
Thesis for the Degree of Doctor of Philosophy

Effective SAT Solving

Niklas Sörensson

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg

SE-412 96 Göteborg

Sweden

Göteborg, September 2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Göteborgs universitets publikationer - e-publicering och e-arkiv

https://core.ac.uk/display/16323146?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Effective SAT Solving
Niklas Sörensson

ISBN 978-91-628-7612-8

c© Niklas Sörensson, 2008

Technical report no. 45D
Department of Computer Science and Engineering
Division of Software Engineering and Technology

Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31–772 1000

Printed at Chalmers, Göteborg, Sweden, 2008

Abstract

A growing number of problem domains are successfully being tackled by SAT
solvers. This thesis contributes to that trend by pushing the state-of-the-art of
core SAT algorithms and their implementation, but also in several important
application areas. It consists of five papers: the first details the implementation
of the SAT solver MINISAT and the other four papers discuss specific issues
related to different application domains.

In the first paper, catering to the trend of extending and adapting SAT
solvers, we present a detailed description of MINISAT, a SAT solver designed
for that particular purpose. The description additionally bridges a gap between
theory and practice, serving as a tutorial on modern SAT solving algorithms.
Among other things, we describe how to solve a series of related SAT problems
efficiently, called incremental SAT solving.

For finding finite first order models the MACE-style method that is based on
SAT solving is well-known. In the second paper we improve the basic method
with several techniques that can be loosely classified as either transformations
that make the reduction to SAT result in fewer clauses or techniques that are
designed to speed up the search of the SAT solver. The resulting tool, called
PARADOX, won the SAT/Models division of the CASC competition in 2003 and
has not been beaten since by a single general purpose model finding tool.

In the last decade the interest in methods for safety property verification
that are based on SAT solving has been steadily growing. One example of such
a method is temporal induction. The method requires a sequence of increasingly
stronger induction proofs to be performed. In the third paper we show how this
sequence of proofs can be solved efficiently using incremental SAT solving.

The last two papers consider two frequently occurring types of encodings:
(1) the problem of encoding circuits into CNF, and (2) encoding 0-1 integer
linear programming into CNF and how to use incremental SAT to solve the
intended optimization problem.

There are several encoding patterns that occur over and over again in this
thesis but also elsewhere. The most noteworthy are: incremental SAT, lazy
encoding of constraints, and bit-wise encoding of arithmetic influenced by hard-
ware designs for adders and multipliers.

The general conclusion is: deploying SAT solvers effectively requires imple-
mentations that are efficient, yet easily adaptable to specific application needs.
Moreover, to get the best results, it is worth spending effort to make sure that
one uses the best codings possible for an application. However, it is important to
note that this is not absolutely necessary. For some applications naive problem
codings work just fine which is indeed part of the appeal of using SAT solving.

Acknowledgments

I’d like to thank everybody that has in some way helped me during my PhD
studies. In particular, I would like to thank some without whom this work would
never have come to be:

My supervisors Koen Claessen and Reiner Hähnle, for being as responsible
and supportive as you could wish supervisors to be, and for mastering the
delicate art of applying just the right amount of pressure.

A bit outside the normal responsibilities of a supervisor, Reiner’s influence
has helped me learn to appreciate Wine.

Koen, for his friendship, enthusiasm1, and ability to discuss any topic, tech-
nical or not.

Mary Sheeran, for fostering the special atmosphere in the Formal Methods
group, and stimulated a whole generation of PhD students to be interested in
SAT solving.

Niklas Een, for being a great friend and the best co-worker I’ve had the
pleasure to work with. I hope that we will have more chances to collaborate in
the future. As a sign of my humble gratitude: I forgive you for forcing me to
use (and appreciate) an indentation depth of 4 characters.

My family and friends, who has always encouraged me even when prospects
were bleak. In particular, my beloved Cissi, whom have had to endure a lot
during my efforts to write this thesis. Examples include, fits of frustration
and/or despair, sleepless night, financial problems, missed vacations. The list
goes on, but you have stayed with me. For that I’m forever grateful.

1“Det l̊ater jätteintressant! Men. . . ”

i

Contents

1 Introduction 3
1.1 SAT . 4

1.1.1 The Origins of SAT Solving 4
1.1.2 The DPLL algorithmic framework 5
1.1.3 MiniSat . 6

1.2 Applications . 7
1.3 Contributions . 9
1.4 Discussion . 10

2 An Extensible SAT-solver 12
2.1 Introduction . 13
2.2 Application Programming Interface 13
2.3 Overview of the SAT-solver . 15
2.4 Implementation . 18

2.4.1 The solver state . 18
2.4.2 Constraints . 18
2.4.3 Propagation . 22
2.4.4 Learning . 22
2.4.5 Search . 26
2.4.6 Activity heuristics . 28
2.4.7 Constraint removal . 30
2.4.8 Top-level solver . 30

2.5 Conclusions and Related Work 30

3 New Techniques to Improve MACE-style Finite Model Finding 33
3.1 Introduction . 34
3.2 Notation . 35
3.3 MACE-style Model Finding . 35
3.4 Reducing Variables in Clauses . 37
3.5 Incremental Search . 39
3.6 Static Symmetry Reduction . 41
3.7 Sort Inference . 43
3.8 Experimental Results . 45
3.9 Related Work . 46
3.10 Conclusions and Future Work . 47

1

4 Temporal Induction by Incremental SAT Solving 49
4.1 Introduction . 50
4.2 Preliminaries . 50

4.2.1 The SAT problem . 50
4.2.2 Temporal Induction . 51

4.3 Incremental SAT . 53
4.4 Incremental Induction . 54

4.4.1 Discussion . 55
4.4.2 Improving the Unique States Requirement 57

4.5 Experimental Results . 59
4.6 Related Work . 63
4.7 Conclusions . 63
4.8 Future Work . 64

5 Applying Logic Synthesis for Speeding Up SAT 65
5.1 Introduction . 66
5.2 Preliminaries . 66
5.3 Cut Enumeration . 67
5.4 DAG-Aware Minimization . 67
5.5 CNF through the Tseitin Transformation 69
5.6 CNF through Technology Mapping 70

5.6.1 Definitions . 70
5.6.2 A Single Mapping Phase 71
5.6.3 The Cost of Cuts . 71
5.6.4 The Complete Mapping Procedure 72

5.7 Experimental Results . 73
5.8 Conclusions . 74
5.9 Acknowledgments . 78

6 Translating Pseudo-Boolean Constraints into SAT 80
6.1 Introduction . 81
6.2 Preliminaries . 82
6.3 Normalization of PB-constraints 82
6.4 Optimization – the objective function 84
6.5 Translation of PB-constraints . 84

6.5.1 The Tseitin transformation 85
6.5.2 Pseudo-code Conventions 88
6.5.3 Translation through BDDs 88
6.5.4 Translation through Adder Networks 90
6.5.5 Translation through Sorting Networks 93

6.6 Evaluation . 100
6.6.1 Relative performance to other solvers 101
6.6.2 Efficiency of different translation techniques 103

6.7 Conclusions and Future Work . 104
6.8 Acknowledgments . 104

2

Chapter 1

Introduction

In formal logics there is a conflict between expressivness of logics on one end,
and the ease with which the decision problems for said logics can be solved.
The more expressive a logic is the harder it becomes to automatize. In the
lower end of this scale there exist logics with decision procedure that run in
polynomial time, but the expressiveness of such logics is usually very limited. At
the other end of the scale, most higher-order logics are expressive enough to be
the foundation for all of mathematics but they are then necessarily incomplete,
in the sense that there are bound to be properties that appear to be true but are
impossible to prove for any given (consistent) axiomatization. This remarkable
fact is usually referred to as “Gödel’s incompleteness theorem”.

This thesis is mainly concerned with propositional logic, but it touches on
issues in temporal logic and first order logic (FOL) as well. Propositional logic
is in the lower end of the expressiveness scale: it allows you to state simple
boolean properties constructed using variables and basic logical conjunctives
such as and, or, not, and implies.

Propositional logic is expressive enough to be useful in practice, but there
is no known algorithm for its decision problem that executes in polynomial
time. In fact, it was the first problem proven to be NP-complete [Coo71] which
essentially means that it can be seen as the canonical example of a problem that
is “hard to solve”. Nonetheless, considerable progress in practical terms was
made in solving the satisfiability problem of propositional logic (called simply
the “SAT problem” from now on) in the last decade. The SAT problem is at
the core of this thesis and is discussed in Section 1.1 below.

Temporal logic increases expressivity compared to propositional logic in that
it allows us to talk about time. For example, it is possible to model stateful
system that evolve as time progresses. The price for this expressivity is that
decision complexity is harder than for propositional logic, typically, PSPACE.
The most popular technique for reasoning about temporal logic is called Model
Checking.

First order logic goes beyond propositional logic in that one can model rela-
tions and functions over individual objects and, more importantly, it is possible
to quantify over individuals. This capability pushes the first order decision
problem into the realm of the undecidable, however, there exist various syntac-
tic restrictions that render FOL decidable again.

It is important to note that first order logic is semi-decidable: given a first

3

order theorem, it is possible to prove it automatically in finite time. This is
not possible for non-provable statements in general. This has the important
consequence that finding counter examples for invalid first order statements is
inherently hard. The crux of the matter is the (necessary) existence of state-
ments that can only be refuted with infinitely large counter examples. A natural
restriction is the limitation to finite counter examples, or even counter examples
with a fixed bound.

It is well known from theoretical logic that logics can be encoded into each
other and coding techniques have been used to prove a number of theoretical
results. Only in the last years, however, coding techniques came into focus
as a means to achieve practically useful algorithms. Thus, coding expressive
features in a less expressive logic can been seen as (superficially) increasing
the expressiveness of a logic, at the cost of lowering reasoning to potentially
unnatural levels. A good example of this is finite arithmetic, which can be
coded at the bit-level in propositional logic.

We say more on model checking, first order finite model finding, and encoding
of logics in Section 1.2.

1.1 SAT

The satisfiability (SAT) problem is the problem of deciding whether the variables
of a propositional formula can be assigned in such a way that the formula
evaluates to true. The research area devoted to this problem is today very
active as there have recently been an increased general interest in SAT. However,
research into SAT algorithms has been going on for long time now. This section
gives a short historical background on SAT research, followed by a description
of our first contribution to the field, the SAT solver MINISAT.

1.1.1 The Origins of SAT Solving

During the late 50’s and early 60’s a lot of the pioneering work on automated the-
orem proving was made possible by both the fact that general purpose computers
were recently made readily available, and also, that computability had been an-
ticipated in academia for a long time, and a lot of the theoretical ground-work
had already been done. Among those experimenting with the first implemen-
tations of theorem provers were Martin Davis and Hilary Putnam, who wrote
the paper describing what is believed to be the first program solving the SAT
problem[DP60]. Although this paper really tackles first order theorem proving,
it is best known and appreciated for the groundwork on SAT. The algorithm
is based on quantifier elimination and removes the variables one-by-one from
the problem, until either an empty clause is derived, which means the problem
is unsatisfiable, or, all variables have been removed, meaning the problem is
satisfiable.

The problem with this algorithm is that repeated quantifier elimination is
very likely to grow the problem expontentially. Moreover, since computer mem-
ory was a particularily scarce resource at the time there was a necessity to trade
memory for running time. This was part of the aim of the follow up work by
Martin Davis, George Logemann and Donald W. Loveland[DLL62]. The algo-
rithm they proposed for solving the SAT problem has some of the most crucial

4

aspects of modern SAT algorithms, such as branching/backtracking and unit
propagation. This allows the algorithm to run in memory linear to the size of
the problem, but may still take exponential time. For a more detailed elabora-
tion, see the chapter The early history of Automated Deduction of [RV01].

1.1.2 The DPLL algorithmic framework

The SAT algorithm usually referred to as DPLL should rather be seen as a
framework of algorithms. The unique features that characterize DPLL are
branching, backtracking, and unit propagation. These elements are tied together
in a recursive procedure that systematically investigates the complete boolean
state space in the following way: branching means that the problem is split
into two subproblems, where a certain variable has been assigned true and false
respectively. These subproblems can then be solved independently in any order.
If there is some clause that is false given the current set of assignments, that
part of the search space cannot contain any solutions. It is then necessary to
backtrack, undoing all variable assignments, until the latest branch point that
has not been tried with both values.

Branching and backtracking are in fact enough to form a complete procedure,
in the sense that it will always find a solution, but it will be very inefficient.
The problem is that, given a certain set of assignments to variables induced
by a branch in the search, there may be a number of apparent consequential
assignments to variables, and it would be very bad to try both values for them.
Unit propagation is a procedure that derives such consequences for a very specific
definition of “apparent”: namely given that all literals but one of a clause has
been given the value false, then one can conclude that the remaining literal must
have the value true.

Branching Heuristics The most obvious degree of freedom is in which order
to branch on variables. Over the years a large number of branching heuristics
have been devised, but for a long time they were all quite similar in the sense
that they used syntactic properties of the problem as guides. For example,
by choosing the variable that satisfies the largest number of unresolved clauses
(clauses that still contain unassigned literals), one might expect to quickly re-
duce the problem and possibly find a satisfying assignment faster. These kind of
measures was usually weighted in some way with respect to how easily clauses
could be satisfied, where satisfying a “hard” clause was worth more than an
“easy” clause. A prominent example of this kind of heuristics is the Jeroslow-
Wang heuristic [JW90], which worked relatively well at the time of it’s inception.
The motivation for why this heuristic worked well was later refuted by Hooker
et al [HV95], which serves as a good example of the notorious difficulty in un-
derstanding and evaluating heuristics.

Another complication in the investigation of heuristics is the interdependence
between different components of the algorithms. For instance, João Marques-
Silva[Sil99] comes to the conclusion that the branching heuristic does not matter
much in the precence of a modern learning implementation (outlined below), at
least considering the heuristics available at the time.

This syntactic type of heuristics were dominant until the end of the nineties,
when there was a major break-through with the arrival of the SAT solver
CHAFF[MMZ+01b]. The branching heuristics introduced in CHAFF, named

5

Variable State Independent Decaying Sum (VSIDS), had two unique proper-
ties that made it very well adapted to the rest of the DPLL algorithm: (1) As
the name implies it is not dependent on the current assignments to variables
in a particular branch. This means that no extra work has to be done during
unit propagation or backtracking, which makes these key procedures faster. In
particular, it is no longer necessary to recognize exactly which clauses are unre-
solved, a fact that is crucial for allowing the particular implementation of unit
propagation outlined below. (2) Instead of depending on syntactic properties of
the problem, it is closely tied to the set of learned clauses. Informally, variables
that occur often in recently learned clauses are preferred. The intention is that
this will steer the search into a direction making the most out of the current set
of learned clauses.

Another similar variable heuristic, the Berkmin heuristic [GN02], is based on
the observation that the reason that the VSIDS heuristic works so well is that it
tends to branch on variables occuring in recent clauses. The Berkmin heuristic
achieves the same effect more directly by examining recently learnt clauses for
candidate branching variables.

Efficient unit propagation Until recently, unit propagation used to be im-
plemented with straight-forward techniques. However, the invention of clever
data structures has changed this. Head-tail lists were introduced in SATO
[ZS00] in order to reduce the amount of work in unit propagation. Most mod-
ern SAT solvers today use a method called two literal watching, pioneered in
Chaff [MMZ+01b], which uses a similar datastructure to a somewhat better
effect [LS05].

Learning With only the mechanisms outlined above it is very likely that a
DPLL search procedure will run into conflicts that are essentially the same, in
the sense that they depend on the same assignments, over and over again. To
cope with this redundancy it is standard practice to deploy a learning proce-
dure [SS96] that for each conflict derives a new learned clause, such that unit
propagation alone will avoid the same conflict in the future. This learned clause
is derived using conflict analysis, which essentially traces the reasons for assign-
ments involved with the conflict. As a side effect the conflict analysis may reveal
that there was in fact a number of assumptions not involved in the conflict, that
can be skipped during backtracking. The branches for the other polarity of these
assumptions can be skipped entirely, and this process is usually referred to as
non-chronological backtracking.

1.1.3 MiniSat

MINISAT and the accompanying paper that describes its implementation (Chap-
ter 2) was first introduced as a write-up for SATZOO, one of the winning entries
of the 2002 SAT competition. However, it was actually re-written from scratch
(drawing from both SATZOO and SATNIK), and significantly simplified in the
process. The aim was to produce a SAT solver that had state-of-the-art perfor-
mance, and yet was small enough that essentially all the code could be included
in full detail in the paper. The authors felt at the time that there was a need to
provide more details on what was required to implement a modern SAT solver

6

— details that newcomers had to either figure out themselves or extract from
reading the source-code of freely available solvers such as CHAFF and LIMMAT.
Another goal was to make the implementation of MiniSat as easy as possible to
pick up by others, and start hacking on it too. This was partly achieved by the
simple design, but it was also important to distribute the source-code under an
unrestrictive license.

Even though the implementation was minimalistic, we managed to sneak
in some features outside of the core algorithms. Firstly, we provided a simple
API to extend the solver with new types of boolean constraints, similar to
the standard practice in the field of constraint programming. Secondly, we
introduced another API for incremental SAT solving that was simpler than
what had existed before, but still powerful enough to encode both addition and
removal of clauses using a bit of extra coding.

While the first version of MINISAT was not quite as efficient as the solvers
it was derived from, it was never very far behind. Moreover, it proved to be a
very sound foundation to build further work on, as it has since caught-up with
and significantly outperformed its predeccessors.

For an overview of the significant impact of MINISAT, see Section 1.3.

1.2 Applications

Apart from the design and implementation of core SAT algorithms, this the-
sis also consists of several investigations into different application areas where
SAT-solving plays a central role. Each of the four chapters after Chapter 2 is
concerned with one such application area.

First Order Finite Model Finding As the dual to automated theorem
proving for first order logic, model finding is a very important tool. In gen-
eral, there are no complete automated methods for this, but finding models
with finite domains is possible to do automatically. Chapter 3 is based on the
paper New Techniques that Improve MACE-style Finite Model Finding, written
together with Koen Claessen in 2003. The paper introduces significant improve-
ments over the conventional way of finding finite models using a SAT solver,
which we called MACE-style model finding, after McCune’s model finding tool
MACE2 [McC94]. We implemented our method in the tool PARADOX, which
has consistently won the CASC competition in its division every year since 2003.
Alternative methods for finite model finding are based on a direct search, and
are implemented in tools such as SEM [JZ96] and MACE4 [McC03]. These
methods can outperform SAT-based methods in some problem areas, but on
the whole SAT-based model finding is very competitive.

SAT-based Model Checking For circuits with sequential behaviour model
checking proved to be a highly successful verification technique. It is probably
the single most successful formal verification procedure, as is demonstrated by
the fact that some of the pioneers1 in the area of Model Checking were recently
given the Turing-award. Chapter 4 is based on the paper Temporal Induction
by Incremental SAT Solving, written together with Niklas Eén in 2003. This

1Edmund M. Clarke, E. Allen Emerson and Joseph Sifakis

7

paper describes in detail how an induction based model checking algorithm can
be implemented using incremental SAT solving. The main challenge with this
type of algorithm is that for each property the circuit may have to be unrolled
an unknown number of times to a certain depth, in order to make the induction
hypothesis strong enough. Before our paper it was standard practice to make
an arbitrary guess and, if the depth was too small to prove the property, one
would guess a larger depth and repeat the process. In the paper, we show that
it is feasible to try all depths one after another using an incremental procedure.
This achieves a greater level of automation as the user does not have to make
any guesses.

Circuit to CNF encoding SAT solvers usually accept input formulas in
Conjunctive Normal Form (CNF). However, it is commonly the case that prob-
lem domains require reasoning about circuits, or simply need the flexibility
given by general propositional formulas. In these cases it is possible to translate
a circuit or a propositional formula to an equivalent formula in CNF, but these
translations are not very useful as they will increase the formula size exponen-
tially in general. This problem is possible to get around with translations that
are allowed to introduce new fresh variables for internal points in the circuit or
formula. The most well-known and often-used such translation is the Tseitin
[Tse68] transformation which is very simple yet useful in practice. Chapter 5 is
based on the paper Applying Logic Synthesis for Speeding Up SAT, co-authored
by Niklas Eén and Alan Mishchenko in 2007. In this paper we explore two tech-
niques for Circuit to CNF encoding that are more elaborate than the Tseitin
transformation with the intention to produce encodings that are smaller. The
first technique, DAG-Aware minimization, is used as a pre-processing step and
is designed to reduce redundancy in the circuit itself. This technique is not
new, but its effect on runtimes of SAT solving is isolated and presented in more
detail than what has been done before. The second technique, the actual CNF
encoding, is novel, and it puts standard FPGA technology mapping algorithms
to the use of minimizing the number of clauses in the result. The appeal of this
approach is that the heuristics used are of a more global flavour compared to
other commonly used improvements to the Tseitin transformation.

0-1 Integer Linear Programming The optimization of a linear function,
subject to a set of linear constraints, is referred to as linear programming. An
important special case is when the variables of the objective function and con-
straints are restricted to be either zero or one. The resulting type of problem
is known as 0-1 integer linear programming (ILP) and it has a certain proposi-
tional flavour to it. Therefore, it is natural to investigate the relation between
0-1 ILP and the SAT problem. Chapter refcha:minisatplus is based on the pa-
per Translating Pseudo-Boolean Constraints into SAT co-authored by Niklas
Eén in 2005. In this paper we investigate several ways of translating 0-1 linear
constraints into CNF. We were at first interested in how a translation based
approach could compare to methods that were based on extenstions of SAT
algorithms and produced a solver called MINISAT+. As the results seemed
promising, we were intrigued enough to try to better understand the relative
merits of the different encodings we used. One important conclusion was that
while the size of the CNF clearly matters, a smaller encoding is not always

8

better. In such cases, the notion of arc-consistency helps explain why a more
verbose encoding may be preferable. Essentially, an encoding that preserves arc-
consistency makes unit propagation more powerful which in turn avoids useless
repetition for the SAT solver. We then prove that the novel translation tech-
nique based on sorter networks is arc-concistent for the special case of linear
constraints known as cardinality constraints.

1.3 Contributions

The release of the source-code of MINISAT and the paper documenting the
implementation [ES03a] have been well received in the SAT community. There
are three reasons for this: (1) MINISAT it is easy to understand, (2) it is easy
to adapt or extend with new features, and (3) its efficiency has remained state-
of-the-art within the academic setting. The following provide some evidence of
these points:

Winning SAT Competitions MINISAT first won the industrial track of
the SAT competition in 2005 together with the CNF preprocessor SATELITE.
In 2006 MINISAT 2.0 won the light-weight SAT competition in the SAT-Race
organized in between the bi-annual SAT competition. The main new feature
was a reimplementation of the preprocessor from SATELITE but the efficiency of
the resulting solver was mostly the same as the previous year. The coming year
MINISAT had not been updated at all and in the next SAT competition the rest
of the world had caught up and improved upon MINISAT. The now rather old
implementation still got second and third place in three of the industrial tracks
of the year 2007 competition. In 2008, MINISAT 2.1 again won the main track
of the SAT-Race.

Usages or extensions MINISAT is used in a large number of applications
and tools within automated theorem proving as well as software- and hardware
verification. One of the earliest adopters is the Satisfiability Modulo Theories
(SMT) solver MATHSAT [BBC+05]. Another similar system that extends MIN-

ISAT is OPENSMT [BS], which also shares the MINISAT-philosophy of providing
a simple, open, and easy-to-extend architechture for the benefit of the research
community. In first-order theorem proving, instantiation-based methods cur-
rently have a renaissance and they are built upon SAT solvers. The at present
strongest instantiation-based system IPROVER [Kor08] is using MINISAT.

Language ports The small code-base of MINISAT has made it feasible to
make feature-complete translations to programming languages other than C++.
For instance, SAT4J [Ber] is a comprehensive modular Java library for SAT
solving and other related combinatorial problems. The part providing a config-
urable SAT solver contains a translation of many MINISAT algorithms (some
parts could apparently almost be copied as-is). Another example is the C-
version of MINISAT; while originally written by the MINISAT authors, this has
been picked up and improved in the system ABC [SG] by Alan Mishchenko.
Another, apparently rather straightforward, port to C# also exists [Mos07].

9

From a few years of experience with MINISAT, it can be concluded that a SAT
solver does not have to be complicated to be efficient. In some sense, this can
be interpreted as the superiority of brute force approaches over cleverness. So
in effect, the simplicity of the algorithms comes at the price that it is very hard
to improve upon the current state-of-the-art. This can be seen by the fact that
progress on core algorithms and implementations is rather slow, even with the
increased interest the SAT community has enjoyed in the past few years. Put
simply, there are not a lot of low hanging fruit in the domain of core algorithms
for SAT solving.

Besides the open architecture of a SAT solver, an additional category of
contributions of this thesis lies in the development of encoding techniques for
a number of different applications (Chapters 3– 6). Taken as a whole, this has
helped to emphasize the importance of encodings within the SAT community.
There are several encoding patterns that occur over and over again. The most
noteworthy are: incremental SAT, lazy encoding of constraints, and bit-wise en-
coding of arithmetic influenced by hardware designs for adders and multipliers.
These have shown themselves to be extremely useful tools in the effective use
of a SAT-solver for tackling problems in different areas, and should be part of
the arsenal of anyone attacking a new problem area.

1.4 Discussion

We close this chapter with some critical considerations on the state of affairs
with regard to the Scientific Method in the subcommunity of Computer Science
where our work takes place. This should in no way be understood as criticsm
of any individual researchers or research group, but as a (self-)critical reflection
on how scientific progress can be ensured better than it is currently done.

The issue we would like to discuss is the transitional difficulties that the
formal verification community is suffering from, by having gone from a purely
theoretical field (as a part of mathematical logic) to a more mixed discipline
with strong flavours of engineering and experimental science. It seems that the
attitude of the community has not fully adapted to accomodate the additional
principles that have to be followed. A publication in theoretical computer sci-
ence can be verified simply by reading and understanding the material, but
results based on experiments require that the experiments can be repeated by
others.

