase letter a9a

AUC
Training

time
AUC

Training

time
AUC

Training

time

OAMseq 96.236 ± 0.473 0.018 65.552 ± 1.839 0.036 81.565 ± 0.869 0.286

OAMgra 95.995 ± 0.913 0.017 66.759 ± 1.057 0.029 81.456 ± 1.878 0.282

CBRFIFO 97.573 ± 0.093 0.533 68.173 ± 0.122 0.446 89.900 ± 0.013 17.25

SOLAM 94.204 ± 0.143 0.017 68.514 ± 0.158 0.015 89.540 ± 0.047 0.225

ASAM 97.356 ± 0.100 0.011 68.209 ± 0.286 0.017 89.637 ± 0.104 0.287

PSAM 97.508 ± 0.143 0.015 69.043 ± 0.047 0.024 90.111 ± 0.011 0.367

BAM 97.72 0.110 68.51 0.223 90.43 1.7459

Algorithm
w8a ijcnn1 cifar10

AUC
Training

time
AUC

Training

time
AUC

Training

time

OAMseq 94.003 ± 1.104 1.225 87.498 ± 1.282 0.113 64.440 ± 2.303 13.31

OAMgra 94.815 ± 1.334 1.214 86.617 ± 1.850 0.113 64.561 ± 2.154 13.37

CBRFIFO 97.442 ± 0.455 5.149 91.591 ± 0.048 2.224 66.942 ± 1.060 146.2

SOLAM 94.537 ± 0.881 0.973 90.527 ± 0.087 0.071 57.193 ± 4.620 14.63

ASAM 97.695 ± 0.018 0.681 91.503 ± 0.197 0.116 76.391 ± 0.089 6.881

PSAM 97.747 ± 0.026 0.920 92.218 ± 0.024 0.188 76.056 ± 0.035 9.113

BAM 97.88 10.07 91.56 0.570 74.53 809.8

Algorithm
connect-4 mnist acoustic

AUC
Training

time
AUC

Training

time
AUC

Training

time

OAMseq 79.737 ± 0.179 0.618 92.176 ± 0.748 3.928 82.116 ± 2.264 0.368

OAMgra 78.501 ± 1.504 0.602 92.097 ± 0.656 3.950 78.000 ± 8.433 0.354

CBRFIFO 88.151 ± 0.029 37.75 95.753 ± 0.119 17.24 88.573 ± 0.076 11.251

SOLAM 87.491 ± 0.062 0.433 94.866 ± 0.046 3.024 87.083 ± 0.177 0.250

ASAM 87.771 ± 0.057 0.701 95.911 ± 0.047 2.164 88.393 ± 0.024 0.543

PSAM 88.200 ± 0.005 0.851 96.051 ± 0.018 2.768 88.557 ± 0.010 0.672

BAM 88.20 3.429 96.05 27.74 87.38 1.880

Algorithm
webspam cod-rna epsilon

AUC
Training

time
AUC

Training

time
AUC

Training

time

OAMseq 95.432 ± 0.399 6.571 94.956 ± 3.567 0.343 88.201 ± 0.412 67.44

OAMgra 95.331 ± 0.334 6.356 97.632 ± 0.121 0.332 87.375 ± 0.614 68.19

CBRFIFO 97.234 ± 0.024 37.75 98.893 ± 0.003 5.913 95.591 ± 0.074 689.4

SOLAM 96.615 ± 0.025 4.536 98.770 ± 0.006 0.250 95.961 ± 0.006 53.50

ASAM 97.197 ± 0.026 4.870 98.900 ± 0.012 0.896 95.814 ± 0.031 37.46

PSAM 97.250 ± 0.004 6.289 98.687 ± 0.002 1.203 95.964 ± 0.001 50.35

BAM 97.37 17.56 98.86 2.046 95.97 837.8

Algorithm
covtype susy aloi

AUC
Training

time
AUC

Training

time
AUC

Training

time

OAMseq 78.683 ± 1.952 2.378 71.957 ± 0.669 8.973 73.226 ± 1.521 1.088

OAMgra 80.760 ± 1.613 2.281 69.810 ± 7.131 8.590 74.128 ± 2.219 1.007

CBRFIFO 86.760 ± 0.895 72.60 85.953 ± 0.001 202.7 81.576 ± 0.243 80.14

SOLAM 86.425 ± 0.114 1.662 83.525 ± 0.015 5.723 73.846 ± 1.636 0.719

ASAM 86.851 ± 0.048 4.183 85.820 ± 0.060 21.06 80.311 ± 0.145 0.789

PSAM 87.059 ± 0.001 5.344 85.950 ± 0.001 28.44 80.993 ± 0.020 1.248

BAM 87.18 15.02 85.81 63.75 81.64 12.36

94

Table 7.4: Comparison of AUC classification accuracy and training time (in seconds) for different AUC

