12 research outputs found

    Cyber-security for embedded systems: methodologies, techniques and tools

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Constraint Satisfaction Techniques for Combinatorial Problems

    Get PDF
    The last two decades have seen extraordinary advances in tools and techniques for constraint satisfaction. These advances have in turn created great interest in their industrial applications. As a result, tools and techniques are often tailored to meet the needs of industrial applications out of the box. We claim that in the case of abstract combinatorial problems in discrete mathematics, the standard tools and techniques require special considerations in order to be applied effectively. The main objective of this thesis is to help researchers in discrete mathematics weave through the landscape of constraint satisfaction techniques in order to pick the right tool for the job. We consider constraint satisfaction paradigms like satisfiability of Boolean formulas and answer set programming, and techniques like symmetry breaking. Our contributions range from theoretical results to practical issues regarding tool applications to combinatorial problems. We prove search-versus-decision complexity results for problems about backbones and backdoors of Boolean formulas. We consider applications of constraint satisfaction techniques to problems in graph arrowing (specifically in Ramsey and Folkman theory) and computational social choice. Our contributions show how applying constraint satisfaction techniques to abstract combinatorial problems poses additional challenges. We show how these challenges can be addressed. Additionally, we consider the issue of trusting the results of applying constraint satisfaction techniques to combinatorial problems by relying on verified computations

    Effective SAT solving

    Get PDF
    A growing number of problem domains are successfully being tackled by SAT solvers. This thesis contributes to that trend by pushing the state-of-the-art of core SAT algorithms and their implementation, but also in several important application areas. It consists of five papers: the first details the implementation of the SAT solver MiniSat and the other four papers discuss specific issues related to different application domains. In the first paper, catering to the trend of extending and adapting SAT solvers, we present a detailed description of MiniSat, a SAT solver designed for that particular purpose. The description additionally bridges a gap between theory and practice, serving as a tutorial on modern SAT solving algorithms. Among other things, we describe how to solve a series of related SAT problems efficiently, called incremental SAT solving. For finding finite first order models the MACE-style method that is based on SAT solving is well-known. In the second paper we improve the basic method with several techniques that can be loosely classified as either transformations that make the reduction to SAT result in fewer clauses or techniques that are designed to speed up the search of the SAT solver. The resulting tool, called Paradox, won the SAT/Models division of the CASC competition in 2003 and has not been beaten since by a single general purpose model finding tool. In the last decade the interest in methods for safety property verification that are based on SAT solving has been steadily growing. One example of such a method is temporal induction. The method requires a sequence of increasingly stronger induction proofs to be performed. In the third paper we show how this sequence of proofs can be solved efficiently using incremental SAT solving. The last two papers consider two frequently occurring types of encodings: (1) the problem of encoding circuits into CNF, and (2) encoding 0-1 integer linear programming into CNF and how to use incremental SAT to solve the intended ptimization problem. There are several encoding patterns that occur over and over again in this thesis but also elsewhere. The most noteworthy are: incremental SAT, lazy encoding of constraints, and bit-wise encoding of arithmetic influenced by hardware designs for adders and multipliers. The general conclusion is: deploying SAT solvers effectively requires implementations that are efficient, yet easily adaptable to specific application needs. Moreover, to get the best results, it is worth spending effort to make sure that one uses the best codings possible for an application. However, it is important to note that this is not absolutely necessary. For some applications naive problem codings work just fine which is indeed part of the appeal of using SAT solving

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 10980 and 10981 constitutes the refereed proceedings of the 30th International Conference on Computer Aided Verification, CAV 2018, held in Oxford, UK, in July 2018. The 52 full and 13 tool papers presented together with 3 invited papers and 2 tutorials were carefully reviewed and selected from 215 submissions. The papers cover a wide range of topics and techniques, from algorithmic and logical foundations of verification to practical applications in distributed, networked, cyber-physical, and autonomous systems. They are organized in topical sections on model checking, program analysis using polyhedra, synthesis, learning, runtime verification, hybrid and timed systems, tools, probabilistic systems, static analysis, theory and security, SAT, SMT and decisions procedures, concurrency, and CPS, hardware, industrial applications

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 10980 and 10981 constitutes the refereed proceedings of the 30th International Conference on Computer Aided Verification, CAV 2018, held in Oxford, UK, in July 2018. The 52 full and 13 tool papers presented together with 3 invited papers and 2 tutorials were carefully reviewed and selected from 215 submissions. The papers cover a wide range of topics and techniques, from algorithmic and logical foundations of verification to practical applications in distributed, networked, cyber-physical, and autonomous systems. They are organized in topical sections on model checking, program analysis using polyhedra, synthesis, learning, runtime verification, hybrid and timed systems, tools, probabilistic systems, static analysis, theory and security, SAT, SMT and decisions procedures, concurrency, and CPS, hardware, industrial applications

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access two-volume set constitutes the proceedings of the 27th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2021, which was held during March 27 – April 1, 2021, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg and changed to an online format due to the COVID-19 pandemic. The total of 41 full papers presented in the proceedings was carefully reviewed and selected from 141 submissions. The volume also contains 7 tool papers; 6 Tool Demo papers, 9 SV-Comp Competition Papers. The papers are organized in topical sections as follows: Part I: Game Theory; SMT Verification; Probabilities; Timed Systems; Neural Networks; Analysis of Network Communication. Part II: Verification Techniques (not SMT); Case Studies; Proof Generation/Validation; Tool Papers; Tool Demo Papers; SV-Comp Tool Competition Papers

    Automated Deduction – CADE 28

    Get PDF
    This open access book constitutes the proceeding of the 28th International Conference on Automated Deduction, CADE 28, held virtually in July 2021. The 29 full papers and 7 system descriptions presented together with 2 invited papers were carefully reviewed and selected from 76 submissions. CADE is the major forum for the presentation of research in all aspects of automated deduction, including foundations, applications, implementations, and practical experience. The papers are organized in the following topics: Logical foundations; theory and principles; implementation and application; ATP and AI; and system descriptions
    corecore