Repeatability Experimental results may be hard to repeat for different rea-
sons: (1) The conclusions only apply to a very narrow set of problems. (2)
They are dependent on factors not mentioned in the paper. This in turn may
be either for space restriction (i.e. page-limit) reasons, or simply because the
authors did not know that the dependency exists. (3) Errors were introduced
in the (original) evaluation procedure itself.

It is important, that given a failure to repeat a certain result, one should be
able to determine whether the error is on ones own behalf or one of the cases
above holds. In the field of formal verification, for this to be possible, both
benchmarks and implementations used in the experiments need to be published;
otherwise, you cannot rule out both (1) and (2). This usually poses a problem
to researchers who work in (or in collaboration with) industry. Benchmarks

10

that are derived from customers, or otherwise contain sensitive data, are simply
impossible to share with the public. The implementations used in experiments
are often part of some product, and cannot be shared in order to maintain trade
secrets.

What could be done? Note that it is by no means only experimental indus-
trial research that lacks the accompanying benchmarks or source code. It seems
the community would do well to foster an attitude change so that researchers
working in a non-commercial context always provide all the necessary means to
reproduce the experiments of a publication. It is, of course, important to acco-
modate the justified interests of industrial research. Clearly, academic research
benefits from tight communication with industry and severing that connection
is counter-productive.

One possibility to improve the situation is to reinforce the importance of
gathering and maintaining a public body of benchmarks for different problem
categories. There already exist such efforts for different subcommunities2, but
there is room for improvement as such collections rarely are comprehensive.

Another trend that is improving on this situation is the growing number
of high quality, open, implementations of various theorem proving software of
which MINISAT is but one example. This is makes it possible, at least in
principle, to implement new ideas on a basis that is independent of trade secrets.
Such practice allows disclosure of implementations in more cases.

2A good example is Thousands Of Problems For Theorem Proving (TPTP) [SS07].

11

Chapter 2

An Extensible SAT-solver

Niklas Eén, Niklas Sörensson
Chalmers University of Technology and Göteborg University

Abstract

In this article, we present a small, complete, and efficient SAT-solver
in the style of conflict-driven learning, as exemplified by CHAFF.
We aim to give sufficient details about implementation to enable the
reader to construct his or her own solver in a very short time. This
will allow users of SAT-solvers to make domain specific extensions
or adaptions of current state-of-the-art SAT-techniques, to meet the
needs of a particular application area. The presented solver is de-
signed with this in mind, and includes among other things a mech-
anism for adding arbitrary boolean constraints. It also supports
solving a series of related SAT-problems efficiently by an incremen-
tal SAT-interface.

12

2.1 Introduction

The use of SAT-solvers in various applications is on the march. As insight on
how to efficiently encode problems into SAT is increasing, a growing number
of problem domains are successfully being tackled by SAT-solvers. This is par-
ticularly true for the electronic design automation (EDA) industry [BCC+99,
Lar92]. The success is further magnified by current state-of-the-art solvers be-
ing extended and adapted to meet the specific characteristics of these problem
domains [ARMS02a, ES03b].

However, modifying an existing solver, even with a thorough understanding
of both the problem domain and of modern SAT-techniques, can become a time
consuming and bewildering journey into the mysterious inner workings of a ten-
thousand-line software package. Likewise, writing a solver from scratch can also
be a daunting task, as there are numerous pitfalls hidden in the intricate details
of a correct and efficient solver. The problem is that although the techniques
used in a modern SAT-solver are well documented, the details necessary for an
implementation have not been adequately presented before.

In the fall of 2002, the authors implemented the solvers SATZOO and SAT-

NIK. In order to sufficiently understand the implementation tricks needed for
a modern SAT-solver, it was necessary to consult the source-code of previous
implementations. 1 We find that the material contained therein can be made
more accessible, which is desirable for the SAT-community. Thus, the prin-
cipal goal of this article is to bridge the gap between existing descriptions of
SAT-techniques and their actual implementation.

We will do this by presenting the code of a minimal SAT-solver MINISAT,
based on the ideas for conflict-driven backtracking [SS96], together with watched
literals and dynamic variable ordering [MMZ+01b]. The original C++ source
code (downloadable from http://www.cs.chalmers.se/~een) for MINISAT is
under 600 lines (not counting comments), and is the result of rethinking and
simplifying the designs of SATZOO and SATNIK without sacrificing efficiency.
We will present all the relevant parts of the code in a manner that should be
accessible to anyone acquainted with either C++ or Java.

The presented code includes an incremental SAT-interface, which allows for
a series of related problems to be solved with potentially huge efficiency gains
[ES03b]. We also generalize the expressiveness of the SAT-problem formulation
by providing a mechanism for arbitrary constraints over boolean variables to be
defined. Paragraphs discussing implementation alternatives are marked “[Disc]”
and can be skipped on a first reading.

From the documentation in this paper we hope it is possible for you to
implement a fresh SAT-solver in your favorite language, or to grab the C++
version of MINISAT from the net and start modifying it to include new and
interesting ideas.

2.2 Application Programming Interface

We start by presenting MINISAT’s external interface, with which a user appli-
cation can specify and solve SAT-problems. A basic knowledge about SAT is

1LIMMAT at http://www.inf.ethz.ch/personal/biere/projects/limmat/,
ZCHAFF at http://www.ee.princeton.edu/~chaff/zchaff

13

assumed (see for instance [SS96]). The types var , lit , and Vec for variables,
literals, and vectors respectively are explained in detail in section 2.4.

class Solver – Public interface
var newVar ()
bool addClause (Vec〈lit〉 literals)
bool add. . . (. . .)
bool simplifyDB ()
bool solve (Vec〈lit〉 assumptions)

Vec〈bool〉 model – If found, this vector has the model.

The “add . . .” method should be understood as a place-holder for additional
constraints implemented in an extension of MINISAT.

For a standard SAT-problem, the interface is used in the following way:
Variables are introduced by calling newVar(). From these variables, clauses are
built and added by addClause(). Trivial conflicts, such as two unit clauses {x}
and {x} being added, can be detected by addClause(), in which case it returns
False. From this point on, the solver state is undefined and must not be used
further. If no such trivial conflict is detected during the clause insertion phase,
solve() is called with an empty list of assumptions. It returns False if the
problem is unsatisfiable, and True if it is satisfiable, in which case the model
can be read from the public vector “model”.

The simplifyDB() method can be used before calling solve() to simplify
the set of problem constraints (often called the constraint database). In our
implementation, simplifyDB() will first propagate all unit information, then
remove all satisfied constraints. As for addClause(), the simplifier can sometimes
detect a conflict, in which case False is returned and the solver state is, again,
undefined and must not be used further.

If the solver returns satisfiable, new constraints can be added repeatedly
to the existing database and solve() run again. However, more interesting se-
quences of SAT-problems can be solved by the use of unit assumptions. When
passing a non-empty list of assumptions to solve(), the solver temporarily as-
sumes the literals to be true. After finding a model or a contradiction, these
assumptions are undone, and the solver is returned to a usable state, even when
solve() return False, which now should be interpreted as unsatisfiable under
assumptions.

For this to work, calling simplifyDB() before solve() is no longer optional.
It is the mechanism for detecting conflicts independent of the assumptions –
referred to as a top-level conflict from now on – which puts the solver in an
undefined state. We wish to remark that the ability to pass unit assumptions
to solve() is more powerful than it might appear at first. For an example of its
use, see [ES03b].

An alternative interface would be for solve() to return one of three values:
satisfiable, unsatisfiable, or unsatisfiable under assumptions. This is indeed a
less error-prone interface as there is no longer a pre-condition on the use of
solve(). The current interface, however, represents the smallest modification of
a non-incremental SAT-solver. The early non-incremental version of SATZOO

was made compliant to the above interface by adding just 5 lines of code.

14

2.3 Overview of the SAT-solver

This article will treat the popular style of SAT-solvers based on the DPLL
algorithm [DLL62], backtracking by conflict analysis and clause recording (also
referred to as learning) [SS96], and boolean constraint propagation (BCP) using
watched literals [MMZ+01b].2 We will refer to this style of solver as a conflict-
driven SAT-solver.

The components of such a solver, and indeed a more general constraint
solver, can be conceptually divided into three categories:

• Representation. Somehow the SAT-instance must be represented by
internal data structures, as must any derived information.

• Inference. Brute force search is seldom good enough on its own. A
solver also needs some mechanism for computing and propagating the
direct implications of the current state of information.

• Search. Inference is almost always combined with search to make the
solver complete. The search can be viewed as another way of deriving
information.

A standard conflict-driven SAT-solver can represent clauses (with two literals
or more) and assignments. Although the assignments can be viewed as unit-
clauses, they are treated specially in many ways, and are best viewed as a
separate type of information.

The only inference mechanism used by a standard solver is unit propagation.
As soon as a clause becomes unit under the current assignment (all literals
except one are false), the remaining unbound literal is set to true, possibly
making more clauses unit. The process is continued until no more information
can be propagated.

The search procedure of a modern solver is the most complex part. Heuris-
tically, variables are picked and assigned values (assumptions are made), until
the propagation detects a conflict (all literals of a clause have become false). At
that point, a so called conflict clause is constructed and added to the SAT prob-
lem. Assumptions are then canceled by backtracking until the conflict clause
becomes unit, from which point this unit clause is propagated and the search
process continues.

MINISAT is extensible with arbitrary boolean constraints. This will affect the
representation, which must be able to store these constraints; the inference,
which must be able to derive unit information from these constraints; and the
search, which must be able to analyze and generate conflict clauses from the
constraints. The mechanism we suggest for managing general constraints is
very lightweight, and by making the dependencies between the SAT-algorithm
and the constraints implementation explicit, we feel it rather adds to the clarity
of the solver than obscures it.

Propagation. The propagation procedure of MINISAT is largely inspired by
that of CHAFF [MMZ+01b]. For each literal, a list of constraints is kept. These
are the constraints that may propagate unit information (variable assignments)

2This includes SAT-solvers such as: ZCHAFF, LIMMAT, BERKMIN.

15

if the literal becomes True. For clauses, no unit information can be propagated
until all literals except one have become False. Two unbound literals p and q
of the clause are therefore selected, and references to the clause are added to the
lists of p and q respectively. The literals are said to be watched and the lists of
constraints are referred to as watcher lists. As soon as a watched literal becomes
True, the constraint is invoked to see if information may be propagated, or to
select new unbound literals to be watched.

A feature of the watcher system for clauses is that on backtracking, no ad-
justment to the watcher lists need to be done. Backtracking is therefore very
cheap. However, for other constraint types, this is not necessarily a good ap-
proach. MINISAT therefore supports the optional use of undo lists for those
constraints; storing what constraints need to be updated when a variable be-
comes unbound by backtracking.

Learning. The learning procedure of MINISAT follows the ideas of Marques-
Silva and Sakallah in [SS96]. The process starts when a constraint becomes
conflicting (impossible to satisfy) under the current assignment. The conflicting
constraint is then asked for a set of variable assignments that make it contradic-
tory. For a clause, this would be all the literals of the clause (which are False

under a conflict). Each of the variable assignments returned must be either
an assumption of the search procedure, or the result of some propagation of a
constraint. The propagating constraints are in turn asked for the set of variable
assignments that forced the propagation to occur, continuing the analysis back-
wards. The procedure is repeated until some termination condition is fulfilled,
resulting in a set of variable assignments that implies the conflict. A clause
prohibiting that particular assignment is added to the clause database. This
learnt clause must always, by construction, be implied by the original problem
constraints.

Learnt clauses serve two purposes: they drive the backtracking (as we shall
see) and they speed up future conflicts by “caching” the reason for the con-
flict. Each clause will prevent only a constant number of inferences, but as the
recorded clauses start to build on each other and participate in the unit propa-
gation, the accumulated effect of learning can be massive. However, as the set
of learnt clauses increase, propagation is slowed down. Therefore, the number of
learnt clauses is periodically reduced, keeping only the clauses that seem useful
by some heuristic.

Search. The search procedure of a conflict-driven SAT-solver is somewhat
implicit. Although a recursive definition of the procedure might be more elegant,
it is typically described (and implemented) iteratively. The procedure will start
by selecting an unassigned variable x (called the decision variable) and assume a
value for it, say True. The consequences of x=True will then be propagated,
possibly resulting in more variable assignments. All variables assigned as a
consequence of x is said to be from the same decision level, counting from 1
for the first assumption made and so forth. Assignments made before the first
assumption (decision level 0) are called top-level.

All assignments will be stored on a stack in the order they were made; from
now on referred to as the trail. The trail is divided into decision levels and is
used to undo information during backtracking.

16

The decision phase will continue until either all variables have been assigned,
in which case we have a model, or a conflict has occurred. On conflicts, the
learning procedure will be invoked and a conflict clause produced. The trail
will be used to undo decisions, one level at a time, until precisely one of the
literals of the learnt clause becomes unbound (they are all False at the point of
conflict). By construction, the conflict clause cannot go directly from conflicting
to a clause with two or more unbound literals. If the clause remains unit for
several decision levels, it is advantageous to chose the lowest level (referred to
as backjumping or non-chronological backtracking [SS96]).

loop
propagate() – propagate unit clauses
if not conflict then

if all variables assigned then
return Satisfiable

else
decide() – pick a new variable and assign it

else
analyze() – analyze conflict and add a conflict clause
if top-level conflict found then

return Unsatisfiable

else
backtrack() – undo assignments until conflict clause is unit

An important part of the procedure is the heuristic for decide(). Like CHAFF,
MINISAT uses a dynamic variable order that gives priority to variables involved
in recent conflicts.

Although this is a good default order, domain specific heuristics have suc-
cessfully been used in various areas to improve the performance [Str00]. Variable
ordering is a traditional target for improving SAT-solvers.

Activity heuristics. One important technique first introduced with CHAFF

[MMZ+01b] is a dynamic variable ordering based on activity (referred to as
the VSIDS heuristic). The original heuristic imposes an order on literals, but
borrowing from SATZOO, we make no distinction between p and p in MINISAT.

Each variable has an activity attached to it. Every time a variable occurs
in a recorded conflict clause, its activity is increased. We will refer to this as
bumping. After recording the conflict, the activity of all the variables in the
system are multiplied by a constant less than 1, thus decaying the activity of
variables over time. Recent increments count more than old. The current sum
determines the activity of a variable.

In MINISAT we use a similar idea for clauses. When a learnt clause is used
in the analysis process of a conflict, its activity is bumped. Inactive clauses are
periodically removed.

Constraint removal. The constraint database is divided into two parts: the
problem constraints and the learnt clauses. As we have noted, the set of learnt
clauses can be periodically reduced to increase the performance of propagation.
Learnt clauses are used to crop future branches in the search tree, so we risk

17

getting a bigger search space instead. The balance between the two forces is
delicate, and there are SAT-instances for which a big learnt clause set is ad-
vantageous, and others where a small set is better. MINISAT’s default heuristic
starts with a small set and gradually increases the size.

Problem constraints can also be removed if they are satisfied at the top-
level. The API method simplifyDB() is responsible for this. The procedure
is particularly important for incremental SAT-problems, where techniques for
clause removal build on this feature.

Top-level solver. Although the pseudo-code for the search procedure pre-
sented above suffices for a simple conflict-driven SAT-solver, a solver strategy
can improve the performance. A typical strategy applied by modern conflict-
driven SAT-solvers is the use of restarts to escape from futile parts of the search
tree. In MINISAT we also vary the number of learnt clauses kept at a given time.
Furthermore, the solve() method of the API supports incremental assumptions,
not handled by the above pseudo-code.

2.4 Implementation

The following conventions are used in the code. Atomic types start with a lower-
case letter and are passed by value. Composite types start with a capital letter
and are passed by reference. Blocks are marked only by indentation level. The
bottom symbol ⊥ will always mean undefined ; the symbol False will be used
to denote the boolean false.

We will use, but not specify an implementation of, the following abstract data
types: Vec〈T 〉 an extensible vector of type T ; lit the type of literals containing
a special literal ⊥lit; lbool for the lifted boolean domain containing elements
True⊥, False⊥, and ⊥; Queue〈T 〉 a queue of type T . We also use var as
a type synonym for int (for implicit documentation) with the special constant
⊥var. The interfaces of the abstract data types are presented in Figure 2.1.

2.4.1 The solver state

A number of things need to be stored in the solver state. Figure 2.2 shows the
complete set of member variables of the solver type of MINISAT. Together with
the state variables we define some short helper methods in Figure 2.3, as well
as the interface of VarOrder (Figure 2.4), explained in section 2.4.6.

The state does not contain a boolean “conflict” to remember if a top-level
conflict has been reached. Instead we impose as an invariant that the solver must
never be in a conflicting state. As a consequence, any method that puts the
solver in a conflicting state must communicate this. Using the solver object after
this point is illegal. The invariant makes the interface slightly more cumbersome
to use, but simplifies the implementation, which is important when extending
and experimenting with new techniques.

2.4.2 Constraints

MINISAT can handle arbitrary constraints over boolean variables through the
abstraction presented in Figure 2.5. Each constraint type needs to implement

18

class Vec〈T 〉 – Public interface
– Constructors:
Vec()
Vec(int size)
Vec(int size, T pad)

– Size operations:
int size ()
void shrink (int nof elems)
void pop ()
void growTo (int size)
void growTo (int size, T pad)
void clear ()

– Stack interface:
void push ()
void push (T elem)
T last ()

– Vector interface:
T op [] (int index)

– Duplicatation:
void copyTo (Vec〈T 〉 copy)
void moveTo (Vec〈T 〉 dest)

class lit – Public interface
lit (var x)

– Global functions:
lit op ¬ (lit p)
bool sign (lit p)
int var (lit p)
int index (lit p)

class lbool – Public interface
lbool () lbool (bool x)

– Global functions:
lbool op ¬ (lbool x)

– Global constants:
lbool False⊥, True⊥, ⊥

class Queue〈T 〉 – Public interface
Queue ()

void insert (T x)
T dequeue ()
void clear ()
int size ()

Figure 2.1: Basic abstract data types used throughout the code. The vector data
type can push a default constructed element by the push() method with no
argument. The moveTo() method will move the contents of a vector to another
vector in constant time, clearing the source vector. The literal data type has an
index () method which converts the literal to a “small” integer suitable for array
indexing. The var() method returns the underlying variable of the literal, and
the sign() method if the literal is signed (False for x and True for x).

methods for constructing, removing, propagating and calculating reasons. In
addition, methods for simplifying the constraint and updating the constraint
on backtrack can be specified. We explain the meaning and responsibilities of
these methods in detail:

Constructor. The constructor may only be called at the top-level. It
must create and add the constraint to appropriate watcher lists after en-
queuing any unit information derivable under the current top-level assign-
ment. Should a conflict arise, this must be communicated to the caller.

Remove. The remove method supplants the destructor by receiving the
solver state as a parameter. It should dispose the constraint and remove
it from the watcher lists.

Propagate. The propagate method is called if the constraint is found in
a watcher list during propagation of unit information p. The constraint
is removed from the list and is required to insert itself into a new or the
same watcher list. Any unit information derivable as a consequence of
p should be enqueued. If successful, True is returned; if a conflict is

19

class Solver
– Constraint database
Vec〈Constr〉 constrs – List of problem constraints.
Vec〈Clause〉 learnts – List of learnt clauses.
double cla inc – Clause activity increment – amount to bump with.
double cla decay – Decay factor for clause activity.

– Variable order
Vec〈double〉 activity – Heuristic measurement of the activity of a variable.
double var inc – Variable activity increment – amount to bump with.
double var decay – Decay factor for variable activity.
VarOrder order – Keeps track of the dynamic variable order.

– Propagation
Vec〈Vec〈Constr〉〉 – For each literal ’p’, a list of constraints watching ’p’.

watches A constraint will be inspected when ’p’ becomes true.
Vec〈Vec〈Constr〉〉 – For each variable ’x’, a list of constraints that need to

undos update when ’x’ becomes unbound by backtracking.
Queue〈lit〉 propQ – Propagation queue.

– Assignments
Vec〈lbool〉 assigns – The current assignments indexed on variables.
Vec〈lit〉 trail – List of assignments in chronological order.
Vec〈int〉 trail lim – Separator indices for different decision levels in ’trail’.
Vec〈Constr〉 reason – For each variable, the constraint that implied its value.
Vec〈int〉 level – For each variable, the decision level it was assigned.
int root level – Separates incremental and search assumptions.

Figure 2.2: Internal state of the solver.

int Solver.nVars() return assigns.size()
int Solver.nAssigns() return trail.size()
int Solver.nConstraints() return constrs.size()
int Solver.nLearnts() return learnts.size()
lbool Solver.value(var x) return assigns[x]
lbool Solver.value(lit p) return sign(p) ? ¬assigns[var(p)] : assigns[var(p)]
int Solver.decisionLevel() return trail lim.size()

Figure 2.3: Small helper methods. For instance, nLearnts() returns the number
of learnt clauses.

class VarOrder – Public interface
VarOrder (Vec〈lbool〉 ref to assigns, Vec〈double〉 ref to activity)

void newVar() – Called when a new variable is created.
void update(var x) – Called when variable has increased in activity.
void updateAll() – Called when all variables have been assigned new activities.
void undo(var x) – Called when variable is unbound (may be selected again).
var select() – Called to select a new, unassigned variable.

Figure 2.4: Assisting ADT for the dynamic variable ordering of the solver. The
constructor takes references to the assignment vector and the activity vector of
the solver. The method select() will return the unassigned variable with the
highest activity.

20

class Constr
virtual void remove (Solver S) – must be defined
virtual bool propagate (Solver S, lit p) – must be defined
virtual bool simplify (Solver S) – defaults to return false
virtual void undo (Solver S, lit p) – defaults to do nothing
virtual void calcReason (Solver S, lit p, Vec〈lit〉 out reason) – must be defined

Figure 2.5: Abstract base class for constraints.

detected, False is returned. The constraint may add itself to the undo
list of var(p) if it needs to be updated when p becomes unbound.

Simplify. At the top-level, a constraint may be given the opportunity
to simplify its representation (returns True) or state that the constraint
is satisfied under the current assignment (returns False). A constraint
must not be simplifiable to produce unit information or to be conflicting;
in that case the propagation has not been correctly defined.

Undo. During backtracking, this method is called if the constraint added
itself to the undo list of var(p) in propagate(). The current variable as-
signments are guaranteed to be identical to that of the moment before
propagate() was called.

Calculate Reason. This method is given a literal p and an empty vector.
The constraint is the reason for p being true, that is, during propagation,
the current constraint enqueued p. The received vector is extended to
include a set of assignments (represented as literals) implying p. The
current variable assignments are guaranteed to be identical to that of the
moment before the constraint propagated p. The literal p is also allowed
to be the special constant ⊥lit in which case the reason for the clause
being conflicting should be returned through the vector.

The code for the Clause constraint is presented
var Solver.newVar()

int index
index = nVars()
watches .push()
watches .push()
undos .push()
reason .push(Null)
assigns .push(⊥)
level .push(-1)
activity .push(0)
order .newVar()
return index

Figure 2.6: Creates a new
SAT variable in the solver.

in Figure 2.7. It is also used for learnt clauses,
which are unique in that they can be added to
the clause database while the solver is not at
top-level. This makes the constructor code a
bit more complicated than it would be for a
normal constraint.

Implementing the addClause() method of the
solver API is just a matter of calling Clause -
new() and pushing the new constraint on the
“constrs” vector, storing the list of problem con-
straints. For completeness, we also display the
code for creating variables in the solver (Fig-

ure 2.6).
There are a number of tricks for smart-coding

that can be used in a C++ implementation of Clause. In particularly the “lits”
vector can be implemented as an zero-sized array placed last in the class, and
then extra memory allocated for the clause to contain the data. We observed a

21

20% speedup for this trick. Furthermore, memory can be saved by not storing
activity for problem clauses.

Of the methods defining a constraint, propagate() should be the primary
target for efficient implementation. The SAT-solver spends about 80% of the
time propagating, so the method will be called frequently. In SATZOO a per-
formance gain was achieved by remembering the position of the last watched
literal and start looking for a new literal to watch from that position. Further
speedups may be achieved by specializing the code for small clause sizes.

2.4.3 Propagation

Given the mechanism for adding constraints, we now move on to describe the
propagation of unit information on these constraints.

The propagation routine keeps a set of literals (unit information) that is to
be propagated. We call this the propagation queue. When a literal is inserted
into the queue, the corresponding variable is immediately assigned. For each
literal in the queue, the watcher list of that literal determines the constraints
that may be affected by the assignment. Through the interface described in the
previous section, each constraint is asked by a call to its propagate() method
if more unit information can be inferred, which will then be enqueued. The
process continues until either the queue is empty or a conflict is found.

An implementation of this procedure is displayed in Figure 2.9. It starts by
dequeuing a literal and clearing the watcher list for that literal by moving it to
“tmp”. The propagate method is then called for each constraint of “tmp”. This
will re-insert watches into new lists. Should a conflict be detected during the
traversal of “tmp”, the remaining watches will be copied back to the original
watcher list, and the propagation queue cleared.

The method for enqueuing unit information is relatively straightforward.
Note that the same fact can be enqueued several times, as it may be propagated
from different constraints, but it will only be put on the propagation queue once.

It may be that later enqueuings have a “better” reason (determined heuris-
tically) and a small performance gain was achieved in SATZOO by changing
reason if the new reason was smaller than the previously stored. The changing
affects the conflict clause generation described in the next section.

2.4.4 Learning

This section describes the conflict-driven clause learning. It was first described
in [SS96] and is one of the major advances of SAT-technology in the last decade.

We describe the basic conflict-analysis algorithm by an example. Assume
the database contains the clause {x, y, z} which just became unsatisfied during
propagation. This is our conflict. We call x∧y∧z the reason set of the conflict.
Now x is false because x was propagated from some constraint. We ask that
constraint to give us the reason for propagating x (the calcReason() method).
It will respond with another conjunction of literals, say u∧ v . These were the
variable assignment that implied x. The constraint may in fact have been the
clause {u, v, x}. From this little analysis we know that u∧ v ∧ y ∧ z must also
lead to a conflict. We may prohibit this conflict by adding the clause {u, v, y, z}
to the clause database. This would be an example of a learnt conflict clause.