maximization algorithms on the high dimensional datasets

Algorithm
farm-ads sector news20

AUC
Training

time
AUC

Training

time
AUC

Training

time

OAMseq 89.260 ± 0.091 19.43 98.258 ± 0.240 39.108 97.610 ± 0.100 90.90

OAMgra 90.080 ± 0.397 20.15 98.161 ± 0.206 37.94 97.647 ± 0.046 89.40

CBRFIFO 93.959 ± 1.572 226.8 98.720 ± 0.245 541.6 98.619 ± 0.074 1576

SOLAM 91.738 ± 0.385 19.39 96.836 ± 0.186 29.39 97.605 ± 0.021 65.73

ASAM 95.690 ± 0.071 7.877 97.719 ± 0.039 20.537 97.904 ± 0.006 36.67

PSAM 95.839 ± 0.037 12.45 98.875 ± 0.013 25.03 98.182 ± 0.395 56.73

Algorithm
real-sim

AUC
Training

time

OAMseq 94.533 ± 0.081 123.0

OAMgra 94.331 ± 0.355 123.3

CBRFIFO 99.553 ± 0.011 1355

SOLAM 99.006 ± 0.017 123.0

ASAM 99.513 ± 0.003 80.38

PSAM 99.652 ± 0.008 97.47

Table 7.5: Comparison of AUC classification accuracy and training time (in seconds) for the nonlinear

variants of the batch and the stochastic AUC maximization algorithms. The training time excludes the

embedding steps.

Algorithm acoustic aloi cod-rna

AUC
Training

time
AUC

Training

time
AUC

Training

time

NSOLAM 92.826 ± 0.279 8.25 92.450 ± 0.212 8.99 99.108 ± 0.000 34.93

NASAM 93.316 ± 0.063 5.61 98.992 ± 0.025 5.75 99.163 ± 0.007 23.65

NPSAM 94.073 ± 0.028 7.36 99.507 ± 0.002 8.22 99.195 ± 0.000 31.15

NBAM 94.173 142.4 99.742 171.8 99.182 419.5

Algorithm webspam covtype susy

AUC
Training

time
AUC

Training

time
AUC

Training

time

NSOLAM 99.594 ± 0.001 29.34 94.324 ± 0.241 49.07 86.933 ± 0.000 303.44

NASAM 99.629 ± 0.014 19.45 95.201 ± 0.081 34.26 87.200 ± 0.024 603.08

NPSAM 99.759 ± 0.000 26.74 96.150 ± 0.021 45.40 87.301 ± 0.006 589.48

NBAM 99.740 295.65 96.650 2025.1 87.280 5512.3

95

1 2 3 4 5 10 30 60

number of epochs

93.5

94

94.5

95

95.5

96

96.5

97

97.5

98
A

U
C

PSAM

ASAM

SOLAM

(a) spambase

1 2 3 4 5 10 30 60

number of epochs

66.5

67

67.5

68

68.5

69

69.5

A
U

C

PSAM

ASAM

SOLAM

(b) letter

1 2 3 4 5 10 30 60

number of epochs

91

92

93

94

95

96

97

98

A
U

C

PSAM

ASAM

SOLAM

(c) w8a

1 2 3 4 5 10 30 60

number of epochs

89

89.5

90

90.5

91

A
U

C

PSAM

ASAM

SOLAM

(d) a9a

1 2 3 4 5 10 30 60

number of epochs

89.5

90

90.5

91

91.5

92

92.5

A
U

C

PSAM

ASAM

SOLAM

(e) ijcnn1

1 2 3 4 5 10 30 60

number of epochs

58

60

62

64

66

68

70

72

74

76

A
U

C

PSAM

ASAM

SOLAM

(f) cifar10

Figure 7.1: AUC classification accuracy with respect to the number of epochs for the stochastic linear AUC

methods. We randomly pick a positive and negative instance in each iteration for PSAM and ASAM, where

n iterations correspond to one epoch.

96

1 2 3 4 5 10 30 60

number of epochs

85.5

86

86.5

87

87.5

88

88.5
A

U
C

PSAM

ASAM

SOLAM

(g) connect-4

1 2 3 4 5 10 30 60

number of epochs

93.5

94

94.5

95

95.5

96

96.5

A
U

C

PSAM

ASAM

SOLAM

(h) mnist

1 2 3 4 5 10 30 60

number of epochs

86.5

87

87.5

88

88.5

89

A
U

C

PSAM

ASAM

SOLAM

(i) acoustic

1 2 3 4 5 10 30 60

number of epochs

72

74

76

78

80

82

A
U

C

PSAM

ASAM

SOLAM

(j) aloi

1 2 3 4 5 10 30 60

number of epochs

95.8

96

96.2

96.4

96.6

96.8

97

97.2

97.4

97.6

A
U

C

PSAM

ASAM

SOLAM

(k) webspam

1 2 3 4 5 10 30 60

number of epochs

94.6

94.8

95

95.2

95.4

95.6

95.8

96

A
U

C

PSAM

ASAM

SOLAM

(l) epsilon

Figure 7.1: AUC classification accuracy with respect to the number of epochs for the stochastic linear AUC

methods. We randomly pick a positive and negative instance in each iteration for PSAM and ASAM, where

n iterations correspond to one epoch.

97

1 2 3 4 5 10 30 60

number of epochs

86.2

86.4

86.6

86.8

87

87.2
A

U
C

PSAM

ASAM

SOLAM

(m) covtype

1 2 3 4 5 10 30 60

number of epochs

82.5

83

83.5

84

84.5

85

85.5

86

A
U

C

PSAM

ASAM

SOLAM

(n) susy

1 2 3 4 5 10 30 60

number of epochs

86

88

90

92

94

96

A
U

C

PSAM

ASAM

SOLAM

(o) farm-ads

1 2 3 4 5 10 30 60

number of epochs

92

93

94

95

96

97

98

99

A
U

C

PSAM

ASAM

SOLAM

(p) sector

1 2 3 4 5 10 30 60

number of epochs

96

96.5

97

97.5

98

98.5

99

A
U

C

PSAM

ASAM

SOLAM

(q) news20

1 2 3 4 5 10 30 60

number of epochs

97.5

98

98.5

99

99.5

100

A
U

C

PSAM

ASAM

SOLAM

(r) real-sim

Figure 7.1: AUC classification accuracy with respect to the number of epochs for the stochastic linear AUC

methods. We randomly pick a positive and negative instance in each iteration for PSAM and ASAM, where

n iterations correspond to one epoch.