22

class Clause : public Constr

bool learnt
float activity
Vec〈lit〉 lits

– Constructor – creates a new clause and adds it to watcher lists:
static bool Clause new(Solver S, Vec〈lit〉 ps, bool learnt, Clause out clause)

“Implementation in Figure 2.8 ”

– Learnt clauses only:
bool locked(Solver S)

return S.reason[var(lits[0])] == this

– Constraint interface:
void remove(Solver S)

removeElem(this, S.watches[index(¬lits[0])])
removeElem(this, S.watches[index(¬lits[1])])
delete this

bool simplify(Solver S) – only called at top-level with empty prop. queue
int j = 0
for (int i = 0; i < lits.size(); i++)

if (S.value(lits[i]) == True⊥)
return True

else if (S.value(lits[i]) == ⊥)
lits[j++] = lits[i] – false literals are not copied (only occur for i ≥ 2)

lits.shrink(lits.size() − j)
return False

bool propagate(Solver S, lit p)
– Make sure the false literal is lits[1]:
if (lits[0] == ¬p)

lits[0] = lits[1], lits[1] = ¬p

– If 0th watch is true, then clause is already satisfied.
if (S.value(lits[0]) == True⊥)

S.watches[index(p)].push(this) – re-insert clause into watcher list
return True

– Look for a new literal to watch:
for (int i = 2; i < size(); i++)

if (S.value(lits[i]) != False⊥)
lits[1] = lits[i], lits[i] = ¬p
S.watches[index(¬lits[1])].push(this) – insert clause into watcher list
return True

– Clause is unit under assignment:
S.watches[index(p)].push(this)
return S.enqueue(lits[0], this) – enqueue for propagation

void calcReason(Solver S, lit p, vec〈lit〉 out reason)
– invariant: (p == ⊥) or (p == lits[0])
for (int i = ((p == ⊥) ? 0 : 1); i < size(); i++)

out reason.push(¬lits[i]) – invariant: S.value(lits[i]) == False⊥

if (learnt) S.claBumpActivity(this)

Figure 2.7: Implementation of the Clause constraint.

23

bool Clause new(Solver S, Vec〈lit〉 ps, bool learnt, Clause out clause)

out clause = Null

– Normalize clause:
if (!learnt)

if (”any literal in ps is true”) return True

if (”both p and ¬p occurs in ps”) return True

”remove all false literals from ps”
”remove all duplicates from ps”

if (ps.size() == 0)
return False

else if (ps.size() == 1)
return S.enqueue(ps[0]) – unit facts are enqueued

else

– Allocate clause:
Clause c = new Clause
ps.moveTo(c.lits)
c.learnt = learnt
c.activity = 0 – only relevant for learnt clauses

if (learnt)
– Pick a second literal to watch:
”Let max i be the index of the literal with highest decision level”
c.lits[1] = ps[max i], c.lits[max i] = ps[1]

– Bumping:
S.claBumpActivity(c) – newly learnt clauses should be considered active
for (int i = 0; i < ps.size(); i++)

S.varBumpActivity(ps[i]) – variables in conflict clauses are bumped

– Add clause to watcher lists:
S.watches[index(¬c.lits[0])].push(c)
S.watches[index(¬c.lits[1])].push(c)
out clause = c

return True

Figure 2.8: Constructor function for clauses. Returns False if top-level conflict
is detected. ’out clause’ may be set to Null if the new clause is already satisfied
under the current top-level assignment. Post-condition: ’ps’ is cleared. For
learnt clauses, all literals will be false except ‘lits[0]’ (this by design of the
analyze() method). For the propagation to work, the second watch must be put
on the literal which will first be unbound by backtracking. (Note that none of
the learnt-clause specific things needs to be done for a user defined constraint
type.)

24

Constr Solver.propagate()

while (propQ.size() > 0)
lit p = propQ.dequeue() – ’p’ is now the enqueued fact to propagate
Vec〈Constr〉 tmp – ’tmp’ will contain the watcher list for ’p’
watches[index(p)].moveTo(tmp)

for (int i = 0; i < tmp.size(); i++)
if (!tmp[i].propagate(this, p))

– Constraint is conflicting; copy remaining watches to ’watches[p]’
– and return constraint:
for (int j = i+1; j < tmp.size(); j++)

watches[index(p)].push(tmp[j])
propQ.clear()
return tmp[i]

return Null

bool Solver.enqueue(lit p, Constr from = Null)

if (value(p) != ⊥)
if (value(p) == False⊥)

– Conflicting enqueued assignment
return False

else

– Existing consistent assignment – don’t enqueue
return True

else

– New fact, store it
assigns [var(p)] = lbool(!sign(p))
level [var(p)] = decisionLevel()
reason [var(p)] = from
trail.push(p)
propQ.insert(p)
return True

Figure 2.9: propagate(): Propagates all enqueued facts. If a conflict arises,
the conflicting clause is returned, otherwise Null. enqueue(): Puts a new
fact on the propagation queue, as well as immediately updating the variable’s
value in the assignment vector. If a conflict arises, False is returned and the
propagation queue is cleared. The parameter ’from’ contains a reference to the
constraint from which ’p’ was propagated (defaults to Null if omitted).

In the example, we picked only one literal and analyzed it one step. The
process of expanding literals with their reason sets can be continued, in the
extreme case until all the literals of the conflict set are decision variables (which
were not propagated by any constraints). Different learning schemes based on
this process have been proposed. Experimentally the “First Unique Implication
Point” (First UIP) heuristic has been shown effective [ZMMM01]. We will not
give the definition of UIPs here, but just state the algorithm: In a breadth-first
manner, continue to expand literals of the current decision level, until there is
just one left.

In the code for analyze(), displayed in Figure 2.10, we make use of the fact
that a breadth-first traversal can be achieved by inspecting the trail backwards.
Especially, the variables of the reason set of p is always before p in the trail. Fur-

25

thermore, in the algorithm we initialize p to ⊥lit, which will make calcReason()
return the reason for the conflict.

Assuming x to be the unit information that causes the conflict, an alternative
implementation would be to calculate the reason for x and just add x to that set.
The code would be slightly more cumbersome but the contract for calcReason()
would be simpler, as we no longer need the special case for ⊥lit.

Finally, the analysis not only returns a conflict clause, but also the back-
tracking level. This is the lowest decision level for which the conflict clause is
unit. It is advantageous to backtrack as far as possible [SS96], and is referred
to as back-jumping or non-chronological backtracking in the literature.

2.4.5 Search

The search method in Figure 2.13 works basically as described in section 2.3
but with the following additions:

Restarts. The first argument of the search method is “nof conflicts”.
The search for a model or a contradiction will only be conducted for this
many conflicts. If failing to solve the SAT-problem within the bound,
all assumptions will be canceled and ⊥ returned. The surrounding solver
strategy will then restart the search, possibly with a new set of parameters.

Reduce. The second argument, “nof learnts”, sets an upper limit on
the number of learnt clauses that are kept. Once this number is reached,
reduceDB() is called. Clauses that are currently the reason for a variable
assignment are said to be locked and cannot be removed by reduceDB().
For this reason, the limit is extended by the number of assigned variables,
which approximates the number of locked clauses.

Parameters. The third argument to the search method groups some
tuning constants. In the current version of MINISAT, it only contains the
decay factors for variables and clauses.

Root-level. To support incremental SAT, the concept of a root-level
is introduced. The root-level acts a bit as a new top-level. Above the
root-level are the incremental assumptions passed to solve() (if any). The
search procedure is not allowed to backtrack above the root-level, as this
would change the incremental assumptions. If we reach a conflict at root-
level, the search will return False.

A problem with the approach presented here is conflict clauses that are
unit. For these, analyze() will always return a backtrack level of 0 (top-
level). As unit clauses are treated specially, they are never added to the
clause database. Instead they are enqueued as facts to be propagated (see
the code of Clause new()). There would be no problem if this was done at
top-level. However, the search procedure will only undo until root-level,
which means that the unit fact will be enqueued there. Once search()
has solved the current SAT-problem, the surrounding solver strategy will
undo any incremental assumption and put the solver back at the top-level.
By this the unit clause will be forgotten, and the next incremental SAT
problem will have to infer it again.

A solution to this is to store the learnt unit clauses in a vector and

26

void Solver.analyze(Constr confl, Vec〈lit〉 out learnt, Int out btlevel)

Vec〈bool〉 seen(nVars(), False)
int counter = 0
lit p = ⊥lit

Vec〈lit〉 p reason

out learnt.push() – leave room for the asserting literal
out btlevel = 0
do

p reason.clear()
confl.calcReason(this, p, p reason) – invariant here: confl != NULL

– Trace reason for p:

for (int j = 0; j < p reason.size(); j++)
lit q = p reason[j]
if (!seen[var(q)])

seen[var(q)] = True

if (level[var(q)] == decisionLevel())
counter++

else if (level[var(q)] > 0) – exclude variables from decision level 0
out learnt.push(¬q)
out btlevel = max(out btlevel, level[var(q)])

– Select next literal to look at:

do
p = trail.last()
confl = reason[var(p)]
undoOne()

while (!seen[var(p)])
counter−−

while (counter > 0)
out learnt[0] = ¬p

Figure 2.10: Analyze a conflict and produce a reason clause. Pre-conditions:
(1) ’out learnt’ is assumed to be cleared. (2) Current decision level must be
greater than root level. Post-conditions: (1) ’out learnt[0]’ is the asserting
literal at level ’out btlevel’. Effect: Will undo part of the trail, but not beyond
last decision level.

void Solver.record(Vec〈lit〉 clause)

Clause c – will be set to created clause, or NULL if ’clause[]’ is unit
Clause new(this, clause, True, c) – cannot fail at this point
enqueue(clause[0], c) – cannot fail at this point
if (c != Null) learnts.push(c)

Figure 2.11: Record a clause and drive backtracking. Pre-condition: ’clause[0]’
must contain the asserting literal. In particular, ’clause[]’ must not be empty.

27

void Solver.undoOne()

lit p = trail.last()
var x = var(p)
assigns [x] = ⊥
reason [x] = Null

level [x] = -1
order.undo(x)
trail.pop()

while (undos[x].size() > 0)
undos[x].last().undo(this, p)
undos[x].pop()

bool Solver.assume(lit p)

trail lim.push(trail.size())
return enqueue(p)

void Solver.cancel()

int c = trail.size() − trail lim.last()
for (; c != 0; c−−)

undoOne()
trail lim.pop()

void Solver.cancelUntil(int level)

while (decisionLevel() > level)
cancel()

Figure 2.12: assume(): returns False if immediate conflict. Pre-condition:
propagation queue is empty. undoOne(): unbinds the last variable on the trail.
cancel(): reverts to the state before last push(). Pre-condition: propagation
queue is empty. cancelUntil(): cancels several levels of assumptions.

re-insert them at top-level before the next call to solve(). The reason for
omitting this in MINISAT is that we have not seen any performance gain
by this extra handling in our applications [ES03b, CS03]. Simplicity thus
dictates that we leave it out of the presentation.

Simplify. Provided the root-level is 0 (no assumptions were passed to
solve()) the search will return to the top-level every time a unit clause
is learnt. At that point it is legal to call simplifyDB() to simplify the
problem constraints according to the top-level assignment. If a stronger
simplifier than presented here is implemented, a contradiction may be
found, in which case the search should be aborted. As our simplifier is
not stronger than normal propagation, it can never reach a contradiction,
so we ignore the return value of simplify().

2.4.6 Activity heuristics

The implementation of activity is shown in Figure 2.14. Instead of actually
multiplying all variables by a decay factor after each conflict, we bump variables
with larger and larger numbers. Only relative values matter. Eventually we will
reach the limit of what is representable by a floating point number. At that
point, all activities are scaled down.

In the VarOrder data type of MINISAT, the list of variables is kept sorted
on activity at all time. The backtracking will always accurately choose the
most active variable. The original suggestion for the VSIDS dynamic variable
ordering was to sort periodically.

The polarity of a literal is ignored in MINISAT. However, storing the latest
polarity of a variable might improve the search when restarts are used, but it
remains to be empirically supported. Furthermore, the interface of VarOrder
can be used for other variable heuristics. In SATZOO, an initial static variable
order computed from the clause structure was particularly successful on many
problems.

28

lbool Solver.search(int nof conflicts, int nof learnts, SearchParams params)

int conflictC = 0
var decay = 1 / params.var decay
cla decay = 1 / params.cla decay
model.clear()

loop

Constr confl = propagate()
if (confl != Null)

– Conflict

conflictC++
Vec〈lit〉 learnt clause
int backtrack level
if (decisionLevel() == root level)

return False⊥

analyze(confl, learnt clause, backtrack level)
cancelUntil(max(backtrack level, root level))
record(learnt clause)
decayActivities()

else

– No conflict

if (decisionLevel() == 0)
– Simplify the set of problem clauses:
simplifyDB() – our simplifier cannot return false here

if (learnts.size()−nAssigns() ≥ nof learnts)
– Reduce the set of learnt clauses:
reduceDB()

if (nAssigns() == nVars())
– Model found:
model.growTo(nVars())
for (int i = 0; i < nVars(); i++)

model[i] = (value(i) == True⊥)
cancelUntil(root level)
return True⊥

else if (conflictC ≥ nof conflicts)
– Reached bound on number of conflicts:
cancelUntil(root level) – force a restart
return ⊥

else

– New variable decision:
lit p = lit(order.select()) – may have heuristic for polarity here
assume(p) – cannot return false

Figure 2.13: Search method. Assumes and propagates until a conflict is found,
from which a conflict clause is learnt and backtracking performed until search
can continue. Pre-condition: root level == decisionLevel().

29

void Solver.varBumpActivity(var x)
if ((activity[x] += var inc) > 1e100)

varRescaleActivity()
order.update(x)

void Solver.varDecayActivity()
var inc *= var decay

void Solver.varRescaleActivity()
for (int i = 0; i < nVars(); i++)

activity[i] *= 1e-100
var inc *= 1e-100

void Solver.claBumpActivity(Clause c)
void Solver.claDecayActivity()
void Solver.claRescaleActivity()

– Similarly implemented.

void Solver.decayActivities()
varDecayActivity()
claDecayActivity()

Figure 2.14: Bumping of variable and clause activities.

2.4.7 Constraint removal

The methods for reducing the set of learnt clauses as well as the top-level sim-
plification procedure can be found in Figure 2.15.

When removing learnt clauses, it is important not to remove so called locked
clauses. Locked clauses are those participating in the current backtracking
branch by being the reason (through propagation) for a variable assignment.
The reduce procedure keeps half of the learnt clauses, except for those which
have decayed below a threshold limit. Such clauses can occur if the set of active
constraints is very small.

Top-level simplification can be seen as a special case of propagation. Since
it is performed under no assumption, anything learnt can be kept forever. The
freedom of not having to store derived information separately, with the ability
to undo it later, makes it easier to implement stronger propagation.

2.4.8 Top-level solver

The method implementing MINISAT’s top-level strategy can be found in Figure

2.16. It is responsible for making the incremental assumptions and setting
the root level. Furthermore, it completes the simple backtracking search with
restarts, which are performed less and less frequently. After each restart, the
number of allowed learnt clauses is increased.

The code contains a number of hand-tuned constants that have shown to
perform reasonable on our applications [ES03b, CS03]. The top-level strategy,
however, is a productive target for improvements (possibly application depen-
dent). In SATZOO, the top-level strategy contains an initial phase where a static
variable ordering is used.

2.5 Conclusions and Related Work

By this paper, we have provided a minimal reference implementation of a mod-
ern conflict-driven SAT-solver. Despite the abstraction layer for boolean con-
straints, and the lack of more sophisticated heuristics, the performance of MIN-

ISAT is comparable to state-of-the-art SAT-solvers. We have tested MINISAT

against ZCHAFF and BERKMIN 5.61 on 177 SAT-instances. These instances were
used to tune SATZOO for the SAT 2003 Competition. As SATZOO solved more

30

void Solver.reduceDB()

int i, j
double lim = cla inc / learnts.size()

sortOnActivity(learnts)
for (i=j=0; i < learnts.size()/2; i++)

if (!learnts[i].locked(this))
learnts[i].remove(this)

else

learnts[j++] = learnts[i]
for (; i < learnts.size(); i++)

if (!learnts[i].locked(this)
&& learnts[i].activity() < lim)

learnts[i].remove(this)
else

learnts[j++] = learnts[i]
learnts.shrink(i − j)

bool Solver.simplifyDB()

if (propagate() != Null)
return False

for (int type = 0; type < 2; type++)
Vec〈Constr〉 cs = type ?

(Vec〈Constr〉)learnts : constrs
int j = 0
for (int i = 0; i < cs.size(); i++)

if (cs[i].simplify(this))
cs[i].remove(this)

else

cs[j++] = cs[i]
cs.shrink(cs.size()−j)

return True

Figure 2.15: reduceDB(): Remove half of the learnt clauses minus some locked
clauses. A locked clause is a clauses that is reason to a current assignment.
Clauses below a certain lower bound activity are also be removed. simpli-
fyDB(): Top-level simplify of constraint database. Will remove any satisfied
constraint and simplify remaining constraints under current (partial) assign-
ment. If a top-level conflict is found, False is returned. Pre-condition: De-
cision level must be zero. Post-condition: Propagation queue is empty.

bool Solver.solve(Vec〈lit〉 assumps)

SearchParams params(0.95, 0.999)
double nof conflicts = 100
double nof learnts = nConstraints()/3
lbool status = ⊥

– Push incremental assumptions:

for (int i = 0; i < assumps.size(); i++)
if (!assume(assumps[i]) | | propagate() != Null)

cancelUntil(0)
return False

root level = decisionLevel()

– Solve:

while (status == ⊥)
status = search((int)nof conflicts, (int)nof learnts, params)
nof conflicts *= 1.5
nof learnts *= 1.1

cancelUntil(0)
return status == True⊥

Figure 2.16: Main solve method. Pre-condition: If assumptions are used,
simplifyDB() must be called right before using this method. If not, a top-level
conflict (resulting in a non-usable internal state) cannot be distinguished from
a conflict under assumptions.

31

instances and series of problems, ranging over all three categories (industrial,
handmade, and random), than any other solver in the competition, we feel that
this is a good test-set for the overall performance. No extra tuning was done
in MINISAT; it was just run once with the constants presented in the code. At
a time-out of 10 minutes, MINISAT solved 158 instances, while ZCHAFF solved
147 instances and BERKMIN 157 instances.

Another approach to incremental SAT and non-clausal constraints was pre-
sented by Aloul, Ramani, Markov, and Sakallah in their work on SATIRE and
PBS [WKS01, ARMS02a]. Our implementation differs in that it has a simpler
notion of incrementality, and that it contains a well documented interface for
non-clausal constraints.

Finally, a set of reference implementations of modern SAT-techniques is
present in the OPENSAT project.3 However, the project aim for completeness
rather than minimal exposition, as we have chosen in this paper.

3http://www.opensat.org

32

Chapter 3

New Techniques that

Improve MACE-style

Finite Model Finding

Koen Claessen, Niklas Sörensson
Chalmers University of Technology and Göteborg University

Abstract

We describe a new method for finding finite models of unsorted first-
order logic clause sets. The method is a MACE-style method, i.e.
it ”flattens” the first-order clauses, and for increasing model sizes,
instantiates the resulting clauses into propositional clauses which
are consecutively solved by a SAT-solver. We enhance the standard
method by using 4 novel techniques: term definitions, which reduce
the number of variables in flattened clauses, incremental SAT, which
enables reuse of search information between consecutive model sizes,
static symmetry reduction, which reduces the number of isomorphic
models by adding extra constraints to the SAT problem, and sort
inference, which allows the symmetry reduction to be applied at a
finer grain. All techniques have been implemented in a new model
finder, called Paradox, with very promising results.

33

3.1 Introduction

There exist many methods for finding finite models of First Order Logic (FOL)
clause sets. The two most successful styles of methods are usually called MACE-
style methods, named after McCune’s tool MACE [McC94], and the SEM-style
methods, named after Zhang and Zhang’s tool SEM [JZ96].

A MACE-style method transforms the FOL clause set and a domain size
into a propositional logic clause set by introducing propositional variables rep-
resenting the function and predicate tables, and consecutively flattening and
instantiating the clauses in the clause set. A propositional logic theorem prover,
also called SAT solver, is then used to attack the resulting problem. Apart from
MACE itself, Gandalf [Tam97] makes use of a MACE-style method, and there
are reports of usages of SATO in a similar way [JZ95].

A SEM-style method performs a search directly on the problem without
converting it into a simpler logic. A basic backtracking search backed up by
powerful constraint propagation methods, mainly based on exploiting equality,
are used to search for interpretations of the function and predicate tables. A
principle called symmetry reduction is used to avoid searching for isomorphic
models multiple times. Apart from SEM itself, the tools FINDER [Sla94], and
ICGNS [McC03] are SEM-style methods, and again Gandalf also makes use of
SEM-style methods. SEM-style methods are known to perform well on equa-
tional problems, and MACE-style methods are supposed be more all-round.

In this paper, we develop a collection of new techniques for finite model
generation for unsorted first-order logic. These techniques improve upon the
basic idea behind MACE dramatically. We have implemented the techniques in
a new model finder called Paradox. The main novel contributions in the paper
are the following.

• The main problem in MACE-style methods is the clause instantiation,
which is exponential in the number of first-order variables in a clause. A
well-known variable reduction technique is non-ground clause splitting, for
which however only exponential or incomplete algorithms are known. We
have devised a new polynomial heuristic for clause splitting. Moreover, we
have come up with a completely new variable reduction technique, called
term definitions.

• The search for a model goes through consecutive stages of increasing do-
main sizes. In current-day algorithms, there is hardly any coupling be-
tween the search for models of different sizes. We make use of an incre-
mental satisfiability checker in order to reuse information about the failed
search of a model of size s in the search of a model of size s + 1.

• SEM-style model finders make use of techniques like the least number
heuristic [JZ96] and the extended least number heuristic [AH01] in order
to reduce the symmetries in the search problem. To our knowledge, wTTe
are the first to adapt a similar technique in a MACE-style framework.
Our contribution here is that when using a SAT-solver, we must apply the
symmetry reduction statically, i.e. by adding extra constraints, whereas
SEM-style methods can apply this dynamically, i.e. during the search.

• It is well-known that sort information can help the search for models.
However, we are working with unsorted problems, and therefore need to

34

create unsorted models. We have developed a sort inference algorithm,
which automatically finds appropriate sort information for unsorted prob-
lems. This sort information can then be used in several ways to reduce
the complexity of the model search problem, while still searching for an
unsorted model.

The rest of the paper is organized as follows. In Section 3.2 we introduce some
notation. In Section 3.3 we describe the basic ideas behind MACE-style meth-
ods. In Sections 3.4, 3.5, 3.6, and 3.7, we introduce the four techniques: clause
splitting and term definitions, incremental search, static symmetry reduction,
and sort inference. In Section 3.8 we discuss some experimental results. Sec-
tions 3.9 and 3.10 discuss related work and conclusions.

3.2 Notation

In this section, we introduce some standard notation we use in the rest of the
paper. We use the set N to stand for the set of natural numbers {0, 1, 2, . . .}.
The set B is the set of booleans {false, true}.

Terms, literal and clauses A term t is built from function symbols f, g, h,
constants a, b, c, and variables x, y, z. Each function symbol f has a single arity
ar(f) : N which should be respected when building terms. We will merely regard
constants as nullary function symbols.

An atom A is a predicate symbol P, Q, R, S applied to a number of terms.
Each predicate symbol P has a single arity ar(P) : N . There exists one special
predicate symbol =, with arity 2, representing equality, whose atoms are written
t1 = t2.

A literal is a positive or negative occurence of an atom. Negative literals are
written using ¬A, and negative equalities are written t1 6= t2.

A clause C is a finite set of literals, intended to be used disjunctively. We
write FV (C) for the set of variables in a clause C.

Interpretations An interpretation I consists of a non-empty set D (the do-
main), plus for each function symbol f a function I(f) : Dar(f) → D, and
for each predicate symbol P a function I(P) : Dar(P) → B, where we require
I(=)(d1, d2) = true exactly when d1 is the same domain element as d2, and false

otherwise. An interpretation is called finite if its domain D is a finite set.

3.3 MACE-style Model Finding

This section describes shortly what the basic idea behind MACE-style model
finding methods is. The description differs slightly from earlier presentations
[McC94].

Finite domains The following observation about models is well-known. Given
an interpretation I with a domain D satisfying a clause set S. Given a set D′

and a bijection π : D ↔ D′, we construct a new interpretation I ′ with domain

35

D′ in the following way:

I ′(P)(x1, . . . , xm) = I(P)(π−1(x1), . . . , π
−1(xm))

I ′(f)(x1, . . . , xn) = π(I(f)(π−1(x1), . . . , π
−1(xn))

Now, I ′ also satisfies S. We call two models I and I ′ in the above relation-
ship isomorphic. The observation implies that in order to find (finite) models,
only the size s of the domain matters, and not the actual elements of the do-
main. Therefore, we arbitrarily choose D to be {1, 2, . . . , s}. A special case of
the observation, which we will use later, arises when D′ = D, and π simply
corresponds to a permutation of D.

Propositional encoding We are going to encode the model finding problem
for a particular set of FOL clauses using propositional variables. For each predi-
cate symbol P, and each argument vector (d1, . . . , dar(P)) (with each di ∈ D), we
introduce a propositional variable P(d1, . . . , dar(P)) representing the case when
I(P)(d1, . . . , dar(P)) is true. Also, for each function symbol f, for each argument
vector (d1, . . . , dar(f)), and for each domain element d, we introduce a proposi-
tional variable f(d1, . . . , dar(f)) = d representing the case when I(f)(d1, . . . , dar(f))
is d. We stress that these propositional variable names are merely syntactic con-
structs and have no meaning without context.

Flattening In order to create the necessary propositional constraints on the
above variables, the first step is to transform the general FOL clauses into
clauses only containing shallow literals, a process called flattening.

Definition 1 (Shallow Literals) A literal is shallow iff it has one the follow-
ing forms:

1. P(x1, . . . , xm), or ¬P(x1, . . . , xm),

2. f(x1, . . . , xn) = y, or f(x1, . . . , xn) 6= y,

3. x = y.

There are two cases when a given literal is not shallow: (1) it contains at least
one subterm t which is not a variable, but should be; (2) the literal is of the
form x 6= y. In case (1), we can lift out an offending term t out of any literal
occurring in a clause C by applying the following sequence of rewrite steps:

C[t] −→ let x = t in C[x] (x not in C)

−→ ∀x. [x = t ⇒ C[x]]

−→ t 6= x ∨ C[x]

In the second step in the above we make use of a standard representation of
let-definitions in terms of universal quantification and implication. If t occurs
more than once in C, we introduce only one variable x for t, and replace all
occurences of t by x. In case (2), we apply the following rewrite rule:

C[x, y] ∨ x 6= y −→ C[x, x]

If we apply the above transformations repeatedly, in the end all literals will be
be shallow literals.

36

Example 1 Take the unit clause { P(a, f(x)) }. After flattening, the clause looks
as follows:

{ a 6= y, f(x) 6= z, P(y, z) }.

Instantiating The final step is to generate propositional clauses from the
flattened clauses. We generate three sets of propositional clauses:

• Instances For each flattened clause C, and for each substitution σ :
FV (C)→ D, we generate the propositional clause Cσ. (Recall that shal-
low literals instantiated with domain elements function as propositional
literals.) In the result of the substitution, we immediately simplify all
literals of the form d1 = d2 (whose value is known at instantiation time),
leading to either removal of the whole clause in question (when d1 and d2

are equal), or simply removal of the equality literal (when d1 and d2 are
not equal).

• Functional definitions For each function symbol f, for each d, d′ ∈
D, d 6= d′, and for each argument vector (d1, . . . , dar(f)), we introduce the
propositional clause

{ f(d1, . . . , dar(f)) 6= d, f(d1, . . . , dar(f)) 6= d′ }

representing the fact that a function can not return two different values
for the same arguments.

• Totality definitions For each function symbol f, and for each argument
vector (d1, . . . , dar(f)), we introduce the propositional clause

{ f(d1, . . . , dar(f)) = 1, . . . , f(d1, . . . , dar(f)) = s }

representing the fact that a function must return at least one value for
each argument.

If we can find a propositional model that satisfies all of the above clauses, we
have found a finite model satisfying the original set of FOL clauses. We use
a SAT solver to find the actual propositional model. The FOL model can be
easily built by using the propositional encoding described earlier in this section.

3.4 Reducing Variables in Clauses

The number of instances of each clause that is needed, is exponential in the
number variables the clause contains. In general, if a clause contains k variables,
the number of instances that will be needed for domain size s are sk. Moreover,
this property is made worse by the fact that term flattening introduces many
auxiliary variables (something that a SEM-style model finder does not do). In
this section we describe how to remedy this situation.

37

Splitting Splitting is a well known method [Sch01, Tam97, RV00] that can
be used to replace one clause by several other clauses each containing fewer
variables than the original clause. The following is an example of non-ground
splitting.

Example 2 By introducing the completely fresh split predicate S(x), the clause
{ P(x, y), Q(x, z) } can be split into the follwing clauses. Note that we by doing
this have reduced the maximum number of variables per clause from three to
two.

{ P(x, y), S(x) }

{ ¬S(x), Q(x, z) }

The general criterion for splitting that we use look like this.

Definition 2 (Binary Split) Given a clause C[~x]∪D[~y] where C, D are sub-
clauses and ~x, ~y are the sets of variables occuring in them. Then C and D
constitute a proper binary split of the given clause iff there exist at least one
variable x in ~x such that x 6∈ ~y, and at least one variable y in ~y such that y 6∈ ~x.
The resulting two clauses after the split are:

{ S(~x ∩ ~y) } ∪ C[~x]

{ ¬S(~x ∩ ~y) } ∪D[~y]

Here, S must be a fresh predicate symbol not occurring anywhere in the problem.

The resulting two clauses contain less variables per clause since x is guaran-
teed not to appear in the second clause, and y not in the first clause. A special
case is when ~x ∩ ~y is empty, in which case S becomes nullary predicate, i.e. a
logical constant.

Repeated Binary Splitting In general the resulting clauses of a binary split
can possibly be splitted further, thus to get best possible result binary splits can
be repeated on both resulting clauses for as long as it is possible. However, there
might be several possible ways to apply a binary split, and a greedy choice could
destroy the possibilities for further splitting of the resulting clauses. It might
be worthwhile to come up with an optimal (in terms of number of variables)
algorithm for repeated binary splitting, but so far we have reached good results
using a cheap heuristic.

Existing heuristics for binary splits Gandalf [Tam97] and Eground [Sch01]
both incorporate the same heuristic for finding binary splits, which works as
follows. Given a clause C, all proper subsets of variables occurring in C are
enumerated (small subsets first). For each subset V , it is checked if the clause
can be split into two clauses, such that the intersection of variables occurring in
both clauses is equal to V , which takes linear time in the length of the clause. If
such a subset V is found, the clause is split accordingly. Since there is an expo-
nential amount of such subsets, there is an upper limit (an arbitrary constant)
on the amount of subsets that is tried. Beyond the limit, the algorithm gives
up. The problem here is that for clauses containing many variables, we have to
be lucky and find the right subset before we pass the upper limit.

38

Our heuristic In contrast, the heuristic we use is polynomial and it will
always find a split if there is one, though it might not always turn out to be the
best split. First, given a clause C, we say that two variables are connected in C
if there is some literal in C in which they both occur. Note that if all variables
are connected to each other, then a proper split is impossible, but otherwise it
is. The heuristic now finds the variable x which is connected to the least amount
of other variables in C. As soon as we find x, we take all literals containing x

on one side of the split, and all other literals on the other side. One advantage
of this method is that we know that the side of the split containing x cannot
be split any further, so we only have to continue splitting the other side. Our
heuristic seems to work well in practice, and works even for clauses with many
variables.

Term definitions In cases where literals contain deep ground terms we can
avoid introducing auxiliary variables, by introducing fresh constants as names
for the terms, and substituting the terms for their names.

Example 3 Flattening the clause { P(f(a, b), f(b, a)) } yields the clause:

{ a 6= x, b 6= y, f(x, y) 6= z, f(y, x) 6= w, P(z, w) }

This clause, which cannot be splitted (all variables are connected to each other),
contains 4 variables. However, if we first transform the original clause by intro-
ducing fresh names for its ground terms, we obtain the following satisfiability-
equivalent set of clauses:

{ t1 = f(a, b) }

{ t2 = f(b, a) }

{ P(t1, t2) }

If we now flatten these, we get the following three clauses:

{ a 6= x, b 6= y, f(x, y) 6= z, t1 = z }

{ a 6= x, b 6= y, f(y, x) 6= z, t2 = z }

{ t1 6= x, t2 6= y, P(x, y) }

These clauses each contain 3 variables; a significant improvement.

In the general case, a clause C[t] is translated into the clauses { a = t } and C[a],
where t is a non-constant ground term and a is a fresh constant, not occurring
anywhere else in the problem. In the clause C[a] only one variable needs to be
introduced for the constant a, in constrast to one for all subterms of t. Note
also that if the term t occurs in several different clauses in the problem, then
there only has to be one definition { a = t }, and the fresh constant a can be
reused by all clauses containing t.

3.5 Incremental Search

The most popular basic algorithm for SAT solving, the DPLL procedure [DLL62],
is a backtracking procedure based on unit propagation. Modern versions of the

39

algorithm usually also include several improvements, such as heuristics for vari-
able selection, backjumping, and conflict learning.

In our context, conflict learning is of particular interest. It allows the pro-
cedure to learn from earlier mistakes. Concretely, for each contradiction that
occurs during the search, the reason for the conflict is analysed, resulting in a
learned clause that may avoid similar situations in future parts of the search.
In this way, a set of conflict clauses is gathered during the search, represent-
ing information about the search problem. A conflict clause is always logically
implied by the original problem, and thus holds without any assumption.

As part of our tool Paradox, we have implemented a Chaff-style [MMZ+01b]
version of the DPLL algorithm1, extended with the possibility to incrementally
solve a sequence of problems. The idea is that we want to benefit from the
similarity of the sequence of SAT instances, generated by our propositional
encoding for each domain size. This is done by keeping the learned clauses
generated by the search for one instance, also for the next.

Here is a formalization of the kind of sequences of SAT problems that our
incremental SAT solver can deal with.

Definition 3 Given a sequence of sets of propositional clauses δi, and a se-
quence of sets of propositional unit clauses αi. Then the sequence ϕi, defined
as follows, is an incremental satisfiability problem.

ϕ1 = α1 ∪ δ1

ϕ2 = α2 ∪ δ1 ∪ δ2

ϕ3 = α3 ∪ δ1 ∪ δ2 ∪ δ3

. . .

That is, to move from one instance to the next, we have to keep all the general
clauses δi, but can retract and replace the unit clauses αi. The incremental
SAT algorithm we use represents the αi as assumptions, and not as constraints.
Therefore, we can keep all learned clauses from one instance and reuse them in
the next instance. This is because every learned clause generated by the conflict
analysis algorithm is implied by the subset (

⋃i

j=1 δj) of the problem instance.

Model Generation as Incremental Satisfiability In Section 3.3 we de-
scribed how to encode the problem of finding a model of a specific size into
propositional logic. It is easy to see that the encodings for different sizes have
much in common, but in order to specify it as an incremental satisfiability prob-
lem we need to be precise about what the difference is.

Given the SAT instance for a specific size s we want to create the instance
for the size s + 1. Then for the instances and function definitions, we can keep
all previous clauses, and we only have to add the new clauses that mention the
new domain element s+1. For the totality definitions however, we need to take
away the clauses and replace them with less restrictive clauses.

In order to fit this in the incremental framework mentioned above, we in-
troduce a special propositional variable ds for each domain size s. This variable
should be interpreted as “the current domain size is s”. Instead of adding a
totality clause as it is, we add a conditional variant of it, by adding ¬ds as a

1The SAT solver, called Satnik, is also a stand alone tool in itself

40

literal to each totality clause. When solving the problem for domains of size s,
we simply take ds being true as an assumption unit clause αs. This immedi-
ately implies the unconditional versions of the totality clauses. Then, if we find
a model, we are done. Otherwise, ds was apparently a too strong assumption,
and we thus retract the assumption αs, and add ¬ds as a top-level unit clause.
By doing this, we have effectively ”deactivated” the totality clauses for size s
by satisfying them, and are ready to add clauses for the next domain size s + 1.

Example 4 Assume that we have two constants a and b and a current domain
size of 2. Then the conditional totality definitions look like this:

{ a = 1, a = 2, ¬d2 }

{ b = 1, b = 2, ¬d2 }

The problem for size 2 is now solved by assuming d2. We can get to the problem
for size 3 by adding the following clauses:

{ ¬d2 }

{ a = 1, a = 2, a = 3, ¬d3 }

{ b = 1, b = 2, b = 3, ¬d3 }

Assuming d3 now gives the right totality clauses for size 3.

Effectiveness In our preliminary experiments, the method of incrementally
solving the model generation problem for increasing domain sizes decreases the
overall time spent in the SAT solver in many cases by at least a factor of 2. The
implementation of the SAT solver removes clauses that are trivially satisfied
because of the presence of other unit clauses. This mechanism takes care of
removing the reduntant totality clauses of previous sizes.

There are also some questions left to investigate, particularly which of the
learned clauses should be kept between instances. In general it slows the SAT
solver down too much to store all of them, apart from the fact that it is also
too space consuming. Currently we simply use our SAT solver’s basic heuristic
for learned clause removal, which is designed to work well for solving single
problems. It is likely that one could design other heuristics that would take
into account the fact that a clause that seems to be uninteresting in the current
part of the current search problem, in fact could be useful in the next problem
instance.

3.6 Static Symmetry Reduction

The way we have expressed the model finding problem in SAT implies that
for each model, all of its isomorphic valuations (i.e. the valuations we get by
permuting the domain elements) are also models. This makes the SAT problem
unneccessarily difficult. SEM-style methods use symmetry reduction techniques
such as the least number heuristic (LNH) [JZ96] and the extended least number
heuristic (XLNH) [AH01] in order to restrict the search space to particular
permutations of models. This is done while the search for a model is going
on, i.e. dynamically. In order not to have to change the inner workings of

41

the SAT-solver, we adapt some of the ideas behind these symmetry reduction
techniques, but implement them by adding extra constraints, which remove
symmetries statically.

Constant symmetries Let us start with the simple case, and only look at
the values of the constants occurring in the problem. If we order all constants
occurring in the problem in some arbitrary way, we get a sequence a1, a2, . . . , ak.
Suppose that we are searching for a model of size s. We now require that the
model we are looking for has a certain canonical form. This canonical form
corresponds to a certain permutation of the domain elements, namely such that
a1 = 1, and for all i > 1, ai = d only when there is a j < i such that aj = d− 1.
So, when picking a domain element for ai, we can either pick an element that
we have already seen, or a new element, which must be the least element in D
which we have not used yet. It is easy to see that every interpretation has an
isomorphic permutation where this is the case.

Adding this extra restriction implies that I(ai) ≤ i, which immediately gives
rise to the following extra clauses:

{ a1 = 1 }

{ a2 = 1, a2 = 2 }

{ a3 = 1, a3 = 2, a3 = 3 }

. . .

These clauses actually subsume the totality clauses for their constants. Also,
for any 1 < i ∈ D, and for 1 < d ≤ i ∈ D, we add the following clause, which
directly formulates the canonicity requirement:

{ ai 6= d, a1 = d− 1, a2 = d− 1, a3 = d− 1, . . . , ai−1 = d− 1 }

That is, ai can only get the value d if some previous constant already has used
the value d− 1.

This process can be adapted for an incremental search in the following way:
for each new model size, we add only those symmetry-reducing clauses that
contain the new domain element, and none of the greater elements. We never
take away any of the generated symmetry reduction clauses in the incremental
search.

Function symmetries If the problem only contains function symbols of arity
0, then the above clauses are enough to remove all symmetries. However, when
there are function symbols of higher arity, this is no longer easy to do statically.
We can however remove some of the symmetries by, in addition to the above
clauses, adding the following clauses for a function symbol f of arity 1, when we
are looking for models of sizes s greater than k (the number of constants). We
require that k > 0 (we just introduce an arbitrary constant when k = 0).

{ f(1) = 1, f(1) = 2, . . . , f(1) = k + 1 }

{ f(2) = 1, f(2) = 2, . . . , f(2) = k + 1, f(2) = k + 2 }

{ f(3) = 1, f(3) = 2, . . . , f(3) = k + 1, f(3) = k + 2, f(3) = k + 3 }

. . .

42

The rationale here is again that, in order to pick a value for a particular f(d),
we can simply use an element that we have already seen, or the least element
that has not been used yet.

Note that we add only one such clause for each size increase beyond k.
We have not investigated how to decide which function symbol to pick. In
our current implementation, we simply pick an arbitrary function symbol. In
principle it is possible to use a different function symbol in every clause. We
can also generalize the above for function symbols g of arity larger than 1, by
defining a fresh function f in terms of g by e.g. f(x) = g(x, x).

The resulting SAT problem, even though it is a little bit bigger than without
the symmetry reducing clauses, is often dramatically easier to solve, both in
cases where there is a model, and in cases where there is no model.

3.7 Sort Inference

When formalizing a problem in terms of unsorted FOL, there often exist different
concepts in the problem, which when finding a model, all have to be interpreted
using the same domain D. This can be quite unnatural, both when trying to
understand a model and when trying to find a model. Examples of these kinds
of concepts are points, lines, and planes in geometry problems, and booleans
and numbers in system descriptions. A ’typed’ version of FOL, Multi-Sorted
First Order Logic (MSFOL), requires these concepts, the sorts, to be explicit
in the formulation of the problem. It is well-known that sort information helps
searching for models. In this section, we describe how to use the sort informa-
tion, and, more interestingly, how to infer the sort information such that it can
be used for originally unsorted problems as well.

Sorted models In the MSFOL world, apart from predicate symbols and func-
tion symbols, there exists sort symbols A, B, C. Each function symbol f has an
associated sort sort(f) of the form A1 × · · · × Aar(f) → A, and each predicate
symbol P (except for =, which works on all sorts) has an associated sort sort(P)
of the form A1 × · · · × Aar(P). Moreover, in each clause, each variable x has an
associated sort sort(x) of the form A. These sorts have to be respected in order
to build only well-sorted terms and literals.

An MSFOL interpretationM consists of a domain DA for each sort A, plus
for each function symbol f a function I(f) : DA1×· · ·×DAar(f)

→ DA matching the
sort of f, and for each predicate symbol P a function I(P) : DA1×· · ·×DAar(P)

→
B, matching the sort of P.

We define the notion of satisfiability for MSFOL interpretations in the ob-
vious way: quantification of variables in clauses becomes sort-dependent.

Unsorted vs. sorted Now, since our objective is to find an unsorted model,
in order to make use of sorts, we must link unsorted models and sorted models
in some way. It is not automatically the case that if we find a sorted model,
there is also an unsorted model of the same problem. However, it is the case
that we can turn any unsorted model of a problem into a sorted model of the
same problem.

The basic observation is that any unsorted interpretation I with a domain
D can be turned into a sorted interpretation MI by taking DA = D for each

43

sort A, and by simply reusing all function and predicate tables from I. Now, for
a suitably well-sorted set of clauses S, we have that I satisfies S iffMI satisfies
S. So, the key idea is that when searching for an unsorted model I, we can just
as well search for the sorted modelMI , i.e. search for a sorted model where all
sorts have the same domain size.

The advantage of searching for a sorted model becomes clear in the following,
which is a more fine-grained version of the symmetry observation for unsorted
interpretations. Given an MSFOL interpretation M containing a domain DA

for a sort A satisfying an MSFOL clause set S. Given a set D′ and a bijection
π : DA ↔ D′, we construct a new interpretationM′ by replacing DA by D′ and
applying π in the obvious way. Now,M′ also satisfies S.

Sorted symmetry reduction We can now make the following refinement
of our earlier symmetry reduction method. Given a valid sort-assignment to
each function and predicate symbol, we can simply search for an MSFOL model
where the domains for each sort are the same, but we can apply symmetry
reduction for each sort separately. That is, for each sort, we create a sequence
of the constants of that sort, and we add the extra clauses mentioned in Section
3.6.

Example 5 Given a problem with three constants a, b, c and two sorts A, B,
where sort(a) = sort(b) = A and sort(c) = B, we get the following symmetry
reduction clauses:

{ a = 1 }

{ b = 1, b = 2 }

{ c = 1 }

Sort inference The big question is then: How do we get such a suitable sort-
assignment for a flattened unsorted clause set? The algorithm we use is simple.
In the beginning, we assume that all function symbols and predicate symbols
have completely unrelated sorts. Then, for each variable in each clause, we force
the sorts of the occurences of that variable to be the same. Also, we force the
sorts on both sides of the = symbol to be the same. This can be implemented
by a straight-forward union-find algorithm, so that the whole agorithm runs in
linear time. In the end, the hope is to be left with more than one sort.

We have found that this simple sort inference algorithm really finds multiple
sorts in about 30% of the (unsorted) problems occurring in the current TPTP
benchmark suite [SS07] over all, and in about 50% of the satisfiable problems
particularly.

Sort size reduction There is another way in which we can make use of the
inferred sort information in model finding. Under certain conditions, we can
restrict the size of the domains for particular sorts, which reduces the complexity
of the instantiation procedure.

Suppose that we have a sort A, and k constants a1, . . . , ak of sort A, but
no function symbols of arity greater than 0 which have A as their result sort.
Moreover, assume that we are not using the = symbol positively on terms of sort
A anywhere in the problem S, then the following holds. There exists an MSFOL

44

model of S with a domain DA of size k iff there exists an MSFOL model of S
with a domain DA of size greater than k. In other words, to find an MSFOL
model of S, we do not have to instantiate variables of sort A with more than k
domain elements. This can considerably reduce instantiation time for problems
where sorts are inferred.

The proof looks as follows. (⇐) If we have a model where DA has more than
k elements, there must be an element d which is not the value of any constant, so
we can safely take it away from the domain, and all function tables and predicate
tables will still be still well-defined. It is also still a model, since making a
domain smaller only increases the number of clause sets that are satisfied. (⇒)
If we have a model of S, then we can always add a new element d′ to DA by
picking an existing element d ∈ DA and making all functions and predicates
produce the same results for d′ as they do for d. The resulting interpretation
is still a model, because every literal evaluates to the same value for d′ as it
does for d. (However, this is only true for non-equality literals.) For negative
equality, making the domain bigger can only increase the number of clause sets
that are satisfied. This is not true for the use positive equality literals, which is
the reason why it is disallowed in the assumption.

(It is however possible to weaken the restriction on the use of positive equal-
ity. In order to be able to restrict the size of the domain of A, it is enough to
require that we do not use positive literals of the form x = y, where x and y are
variables of sort A. So, it is okay to use positive literals of the form t = t′ and
t = x, where t and t′ are not variables. In the latter case however, we generally
need to consider k + 1 elements instead of k.)

EPR problems A special case of sort size reduction is the case where the
problem is an Effectively Propositional (EPR) problem, i.e. no functions of
arity greater than 0 occur in the problem at all. In this case, each sort only
contains constants, and the number of constants k in the largest sort is an upper
bound on the size of models we need to consider. (This is independent of the
use of equality in the problem, since we only need the (⇐) part of the above
proof.) When no model of size up to k is found, we know there can be no model
of greater size, and therefore the problem must be contradictory. Thus we have
a complete method for EPR problems.

3.8 Experimental Results

We have implemented all the techniques in a new finite model finder called
Paradox. Here is a list of promising concrete results we have obtained so far
with our model finder:

• On the current TPTP version 2.5.0 [SS07], and with a time limit of 2 min-
utes for each problem, we can solve 90% of the satisfiable problems. This
is significantly better than last year’s CASC winner in the satisfiability
category on the same problems with a time limit of 5 minutes.

• Within a time limit of 10 minutes, we have solved 28 problems from the
current TPTP which currently have a rating 1.0 (i.e. Paradox is the first
to solve those problems), including 15 ”open” or ”unknown” problems
that were solved within seconds.

45

• With an older version of Paradox (using different term definitions heuris-
tics and SAT solver parameters), in the search for counter models for the
combinatory logic question if the fragment {B,M} posseses the fixed point
property, we have shown that there are no counter models of sizes smaller
than or equal to 10, which took us 9 hours. The previously known bound
was 7.

Our preliminary findings are that the techniques described in this paper strictly
improve on all known MACE-based methods. Also, they perform almost always
better than SEM-based methods on problems that contain more than just unit
equalities. SEM-based methods however are superior on most problems that
contain lots of unit equalities, such as group theory problems. Interestingly,
there are some exceptions, such as combinatory logic problems, where Paradox
seems to behave well.

3.9 Related Work

There are several tools that solve similar problems as we do, or use similar
techniques to the ones we use.

Eground [Sch01] is a tool that takes an EPR problem, i.e. a problem that
does not contain any function symbols of arity greater than 0, and generates a
SAT problem that is satisfiable iff the original problem is. Interestingly, Eground
has many of the same problems as a MACE-style model finder. Eground was
the first tool to perform non-ground splitting in order to reduce the number
of variables in clauses. Also, Eground performs an analysis that computes sets
of constants for each variable in a clause for which the variable should be in-
stantiated. The hope is that these sets are smaller than the set of all constants
in the problem. The analysis is somewhat similar to sort inference, with three
main differences. Our analysis also works for non-EPR problems, and also works
for problems containing equality. Eground’s analysis makes use of the sign of
predicate symbols, which makes it more precise in some cases.

Comparing Eground as an EPR solver with our proposed method of solving
EPR problems mentioned at the end of Section 3.7, it seems that they are
complementary. Assuming that no equality is used in the problem, and that the
analyses work equally well, and ignoring the symmetry reduction, we can make
the following rough observations. Given an EPR problem that is contradictory,
Eground’s method is probably going to win over ours since it immediately tries
the ”biggest” case, whereas our method will go through all smaller model sizes
first. Given an EPR problem that is satsifiable, it is very likely that it is not
needed to go all the way up to the biggest case, and that a smaller model can
be found much quicker.

MACE [McC94] is McCune’s first finite model finder. The basic idea behind
MACE is described in Section 3.3. Since it does not perform any variable
reduction techniques, there are many problems where MACE cannot deal with
largish domain sizes. It has its own built-in SAT solver which is currently not
up-to-date with the current state-of-the-art SAT technology.

SEM [JZ96], FINDER [Sla94], and ICGNS [McC03] are all SEM-based tools.
SEM and FINDER are specifically designed for sorted problems, whereas ICGNS
only works for unsorted problems. Comparing the symmetry reduction in SEM-

46

based tools with ours, we can say that their symmetry reduction works dynam-
ically, i.e. during the search they will always pick the smallest not-used domain
element when a new element is needed. We apply the symmetry reduction stat-
ically, which removes the same symmetries when picking values for constants,
but for functions, our extra function symmetry clauses do not remove as many
symmetries. Still, having a state-of-the-art SAT solver as the underlying search
engine seems to be superior in many cases once one is able to instantiate the
problem for the desired domain size. It will continually be useful to investigate
these complementary method’s strengths and weaknesses in order to understand
the problem area better.

Gandalf [Tam97] is a general theorem prover that also implements model
finding. Gandalf contains lots of different complementary algorithms for partic-
ular problem domains, which are, upon receiving a problem, scheduled, together
occupying all available time. For satisfiability, Gandalf provides saturation tech-
niques (that help finding cases with infinite models), SEM-style techniques, and
one MACE-style method. As far as we know, Gandalf was the first to use split-
ting techniques in MACE-style model finding. Gandalf was the winner of last
year’s CASC satisfiability division.