98

1 2 3 4 5 10 30 60

number of epochs

96.5

97

97.5

98

98.5
A

U
C

NPSAM

NASAM

NSOLAM

(a) spambase

1 2 3 4 5 10 30 60

number of epochs

98.9

98.95

99

99.05

99.1

99.15

99.2

99.25

99.3

A
U

C

NPSAM

NASAM

NSOLAM

(b) cod-rna

1 2 3 4 5 10 30 60

number of epochs

92

93

94

95

96

97

98

99

A
U

C

NPSAM

NASAM

NSOLAM

(c) w8a

1 2 3 4 5 10 30 60

number of epochs

91

92

93

94

95

96

97

A
U

C

NPSAM

NASAM

NSOLAM

(d) covtype

1 2 3 4 5 10 30 60

number of epochs

97

97.5

98

98.5

99

99.5

100

A
U

C

NPSAM

NASAM

NSOLAM

(e) ijcnn1

1 2 3 4 5 10 30 60

number of epochs

81

82

83

84

85

86

A
U

C

NPSAM

NASAM

NSOLAM

(f) cifar10

Figure 7.2: AUC classification accuracy with respect to the number of epochs for the kernelized stochastic

AUC maximization algorithms. We randomly pick a positive and negative instance in each iteration for

NPSAM and NASAM, where n iterations correspond to one epoch.

99

1 2 3 4 5 10 30 60

number of epochs

88

89

90

91

92

93

94
A

U
C

NPSAM

NASAM

NSOLAM

(g) connect-4

1 2 3 4 5 10 30 60

number of epochs

97

97.5

98

98.5

99

99.5

A
U

C

NPSAM

NASAM

NSOLAM

(h) mnist

1 2 3 4 5 10 30 60

number of epochs

91

91.5

92

92.5

93

93.5

94

94.5

A
U

C

NPSAM

NASAM

NSOLAM

(i) acoustic

1 2 3 4 5 10 30 60

number of epochs

90

92

94

96

98

100

A
U

C

NPSAM

NASAM

NSOLAM

(j) aloi

1 2 3 4 5 10 30 60

number of epochs

98.8

99

99.2

99.4

99.6

99.8

100

A
U

C

NPSAM

NASAM

NSOLAM

(k) webspam

1 2 3 4 5 10 30 60

number of epochs

86

86.2

86.4

86.6

86.8

87

87.2

87.4

87.6

A
U

C

NPSAM

NASAM

NSOLAM

(l) susy

Figure 7.2: AUC classification accuracy with respect to the number of epochs for the kernelized stochastic

AUC maximization algorithms. We randomly pick a positive and negative instance in each iteration for

NPSAM and NASAM, where n iterations correspond to one epoch.

100

7.5 Conclusion

In this chapter, we have developed a stochastic AUC maximization method using proximal op-

erator. We applied the proximal operator to the pairwise hinge loss function and optimized the

model by scheduling both the regularization and the averaging steps. The experimental results on

several benchmark datasets show that our proposed method surpasses the state-of-the-art scalable

AUC maximization algorithms in terms of AUC classification accuracy. We also demonstrate via

experiments that our proximal stochastic AUC maximization algorithm is able to reach the optimal

solution from the first epoch. For future work, we will study our proximal stochastic AUC max-

imization algorithm with other loss function such as smoothed hinge loss function and squared

loss. Further, the presented proximal point approach can also be extended to work with SOLAM

algorithm that maximizes the AUC using a univariate loss function in a saddle point framework

[68, 99].

101

Chapter 8

Conclusion and Future Work

The AUC measure is a critical evaluation tool for various machine learning and data mining ap-

plications. The importance of the AUC measure lies in its insensitivity to class distribution, while

other measures, such as error rate and accuracy, are affected by the ratio of positive to negative

classes. The standard SVM machines lack scalability to optimize the AUC due to its multivariate

nature. Thus, many studies have developed SVM machines designed to maximize the AUC met-

ric. However, the high complexity of batch kernelized AUC machines renders them infeasible for

training large-scale datasets, while their linear variants are prone to the under-fitting problem when

applied to datasets having complex nonlinear decision boundaries.

The first contribution of this thesis is a large-scale nonlinear AUC maximization algorithm that

approximates a kernel matrix using the k-means Nyström method and random Fourier approaches.

This nonlinear model is constructed by implementing linear AUC machines on the approximate

feature mappings. However, the complexity of each matrix-vector product in batch linear AUC

machines is linear in the data size at best, which hinders their scalability. Recently, many methods

have been developed using online and stochastic learning optimization techniques to scale up the

AUC maximization algorithm to massively large imbalanced datasets.

However, the online AUC maximization methods provide fast training algorithms at the ex-

pense of the optimal convergence rate. This issue results in inferior AUC classification accuracy

for complex real-world datasets. The second contribution of this thesis is developing scalable on-

line learning algorithms to improve the convergence of the AUC maximization algorithm. The

improvement is achieved by learning a confidence-weighted algorithm, which is a second-order

online learning method, to optimize a pairwise loss function and using a buffering strategy to deal

with the multivariate nature of the loss function. We have also developed a diagonal variant for

this second-order AUC maximization algorithm to address imbalanced datasets with very high

dimensionality. For online nonlinear learning, we have extended our confidence-weighted AUC

102

maximization algorithm to learn on an approximate feature space constructed via random Fourier

features.

As a third contribution, we have developed an accelerated stochastic AUC maximization algo-

rithm that can converge faster than the competing AUC maximization methods. The acceleration

in our stochastic AUC maximization algorithm is attained by scheduling both the regularization

update and the averaging step. The nonlinear variants are developed by learning the accelerated

stochastic AUC maximization classifier on an approximate feature space constructed via the k-

means Nyström and random Fourier methods.

The fourth contribution of this work concerns further improving the convergence rate of our

accelerated stochastic algorithm for AUC maximization. We boost the rate of convergence of

our stochastic AUC maximization algorithm by implementing a proximal operator of the pairwise

hinge loss function. The proximal algorithm achieved the state-of-the-art convergence rate.

8.1 Future Work

One possible future work is the application of our accelerated stochastic techniques to optimize

other non-decomposable measures such as partial AUC [105], precision@k, and F1-measure [106].

Moreover, the objective functions of our scalable AUC maximization methods can be modified to

incorporate unlabelled instances [107]. The accelerated stochastic AUC maximization algorithms

that are presented in this work can be utilized in developing a variant of factorization machines

[108] for AUC maximization with a fast rate of convergence.

Another interesting future work is devising a scalable AUC maximization algorithm under

fairness constraints [109]. A fairness-aware machine learning algorithm is an emerging field that

considers learning algorithms with impartial predictive classifiers. Development of a fairness-

aware AUC maximization algorithm is of importance because imbalanced phenomenon in real-

world applications would worsen the bias of the data.

103

Bibliography

[1] Christopher KI Williams and Matthias Seeger. Using the nyström method to speed up kernel

machines. In Advances in neural information processing systems, pages 682–688, 2001.

[2] Kai Zhang, Ivor W Tsang, and James T Kwok. Improved nyström low-rank approximation

and error analysis. In Proceedings of the 25th international conference on Machine learning,

pages 1232–1239. ACM, 2008.

[3] Shai Fine and Katya Scheinberg. Efficient svm training using low-rank kernel representa-

tions. Journal of Machine Learning Research, 2(Dec):243–264, 2001.

[4] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In

Advances in neural information processing systems, pages 1177–1184, 2008.

[5] S Sathiya Keerthi, Olivier Chapelle, and Dennis DeCoste. Building support vector machines

with reduced classifier complexity. Journal of Machine Learning Research, 7(Jul):1493–

1515, 2006.

[6] Thorsten Joachims and Chun-Nam John Yu. Sparse kernel svms via cutting-plane training.

Machine Learning, 76(2-3):179–193, 2009.

[7] Lubor Ladicky and Philip Torr. Locally linear support vector machines. In Proceedings of

the 28th International Conference on Machine Learning (ICML-11), pages 985–992, 2011.

[8] Quanquan Gu and Jiawei Han. Clustered support vector machines. In Artificial Intelligence

and Statistics, pages 307–315, 2013.

[9] Cijo Jose, Prasoon Goyal, Parv Aggrwal, and Manik Varma. Local deep kernel learning

for efficient non-linear svm prediction. In International Conference on Machine Learning,

pages 486–494, 2013.

104

[10] Zhuang Wang, Koby Crammer, and Slobodan Vucetic. Breaking the curse of kerneliza-

tion: Budgeted stochastic gradient descent for large-scale svm training. Journal of Machine

Learning Research, 13(Oct):3103–3131, 2012.

[11] Jing Lu, Steven CH Hoi, Jialei Wang, Peilin Zhao, and Zhi-Yong Liu. Large scale online

kernel learning. Journal of Machine Learning Research, 17(47):1, 2016.

[12] Bo Dai, Bo Xie, Niao He, Yingyu Liang, Anant Raj, Maria-Florina F Balcan, and Le Song.

Scalable kernel methods via doubly stochastic gradients. In Advances in Neural Information

Processing Systems, pages 3041–3049, 2014.

[13] Corinna Cortes and Mehryar Mohri. Auc optimization vs. error rate minimization. In Ad-

vances in neural information processing systems, pages 313–320, 2004.

[14] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A training algorithm for

optimal margin classifiers. In Proceedings of the fifth annual workshop on Computational

learning theory, pages 144–152. ACM, 1992.

[15] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning,

20(3):273–297, 1995.

[16] Vladimir Vapnik. The nature of statistical learning theory. Springer science & business

media, 2013.

[17] James A Hanley and Barbara J McNeil. The meaning and use of the area under a receiver

operating characteristic (roc) curve. Radiology, 143(1):29–36, 1982.

[18] Byron C Wallace, Kevin Small, Carla E Brodley, and Thomas A Trikalinos. Class imbal-

ance, redux. In 2011 IEEE 11th international conference on data mining, pages 754–763.

IEEE, 2011.

[19] Tobias Schnabel, Paul N Bennett, and Thorsten Joachims. Improving recommender systems

beyond the algorithm. arXiv preprint arXiv:1802.07578, 2018.