A more general approach to incremental SAT solving than what we use here
is used in the tool Satire [WKS01]. In Satire, one can take away and add
clauses arbitrarily. This requires extra bookkeeping to implement. Our method
requires one to decide on beforehand which clauses are going to be retracted.
Fortunately, Satire’s extra generality is not needed in our application, and our
simple, more efficient (but more restrictive) approach is enough.

3.10 Conclusions and Future Work

We have shown that MACE-style methods can be improved upon by incorpo-
rating symmetry reduction methods (inspired by well-known related work in the
SEM world), by adding them as static constraints to the generated SAT prob-
lem. The automatic inference of sorts in order to refine the symmetry reduction
turned out to be a very powerful tool in this context. We have also shown that
it is good to intimately integrate a SAT solver with the algorithm that uses it,
in order to get the most benefit out of it.

However, our work on reducing the number of variables in clauses by using
splitting methods and term definitions is, though very promising, only showing
the tip of the ice berg of what is left to do in the area. Our splitting heuristic
seems to perform well in practice, but it is unsatisfactory that it is based on re-
peated binary splits. We have not been able to formulate a ”most general” clause
hyper-splitting condition, which all correct splitting algorithms must obey; all
previous attempts have been too restrictive. This has made it impossible for
us to explore the design space of splitting algorithms in a satisfactory way. A
similar situation holds for the term definitions, where it is unclear exactly when
term definitions should be introduced. Ultimately we would like to integrate
splitting and term definitions in order to get the best of both worlds.

Other future work includes improving the sort inference algorithm which is
very simple at the moment. The problem can be thought of as a flow-analysis
problem from the field of program analysis, and much inspiration can be found
there. Also, we would generalize the sort inference to already sorted problems,

47

in order to find more fine-grained sort assignments than the sort-assignment
declared in the problem.

Another direction of research is to adapt clausification algorithms in order
to perform clausification, flattening, and splitting at the same time. The basic
decision a clausification algorithm must make is when to introduce a new name
for a subformula. This decision is guided by optimizing certain parameters of the
resulting problem, usually the number of resulting clauses or literals. We could
adapt such an algorithm to minimize number of variables per clause instead.

Some problems are inherently complex because they for example contain
predicate or function symbols with a huge arity. In order to even represent
(let alone search for) models of reasonable domain size would require too much
memory. One idea we have started to explore is to strengthen the original theory
by replacing the offending symbols by nested expressions containing function
symbols of much lower arity. If we find a model of the strengthened problem,
which might not exist anymore but is hopefully easier to do, that model can be
translated back into a model of the original problem. (Of course, introducing
these huge predicates is ultimately a modelling question; something that the
modeller of the original problem should think about.)

Lastly, we have looked at non-standard applications of our model finding
techniques in the fields of planning (where a found model represents a plan),
finite state system verification (where a found model represents a proof of the
correctness of the system), and general FOL theorem proving (where we use
finite models to approximate possible infinite models, and the absence of such
a finite approximation model beyond a certain precision represents the absence
of a model alltogether).

48

Chapter 4

Temporal Induction by

Incremental SAT Solving

Niklas Eén, Niklas Sörensson
Chalmers University of Technology and Göteborg University

Abstract

We show how a very modest modification to a typical modern SAT-
solver enables it to solve a series of related SAT-instances efficiently.
We apply this idea to checking safety properties by means of temporal
induction, a technique strongly related to bounded model checking.
We further give a more efficient way of constraining the extended
induction hypothesis to so called loop-free paths. We have also per-
formed the first comprehensive experimental evaluation of induction
methods for safety-checking.

49

4.1 Introduction

In recent years, SAT-based methods for hardware verification have become an
important complement to traditional BDD-based model checking. Several meth-
ods have proven their usefulness on a number of industrial applications, in par-
ticular bounded model checking (BMC) [BCCZ99, BCRZ99, CFF+01]. In this
paper we will focus our attention on how SAT-based verification procedures can
be implemented more efficiently by a tighter integration with the underlying
SAT-solver.

There are three main contributions of the paper. Firstly, we show how a
number of similar SAT-instances can be solved incrementally by a very mod-
est modification of a modern Chaff-like SAT-solver [MMZ+01b]. The technique
we propose is simpler than previous attempts [WKS01], while still obtaining a
performance increase of the same magnitude. Secondly, we demonstrate the in-
cremental technique on temporal induction [SSS00], a method of checking safety
properties on finite state machines (FSM). We show the impact of the incre-
mental approach experimentally, both for proving correctness and for finding
counter-examples. Thirdly, we refine the method of ensuring completeness for
temporal induction. The standard method works by requiring all states in the
induction hypothesis to be unique. By a simple analysis of the FSM, we are
able to exclude some state-variables from the uniqueness constraints, resulting
in stronger requirements. This may exponentially reduce the induction depth
needed. We prove that this strengthening is sound. Additionally, we demon-
strate a speed-up by adding the unique states requirement dynamically for only
those pairs of states where it is needed.

The experiments we have performed with our prototype tool TIP show that
many properties can be proven at speeds comparable to mature BDD-based
tools such as CADENCE SMV and CMU SMV.

4.2 Preliminaries

In this paper, we consider safety properties on finite state machines (FSM).
The states of the FSM are vectors of booleans, defining the values of the state
variables. We assume the FSM to have a set of legal initial states, and the safety
property to be specified as a propositional formula over the state variables.
By reachable state space we mean all states of the FSM reachable from the
initial states. Our task is to prove that the property holds for each state in the
reachable state space.

In a standard manner, we will assume the transitions of the FSM to be
represented by a propositional formula T(~s,~s′), the set of initial states by a
formula I(~s), and further denote the safety property by P(~s). We will use ~sn to
denote the state variables of time step n and introduce the shorthand notation
In, Pn, and Tn for I(~sn), P(~sn), and T(~sn, ~sn+1).

4.2.1 The SAT problem

Let Bool denote the boolean domain {0, 1}, and Vars := {x0 , x1 , x2 , . . .} be a
finite set of boolean variables. A literal is a boolean variable xi or a negated
boolean variable xi. A clause is a set of literals, implicitly disjoined. A SAT

50

instance is a set of clauses, implicitly conjoined. A valuation is a function
Vars → Bool . A literal xi is said to be satisfied by a valuation if its variable
is mapped to 1; a literal xi if its variable is mapped to 0. A clause is said
to be satisfied if at least one of its literals is satisfied. A model (satisfying
assignment) for a SAT instance is a valuation where all clauses are satisfied.
The SAT problem is to find a model for a given set of clauses.

Converting formulas to SAT. There are several ways of translating a proposi-
tional formula into clauses, in such a way that satisfiability is preserved. This is
typically done by introducing auxiliary variables giving names to some or all sub-
formulas, then generating clauses that establish a definitional relation between
the introduced variables and the truth-values of their respective subformulas.
Any model for the translated problem (which contains more variables) has the
property that its restriction to the original set of variables yields a model for
the original formula. We assume the existence of such a translation technique
and introduce the following notation:

Definition. By [ϕ]p we denote a set of clauses defining ϕ such that p is
the literal representing the truth-value of the whole formula. We call p the
definition literal of ϕ. Further, we write [ϕ] as a short hand for [ϕ]p ∪{p}.

For example [x∧y]p may be translated into the clauses { {p, x}, {p, y}, {p, x, y} }.

4.2.2 Temporal Induction

This section briefly summarizes the verification technique temporal induction
presented in [SSS00].1 The word “temporal” suggests that the induction is
carried out over the time steps of the FSM. Like a standard induction proof, a
temporal induction proof consists of two parts: the base-case and the induction-
step. In its simplest form, the base-case states that the property should hold in
the initial states; and the induction-step states that the property should be pre-
served by the transitions of the FSM. Expressing the two parts of the induction
proof as SAT-problems is straight-forward—still, the resulting method is al-
ready an interesting complement to BDD-based verification methods, especially
for systems where the transition relation has no succinct BDD-representation.
However, the method is not complete, since the induction-step might not be
provable even though the property is true.

To make the method complete, the induction-step is strengthened in two
ways. Firstly, the property is assumed to hold for a path of n successive states,
rather than just one. This means that a longer base-case must be proven.
Secondly, the states of the path are assumed to be unique. It follows immediately
from finiteness that the second strengthening makes the method complete in
the sense that there is always a length for which the induction-step is provable.
Soundness is treated in detail in section 4.4. Let us formalize the strengthened
induction by defining the following formulas:

1The authors use only the word “induction” in this presentation, but have later adopted
the term “temporal induction” and used it in other contexts.

51

T T T TT

P P P ¬PI, P

P P PP

T T T TT T

¬PP

Base−case

Induction−step

Figure 4.1: If the n-th base-case is unsatisfiable, it should be read as “There exists no n-step
path to a state violating the property, assuming the property holds the first n − 1 steps.” If
the n-th induction-step is unsatisfiable, it should be read as “Following an n-step trace where
the property holds, there exists no next state where it fails”.

Basen := I0 ∧
(

(P0 ∧T0) ∧ . . . ∧ (Pn−1 ∧Tn−1)
)

∧ Pn

Stepn :=
(

(P0 ∧T0) ∧ . . . ∧ (Pn ∧Tn)
)

∧ Pn+1

Uniquen :=
∧

i≤j≤n

(~si 6= ~sj+1) =
∧

i≤j≤n

∨

k

¬(si,k ↔ sj,k)

An interpretation of these formulas is depicted in Fig. 4.1. Note that when
proving correctness we show that the formulas are unsatisfiable. In the base-
case we assume that all shorter base-cases have been proved already, and add
the property to each state as this tends to make the resulting SAT-problem
easier. With these definitions, we can now state an algorithm that intertwines
looking for bugs of longer and longer lengths, and trying to prove the property
by deeper and deeper induction-steps:

Algorithm 1. “Temporal Induction”.

for n ∈ 0..∞ do

if (satisfiable([Basen]))
return property fails

if (¬satisfiable([Stepn] ∪ [Uniquen]))
return property holds

Variations of this algorithm are also meaningful. For instance, checking only the
base-case gives a pure bug-hunting algorithm, which delivers counter-examples
more quickly. By altering the formula of the base-case slightly, it is possible
to start at a higher n and taking bigger leaps than 1. Checking every size of
n may be unnecessarily costly. If the bug or proof is deep, taking bigger leaps
means solving fewer SAT-problems. However, if there is a bug, Algorithm 1 (as
stated) will always find a shortest counter-example. This may be important. In
the remainder of the article, we will show how the cost of incrementing n by
only 1 can be greatly reduced by solving the SAT-problems incrementally.

52

4.3 Incremental SAT

A typical stand-alone SAT-solver accepts a problem instance as input, solves
it, and outputs a model or an “Unsatisfiable” statement as result. This can be
inadequate if you wish to solve many similar SAT-instances. The most obvious
overhead is re-parsing the (almost) same clause set over and over again. But
more importantly, the same, often expensive, inferences may be carried out
over and over again. Equipping the SAT-solver with an interface that allows
the next SAT-instance to be specified incrementally from the current (solved)
instance will certainly remove the parsing problem, but may reduce the number
of inferences too.

We focus on the type of solver introduced by [SS96], based on conflict analy-
sis and clause recording.2 Such a solver implements a DPLL-style backtracking
search procedure [DLL62]. The idea behind augmenting the basic procedure
with conflict analysis is that for every conflict detected during the search, some
effort is spent on finding a reason for the conflict that can be encoded as a
clause and added to the clause set. The recorded clauses will serve as a cache
for the same type of conflicts in later parts of the search-space. For example, if
assuming x and y to be true led to a conflict, the clause {x, y} may be recorded.
Assuming either x or y to be true in some later part of the search-tree, will
immediately give the implied value to the other variable, avoiding repetition of
the possibly lengthy derivation. The effectiveness of this idea has been empir-
ically established by many authors. A motivation for incremental SAT is that
the recorded clauses may not only be useful in later parts of the search-tree of
the same SAT-instance, but also in a later similar SAT-instance.

To describe the different design issues encountered when implementing an
incremental SAT-system, we adopt an object-oriented view, using a solver ob-
ject which stores the problem clauses (the current SAT-instance) as well as the
learnt clauses (the recorded clauses). The solver has methods for modifying
and solving the current SAT-instance. The simplest imaginable interface would
contain the following methods:

addClause (Clause c) – will add a clause to the clause database.
solve – will solve the current instance.

Using this interface, the user is allowed to add clauses until he has specified the
first SAT-problem. He can then use solve to check if the problem is satisfiable
or not. If it is, he may add more clauses to constrain the problem further and
re-run solve. This procedure can be repeated until all SAT instances of interest
have been solved. Typically the last instance is unsatisfiable, from which point
no extension can be satisfiable.

This approach to incremental SAT, introduced in [Hoo93], is limited as the
user can never remove anything added. Many interesting incremental SAT-
problems requires some form of clause removal. Therefore [WKS01] suggested
the following interface to the solver:

addClause (Clause c)
removeClause (Clause c) – will remove an existing clause from the
solve clause database.

2This includes SAT-solvers such as: GRASP, SATO, ZCHAFF, LIMMAT, BERKMIN, and the
authors’ own solvers SATNIK and SATZOO.

53

By this interface, any set of related problems can be solved incrementally. How-
ever, the ability to remove clauses clashes with conflict clause recording. The
conflict analysis is guaranteed to produce clauses that are implied by the prob-
lem clause set; thus adding these clauses can never cause unsoundness. But
removing problem clauses may suddenly render recorded clauses invalid. A de-
tailed dependency analysis must therefore be carried out to remove the invalid
clauses, which in turn may require extra book-keeping during the actual solving
process. For a longer treatment of this approach see [WKS01].

In contrast, we propose the following interface which only enables the re-
moval of unit clauses. The motivation is that it is very simple to implement
(5 lines of code in our solver), while being expressive enough to encompass
several interesting incremental SAT-problems not expressible by the original
interface:

addClause (Clause c)
solve (list〈Literal〉 assumptions)

The extra list of literals passed to solve should be viewed as unit clauses to be
added during this particular solving, then removed upon return from the solver.
The reason the approach is simpler is that all learnt clauses are safe to keep,
and thus no extra book-keeping is needed. To see why it is safe, note that the
extra unit clauses can be seen (and implemented) as internal assumptions by
the search procedure, and that it is an inherent property of conflict clauses that
they are independent of the assumptions under which they occur.

Furthermore, general clause deletion can be simulated to a large extent. By
inserting the clause {x}∪C, and passing x as an assumption literal, we achieve
the same effect as inserting C. Asserting x to be true afterwards will make
the clause true forever, and it will be removed from the clause database by the
top-level simplification procedure of the solver.

4.4 Incremental Induction

In section 4.2.2 we saw a straight-forward algorithm for proving or disproving
safety properties by induction. We break this algorithm into two parts, the
base-case (“bug-finder”) and the induction-step (“upper-bound prover”), and
show how they can be implemented incrementally using the SAT-interface of
section 4.3.

Algorithm 2 “Extending base”.

addClauses([I0])
for n ∈ 0..∞ do

addClauses([Pn]pn)
solve({pn})
if (Satisfiable)

return property fails

addClause({pn})
addClauses([Tn])

Algorithm 3 “Extending step”.

addClauses([P0])
for n ∈ -1..−∞ do

solve({})
if (Unsatisfiable)

return ind. step holds

addClauses([Tn])
addClauses([Pn])
for i ∈ 0..n+1 do

addClauses([~si 6= ~sn])

54

A first observation on these algorithms is that they build the trace of states
related by the transition relation in different directions (n is decremented in the
step). Growing the trace forwards in the base-case allows us to keep the often
strong formula I0 fixed in the SAT-solver. Building the trace in the opposite
direction would force us to put the initial state constraints as an assumption
literal to “solve”, which will have the undesirable effect of making any recorded
conflict clause depending on the initial state ineffective in successive iterations.
Similarly in the step, growing the trace backwards makes it unnecessary to use
any assumption literal at all, which again promotes reuse of recorded clauses
between iterations.

Different top-level strategies for how to combine the two algorithms to a
safety-checking procedure are possible. To emulate Algorithm 1 of section 4.2.2,
the algorithms could be run in parallel, each with its own solver instance. As
soon as the induction-step succeeds for a particular length, an unsatisfiable
base-case of that length will constitute a proof of the safety property. However,
it is also possible to mix the two algorithms into one. We will then have to
break the natural direction of building the trace for either the base-case or the
induction-step. We arbitrarily chose to sacrifice the induction-step.

Algorithm 4 “Zig-zag”.

addClauses([I0]
z) – z is the definition literal for I0

for n ∈ 0..∞ do

addClauses([Pn]pn) – pn is the definition literal for Pn

solve({pn}) – step: do not include I0
if (Unsatisfiable) – Pn must hold!

return property holds

solve({z, pn}) – base-case: include I0
if (Satisfiable) – counter-example found!

return property fails

addClause({pn}) – assert Pn from now on
addClauses([Tn]) – assert transition from ~snto ~sn+1

for i ∈ 0..n-1 do – add uniqueness constraints
addClauses([~si 6= ~sn])

The reason for stating this algorithm is partly to show that there is many
possible ways of encoding the safety-checking procedure incrementally. With
this algorithm, the SAT-solver is allowed to share conflict clauses between the
base-case and the induction-step, which may be beneficial. We include the
algorithm in our benchmark section.

4.4.1 Discussion

We will now try to draw a map over possible induction based safety-checking al-
gorithms. Let us use the term bad state for a state were the safety property does
not hold. It is generally observed that checking safety properties is symmetric
with respect to the initial states and the bad states. Everything presented up
to this point could have been carried out backwards, with the roles of initial
states and bad states exchanged, and the transition relation inverted. We are
going to adopt this symmetrical view from now on.

55

In this view, we regard the induction-step as a method of finding an upper
bound on the length of a shortest counter-example, and the base-case as a way
of producing the counter-example. Now, what must a shortest counter-example
look like? It has to start in an initial state, it has to end up in a bad state, and
the states in between must not be either initial or bad (otherwise it could not
be a shortest counter-example). Using B (bad) for P we can view the set of
possible shortest counter-examples pictorially:

length 0: IB

length 1: IB
T
⌢ IB

length 2: IB
T
⌢ I B

T
⌢ IB

length 3: IB
T
⌢ I B

T
⌢ I B

T
⌢ IB

. . .

length n: IB
T
⌢ I B

T
⌢ I B

T
⌢ . . .

T
⌢ I B

T
⌢ IB

Each line depicting a (shortest) counter-example corresponds to a conjunction
of constraints (I0 ∧T0 ∧B1 ∧ I1 ∧T1 ∧ . . .). There is a lot of sharing between
the counter-examples of different lengths, and indeed if we remove either the
initial I or the final B from the n-th counter example, i.e.:

(1) B
T
⌢ I B

T
⌢ . . .

T
⌢ I B

T
⌢ IB

or (2) IB
T
⌢ I B

T
⌢ . . .

T
⌢ I B

T
⌢ I

then any counter-example of length n or longer will include all the constraints
of (1) and (2). This means that if either the constraints of (1) or (2), or any
subset of these, yields an unsatisfiable problem, then so will all possible shortest
counter-examples of longer lengths. Thus we have found an upper bound on the
shortest counter-example.

The picture above does not contain all constraints derivable from the fact
that we are considering a shortest counter-example. We can further conclude:

1. Between no two states is there a shorter path.

or weaker 2. Between no two non-neighbors is there a transition
(and the last state is unique).

or weaker 3. No two states are the same.

Any of these facts can be used when proving an upper bound. As long as we
keep adding constraints that must be fulfilled by shortest counter-examples,
any contradiction reached means we have established an upper bound. The
reason for stating weaker versions of the shortest-path requirement is that these
versions can be implemented more efficiently. Furthermore, we have already
noted that the third condition is enough to make the procedure complete. In
the next section we describe how the implementation of this condition can be
improved.

Taking this subset-of-counter-example view, the induction-step we have used
in our algorithms can now be viewed as selecting the subset of (1) not contain-

56

ing any I:s but including the uniqueness constraints dictated by condition 3.3

Through experiments we found that this choice worked well in practice.

Finding a counter-example. If the user knows or has reason to believe that the
property is false, he may want to run just the base-case to quickly produce a
counter-example. In this case, it is less clear if any extra constraints should be
added to the trace. In Algorithm 1 and 2 we chose to add P. More constraints
mean more clauses in the solver, which leads to slower propagation, but also to
a smaller search-tree. Which of the two effects is predominant in a particular
case is hard to judge. In general, adding weak constraints is seldom a good idea.

Present BMC tools can optionally produce a SAT-problem stating that the
property fails among the first n steps rather than after exactly n steps. Care
must be taken before adding extra constraints to such formulations. For in-
stance, one can no longer require the states to be unique. One must also assume
(or modify) the transition relation to always have a next state; or risk getting
an unsatisfiable problem due to deadlock, even in the presence of a bug. A
comparison between this “one-shot” method and the incremental base-case is
included in our experiments.

4.4.2 Improving the Unique States Requirement

The uniqueness constraints described in section 4.2.2 and used in Algorithm 1,
3 and 4 require each pair of states to be different. These requirements are
statically added, and their number will grow quadratically in the length of the
induction-step. For problems requiring high induction length, there is a risk of
adding numerous possibly superfluous constraints that will tax the SAT-solver
heavily. We propose a dynamic approach where the models returned by the
solver in the induction-step are examined, and only if two states are actually
equal, a constraint stating that they should be different is added. The solver
must then be run again, which may possibly cost more than adding superfluous
constraints, but hopefully the incrementality of the approach means that any
re-run is very quick. We verified experimentally that the method indeed seems
to perform better in general.

A question that has not been treated sufficiently in earlier presentations on
induction is what variables should be included in the uniqueness constraints.
It is not unusual to describe the FSM in the form of a sequential circuit. The
standard interpretation of a circuit is to consider both the latches (the state
holding elements) and the inputs as state variables of the FSM. However, it is
fairly clear that there is no need to include inputs in the uniqueness constraints.
If two states are equal except for the inputs, whatever value the inputs assume
in the second state, they could have assumed in the first. It is therefore safe to
require only the latch-variables do be different—a much stronger condition. In
fact, this is often what is implemented [CS00]. Note that failing to remove the
superfluous state variables from the uniqueness constraints gives an ineffective
induction algorithm, as each extra state variable has the potential of doubling
the depth needed to prove the step.

If on the other hand the FSM is given as two propositional formulas I and

3The recurrence diameter introduced in [BCCZ99] can similarly be viewed as the subset
containing only the T:s together with uniqueness constraints.

57

T it is less clear what variables can be excluded.4 We propose the following
solution:

1. Include only variables occurring both in the current and the next
state of the transition relation.

2. Do not add uniqueness constraints including the first or the last state
of the trace.

We refer to uniqueness constraints over this reduced set of state variables as
strong uniqueness.

Correctness. We will now prove that temporal induction with strong uniqueness
is sound. Recall that the induction-step can be strengthened by anything that
holds for a shortest counter-example. It then suffices to show that a counter-
example that is not strongly unique cannot be shortest. Let us introduce the
following notation:

~si
left := vars(Ti) ∩ ~si ~si

in := ~si
left \ ~si

right

~si
right := vars(Ti−1) ∩ ~si ~si

out := ~si
right \ ~si

left

~si
reg := ~si

left ∩ ~si
right

Let M be the model of a formula encoding a counter-example of depth n:

M |= I0 ∧ T0 ∧ T1 ∧ . . . ∧ Tn−1 ∧ Bn.

We now show by construction that ifM |= (~si
reg = ~sj

reg) for some 0 < i < j < n
(M is not strongly unique) then there is a shorter counter-example. DefineM′

over {~s0, . . . , ~sn−(j−i)} as follows:

M′(~sk) = M(~sk) ,k < i
M′(~sk) = M(~sk+(j−i)) ,k > i

M′(~si
in) = M(~sj

in)

M′(~si
out) = M(~si

out)
M′(~si

reg) = M(~si
reg)

M′ now constitutes a counter-example of depth n− (j− i). We have contracted
the counter-example by simply removing all states between i and j (depicted in
Fig. 4.2). The only potential problem lies in the “gluing” of the head and the
tail at state i. However, the only constraints containing ~si are Ti−1 and Ti. But
Ti−1 does not contain any variables from ~si

in , so letting M(~si
in) 6= M′(~si

in)
cannot make Ti−1 false in M′. Similarly for Ti which does not contain any
variables from ~si

out . Finally M(~si
reg) = M(~sj

reg), so indeed M′ must be a
model for the constraints Ti−1 and Ti. �

The proof can easily be extended to establish that the exclusion of the first and
the last state is superfluous if all variables of I occur in the next state of T and
all variables of B occur in the current state of T.

4The result of parsing an SMV file often leaves you with just this.

58

T
i−1

T
i

.

T
i−1

.

T
j

sin
i−1

si−1
reg

sout
i

sreg
j+1

sout
j+1

sin
jsin

i−1

si−1
reg sreg

i

sout
i

sin
j

sreg
j sreg

j+1

sout
j+1

sreg
i

M’:M:

Figure 4.2: The picture shows the contraction of the counter-example M to M′. The state
variables constrained by the transition relations at the point of “gluing” are printed in the
boxes; the remaining trace is represented by the “. . .”.

4.5 Experimental Results

The ideas presented in this paper were implemented in the prototype tool TIP5

which was integrated with the SAT-solver SATZOO. All benchmarks were per-
formed on a 2 GHz Pentium 4 with 512 MB of memory running Linux. We set
the time-out for all launches to 10 minutes, and the memory limit to 400 MB.
The benchmarks were collected from several sources. In the tables, each bench-
mark name is tagged with the source of the problem:

cadence – Example files from the CADENCE SMV distribution.
cmu – Example files from the CMU SMV distribution.
ken – SMV case studies from Ken McMillan’s web-page.
nusmv – Example files from the NUSMV distribution.
vis – Example files from the VIS distribution.
texas – The Texas 97 benchmarks from Berkeley University.
eijk – ISCAS’89 sequential equivalence checking from [vE98].
irst – Problems from the Model Checking Group at IRST.