105

[20] Miroslav Kubat, Stan Matwin, et al. Addressing the curse of imbalanced training sets: one-

sided selection. In ICML, volume 97, pages 179–186. Nashville, USA, 1997.

[21] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote:

synthetic minority over-sampling technique. Journal of artificial intelligence research,

16:321–357, 2002.

[22] Yi Lin, Yoonkyung Lee, and Grace Wahba. Support vector machines for classification in

nonstandard situations. Machine learning, 46(1-3):191–202, 2002.

[23] Shuichi Katsumata and Akiko Takeda. Robust cost sensitive support vector machine. In

Artificial Intelligence and Statistics, pages 434–443, 2015.

[24] Sougata Chaudhuri, Georgios Theocharous, and Mohammad Ghavamzadeh. Recommend-

ing advertisements using ranking functions, January 18 2016. US Patent App. 14/997,987.

[25] Shivani Agarwal, Deepak Dugar, and Shiladitya Sengupta. Ranking chemical structures for

drug discovery: a new machine learning approach. Journal of chemical information and

modeling, 50(5):716–731, 2010.

[26] Zheng Xie and Ming Li. Cutting the software building efforts in continuous integration by

semi-supervised online auc optimization. In IJCAI, pages 2875–2881, 2018.

[27] Jonathan Root, Jing Qian, and Venkatesh Saligrama. Learning efficient anomaly detectors

from k-nn graphs. In Artificial Intelligence and Statistics, pages 790–799, 2015.

[28] Sougata Chaudhuri, Georgios Theocharous, and Mohammad Ghavamzadeh. Importance

of recommendation policy space in addressing click sparsity in personalized advertisement

display. In International Conference on Machine Learning and Data Mining in Pattern

Recognition, pages 32–46. Springer, 2017.

[29] Thomas G Dietterich, Richard H Lathrop, and Tomás Lozano-Pérez. Solving the multiple

instance problem with axis-parallel rectangles. Artificial intelligence, 89(1-2):31–71, 1997.

106

[30] Tong Tong, Robin Wolz, Qinquan Gao, Ricardo Guerrero, Joseph V Hajnal, and Daniel

Rueckert. Multiple instance learning for classification of dementia in brain mri. Medical

image analysis, 18(5):808–818, 2014.

[31] Fayyaz ul Amir Afsar Minhas and Asa Ben-Hur. Multiple instance learning of calmodulin

binding sites. Bioinformatics, 28(18):i416–i422, 2012.

[32] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig. Usage,

costs, and benefits of continuous integration in open-source projects. In Proceedings of

the 31st IEEE/ACM International Conference on Automated Software Engineering, pages

426–437. ACM, 2016.

[33] Lech Madeyski and Marcin Kawalerowicz. Continuous defect prediction: the idea and a

related dataset. In Proceedings of the 14th International Conference on Mining Software

Repositories, pages 515–518. IEEE Press, 2017.

[34] Jacqui Finlay, Russel Pears, and Andy M Connor. Data stream mining for predicting soft-

ware build outcomes using source code metrics. Information and Software Technology,

56(2):183–198, 2014.

[35] Xinli Yang, David Lo, Xin Xia, and Jianling Sun. Tlel: A two-layer ensemble learning

approach for just-in-time defect prediction. Information and Software Technology, 87:206–

220, 2017.

[36] Yasutaka Kamei, Takafumi Fukushima, Shane McIntosh, Kazuhiro Yamashita, Naoyasu

Ubayashi, and Ahmed E Hassan. Studying just-in-time defect prediction using cross-project

models. Empirical Software Engineering, 21(5):2072–2106, 2016.

[37] Harikrishna Narasimhan and Shivani Agarwal. Support vector algorithms for optimizing

the partial area under the roc curve. Neural Computation, 2017.

[38] Wei Gao and Zhi-Hua Zhou. On the consistency of auc pairwise optimization. In IJCAI,

pages 939–945, 2015.

107

[39] Alex J Smola and Bernhard Schölkopf. Learning with kernels. GMD-Forschungszentrum

Informationstechnik, 1998.

[40] Thorsten Joachims. Optimizing search engines using clickthrough data. In Proceedings

of the eighth ACM SIGKDD international conference on Knowledge discovery and data

mining, pages 133–142. ACM, 2002.

[41] Thorsten Joachims. Training linear svms in linear time. In Proceedings of the 12th ACM

SIGKDD international conference on Knowledge discovery and data mining, pages 217–

226. ACM, 2006.

[42] Olivier Chapelle and S Sathiya Keerthi. Efficient algorithms for ranking with svms. Infor-

mation Retrieval, 13(3):201–215, 2010.

[43] Sanjiv Kumar, Mehryar Mohri, and Ameet Talwalkar. Ensemble nystrom method. In Ad-

vances in Neural Information Processing Systems, pages 1060–1068, 2009.

[44] Djallel Bouneffouf and Inanc Birol. Sampling with minimum sum of squared similarities

for nystrom-based large scale spectral clustering. In IJCAI, pages 2313–2319, 2015.

[45] Sanjiv Kumar, Mehryar Mohri, and Ameet Talwalkar. Sampling techniques for the nystrom

method. In Artificial Intelligence and Statistics, pages 304–311, 2009.

[46] Petros Drineas and Michael W Mahoney. On the nyström method for approximating a

gram matrix for improved kernel-based learning. journal of machine learning research,

6(Dec):2153–2175, 2005.

[47] Sanjiv Kumar, Mehryar Mohri, and Ameet Talwalkar. Sampling methods for the nyström

method. Journal of Machine Learning Research, 13(Apr):981–1006, 2012.

[48] Dino Oglic and Thomas Gärtner. Nyström method with kernel k-means++ samples as land-

marks. In International Conference on Machine Learning, pages 2652–2660, 2017.

108

[49] Salomon Bochner. Harmonic analysis and the theory of probability. Courier Corporation,

2005.

[50] Felix X Yu, Sanjiv Kumar, Henry Rowley, and Shih-Fu Chang. Compact nonlinear maps

and circulant extensions. arXiv preprint arXiv:1503.03893, 2015.

[51] Alain Rakotomamonjy. Optimizing area under roc curve with svms. In ROCAI, pages 71–

80, 2004.

[52] Thorsten Joachims. A support vector method for multivariate performance measures. In

Proceedings of the 22nd international conference on Machine learning, pages 377–384.

ACM, 2005.

[53] Ching-Pei Lee and Chih-Jen Lin. Large-scale linear ranksvm. Neural computation,

26(4):781–817, 2014.

[54] Tzu-Ming Kuo, Ching-Pei Lee, and Chih-Jen Lin. Large-scale kernel ranksvm. In Proceed-

ings of the 2014 SIAM international conference on data mining, pages 812–820. SIAM,

2014.

[55] Antti Airola, Tapio Pahikkala, and Tapio Salakoski. Training linear ranking svms in lin-

earithmic time using red–black trees. Pattern Recognition Letters, 32(9):1328–1336, 2011.

[56] Toon Calders and Szymon Jaroszewicz. Efficient auc optimization for classification. In

European Conference on Principles of Data Mining and Knowledge Discovery, pages 42–

53. Springer, 2007.

[57] K Chen, R Li, Y Dou, Z Liang, and Q Lv. Ranking support vector machine with kernel

approximation. Computational intelligence and neuroscience, 2017:4629534, 2017.

[58] Vishal Kakkar, Shirish Shevade, S Sundararajan, and Dinesh Garg. A sparse nonlinear

classifier design using auc optimization. In Proceedings of the 2017 SIAM International

Conference on Data Mining, pages 291–299. SIAM, 2017.

109

[59] Jialei Wang, Peilin Zhao, and Steven C Hoi. Exact soft confidence-weighted learning. In

Proceedings of the 29th International Conference on Machine Learning (ICML-12), pages

121–128, 2012.

[60] Koby Crammer, Mark Dredze, and Alex Kulesza. Multi-class confidence weighted algo-

rithms. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language

Processing: Volume 2-Volume 2, pages 496–504. Association for Computational Linguis-

tics, 2009.

[61] Mark Dredze, Koby Crammer, and Fernando Pereira. Confidence-weighted linear classi-

fication. In Proceedings of the 25th international conference on Machine learning, pages

264–271. ACM, 2008.

[62] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learn-

ing and stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–

2159, 2011.

[63] Koby Crammer, Alex Kulesza, and Mark Dredze. Adaptive regularization of weight vectors.

In Advances in neural information processing systems, pages 414–422, 2009.

[64] Wojciech Kotlowski, Krzysztof J Dembczynski, and Eyke Huellermeier. Bipartite ranking

through minimization of univariate loss. In Proceedings of the 28th International Confer-

ence on Machine Learning (ICML-11), pages 1113–1120, 2011.

[65] Peilin Zhao, Rong Jin, Tianbao Yang, and Steven C Hoi. Online auc maximization. In

Proceedings of the 28th International Conference on Machine Learning (ICML-11), pages

233–240, 2011.

[66] Wei Gao, Rong Jin, Shenghuo Zhu, and Zhi-Hua Zhou. One-pass auc optimization. In

ICML (3), pages 906–914, 2013.

[67] Yi Ding, Peilin Zhao, Steven CH Hoi, and Yew-Soon Ong. An adaptive gradient method for

online auc maximization. In AAAI, pages 2568–2574, 2015.

110

[68] Yiming Ying, Longyin Wen, and Siwei Lyu. Stochastic online auc maximization. In Ad-

vances in Neural Information Processing Systems, pages 451–459, 2016.

[69] Balázs Szörényi, Snir Cohen, and Shie Mannor. Non-parametric online auc maximiza-

tion. In Joint European Conference on Machine Learning and Knowledge Discovery in

Databases, pages 575–590. Springer, 2017.

[70] Jeffrey S Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical

Software (TOMS), 11(1):37–57, 1985.

[71] Koby Crammer, Mark Dredze, and Fernando Pereira. Confidence-weighted linear classifica-

tion for text categorization. The Journal of Machine Learning Research, 13(1):1891–1926,

2012.

[72] Justin Ma, Alex Kulesza, Mark Dredze, Koby Crammer, Lawrence K Saul, and Fernando

Pereira. Exploiting feature covariance in high-dimensional online learning. In International

Conference on Artificial Intelligence and Statistics, pages 493–500, 2010.

[73] Deng Cai, Xiaofei He, and Jiawei Han. Locally consistent concept factorization for docu-

ment clustering. IEEE Transactions on Knowledge and Data Engineering, 23(6):902–913,

2011.

[74] Koby Crammer, Jaz Kandola, and Yoram Singer. Online classification on a budget. In

Advances in neural information processing systems, pages 225–232, 2004.

[75] Jyrki Kivinen, Alexander J Smola, and Robert C Williamson. Online learning with kernels.