All problems were converted to flat SMV-format with only boolean variables
and no sub-modules. For each problem, the safety properties were extracted.
In this process, CTL formulas “EF” were changed into “AG¬” and all fairness
constraints were removed. Different properties for the same system are indicated
by a subscript after the system name.

Counting each property as a separate instance, a total of 185 problem in-
stances were collected. As our first experiment, we ran TIP, CADENCE SMV,
CMU SMV, and NUSMV on each of these instances. All tools were run with
a default set of options, providing no problem specific variable ordering:

Tip filename
CadSMV filename
CmuSMV -reorder filename
NuSMV -AG -dynamic -coi filename

Instances solved in less than 1 second by all tools were considered trivial and
removed, leaving 158 instances.

Comparison with BDD-tools. The result of the comparative experiment is
presented in Table 1. The default strategy of TIP runs the base-case and the

5The tool TIP, the SAT-solver SATZOO and all benchmarks used in this article can be
downloaded from http://www.cs.chalmers.se/∼een/

59

induction-step presented in Algorithm 2 and 3 in parallel, each with its own
solver instance. The two algorithms are given equal amount of CPU time, until
the point where either the base-case fails, and a counter-example is found, or
the induction-step is proven, and the remaining base-cases (if any) are proved
with 100% CPU.

The purpose of the experiment was to relate the performance of induction
to industrially applied methods, and to show the (lack of) correlation between
hardness for BDD-based methods and hardness for induction-based methods.
TIP was able to solve 6 instances where BDD-based verification failed, showing
that induction may be a valuable complementary method.6

Effect of incrementality. The second experiment we performed was a com-
parison of Algorithm 2 and 3 using the incremental interface of SATZOO and
using SATZOO as an external solver. In this experiment, we used only problem
instances where the property held. The result is presented in Table 2.

The experiment establishes a substantial speed-up by the incremental ap-
proach. Unsurprisingly, the gain was larger for instances where a long induction-
step was needed to prove the property.

From the table we can also see that the induction-step usually takes longer
to prove than the base-case. We observed the same behavior for instances where
the property failed (although not presented here). This is the reason the default
strategy of TIP does not increase the lengths of the step and base evenly, but
instead devotes the same amount of CPU to each. Otherwise, bugs may not be
found due to hard (and futile) induction-steps.

One solver instance or two. The third experiment compared Algorithm 4
(“Zig-Zag”) using one solver instance to running the induction-step and the
base-case in separate solver instances. (“Dual”). In this experiment, the step
and the base were incremented evenly so that both methods would solve only
the minimal number of SAT-instances. We also include the standard implemen-
tation of (complete) induction as presented in [SSS00]. The results are also in
Table 2.

The experiment suggests that separate solver instances for the base and
the step is favorable. From the table we can also see that the incremental
implementation of induction clearly outperforms the standard implementation.

BMC Comparison. In the fourth experiment, we compared incremental
search for counter-example to the “one-shot” approach described in section
4.4.1. The result is presented in Table 3. The experiment shows that often
you must know the exact length of a shortest counter-example for the one-shot
method to be advantageous.

6These problems were all “TCAS II” problems from the NUSMV distribution, originally
used in “Model Checking Large Software Specifications” [CAB+98].

60

Tool Solved Alone in
(of 158) solving

CADENCE SMV 131 5
TIP 92 6
CMU-SMV 90 0
NUSMV 73 0

Table 1. Tool comparison. The left column shows the total number of solved instances
within 10 minutes. The right column show how many of these instances no other tool
could solve. CADENCE SMV excelled by proving 22 instances that neither of the two
other SMVs could prove, and 39 more instances than TIP. Still only 5 instances were
unique, as TIP solved many of the problems where NUSMV and CMU-SMV failed,
plus 6 that CADENCE SMV did not solve.

Name Len Stepinc Stepext Baseinc Baseext Dual ZigZag StdInd

cmu:periodic 97 70.7 [>600] 10.7 141.8 80.9 [>600] [>600]

eijk :S208c 259 448.0 [>600] [>600] [>600] [>600] [>600] [>600]

eijk :S208o 258 483.2 [>600] [>600] [>600] [>600] 564.2 [>600]

eijk :S208 259 436.7 [>600] [>600] [>600] [>600] 503.7 [>600]

eijk :S298 59 27.7 [>600] 34.9 96.2 62.9 316.1 [>600]

eijk :S510 11 5.2 8.0 0.5 0.9 5.9 7.4 10.1
eijk :S820 12 6.1 22.9 6.4 12.5 12.6 20.2 30.1
eijk :S832 12 7.6 28.2 5.8 12.9 13.4 25.1 35.2
eijk :S953 8 1.7 4.2 0.1 0.2 1.9 4.2 4.4
ken:oop1 30 39.4 [>600] 0.3 7.4 39.9 492.0 254.0
nusmv :guidance1 11 2.8 10.2 0.8 3.4 3.5 3.9 11.1
nusmv :guidance7 28 120.3 [>600] 315.0 [>600] 438.9 [>600] [>600]

nusmv :tcas2 7 1.3 3.1 0.2 0.3 1.5 1.9 4.3
nusmv :tcas3 6 1.3 3.3 0.0 0.1 1.3 1.8 3.2
texas:parsesys2 4 12.2 13.5 0.2 0.2 14.7 12.5 7.8
vis:prodcell12 30 256.6 [>600] 112.8 445.5 367.3 [>600] [>600]

vis:prodcell13 9 4.6 12.4 0.1 0.6 4.8 3.7 14.7
vis:prodcell14 17 31.3 185.1 7.3 14.2 38.7 52.3 219.9
vis:prodcell15 24 109.3 [>600] 23.0 80.1 132.4 216.7 [>600]

vis:prodcell16 6 2.1 4.1 0.0 0.1 2.1 1.2 4.7
vis:prodcell17 28 211.3 [>600] 52.4 277.5 265.0 [>600] [>600]

vis:prodcell18 14 21.4 117.9 0.4 3.2 21.8 28.6 128.9
vis:prodcell19 23 61.6 457.0 23.4 86.0 85.0 178.5 [>600]

vis:prodcell24 38 391.9 [>600] [>600] [>600] [>600] [>600] [>600]

Table 2. Experimental results for the effect of incremental SAT vs. external SAT. All
times are in seconds. The experiment includes all instances where the property was
proved to hold in in the first experiment. Launches where all methods took less than 3
seconds have been left out. “Dual” stands for running one iteration of Alg.2 and Alg.3
interchangeably; “ZigZag” refers to Alg.4 ; “StdInd” stands for standard induction
with all uniqueness constraints statically added and using an external SAT-solver.

61

Name Length Incremental Perfect 25%-off
BMC Guess Guess

nusmv :tcas1 11 3.6 3.7 5.0
nusmv :tcas4 15 9.7 9.7 18.2
nusmv :tcas5 24 48.7 40.1 125.2
nusmv :tcas6 17 13.6 13.5 38.2
texas:parsesys1 10 9.3 0.8 1.1
texas:parsesys3 9 3.3 0.7 0.9
texas:two-proc2 16 4.7 1.0 2.9
texas:two-proc4 20 20.9 1.8 9.1
vis:eisenberg 20 20.7 18.1 79.1

Table 3. Experimental result for incremental BMC vs. SAT-instances of fixed length.
All times are in seconds. “Perfect Guess” means the SAT-instance encode “there is a
bug of length ≤ k” where k is the length of the shortest counter-example. “25%-off”
means k is multiplied by 1.25. Launches where all methods took less than 3 seconds
have been left out.

Name Len Timed Times Band Bans Claud Claus Confd Confs

cmu:periodic 97 70.7 120.4 0 4656 455k 908k 15k 14k
eijk :S208 259 436.7 [>600] 258 [>20000] 186k - 76k -
eijk :S298 59 27.7 66.6 114 1653 69k 296k 24k 25k
ken:oop1 30 39.4 50.4 113 406 67k 101k 32k 30k
nusmv :guidance7 28 120.3 66.9 0 378 151k 276k 56k 28k
vis:prodcell12 30 256.6 252.7 0 406 346k 439k 48k 43k
vis:prodcell14 17 31.3 41.7 0 120 189k 217k 11k 13k
vis:prodcell15 24 109.3 134.3 0 253 273k 330k 29k 29k
vis:prodcell17 28 211.3 253.6 0 351 322k 400k 45k 46k
vis:prodcell18 14 21.4 25.5 0 78 153k 171k 10k 10k
vis:prodcell19 23 61.6 71.9 0 231 260k 311k 18k 18k
vis:prodcell24 38 391.9 490.1 0 666 440k 588k 60k 61k

Table 4. Experimental results for dynamic vs. static uniqueness constraints in the
induction-step. All times are in seconds. Launches taking less than 10 seconds or
having shorter length than 5 has been left out. A superscript “d” means dynamic (on
demand) adding of uniqueness constraints. A superscript “s” means static adding of
uniqueness constraints between all pairs of states. “Ban” is the number of constraints
added (banning two states from being equal). “Clau” is the final number of clauses in
the solver. “Conf” is the total number of conflicts in the search-tree of the solver. Only
three problems actually needed uniqueness constraints to be provable, and in almost all
other cases it incurred a cost to add them. For the three cases where the constraints
were necessary, adding them dynamically lead to a speed-up. Without uniqueness
constraints these three problem are not provable by induction. The dynamic method
thus saves the user from guessing for each problem if uniqueness constraints should be
used or not without incurring any extra cost.

62

Uniqueness constraints. In the final experiment, we studied the effect of
adding uniqueness constraints dynamically and statically, including both in-
stances where the constraints must be added, and instances which are provable
without uniqueness constraints. The result is presented in Table 4.

The effect of sharpening the constraints by removing variables are not pre-
sented, as it is clearly advantageous. A study of the “eijk” equivalence checking
problems, where 9 out of 13 need uniqueness constraints, showed that none of
these could be solved within the time-bound without sharpening.

4.6 Related Work

Incremental BMC was independently introduced by Ofer Strichman in [Sht01]
and Sakallah et. al. in [WKS01]. Our approach differs from previous at-
tempts in that we keep all clauses from previous iterations (including conflict
clauses). Moreover, we complete the method with incremental temporal in-
duction. Strichman’s work further includes several techniques to enhance the
SAT-solving of BMC problems, including internal constraints replication for
copying invariant conflict clauses between the time steps of the trace, and BMC
specific variable decision strategies [Str00].

Related techniques for proving upper bounds for BMC are presented in
[KS03a] (computing the recurrence diameter) and [BKA02] (approximating the
diameter by structural analysis). In particular, the authors of [KS03a] suggest
another solution to the quadratic blow-up of uniqueness constraints by adding
a sorting network for the state variables to the SAT-problem.

4.7 Conclusions

Temporal induction has been used before to prove upper bounds for BMC
[SSS00]. In these efforts, the authors established it too costly to gradually in-
crease the depth of the induction proof using an external SAT-solver. We have
shown that integrating the SAT-solver and the induction procedure overcomes
this cost. Furthermore, we sharpened the unique-states constraints by a syn-
tactic analysis on the transition relation; an improvement that was absolutely
necessary for many of our benchmarks to go through.

By extensive testing we further reinforced the view that induction is an
important complement to BDD-based methods for safety-checking. The com-
bination of techniques presented in this paper results in what the authors be-
lieve to be the first efficient and complete induction based checker produced
by academia. Enabled by the incremental SAT-interface, we explored an on-
line method of adding uniqueness constraints on demand. To a large extent
the method saves the user from deciding manually whether or not to add these
constraints, making temporal induction a more push-button technique.

As a side-effect of implementing temporal induction incrementally, we got
an incremental BMC for safety properties. The efforts on incremental BMC
by [Sht01, WKS01] was based on extensive adaptation of the underlaying SAT-
solver. We have shown that results of the same magnitude can be achieved by
a much smaller modification of the solver. A standard way of applying BMC
is to generate a single SAT-problem encoding the presence of a bug within k

63

time steps. We have compared this method to iterating up to k incrementally
and found that the incremental approach was faster in most cases, even if k was
specified as close as 25% above the length of a shortest counter-example.

4.8 Future Work

The single most significant factor for the success of temporal induction is the
induction depth needed. We therefore believe the most important direction of
research is towards methods of automatically strengthening the induction-step
in order to reduce this depth. A successful method achieving this was presented
in [vE98, BC00]. It works by finding invariant equivalences or implications
between the state variables and internal points. Casting this method into our
incremental system looks very promising. Stronger constraints on the shape of
a shortest counter-example were suggested in [SSS00], but have not yet been
successfully applied. We would like to investigate if a dynamic approach similar
to that we used for uniqueness constraints might be helpful.

Finally, there are many possible ways of tuning the SAT-solver to incre-
mental temporal induction. In particular, we wish to explore native uniqueness
constraints, as well as the methods presented in [Str00, Sht01] for specialized
variable orderings and constraint replication.

64

Chapter 5

Applying Logic Synthesis

for Speeding Up SAT

Niklas Eén
Cadence Berkeley Labs, USA

Alan Mishenko
University of California Berkeley, USA

Niklas Sörensson
Chalmers University of Technology and Göteborg University, Sweden

Abstract

SAT solvers are often challenged with very hard problems, which
remain unsolved after hours of CPU time. The research community
meets the challenge in two ways: (1) by improving the SAT solver
technology, for example, perfecting heuristics for variable ordering,
and (2) by inventing new ways of simplifying the original SAT prob-
lems to make them easier for the solvers, for example, minimizing
the number of clauses. This paper explores preprocessing of circuit-
based SAT problems using recent advances in logic synthesis. Two
fast logic synthesis techniques are considered: DAG-aware logic min-
imization and a novel type of structural technology mapping, which
reduces the size of the CNF derived from the circuit. These tech-
niques are experimentally compared to CNF-based preprocessing.
The conclusion is that the proposed techniques are complementary
to CNF-based techniques and speed up SAT solving substantially
on industrial examples.

65

5.1 Introduction

Many of today’s real-world applications of SAT stem from formal verification,
test-pattern generation, and post-synthesis optimization. In all these cases, the
SAT solver is used as a tool for reasoning on boolean circuits. Traditionally, in-
stance of SAT are represented on conjunctive normal form (CNF), but for these
applications, there is also the option of applying circuit based transformations
and reasoning as part of the SAT solving process.

For tougher SAT problems, applying CNF based transformations as a pre-
processing step [EB05] has been shown to effectively improve SAT run-times by
(1) minimizing the size of the CNF representation, and (2) removing superfluous
variables that do not benefit the SAT solving process. In the last decade, ad-
vances in logic synthesis has produced powerful and highly scalable algorithms
that perform similar tasks on circuits. In this paper, two such techniques are
applied to SAT.

The first technique, DAG-aware circuit compression, was introduced in the
paper [BB04b] and extended in [MCB06]. In this work, it is shown that a
circuit can be minimized efficiently and effectively by applying a series of local
transformations taking logic sharing into account. Minimizing the number of
nodes in a circuit tends to reduce the size of the derived CNFs that are passed
to the SAT engine. The process is similar to CNF preprocessing where a smaller
representation is also achieved through a series of local rewrites.

The second technique applied in this work is closely related to technology
mapping for lookup-table (LUT) based FPGAs. Technology mapping is the task
of partitioning a circuit graph into cells with k inputs and one output that fits
the LUTs of the FPGA hardware, while using as little area as possible. Many
of the signals present in the unmapped circuit become internal to some LUT.
In this manner, the procedure can be used to filter out superfluous variables,
which is useful to derive a compact CNF.

The purpose of this paper is to draw attention to the applicability of these
two techniques in the context of SAT solving. The paper makes a two-fold contri-
bution: (1) it proposes a novel CNF generation based on technology mapping,
and (2) it experimenally demonstrated the practicality of the logic synthesis
techniques for speeding up SAT.

5.2 Preliminaries

A combinational boolean network is a directed acyclic graph (DAG) with nodes
corresponding to logic gates and directed edges corresponding to wires connect-
ing the gates. Incoming edges of a node are called fanins and outgoing edges
are called fanouts. The primary inputs (PIs) of the network are nodes without
fanins. The primary outputs (POs) are nodes without fanouts. The PIs and
POs indicate the external connections of the network.

A special case of a boolean network is the and-inverter graph (AIG), con-
taining only PIs, POs, two-input AND-nodes, and the constant TRUE modelled
as a node with one output and no inputs. Inverters are represented as comple-
mented attributes on the edges, dividing them into unsigned edges and signed
(or complemented) edges. An AIG is said to be reduced and constant-free if (1)
all the fanouts of the constant TRUE, if any, feeds into POs; and (2) no AND-

66

node has both of its fanins point to the same node. Furthermore, an AIG is said
to be structurally-hashed if no two AND-nodes have the same two fanin edges
including the sign. By decomposing k-input functions into two-input ANDs and
inverters, any logic network can be reduced to an AIG implementing the same
boolean function of the POs in terms of the PIs.

A cut C of node n is a set of nodes of the AIG, called leaves, such that any
path from a PI to n passes through at least one leaf. A trivial cut of a node is
the cut composed of the node itself. A cut is k-feasible if the number of nodes
in it does not exceed k. A cut C is subsumed by C′ of the same node if and
C′ ⊂ C.

5.3 Cut Enumeration

Here we review the standard procedure for enumerating all k-feasible cuts of an
AIG. Let ∆1 and ∆2 be two sets of cuts, and the merge operator ⊗k be defined
as follows:

∆1 ⊗k ∆2 = { C1 ∪ C2 | C1 ∈ ∆1, C2 ∈ ∆2, |C1 ∪ C2| ≤ k }

Further, let n1, n2 be the first and second fanin of node n, and let Φ(n) denote
all k-feasible cuts of n, recursively computed as follows:

Φ(n) =

Φ(n1) , n ∈ PO
{{n}} , n ∈ PI
{{n}} ∪ Φ(n1)⊗k Φ(n2) , n ∈ AND

This formula gives a simple procedure for computing all k-feasible cuts in a
single topological pass from the PIs to the POs. Informally, the cut set of
an AND node is the trivial cut plus the pair-wise unions of cuts belonging to
the fanins, excluding those cuts whose size exceeds k. Reconvergent paths in
the AIG lead to generating subsumed cuts, which may be filtered out for most
applications.

In practice, all cuts can be computed for k ≤ 4. A partial enumeration when
working with larger k can be achieved by introducing an order on the cuts, and
keeping only L best cuts at each node. Formally: substitute Φ for ΦL where
ΦL(n) is defined as the trivial cut plus the L best cuts of ∆1 ⊗k ∆2.

5.4 DAG-Aware Minimization

The concept of DAG-aware minimization was introduced by Bjesse et. al. in
[BB04b], and further developed by Mishchenko et. al. in [MCB06]. The method
works by making a series of local modifications to the AIG, called rewrites,
such that each rewrite reduces the total number of AIG nodes. To accurately
compute the effect of a rewrite on the total number of nodes, logic sharing is
taken into account. Two equally-sized implementations of a logical function
may have different impact on the total node count if one of them contains a
subgraph that is already present in the AIG (see Figure 5.1).

In [MCB06] the authors propose to limit the rewrites to 4-input functions.
There exists 216 = 65536 such functions. By normalizing the order and polarity
of input and output variables, these functions are divided into 222 equivalence

67

s ? x : y

&

& &

x s y

&

s y

~~>

s ? x : y

&

& &

x s y

Figure 5.1: Given a netlist containing the two fragments on the left, one node
can be saved by rewriting the MUX “s ? x : y” to the form on the right, reusing
the already present node “¬s ∧ ¬y”.

classes.1 Good AIG structures, or candidate implementations, for these 222
classes can be precomputed and stored in a table. The algorithm of [MCB06] is
reviewed below:

DAG-Aware Minimization. Perform a 4-feasible cut enumeration,
as described in the previous section, proceeding topologically from the
PIs to the POs. During the cut enumeration, after computing the cuts
depending on the current node n, try to improve its implementation
as follows: For every cut C of n, let f be the function of n in terms
of the leaves of C. Consider all the candidate implementations of f
and choose the one that reduces the total number of AIG nodes the
most. If no reduction is possible, leave the AIG unchanged; otherwise
recompute the cuts for the new implementation of node n and continue
the topological traversal.

Several components are necessary to implement this procedure:

• A cut enumeration procedure, as described in the previous section.

• A bottom-up topological iterator over the AIG nodes that can handle
rewrites during the iteration.

• An incremental procedure for structural hashing. In order to efficiently
search for the best substitution candidate, the AIG must be kept struc-
turally-hashed, reduced and constant-free. After a rewrite, these proper-
ties may be violated and must be restored efficiently.

• A pre-computed table of good implementations for 4-input functions. We
propose to enumerate all structurally-hashed, reduced and constant-free
AIGs with 7 nodes or less, discarding candidates not meeting the following
property: For each node n, there should be no node m in the subgraph
rooted in n, such that replacing n with m leads to the same boolean

1Often referred to as the NPN-classes, for Negation (of inputs), Permutation (of inputs),
Negation (of the output).

68

function. Example: “(a ∧ b) ∧ (a ∧ c)” would be discarded since replacing
the node “(a ∧ b)” with its subnode “b” does not change the function.

• An efficient procedure to evaluate the effect of replacing the current im-
plementation of a node with a candidate implementation.

The implementation of the above components is straight-forward, albeit tedious.
We observe that in principle, the topological iterator can be modified to revisit
nodes as their fanouts change. When this happens, new opportunities for DAG-
aware minimization may be exposed. Modifying the iterator in this way yields
an idempotent procedure, meaning that nothing will change if it is run a second
time. In practice, we found it hard to make such a procedure efficient.

A simpler and more useful modification to the above procedure is to run it
several times with a perturbation phase in between. By changing the structure
of the AIG, without changing its functionality or increasing its size, new cuts
can conservatively be introduced, with the potential of revealing further node
saving rewrites. One way of perturbing the AIG structure is to enumerate
all k-input conjunctions and modify their decomposition into two-input AND-
nodes (“rebalancing” big ANDs). Another way is to run the above minimization
algorithm, but allow for zero-gain rewrites.

5.5 CNF through the Tseitin Transformation

Many applications rely on the standard way of producing CNFs from circuits
known as the Tseitin transformation [Tse68]. When applied to AIGs, two im-
provements are often used: (1) multi-input ANDs are recognized in the AIG
structure and translated into clauses as one gate, and (2) if-then-else expres-
sions (MUXes) are detected in the AIG through simple pattern matching and
given a specialize CNF translation. The clauses generated for these two cases
are:

x ↔ And(a1, a2, . . ., an). Clause representation:

a1 ∧ a2 ∧ . . . ∧ an → x
a1 → x, a2 → x, . . . , an → x

x ↔ ITE(s,t,f). If-then-else with selector s, true-branch t, false-branch
f. Clause representation:

s ∧ t → x s ∧ f → x (red) t ∧ f → x

s ∧ t → x s ∧ f → x (red) t ∧ f → x

The two clauses labeled “red” are redundant, but including them increases the
strength of unit propagation. It should be noted that a two-input XOR is
handled as a special case of a MUX with t and f pointing to the same node
in opposite polarity. This results in representing each XOR with four three-
literal clauses (the redundant clauses are trivially satisfied). In the experiments
presented in section 5.7, the following precise translation was used:

• The roots are defined as the AND-nodes with either (1) multiple fanouts;
or (2) a single fanout that is either complemented or leads to a PO.

69

• If a root node is found to define an if-then-else, the above translation with
6 clauses, including redundant clauses, is used.

• The remaining root nodes are encoded as multi-input ANDs. The scope of
the conjunction rooted at n is computed as follows: Let S be the set of the
two fanins of n. While S contains a non-root node, repeatedly replace that
node by its two fanins. The above clause translation for multi-input ANDs
is then used, unless the conjunction collected in this manner contains both
x and ¬x, in which case, a unit clause coding for x ↔ False is used.

• Unlike some other work [ES06, JS04], there is no special treatment of
nodes that occur only positively or negatively.

5.6 CNF through Technology Mapping

Technology mapping is the process of expressing an AIG in the form represen-
tative of an implementation technology, such as standard cells or FPGAs. In
particular, lookup-table (LUT) mapping for FPGAs consists in grouping And-
nodes of the AIG into logic nodes with no more than k inputs, each of which
can be implemented by one LUT.

Normally, technology mapping procedures optimize the area of the mapped
circuit under delay constraints. Optimal delay mapping can be achieved effi-
ciently [CC04], but is not useful for SAT where size matters more than logic
depth. Therefore, in this paper, we propose to map for area only, in such a way
that a small CNF can be derived from the mapped circuit. In the next sub-
sections, we review an improved algorithm for structural technology mapping
[MCB07]. We modify the algorithm to allow for partial cut enumeration, which
further increases its speed and scalability.

5.6.1 Definitions

A mapping M of an AIG is a partial function that takes a non-PI (i.e. AND
or PO) node to a k-feasible non-trivial cut of that node. Nodes, for which
mapping M is defined, are called active (or mapped), the remaining nodes are
called inactive (or unmapped). A proper mapping of an AIG meets the following
three criteria: (1) all POs are active, (2) if node n is active, every leaf of cut
M(n) is active, and (3) for every active And-node m, there is at least one active
node n such that m is a leaf of cut M(n). The trivial mapping (or mapping
induced by the AIG) is the proper mapping which takes every non-PI node to
the cut composed of its immediate fanins.

An ordered cut-set ΦL is a total function that takes a non-PI node to a non-
empty ordered sequence of L or less k-feasible cuts. In the next section, M and
ΦL as will be viewed as updateable objects and treated imperatively with two
operations: For an inactive node n, procedure activate(M, ΦL, n), sets M(n)
to the first cut in the sequence ΦL(n), and then recursively activates inactive
leaves of M(n). Similarly, for an active node n, procedure inactivate(M, n),
makes node n inactive, and then recursively inactivates any leaf of the former
cut M(n) that is violating condition (3) of a proper mapping.