IEEE transactions on signal processing, 52(8):2165–2176, 2004.

[76] Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram Singer. On-

line passive-aggressive algorithms. Journal of Machine Learning Research, 7(Mar):551–

585, 2006.

111

[77] Giovanni Cavallanti, Nicolo Cesa-Bianchi, and Claudio Gentile. Tracking the best hyper-

plane with a simple budget perceptron. Machine Learning, 69(2-3):143–167, 2007.

[78] Ofer Dekel, Shai Shalev-Shwartz, and Yoram Singer. The forgetron: A kernel-based per-

ceptron on a budget. SIAM Journal on Computing, 37(5):1342–1372, 2008.

[79] Francesco Orabona, Joseph Keshet, and Barbara Caputo. Bounded kernel-based online

learning. Journal of Machine Learning Research, 10(Nov):2643–2666, 2009.

[80] Junjie Hu, Haiqin Yang, Michael R Lyu, Irwin King, and Anthony Man-Cho So. Online

nonlinear auc maximization for imbalanced data sets. IEEE transactions on neural networks

and learning systems, 29(4):882–895, 2018.

[81] Yi Ding, Chenghao Liu, Peilin Zhao, and Steven CH Hoi. Large scale kernel methods for

online auc maximization. In Data Mining (ICDM), 2017 IEEE International Conference

on, pages 91–100. IEEE, 2017.

[82] Majdi Khalid, Indrakshi Ray, and Hamidreza Chitsaz. Confidence-weighted bipartite rank-

ing. In Advanced Data Mining and Applications: 12th International Conference, ADMA

2016, Gold Coast, QLD, Australia, December 12-15, 2016, Proceedings 12, pages 35–49.

Springer, 2016.

[83] Trung Le, Tu Nguyen, Vu Nguyen, and Dinh Phung. Dual space gradient descent for online

learning. In Advances in Neural Information Processing Systems, pages 4583–4591, 2016.

[84] Tu Dinh Nguyen, Trung Le, Hung Bui, and Dinh Phung. Large-scale online kernel learning

with random feature reparameterization. In Proceedings of the 26th International Joint

Conference on Artificial Intelligence, pages 2543–2549. AAAI Press, 2017.

[85] Yan Yan, Tianbao Yang, Yi Yang, and Jianhui Chen. A framework of online learning with

imbalanced streaming data. In AAAI, pages 2817–2823, 2017.

112

[86] Herbert Robbins and Sutton Monro. A stochastic approximation method. In Herbert Rob-

bins Selected Papers, pages 102–109. Springer, 1985.

[87] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale

machine learning. SIAM Review, 60(2):223–311, 2018.

[88] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the

stochastic average gradient. Mathematical Programming, 162(1-2):83–112, 2017.

[89] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive

variance reduction. In Advances in neural information processing systems, pages 315–323,

2013.

[90] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient

method with support for non-strongly convex composite objectives. In Advances in neural

information processing systems, pages 1646–1654, 2014.

[91] Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by av-

eraing. SIAM Journal on Control and Optimization, 30(4):838–855, 1992.

[92] Antoine Bordes, Léon Bottou, and Patrick Gallinari. Sgd-qn: Careful quasi-newton stochas-

tic gradient descent. Journal of Machine Learning Research, 10(Jul):1737–1754, 2009.

[93] Ning Qian. On the momentum term in gradient descent learning algorithms. Neural net-

works, 12(1):145–151, 1999.

[94] Yurii E Nesterov. A method for solving the convex programming problem with convergence

rate o (1/kˆ 2). In Dokl. Akad. Nauk SSSR, volume 269, pages 543–547, 1983.

[95] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a run-

ning average of its recent magnitude. COURSERA: Neural networks for machine learning,

4(2):26–31, 2012.

113

[96] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980, 2014.

[97] Guillaume Papa, Stéphan Clémençon, and Aurélien Bellet. Sgd algorithms based on in-

complete u-statistics: large-scale minimization of empirical risk. In Advances in Neural

Information Processing Systems, pages 1027–1035, 2015.

[98] Mingrui Liu, Xiaoxuan Zhang, Zaiyi Chen, Xiaoyu Wang, and Tianbao Yang. Fast stochas-

tic auc maximization with o (1/n)-convergence rate. In International Conference on Machine

Learning, pages 3195–3203, 2018.

[99] Michael Natole, Yiming Ying, and Siwei Lyu. Stochastic proximal algorithms for auc max-

imization. In International Conference on Machine Learning, pages 3707–3716, 2018.

[100] Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter. Pegasos: Primal

estimated sub-gradient solver for svm. Mathematical programming, 127(1):3–30, 2011.

[101] Wei Xu. Towards optimal one pass large scale learning with averaged stochastic gradient

descent. arXiv preprint arXiv:1107.2490, 2011.

[102] Neal Parikh, Stephen Boyd, et al. Proximal algorithms. Foundations and Trends R© in

Optimization, 1(3):127–239, 2014.

[103] Majdi Khalid, Indrakshi Ray, and Hamidreza Chitsaz. Scalable nonlinear auc maximization

methods. In Joint European Conference on Machine Learning and Knowledge Discovery in

Databases, pages 292–307. Springer, 2018.

[104] Aaron Defazio. A simple practical accelerated method for finite sums. In Advances in

Neural Information Processing Systems, pages 676–684, 2016.

[105] Harikrishna Narasimhan and Shivani Agarwal. A structural svm based approach for op-

timizing partial auc. In International Conference on Machine Learning, pages 516–524,

2013.