Furthermore, nFanouts(M, n) denotes the number of fanouts of n in the
subgraph induced by the mapping. The average fanout of a cut C, denoted by

70

avgFanout(M, C), is the sum of the number of fanouts of its leaves, divided by
the number of leaves. Finally, the maximally fanout-free cone (MFFC) of node
n, denoted mffc(M, n), is the set of nodes used exclusively by n. More formally,
a node m is part of n’s MFFC iff every path in the current mapping M from m
to a PO passes through n. For an inactive node, mffc(M, ΦL, n) includes the
nodes that would belong to the MFFC of node n if it was first activated.

5.6.2 A Single Mapping Phase

Technology mapping includes a sequence of refinement phases, each updating
the current mapping M in an attempt to reduce the total cost. The cost of a
single cut, cost(C), is given as a parameter to the refinement procedure, and
the total cost is defined as sum of cost(M(nact)) over all active nodes nact .

Let M and ΦL be the proper mapping and the ordered cut-sets from the
previous phase. A refinement is performed by a bottom-up topological traversal
of the AIG, modifying M and ΦL for each And-node n as follows:

• All k-feasible cuts of node n (with fanins n1 and n2) are computed, given
the sets of cuts for the children: ∆ = {{n}} ∪ ΦL(n1)⊗k ΦL(n2)

• If the first element of ΦL(n) is not in ∆, it is added. This way, the
previously best cut is always eligible for selection in the current phase.
It is also a sufficient condition to ensure monotonicity for certain cost
functions.

• ΦL(n) is set to be the L best cuts from ∆, where smaller cost, higher
average fanout, and smaller cut size is better. The best element is put
first.

• If n is active in the current mapping M, and if the first cut of ΦLhas
changed, the mapping is updated to reflect the change by calling inac-
tivate(M, n) followed by calling activate(M, ΦL, n). After this, M is
guaranteed to be a proper mapping.

5.6.3 The Cost of Cuts

This subsection defines two complementary heuristic cost function for cuts:

Area Flow. This heuristic estimates the global cost of selecting a cut
C by recursively approximating the cost of other cuts that have to be
introduced in order to accommodate cut C as follows:

costAF (C) = area(C) +
∑

n∈C

costAF (first(ΦL(n)))

max(1,nFanouts (M, n))

Exact Local Area. For nodes currently not mapped, this heuristic com-
putes the increase in the cost of the mapping incurred by activating n
with cut C. For mapped nodes, the computations is the same but n is
first deactivated. Formally,

71

cover isop(boolfunc L, boolfunc U)
{

if (L == False) return ∅
if (U == True) return {∅}

x = topVariable(L, U)
(L0, L1) = cofactors(L, x)
(U0, U1) = cofactors(U , x)

c0 = isop(L0 ∧ ¬U1, U0)
c1 = isop(L1 ∧ ¬U0, U1)
Lnew = (L0 ∧ ¬func(c0)) ∨ (L1 ∧ ¬func(c1))
c∗ = isop(Lnew , U0 ∧ U1)

return ({x} × c0) ∪ ({¬x} × c1) ∪ c∗
}

Figure 5.2: Irredundant sum-of-product generation. A cover (= SOP = DNF) is
a set, representing a disjunction, of cubes (= product = conjunction of literals).
A cover c induces a boolean function func(c). An irredundant SOP is a cover c
where no cube can be removed without changing func(c). In the code, boolfunc
denotes a boolean function of a fixed number of variables x1, x2, . . . , xn (in our
case, the width of a LUT). L and U denotes the lower and upper bound on
the cover to be returned. At top-level, the procedure is called with L = U .
Furthermore, topVariable(L,U) selects the first variable, from a fixed variable
order, which L or U depends on. Finally, cofactors(F , x) returns the pair
(F [x = 0], F [x = 1]).

mffc(C) =
⋃

n∈C

mffc(M, ΦL, n)

costELA(C) =
∑

n∈mffc(C)

area(first(ΦL(n))

In the standard FPGA mapping, each cut is given the area of 1 because it
takes one LUT to represent it. In the CNF generation, a small but important
adjustment is to define area in terms of the number of CNF clauses introduced by
that cut. Doing so affects both the area flow and the exact local area heuristic,
making them prefer cuts corresponding to functions representable by a small
number of clauses.

The boolean function of a cut is translated into clauses by deriving its ir-
redundant sum-of-products (ISOP) using Minato-Morreale algorithm [Min92]
(reviewed in Figure 5.2). ISOPs are computed for both f and ¬f to generate
clauses for both sides of the bi-implication t ↔ f(x1, . . . , xk). For the sizes of
k used in the experiments, Boolean functions are efficiently represented using
truth-tables. In practice, it is useful to impose an bound on the number of
products generated and abort the procedure if it is exceeded, giving the cut an
infinitly high cost.

5.6.4 The Complete Mapping Procedure

Depending on the time budget, technology mapping may involve different num-
ber of refinement passes. For SAT, only a very few passes seem to pay off. In

72

our experiments, the following two passes were used, starting from the trivial
mapping induced by the AIG:

• An initial pass, using the area-flow heuristic which captures the global
characteristics of the AIG.

• A final pass, based on the exact local area heuristic. From the definition
of the local area, it is guaranteed not to increase the total cost of the
mapping.

Finally, there is a trade-off between the quality of the result and the speed of the
mapper, controlled by the cut size k and the maximum number of cuts stored at
each node L. To limit the scope of experimental evaluation, these parameters
were fixed to k = 8 and L = 5 for all benchmarks. From a limited testing, these
values seemed to be a good trade-off. It is likely that better results could be
achieved by setting the parameters in a problem-dependent fashion.

5.7 Experimental Results

To measure the effect of the proposed CNF reduction methods, 30 hard SAT
problems represented as AIGs were collected from three different sources. The
first suite, “Cadence BMC”, consists of internal Cadence verification problems,
each of which took more than one minute to solve using SMV’s BMC engine.
Each of the selected problem contains a bug and has been unrolled upto the
length k, which reveals this bug (yielding a satisfiable instance) as well as upto
length k − 1 (yielding an unsatisfiable instance).

The second suite, “IBM BMC”, is created from publically available IBM
BMC problems [Zar05]. Again, problems containing a bug were selected and
unrolled to length k and k− 1. Problems, which MINISAT could not solve in 60
minutes, were remomved, as well as problems solved in under 5 seconds.

Finally, the third suite, “SAT Race”, was derived from problems of SAT-
Race 2006. Armin Biere’s tool “cnf2aig”, part of the AIGER package [Bie06],
was applied to convert the CNFs to AIGs. Among the problems that could be
completely converted to AIGs, the “manol-pipe” class were the richest source.
As before, very hard and very easy problems were not considered.

For the experiments, we used the publically available synthesis and veri-
fication tool ABC [Gro] and the SAT solver MINISAT2. The exact version
of ABC used in these experiments, as well as other information useful for re-
producing the experimental results presented in this paper, can be found at:
http://www.cs.chalmers.se/˜een/SAT-2007

Clause Reduction. In Figure 5.3 we compare the difference between gener-
ating CNFs using only the Tseitin encoding (section 5.5) and generating CNFs
by applying different combinations of the presented techniques, as well as CNF
preprocessing [EB05] (as implemented in MINISAT2). Reductions are measured
against the Tseitin encoding. For example, a reduction of 62% means that, on
average, the transformed problem contains 0.38 times the original number of
clauses.

We see a consistent reduction in the CNF size, especially in the case where
CNF was derived using technology mapping. The preprocessing scales well,
although its runtime, in our current implementation, is not negligible.

73

SAT Runtime. In Figure 5.4 we compare the SAT runtimes of the differently
preprocessed problems. Runtimes do not include preprocessing times. At this
stage, when the preprocessing has not been fully optimized for the SAT context,
it is arguably more interesting to see the potential speedup. If the preprocessing
is too slow, its application can be controlled by modifying one of the parameters
(such as the number of cuts computed), or preprocessing may be delayed until
plain SAT solving has been tried for some time without solving the problem.

Speedup is given both as a total speedup (the sum total of all runtimes)
and as arithmetic and harmonic average of the individual speedups. For BMC,
we see a clear gain in the proposed methods, most notably for the Cadence
BMC problems where a total speedup of 6.9x was achieved not using SATELITE

style preprocessing, and 5.3x using SATELITE style preprocessing (for a total of
22.3x speedup compared to plain SAT on Tseitin). However, the problems from
the SAT-Race benchmark exhibit a different behavior resulting in an increased
runtime. It is hard to explain this behavior without knowing the source of the
benchmarks, but in this case part of the reason seems to be MINISAT’s handling
of learned clauses. Periodically, half of the derived clauses are discarded, and the
frequency of the period is dependent on the original number of clauses. As the
CNFs get smaller by minimization, the heuristic discard learned clauses more
often, which seems to affect the solving process negatively for these benchmarks.

CNF Generation based on Technology Mapping. Here we measure the
effect of using the number of CNF clauses as the size estimator of a LUT,
rather than a unit area as in the standard technology mapping. In both cases,
we map using LUTs of size 8, keeping the 5 best cuts at each node during cut
enumeration. The results are presented in Figure 5.7. As expected, the proposed
technique lead to fewer clauses but more variables. In these experiments, the
clause reduction consistently resulted in shorter runtimes of the SAT solver.

Incremental BMC. An alternative and cheaper use of the proposed tech-
niques in the context of BMC, is to minimize the AIG before unrolling. This
prevents simplification across different time frames, but is much faster (in our
benchmarks, the runtime was negligible). The clause reduction and the SAT
runtime using DAG-aware minimization are given in Figure 5.6. In this particu-
lar experiment, ABC was not used, but an in-house Cadence implementation of
DAG-aware minimization and incremental BMC. Ideally, we would like to test
the CNF generation based on technology mapping as well, but this is currently
not available in the Cadence tool. For licence reasons, IBM benchmarks could
not be used in this experiment. Instead, 5 problems from the TIP-suite [Bie06]
were used, but they suffer from being too easy to solve.

5.8 Conclusions

The paper explores logic synthesis as a way to speedup solving of circuit-based
SAT problems. Two logic synthesis techniques are considered and experimen-
tally evaluated. The first technique applies recent work on DAG-aware circuit
compression to preprocess a circuit before converting it to CNF. The second
technique is a novel method for directly translating a circuit into a compact
CNF using area-oriented technology mapping for LUT-based FPGAs, when the
area of a LUT is defined as the number of clauses needed to represent the

74

Clause Reduction (k clauses) Preprocessing Time (sec)
Problem (orig) S D DS T TS DT DTS S D DS T TS DT DTS

Cdn1-70u 160 113 69 43 54 41 36 29 1 6 7 14 15 11 12
Cdn1-71s 166 117 71 44 55 43 37 30 1 6 6 14 15 12 12
Cdn2-154u 682 452 467 310 312 257 282 254 6 31 35 48 51 66 68
Cdn2-155s 693 459 475 316 318 262 287 259 7 32 36 49 52 67 69
Cdn3.1-18u 1563 813 952 511 905 529 506 306 12 91 99 151 159 189 193
Cdn3.1-19s 1686 898 1028 559 977 593 547 336 12 98 107 162 170 208 212
Cdn3.2-19u 1684 899 1027 561 977 578 547 337 12 98 106 163 171 206 210
Cdn3.2-20s 1807 979 1102 611 1049 612 588 368 13 104 114 175 184 219 224
Cdn3.3-19u 1686 897 1027 560 977 578 547 338 12 100 109 163 171 204 208
Cdn3.3-20s 1809 974 1103 611 1049 647 588 368 14 104 113 174 183 224 229
ibm18-28u 151 95 72 55 67 54 50 48 1 5 6 11 11 11 12
ibm18-29s 158 99 75 57 70 56 53 50 1 5 6 11 12 12 12
ibm20-43u 253 156 127 97 120 99 89 85 2 10 11 19 20 20 21
ibm20-44s 259 161 131 100 123 101 91 88 2 10 11 19 20 21 21
ibm22-51u 415 269 211 160 201 174 149 143 4 16 17 31 33 33 34
ibm22-52s 425 275 216 164 205 178 153 147 4 16 18 32 33 34 34
ibm23-35u 231 147 116 86 100 85 80 76 2 9 9 17 18 18 19
ibm23-36s 239 152 120 89 103 89 83 78 2 9 10 17 18 19 19
ibm29-25u 53 35 28 21 22 20 18 17 0 2 2 4 4 5 5
ibm29-26s 55 36 29 22 24 21 19 18 0 2 3 5 5 5 5
c10id-s 293 273 280 258 177 159 167 151 2 20 21 31 33 46 48
c10nidw-s 643 593 612 563 416 380 394 363 4 47 52 77 84 119 126
c6nidw-i 154 142 147 134 97 89 93 87 1 10 11 18 19 26 27
c7b 41 36 39 33 27 26 26 25 0 3 3 5 6 7 8
c7b-i 40 36 38 33 27 26 26 25 0 3 4 5 5 7 8
c9 23 20 20 17 15 14 13 12 0 2 2 3 3 4 4
c9nidw-s 535 489 507 465 340 312 326 300 4 39 42 66 71 96 101
g10b 128 116 127 111 87 82 83 76 1 9 10 15 16 23 24
g10id 258 240 254 234 161 147 156 143 2 20 21 30 32 47 49
g7nidw 119 110 118 107 78 72 75 70 1 8 8 13 14 20 21

Avg. red. – 29% 32% 47% 46% 56% 57% 62%

Figure 5.3: CNF generation with different preprocessing. “(orig)” denotes the
original Tseitin encoding; “D” DAG-Aware minimization; “T” CNF generation
through Technology Mapping; “S” SATELITE style CNF preprocessing. On the
left, the number of clauses in the CNF formulation is given, in thousands. On
the right, the runtimes of applied preprocessing are summed up. No column
for the time of generating CNFs through Tseitin encoding is given, as they are
all less than a second. The “Cdn” problems are internal Cadence BMC prob-
lems; the “ibm” problems are IBM BMC problems from [Zar05]; the remaining
ten problems are the “manol-pipe” problems from SAT-Race 2006 [Sin] back-
converted by “cnf2aig” into the AIG form.

75

SAT Runtime (sec) – Cadence BMC
Problem (orig) S D DS T TS DT DTS

Cdn1-70u 21.9 12.3 3.6 3.1 2.5 4.1 1.2 1.3
Cdn1-71s 15.2 8.8 7.7 3.9 2.1 3.1 4.0 2.7
Cdn2-154u 116.4 48.3 41.1 37.7 11.6 34.4 15.6 9.3

Cdn2-155s 101.8 22.9 12.9 16.2 18.2 50.6 13.4 6.9

Cdn3.1-18u 1516.0 139.4 361.9 119.4 196.3 78.8 78.8 39.0

Cdn3.1-19s 1788.2 276.7 535.0 154.8 317.8 137.1 131.9 42.5

Cdn3.2-19u 403.8 214.4 239.8 169.7 140.9 73.7 114.8 78.1
Cdn3.2-20s 3066.1 893.4 1002.9 353.2 376.2 313.5 687.5 96.5

Cdn3.3-19u 316.1 225.6 133.9 104.7 107.9 107.6 53.2 55.0
Cdn3.3-20s 2305.4 456.4 863.1 385.8 507.0 236.9 307.2 101.2

Total speedup: 4.2x 3.0x 7.2x 5.7x 9.3x 6.9x 22.3x
Arithmetic average speedup: 3.9x 3.6x 6.5x 6.3x 7.6x 9.2x 19.7x
Harmonic average speedup: 2.7x 2.9x 4.8x 5.3x 4.9x 6.6x 11.5x

SAT Runtime (sec) – IBM BMC
Problem (orig) S D DS T TS DT DTS

ibm18-28u 83.7 82.6 39.2 41.9 45.0 54.2 23.2 18.5

ibm18-29s 93.6 47.6 46.8 25.1 36.9 23.5 25.9 20.9

ibm20-43u 805.5 890.1 402.3 488.0 540.3 283.6 219.9 215.1

ibm20-44s 1260.2 278.4 305.6 83.8 277.2 422.2 265.7 303.6
ibm22-51u 361.8 194.6 109.2 88.6 145.8 170.8 67.0 82.5
ibm22-52s 408.4 489.0 148.3 135.7 187.2 177.9 120.5 91.3

ibm23-35u 540.3 365.9 264.2 241.5 260.1 220.2 181.4 130.7

ibm23-36s 856.2 743.4 527.9 356.8 436.2 585.7 144.7 238.1
ibm29-25u 329.7 375.6 39.0 29.4 42.9 56.6 28.5 11.4

ibm29-26s 71.3 190.5 41.7 20.9 71.5 31.5 28.0 25.4

Total speedup: 1.3x 2.5x 3.2x 2.4x 2.4x 4.4x 4.2x
Arithmetic average speedup: 1.5x 3.0x 4.9x 2.8x 2.8x 4.7x 6.5x
Harmonic average speedup: 1.0x 2.4x 3.1x 2.1x 2.4x 4.0x 4.3x

Figure 5.4: SAT runtime with different preprocessing. “(orig)” denotes the
original Tseitin encoding; “D” DAG-Aware minimization; “T” CNF generation
through Technology Mapping; “S” SATELITE style CNF preprocessing. Given
times do not include preprocessing, only SAT runtimes. Speedups are relative
to the “(orig)” column.

76

SAT Runtime (sec) – SAT Race
Problem (orig) S D DS T TS DT DTS

c10id-s 26.7 5.1 25.1 23.6 50.6 25.2 49.8 14.7
c10nidw-s 710.5 624.7 700.3 880.4 383.6 698.1 212.7 856.6
c6nidw-i 414.4 267.1 734.7 412.5 244.5 209.7 540.1 710.3
c7b 29.4 167.2 76.3 58.4 34.6 43.9 63.9 435.5
c7b-i 101.4 54.2 68.1 52.0 49.5 93.2 293.4 154.5
c9 10.8 51.2 11.4 32.8 11.8 21.0 44.1 83.1
c9nidw-s 122.5 625.2 246.9 864.8 287.2 446.7 952.6 285.2
g10b 385.3 388.8 446.0 183.6 106.5 225.6 291.2 182.5
g10id 736.0 350.7 524.0 723.9 98.3 92.0 190.6 188.4
g7nidw 119.4 24.8 78.3 67.3 13.5 17.2 63.6 37.8

Total speedup: 1.0x 0.9x 0.8x 2.1x 1.4x 1.0x 0.9x
Arithmetic average speedup: 1.8x 1.0x 1.1x 2.8x 2.3x 1.3x 1.4x
Harmonic average speedup: 0.5x 0.8x 0.6x 1.2x 0.9x 0.5x 0.3x

Figure 5.5: SAT runtime with different preprocessing (cont. from Figure 5.4).

Nodes before and BMC runtimes before
Problem after minimization and after minimization

Cdn1 3,527 → 949 37.8 s → 9.6 s
Cdn2 7,918 → 3,126 17.5 s → 0.8 s
Cdn3.1 84,718 → 28,637 607.1 s → 275.3 s
Cdn3.3 84,698 → 28,611 >1 h → 1823.7 s
Cdn4 2,936 → 1,538 >1 h → >1 h

nusmv:tcas5 2,661 → 1,975 9.11 s → 2.27 s
nusmv:tcas6 2,656 → 1,965 4.12 s → 0.67 s
texas.parsesys1 11,860 → 939 0.64 s → 0.03 s
texas.two-proc2 791 → 335 0.23 s → 0.01 s
vis.eisenberg 720 → 306 1.63 s → 2.01 s

Figure 5.6: Incremental BMC on original and minimized AIG. The above prob-
lems all contain bugs. Runtimes are given for running incremental BMC upto
the shortest counter example. In the columns to the right of the arrows, the
design has been minimized by DAG-aware rewriting before unrolling it. The
node count is the number of ANDs in the design. Note that in this scheme,
there can be no cross-timeframe simplifications. The experiment confirms the
claim in [BB04b] of the applicability of DAG-aware circuit comparession to for-
mal verification. The original paper only listed compression ratios and did not
include the runtimes.

77

boolean function of the LUT.
Experimental results on several sets of benchmarks have shown that the

proposed techniques tend to substantially reduce the runtime of SAT solving.
The net result of applying both techniques is a 3-4x speedup in solving for
hard industrial problems. At the same time, some slow-downs were observed on
several benchmarks from the previous year’s SAT Race. This indicates that more
work is needed for understanding the interaction between the circuit structure
and the heuristics of a modern SAT-solver.

5.9 Acknowledgments

The authors acknowledge helpful discussions with Satrajit Chatterjee on tech-
nology mapping and, in particular, his suggestion to use the average number of
fanins’ fanouts as a tie-breaking heuristic in sorting cuts.

78

Technology Mapping for CNF

Problem #clauses #vars SAT-time

Cdn1-70u 62 k → 54 k 12 k → 15 k 6.6 s → 4.1 s
Cdn1-71s 64 k → 55 k 13 k → 15 k 6.6 s → 3.1 s
Cdn2-154u 327 k → 312 k 58 k → 77 k 23.3 s → 34.4 s
Cdn2-155s 333 k → 318 k 58 k → 78 k 21.4 s → 50.6 s
Cdn3.1-18u 1990 k → 905 k 145 k → 248 k 125.9 s → 78.8 s
Cdn3.1-19s 2147 k → 977 k 156 k → 267 k 161.2 s → 137.1 s
Cdn3.2-19u 2146 k → 977 k 156 k → 266 k 189.9 s → 73.7 s
Cdn3.2-20s 2302 k → 1049 k 167 k → 285 k 501.6 s → 313.5 s
Cdn3.3-19u 2147 k → 977 k 156 k → 267 k 136.4 s → 107.6 s
Cdn3.3-20s 2302 k → 1049 k 167 k → 285 k 311.7 s → 236.9 s

T.M. for CNF after DAG-Aware Minimization

Problem #clauses #vars SAT-time

Cdn1-70u 50 k → 36 k 11 k → 13 k 2.5 s → 1.3 s
Cdn1-71s 52 k → 37 k 11 k → 13 k 2.0 s → 2.7 s
Cdn2-154u 371 k → 282 k 61 k → 81 k 24.9 s → 9.3 s
Cdn2-155s 378 k → 287 k 62 k → 82 k 17.4 s → 6.9 s
Cdn3.1-18u 1385 k → 506 k 126 k → 185 k 71.0 s → 39.0 s
Cdn3.1-19s 1499 k → 547 k 136 k → 199 k 96.0 s → 42.5 s
Cdn3.2-19u 1495 k → 547 k 136 k → 199 k 165.0 s → 78.1 s
Cdn3.2-20s 1603 k → 588 k 145 k → 214 k 446.6 s → 96.5 s
Cdn3.3-19u 1498 k → 547 k 136 k → 199 k 107.4 s → 55.0 s
Cdn3.3-20s 1607 k → 588 k 145 k → 213 k 273.2 s → 101.2 s

Figure 5.7: Comparing CNF generation through standard technology mapping
and technology mapping with the cut cost function adapted for SAT. In the
adapted CNF generation based on technology mapping (righthand side of
arrows), the area of a LUT is defined as the number of clauses needed to
represent its boolean function. In the standard technology mapping (lefthand
side of arrows), each LUT has unit area “1”. In both cases, the mapped
design is translated to CNF by the method described in section 5.6.4, which
introduces one variable for each LUT in the mapping. The standard technology
mapping minimizes the number of LUTs, and hence will have a lower number of
introduced variables. However, from the table it is clear that using the number
of clauses as the area of a LUT gives significantly fewer clauses, and also reduces
SAT runtimes.

79

Chapter 6

Translating Pseudo-Boolean

Constraints into SAT

Niklas Eén
Cadence Berkeley Labs, USA

Niklas Sörensson
Chalmers University of Technology and Göteborg University, Sweden

Abstract

In this paper, we describe and evaluate three different techniques
for translating pseudo-boolean constraints (linear constraints over
boolean variables) into clauses that can be handled by a standard
SAT-solver. We show that by applying a proper mix of translation
techniques, a SAT-solver can perform on a par with the best existing
native pseudo-boolean solvers. This is particularly valuable in those
cases where the constraint problem of interest is naturally expressed
as a SAT problem, except for a handful of constraints. Translating
those constraints to get a pure clausal problem will take full ad-
vantage of the latest improvements in SAT research. A particularly
interesting result of this work is the efficiency of sorting networks
to express pseudo-boolean constraints. Although tangential to this
presentation, the result gives a suggestion as to how synthesis tools
may be modified to produce arithmetic circuits more suitable for
SAT based reasoning.

80

6.1 Introduction

SAT-solvers have matured greatly over the last five years and have proven highly
applicable in the Electronic Design Automation field. However, as SAT tech-
niques are being embraced by a growing number of application fields, the need
to handle constraints beyond pure propositional SAT is also increasing. One
popular approach is to use a SAT-solver as the underlying decision engine for a
more high-level proof procedure working in a richer logic; typically as part of an
abstraction-refinement loop [BBC+05, BDS02]. Another common approach is
to extend the SAT procedure to handle other types of constraints [ES03a], or to
work on other domains, such as finite sets or unbounded integers [LKM03, SS05].

In this paper we will study how a SAT-solver can be used to solve pseudo-
boolean problems by a translation to clauses. These problems are also known
as 0-1 integer linear programming (ILP) problems by the linear programming
community, where they are viewed as just a domain restriction on general linear
programming. From the SAT point of view, pseudo-boolean constraints (from
now on “PB-constraints”) can be seen as a generalization of clauses. To be
precise, a PB-constraint is an inequality on a linear combination of boolean
variables: C0p0 + C1p1 + . . . + Cn−1pn−1 ≥ Cn, where the variables pi ∈ {0, 1}.
If all constants Ci are 1, then the PB-constraint is equivalent to a standard SAT
clause.

Stemming from the ILP community, pseudo-boolean problems often contain
an objective function, a linear term that should be minimized or maximized
under the given constraints. Adding an objective function is also an exten-
sion to standard SAT, where there is no ranking between different satisfiable
assignments.