114

[106] Purushottam Kar, Harikrishna Narasimhan, and Prateek Jain. Online and stochastic gra-

dient methods for non-decomposable loss functions. In Advances in Neural Information

Processing Systems, pages 694–702, 2014.

[107] Tomoya Sakai, Gang Niu, and Masashi Sugiyama. Semi-supervised auc optimization based

on positive-unlabeled learning. Machine Learning, 107(4):767–794, 2018.

[108] Steffen Rendle. Factorization machines. In 2010 IEEE International Conference on Data

Mining, pages 995–1000. IEEE, 2010.

[109] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rogriguez, and Krishna P Gum-

madi. Fairness constraints: Mechanisms for fair classification. In Artificial Intelligence and

Statistics, pages 962–970, 2017.

115

Appendix A

The Proximal Operator of the Hinge Loss

Proximal operators for most loss functions have efficient or closed form solutions. In what follows,

we derive the analytical solution for the proximal operator of the pairwise hinge loss function,

which is similar to the solution presented in [90]. Let x+i and x−j represent a random positive and

negative instance, respectively. We assume that x ∈ X , where X ⊆ Rd and R is a Euclidean space,

meaning that the magnitude of any vector in R is obtained by l2-norm. Let xt = (xi − xj) denotes

the difference vector at the t-th iteration. The pairwise hinge loss function is defined as:

f(wt) = max{0, 1− wTt xt}.

The proximal mapping of f(wt) is achieved by the optimality condition that implies the fol-

lowing minimization problem:

proxλt(w) = argmin
v∈Rd

{
λft(v) +

1

2
||v − w||2

}
.

The precedent expression is a minimization problem that approximates to the vector v while

taking into account the cost of this approximation f(v). A closed form solution of this minimiza-

tion problem can be attained by the optimality condition of the proximal operator. Recall that the

gradient of the hinge loss function is defined as f
′

(wt)xt, where f
′

is the subgradient of f , and has

the following definition:

f
′

(wt) =

−1 1− wTt xt ≥ 1

0 1− wTt xt ≤ 0

wTt xt − 1 otherwise

.

116

For each case, the evaluation of the gradient is determined based on the projection onto the

hyperplane or half-spaces. Consequently, the proximal operator of the hinge loss function can be

redefined as an orthogonal projection [102]

proxλt(w) = argmin
v∈Rd

{
λft(v) +

1

2
||v − w||2

}
= PλH(w),

whereH = {v ∈ Rd : vTx = 1}. We can derive an explicit form for the problem of finding PH(w)

as follows:

argmin
v∈Rd

||v − w||2

s.t. vTx = 1 .

The precedent constrained minimization problem can be solved using its optimality condition

(i.e., KKT conditions), which yields the following solution:

PH(w) = w − wTx− 1

||x||2 x.

Therefore, the proximal operator of the hinge loss has the following closed-form solution,

prox(w) = w − λgxt,

where:

z =
1− wTxt
λ||xt||2

.

g =

0 z ≤ 0

−1 z ≥ 1

−z 0 < z < 1

.

117

	Abstract
	List of Tables
	List of Figures
	Introduction
	Motivation
	Problem Statement
	Summary of Contributions
	Thesis Outline

	Preliminaries and Background
	Definition of AUC metric
	Linear and Nonlinear AUC Maximization
	Nyström Low-Rank Approximation
	Random Fourier Features

	Scalable Batch Nonlinear AUC Maximization
	Introduction
	Related work
	Nonlinear AUC Maximization Methods
	Nyström AUC Maximization
	Random Fourier AUC Maximization

	Experiments
	Benchmark Datasets
	Compared Methods and Model Selection
	Results and Discussion

	Conclusion

	Second-Order Online AUC Maximization
	Introduction
	Related work
	Confidence-Weighted Bipartite Ranking
	Diagonal Confidence-Weighted Bipartite Ranking
	Experiments
	Real World Datasets
	Compared Methods and Model Selection
	Results on Benchmark Datasets
	Results on High-Dimensional Datasets

	Conclusion

	Kernelized Second-Order Online AUC Maximization
	Introduction
	Related Work
	Kernelized Confidence-Weighted AUC Maximization
	Fourier Confidence-Weighted AUC Maximization

	Experiments
	Benchmark Datasets
	Compared Methods and Model Selection

	Results and Discussion
	Conclusion

	Accelerated Stochastic AUC Maximization
	Introduction
	Related work
	Accelerated Stochastic AUC Maximization Algorithm
	Extension to Approximate Kernel
	Experiments for Linear AUC Maximization Methods
	Benchmark Datasets
	Compared Methods and Model Selection
	Results for Linear AUC Algorithms on Benchmark Datasets
	Results for Linear AUC Algorithms on High Dimensional Datasets
	Study on the Convergence Rate

	Experiments for kernelized AUC Maximization Methods
	Compared Methods and Model Selection
	Results and Discussion
	Study on the Convergence Rate

	Experiments of NASAM vs. FASAM
	Conclusion

	Proximal Stochastic AUC Maximization Algorithm
	Introduction
	Related Work
	Proximal Algorithm
	Experiments
	Datasets
	Compared Methods and Model Selection
	Results and Discussion
	Study on the Convergence Rate

	Conclusion

	Conclusion and Future Work
	Future Work

	Bibliography
	The Proximal Operator of the Hinge Loss