Recently, a number of PB-solvers have been formed by extending existing
SAT-solvers to support PB-constraints natively, for instance PBS [ARMS02b],
PUEBLO [SS06], GALENA [CK03], and, somewhat less recently, OPBDP [Bar95],
which is based on pre-Chaff [MMZ+01a] SAT techniques, but still performs
remarkably well.

In this paper we take the opposite approach, and show how PB-constraints
can be handled through translation to SAT without modifying the SAT proce-
dure itself. The techniques have been implemented in a tool called MINISAT+,
including support for objective functions. One of the contributions of our work
is to provide a reference to which native solvers can be compared. Extending a
SAT-solver to handle PB-constraints natively is, arguably, a more complex task
than to reformulate the constraint problem for an existing tool. Despite this, a
fair number of native solvers have been created without any real exploration of
the limits of the simpler approach.

Furthermore, translating to SAT results in an approach that is particularly
suited for problems that are almost pure SAT. Given a reasonable translation
of the few non-clausal constraints, one may expect to get a faster procedure
than by applying a native PB-solver, not optimized towards propositional SAT.
Hardware verification is a potential application of this category.

81

6.2 Preliminaries

The satisfiability problem. A propositional logic formula is said to be in CNF,
conjunctive normal form, if it is a conjunction (“and”) of disjunctions (“ors”)
of literals. A literal is either x, or its negation ¬x, for a boolean variable x. The
disjunctions are called clauses. The satisfiability (SAT) problem is to find an
assignment to the boolean variables, such that the CNF formula evaluates to
true. An equivalent formulation is to say that each clause should have at least
one literal that is true under the assignment. Such a clause is then said to be
satisfied. If there is no assignment satisfying all clauses, the CNF is said to be
unsatisfiable.

The pseudo-boolean optimization problem. A PB-constraint is an inequality
C0p0 + C1p1 + . . . + Cn−1pn−1 ≥ Cn, where, for all i, pi is a literal and Ci an
integer coefficient. A true literal is interpreted as the value 1, a false literal
as 0; in particular ¬x = (1 − x). The left-hand side will be abbreviated by
LHS, and the right-hand constant Cn referred to as RHS. A coefficient Ci is
said to be activated under a partial assignment if its corresponding literal pi is
assigned to True. A PB-constraint is said to be satisfied under an assignment
if the sum of its activated coefficients exceeds or is equal to the right-hand
side constant Cn. An objective function is a sum of weighted literals on the
same form as an LHS. The pseudo-boolean optimization problem is the task of
finding a satisfying assignment to a set of PB-constraints that minimizes a given
objective function.

6.3 Normalization of PB-constraints

PB-constraints are highly non-canonical in the sense that there are many syn-
tactically different, yet semantically equivalent, constraints for which the equiv-
alence is non-trivial to prove. For obvious reasons, it would be practical to get
a canonical form of the PB-constraints before translating them to SAT, but to
the best of our knowledge, no efficiently computable canonical form for PB-
constraints has been found. Still, it makes sense to try to go some of the way
by defining a normal form for PB-constraints. Firstly, it simplifies the imple-
mentation by giving fewer cases to handle; and secondly it may reduce some
constraints and make the subsequent translation more efficient. In MINISAT+

we apply the following straightforward rules during parsing:

• ≤-constraints are changed into ≥-constraints by negating all constants.

• Negative coefficients are eliminated by changing p into ¬p and updating
the RHS.

• Multiple occurrences of the same variable are merged into one term Cix
or Ci¬x:

• The coefficients are sorted in ascending order: Ci ≤ Cj if i < j.

• Trivially satisfied constraints, such as “x + y ≥ 0” are removed. Likewise,
trivially unsatisfied constraints (“x + y ≥ 3”) will abort the parsing and
make MINISAT+ answer Unsatisfiable.

82

• Coefficients greater than the RHS are trimmed to (replaced with) the
RHS.

• The coefficients of the LHS are divided by their greatest common divisor
(“gcd”). The RHS is replaced by “RHS/gcd”, rounded upwards.

Example: 4x + 3y − 3z ≥ −1 would be normalized as follows:

4x + 3y + 3¬z ≥ 2 (positive coefficients)
3y + 3¬z + 4x ≥ 2 (sorting)
2y + 2¬z + 2x ≥ 2 (trimming)
y + ¬z + x ≥ 1 (gcd)

Furthermore, after all constraints have been parsed, trivial conclusions are prop-
agated. Concluding “x =True” is considered trivial if setting x to False would
immediately make a constraint unsatisfiable. For example “3x + y + z ≥ 4”,
would imply “x =True”. Any assigned variable will be removed from all con-
straints containing that variable, potentially leading to new conclusions. This
propagation is run to completion before any PB-constraint is translated into
SAT.

Finally, MINISAT+ performs one more transformation at the PB level to
reduce the size of the subsequent translation to SAT. Whenever possible, PB-
constraints are split into a PB part and a clause part. The clause part is repre-
sented directly in the SAT-solver, without further translation. Example:

4x1 + 4x2 + 4x3 + 4x4 + 2y1 + y2 + y3 ≥ 4

would be split into

x1 + x2 + x3 + x4 + ¬z ≥ 1 (clause part)
2y1 + y2 + y3 + 4z ≥ 4 (PB part)

where z is a newly introduced variable, not present in any other constraint.
The rule is only meaningful to apply if the clause part contains at least two
literals, or if the PB part is empty (in which case the constraint is equivalent to
a clause).

For practical reasons, equality constraints (“3x + 2y + 2z = 5”) are often
considered PB-constraints. To get a uniform treatment of inequalities and equal-
ities, MINISAT+ internally represents the RHS of a PB-constraint as an interval
[lo, hi] (eg. “3x+ 2y + 2z ∈ [5, 5]”). Open intervals are represented by lo = −∞
or hi = +∞. The parser puts some effort into extracting closed intervals from
the input, so larger-than singleton intervals may exist. During normalization,
closed intervals are first split into two constraints, normalized individually, and
then, if the LHS:s are still the same, merged. However, for simplicity of pre-
sentation, only the “LHS ≥ RHS” form of PB constraints is considered in the
remainder of the paper.

A slightly more formal treatment of PB-normalization can be found in
[Bar95], and some more general work on integer linear constraints normaliza-
tion in [Pug91]. We note that there exist 22n

constraints over n variables. A
clause can only express 2n of these, whereas a PB-constraint can express strictly
more. To determine exactly how many more, which would give a number on
the expressiveness of PB-constraints, and how to efficiently compute a canonical
representation from any given constraint, is interesting future work.

83

6.4 Optimization – the objective function

Assume we have a PB minimization problem with an objective function f(x).
A minimal satisfying assignment can readily be found by iterative calls to the
solver. First run the solver on the set of constraints (without considering the
objective function) to get an initial solution f(x0)=k, then add the constraint
f(x) < k and run again. If the problem is unsatisfiable, k is the optimum
solution. If not, the process is repeated with the new smaller solution.

To be efficient, the procedure assumes the solver to provide an incremental
interface, but as we only add constraints, this is almost trivial. A problem with
the approach is that if many iterations are required before optimum is reached,
the original set of constraints might actually become dominated by the con-
straints generated by the optimization loop. This will deteriorate performance.

The situation can be remedied by replacing the previous optimization con-
straint with the new one. This is sound since each optimization constraint sub-
sumes all previous ones. In MINISAT+ this is non-trivial, as the constraint has
been converted into a number of clauses, possibly containing some extra vari-
ables introduced by the translation. Those extra variables might occur among
the learned clauses [ES03a] of the SAT-solver, and removing the original clauses
containing those variables will vastly reduce the pruning power of the learned
clauses. For that reason MINISAT+ implements the naive optimization loop
above as it stands; but as we shall see, other mechanisms prevent this from
hurting us too much.

6.5 Translation of PB-constraints

This section describes how PB-constraints are translated into clauses. The
primary technique used by MINISAT+ is to first convert each constraint into a
single-output circuit, and then translate all circuits to clauses by a variation of
the Tseitin transformation [Tse68]. The inputs of each circuit correspond 1-to-1
to the literals of the PB-constraints. The single output indicates whether the
constraint is satisfied or not. As part of the translation to clauses, every output
is forced to True. In MINISAT+, there are three main approaches to how a
circuit is generated from a PB-constraint:

• Convert the constraint into a BDD.
• Convert the constraint into a network of adders.
• Convert the constraint into a network of sorters.

As circuit representation, we use RBCs (reduced boolean circuits) [ABE00],
meaning that the constant signals True and False have been eliminated by
propagation, and that any two syntactically identical nodes have been merged
by so-called structural hashing.

The structural hashing is important as all constraints are first converted to
circuits, then to clauses. Constraints over similar sets of variables can often gen-
erate the same sub-circuits. Structural hashing also prevents the optimization
loop from blowing up the SAT problem. Because the optimization constraints
differ only in the RHS:s, their translations will be almost identical. Structural
hashing will detect this, and few (or no) clauses will be added after the first iter-

84

ation of the optimization loop. This is very important, as the objective function
is often very large.

During the translation to clauses, extra variables are introduced in the
CNF to get a compact representation. However, the goal of translating a PB-
constraint into clauses is not only to get a compact representation, but also
to preserve as many implications between the literals of the PB-constraint as
possible. This concept is formalized in th CSP community under the name
of arc-consistency. Simply stated, arc-consistency means that whenever an as-
signment could be propagated on the original constraint, the SAT-solver’s unit
propagation, operating on our translation of the constraint, should find that
assignment too. More formally:

Definition. Let x = (x1, x2, . . . , xn) be a set of constraint vari-
ables, t = (t1, t2, . . . , tm) a set of introduced variables. A satis-
fiability equivalent CNF translation φ(x, t) of a constraint C(x)
is said to be arc-consistent under unit propagation iff for every
partial assignment σ, performing unit propagation on φ(x, t) will
extend the assignment to σ′ such that every unbound constraint
variable xi in σ′ can be bound to either True or False without
the assignment becoming inconsistent with C(x) in either case.

It follows directly from this definition that if σ is already inconsistent with C(x)
(that is C(x) restricted to σ is empty), then unit propagation will find a conflict
in φ(x, t).

Although it is desirable to have a translation of PB-constraints to SAT that
maintains arc-consistency, no polynomially bound translation is known. Some
important special cases have been studied in [Gen02, BB03, BB04a, BBR06]. In
particular, cardinality constraints, x1 + x2 + . . . + xn ≥ k, can be translated ef-
ficiently while maintaining arc-consistency. Using the notion of arc-consistency,
the translations of this paper can be categorized as follows:

• BDDs. Arc-consistent but exponential translation in the worst case.
• Adders. Not arc-consistent, O(n) sized translation.
• Sorters. Not arc-consistent, but closer to the goal. O(n log2n) sized

translation.

The parameter n here is the total number of digits1 in all the coefficients. Trans-
lation through sorting networks is closer to the goal than adder networks in the
sense that more implications are preserved, and for particular cases (like cardi-
nality constraints), arc-consistency is achieved.

6.5.1 The Tseitin transformation

The first linear transformation of propositional formulas into CNF by means of
introducing extra variables is usually attributed to Tseitin [Tse68], although the
construction has been independently discovered, in different variations, many
times since then. For our purposes, a propositional formula is nothing but a
single-output, tree-shaped circuit. The basic idea of the transformation is to
introduce a variable for each output of a gate. For example, if the input signals

1The radix does not matter for O-notation.

85

of an And-gate have been given names a and b, a new variable x is introduced
for the output, and clauses are added to the CNF to establish the relation
(x↔ a ∧ b).

The final step of the transformation is to insert a unit clause containing
the variable introduced for the single output of the circuit (or, equivalently,
the top-node of the formula). It is easy to see that the models (satisfying
assignments) of the resulting CNF are also models of the original propositional
formula, disregarding the extra assignments made to the introduced variables.

As observed in [PG86], the transformation can be made more succinct by
taking the polarity under which a gate occurs into account. A gate is said
to occur positively if the number of negations on the path from the gate to
the output of the circuit is even, and negatively if it is odd. Depending on
the polarity, only the leftwards or rightwards part of the bi-implication x ↔
φ(a1, a2, . . . , an), where φ is the gate being translated, needs to be introduced.
When applying the Tseitin transformation to a DAG-shaped circuit,2 a gate
may occur both positively and negatively, in which case the full bi-implication
must be established.

In the PB-translations to follow, the gate types listed below will be used.
The inverter gate is not part of the list as negations can be handled by choosing
the appropriate polarity x or ¬x of a signal, without adding any clauses. In the
listed clause representations, variable x always denotes the output of the gate
under consideration. Clauses that need to be introduced for a positive/negative
occurrence of a gate are marked with a (+)/(−). For brevity, an over-line is
used in place of “¬” to denote negation:

• And(a1, a2, . . ., an). N-ary And-gate. Clause representation:

(−) a1 ∧ a2 ∧ . . . ∧ an → x
(+) a1 → x, a2 → x, . . . , an → x

• Or(a1, a2, . . ., an). N-ary Or gate. Converted to And by DeMorgan’s
law.

• Xor(a,b). Binary Xor. Clause representation:

(−) a ∧ b → x (+) a ∧ b → x

(−) a ∧ b → x (+) a ∧ b → x

• ITE(s,t,f). If-then-else node with selector s, true-branch t, false-branch
f, and output x. Semantics: (s ∧ t) ∨ (¬s ∧ f). Clause representation:

(−) s ∧ t → x (−) s ∧ f → x (red−) t ∧ f → x

(+) s ∧ t → x (+) s ∧ f → x (red+) t ∧ f → x

The two “red”-clauses are redundant, but including them will increase the
strength of unit propagation.

• FA sum(a,b,c). Output x is the “sum”-pin of a full-adder.3 Semantics:
Xor(a, b, c). Clause representation:

2Directed Acyclic Graph. A circuit where outputs may feed into more than one gate.
3A full-adder is a 3-input, 2-output gate producing the sum of its inputs as a 2-bit binary

number. The most significant bit is called “carry”, the least significant “sum”. A half-adder
does the same thing, but has only 2 inputs (and can therefore never output a “3”).

86

(−) a ∧ b ∧ c → x (+) a ∧ b ∧ c → x

(−) a ∧ b ∧ c → x (+) a ∧ b ∧ c → x

(−) a ∧ b ∧ c → x (+) a ∧ b ∧ c → x

(−) a ∧ b ∧ c → x (+) a ∧ b ∧ c → x

• FA carry(a,b,c). Output x is the “carry”-pin of a full-adder. Seman-
tics: a + b + c ≥ 2. Clause representation:

(−) b ∧ c → x (+) b ∧ c → x
(−) a ∧ c → x (+) a ∧ c → x

(−) a ∧ b → x (+) a ∧ b → x

• HA sum. The “sum”-output of a half-adder. Just another name for
Xor.

• HA carry. The “carry”-output of a half-adder. Just another name for
And.

For the ITE-gate, two redundant clauses (marked by “red”) are added, even
though they are logically entailed by the other four clauses. The purpose of
these two clauses is to allow unit propagation to derive a value for the gate’s
output when the two inputs t and f are the same, but the selector s is still
unbound. These extra propagations are necessary to achieve arc-consistency in
our translation through BDDs (section 6.5.3). In a similar manner, propaga-
tion can be increased for the full-adder by adding the following clauses to the
representation:4

xcarry ∧ xsum → a xcarry ∧ xsum → a

xcarry ∧ xsum → b xcarry ∧ xsum → b
xcarry ∧ xsum → c xcarry ∧ xsum → c

In general, one wants the propagation of the SAT-solver to derive as many unit
facts as possible. The alternative is to let the solver make an erroneous assump-
tion, derive a conflict, generate a conflict-clause and backtrack—a much more
costly procedure. If we can increase the number of implications made by the
unit propagation (the implicativity5 of the CNF) without adding too many ex-
tra clauses, which would slow down the solver, we should expect the SAT-solver
to perform better. In general it is not feasible (assuming P 6= NP) to make all
implications derivable through unit propagation by adding a sub-exponential
number of clauses; that would give a polynomial algorithm for SAT. However,
two satisfiability equivalent CNFs of similar size may have very different charac-
teristics with respect to their implicativity. This partially explains why different
encodings of the same problem may behave vastly differently. It should be noted
that implicativity is not just a matter of “much” or “little”, but also a matter
of what cascading effect a particular choice of CNF encoding has. For a specific
problem, some propagation paths may be more desirable than others, and the
clause encoding should be constructed to reflect this.

4Since we have split the full-adder into two single-output gates, we need to keep track of
what sums and carries belong together to implement this.

5This terminology is introduced in [NB04], but the concept is studied in the CSP commu-
nity as different consistency criteria (and methods to maintain them).

87

6.5.2 Pseudo-code Conventions

In the pseudo-code of subsequent sections, the type “signal” represents ei-
ther a primary input, or the output of a logical gate. The two special signals
“True” and “False” can be viewed as outputs from pre-defined, zero-input
gates. They are automatically removed by simplification rules whenever possi-
ble. For brevity, we will use standard C operators “&, |,ˆ” (also in contracted
form “&=”) to denote the construction of an And, Or, and Xor gates respec-
tively. The datatype “vec” is a dynamic vector, and “map” is a hash-table.
In the code, we will not make a distinction between word-sized integers and
so-called big-ints. In a practical implementation, one may need to use arbitrary
precision integers for the coefficients of the PB-constraints.

6.5.3 Translation through BDDs

A simple way of translating a PB-constraint into clauses is to build a BDD
representation [Bry86] of the constraint, and then translate that representation
into clauses. The BDD construction is straightforward, and provided that the
final BDD is small, a simple dynamic programming procedure works very effi-
ciently (see Figure 6.3). In general, the variable order can be tuned to minimize
a BDD, but a reasonable choice is to order the variables from the largest coef-
ficient to the smallest. A rule of thumb is that important variables, most likely
to affect the output, should be put first in the order. In principle, sharing be-
tween BDDs originating from different constraints may be improved by a more
globally determined order, but we do not exploit that option.

Once the BDD is built, it can simply be treated as a circuit of ITEs (if-then-
else gates) and translated to clauses by the Tseitin transformation. This is how
MINISAT+ works. An example of a BDD translation, before and after reduction
to the constant-free RBC representation, is shown in Figure 6.2. An alternative
to using the Tseitin transformation, which introduces extra variables for the
internal nodes, is to translate the BDD directly to clauses without any extra
variables. This is done in [ARMS02a], essentially by enumerating all paths to
the False terminal of the BDD. Yet another way to generate clauses from a
decision diagram is to synthesize a multi-level And-Inverter graph, for instance
by weak-division methods suggested by [Min96], and then apply the Tseitin
transformation to that potentially much smaller circuit.

Analysis. BDDs can be used to translate cardinality constraints to a polyno-
mially sized circuit. More precisely, x1 +x2+ . . .+xn ≥ k results in a BDD with
(n − k + 1)× k nodes, as illustrated in Figure 6.1. It is proven that in general
a PB-constraint can generate an exponentially sized BDD [BBR06]. Hence, in
practice, a limit on the size must be imposed during the BDD construction.
However, if the BDD is successfully built and translated by the Tseitin trans-
formation, the resulting CNF preserves arc-consistency.

Proof: For simplicity, consider the ITE circuit without compaction by RBC
rules. The result generalizes to RBCs in a straightforward manner. The BDD
terminals are translated to literals fixed to True and False. Now, consider a
translation of constraint C under the partial assignment σ. Let pk be the un-
bound literal of C with the highest index. Observation: Since pk is toggling the
biggest coefficient, either C, σ |= pk, or no implications exist. A smaller coeffi-
cient cannot be necessary if a bigger one is not. By the Tseitin transformation,

88

a

1 0

b

1

c

1

d

1

b

0

c

d

e

c

0

d

e

f

Figure 6.1: BDD for the cardinality constraint a + b + c + d + e + f ≥ 3.

the single output of the top-node is forced to True. For any node, if the BDD-
variable (“selector”) is bound, a True on the output will propagate down to the
selected child. Because all literals pi, where i > k, are bound and appear above
pk in the BDD (due to the variable order we use), True will propagate down
to a unique BDD-node, call it N , branching on pk. Furthermore, if a BDD-
variable is bound, and the selected child is False, it will propagate upwards.
Similarly, if both children are bound to False, it will propagate upwards by
the redundant “red” clauses of our ITE translation (section 6.5.1). Inductively,
if a BDD-node is equivalent to False under σ, the variable introduced for its
output will be bound to False by unit propagation. Thus, if C, σ |= pk, the
variable introduced for the false-branch of N is False, and the output of N is
True, which together will propagate pk =True. 2

Related Work. The PB-solver PB2SAT [BBR06] also translates PB-constraints
to clauses via BDDs. The authors observe that the false-branch always implies
the true-branch if the BDD is generated from a PB-constraint (or indeed any
unate function). Using this fact, the Tseitin transformation can be improved
to output two 3-clauses and two 2-clauses instead of six 3-clauses,6 and still
maintain arc-consistency.

The translation in [ARMS02a] produces a minimal CNF under the assump-
tion that no extra variables may be introduced. However, even polynomially
sized BDDs can have an exponential translation to clauses under that assump-
tion.

6Although only half of the clauses will be instantiated if the BDD node occurs with only
one polarity.

89

a

1 0

b

1

c

1

d

1

e

1

f

1

g

1

h

1

b

0

c

1

d

1

e

1

f

1

c

0

d

0

e

f

g

e

0

f

g

h

i

a b

&c

&d

&e

&f

&g

&h

&

&

&

&

&

&

&

&

ITE

ITE

ITE

&

ITE

ITE

ITE i

ITE

Figure 6.2: The BDD, and corresponding RBC, for the constraint “a + b + 2c +
2d + 3e + 3f + 3g + 3h + 7i ≥ 8”. The BDD terminals are denoted by “0” and
“1”. A circle (“o”) marks the false-branch of a BDD-node, a dash (“-”) marks
the true-branch. In the RBC representation on the right, the unmarked edge is
the selector (written, as customary, inside the node for the BDD). A solid circle
(“•”) denotes negation. Variables are ordered from the largest coefficient to the
smallest, which has as consequence that no edge skips a variable in the BDD.
Because the false-branch implies the true-branch of each node (assuming only
positive coefficients, as in this example), no edge to the False terminal comes
from a true-branch.

6.5.4 Translation through Adder Networks

This section describes the translation of PB-constraints into clauses through
half- and full-adders. First let us introduce some notation:

Definition. A k-bit is a signal whose interpretation in the current
context is the numeric value k. We will simply say that the bit has
the value k.

The concept of k-bits is useful when manipulating bits representing numbers,
or sums of numbers. Example: When adding two binary numbers “a3a2a1a0”
and “b1b0”, we call a3 an 8-bit (it contributes 8 to the sum if set). Signals a1

and b1 are the two 2-bits of the sum.

90

signal buildBDD(vec〈int〉 Cs, vec〈signal〉 ps, int rhs,
int size, int sum, int material left, map〈pair〈int ,int〉, signal〉 memo)

{
if (sum ≥ rhs) return True

else if (sum + material left < rhs) return False

key = (size, sum)
if (memo[key] == Undef) {

size−−
material left −= Cs[size]
hi sum = sign(ps[size]) ? sum : sum + Cs[size]
lo sum = sign(ps[size]) ? sum + Cs[size] : sum
hi result = buildBDD(Cs, ps, rhs, size, hi sum, material left, memo)
lo result = buildBDD(Cs, ps, rhs, size, lo sum, material left, memo)
memo[key] = ITE(var(ps[size]), hi result, lo result)

}

return memo[key]
}

Figure 6.3: Building a BDD from the PB-constraint “Cs · ps ≥ rhs”. The
functions used in the code do the following: “sign(p)” returns the sign of a
literal (True for ¬x, False for x); “var(p)” returns the underlying variable
of a literal (i.e. removes the sign, if any); and “ITE(cond,hi,lo)” constructs
an if-then-else gate. The types vec〈·〉” (a dynamic vector) and “map〈·, ·〉” (a
hash table) are assumed to be passed-by-reference (the reasonable thing to do),
whereas primitive datatypes, such as “int”, are assumed to be passed-by-value.
The BDD construction is initiated by calling “buildBDD()” with “size” set to
the number of coefficients in the LHS, “sum” set to zero, “material left” set to
the sum of all coefficients in the LHS, and “memo” to an empty map.

Definition. A bucket is a bit-vector where each bit has the same
value. A k-bucket is a bucket where each bit has the value k.

Definition. A binary number is a bit-vector where the bits have
values in ascending powers of 2 (the standard representation of
numbers in computers).

The translation of PB-constraints to clauses is best explained through an ex-
ample. Consider the following constraint:

2a + 13b + 2c + 11d + 13e + 6f + 7g + 15h ≥ 12

One way to enforce the constraint is to synthesize a circuit which adds up the
activated coefficients of the LHS to a binary number. This number can then
be compared with the binary representation of the RHS (just a lexicograph-
ical comparison). The addition and the corresponding buckets for the above
constraint look as follows:

91

FA

FA

FA

HA

c s

c s

sc

c s

y2 y1 y0

x5 x4 x3 x2 x1 x0

Figure 6.4: Adder circuit for the sum x0 + ... + x5.

00a0

bb0b

00c0

d0dd

ee0e

0ff0

0ggg

+ hhhh

Bucket: Content:

1-bits: [b,d,e,g,h]
2-bits: [a,c,d,f,g,h]
4-bits: [b,e,f,g,h]
8-bits: [b,d,e,h]

The goal is to produce the sum as a binary number. It can be done as follows:
Repeatedly pick three 2n-bits from the smallest non-empty bucket and produce,
through a full-adder, one 2n+1-bit (the carry) and one 2n-bit (the sum). The
new bits are put into their respective buckets, possibly extending the set of
buckets. Note that each iteration eliminates one bit from the union of buckets.
When a bucket only has two bits left, a half-adder is used instead of a full-adder.
The last remaining bit of the 2n-bucket is removed and stored as the nth output
bit of the binary sum. It is easy to see that the number of adders is linear in
the combined size of the initial buckets.

Pseudo-code for the algorithm is presented in Figure 6.5. We note that the
buckets can be implemented using any container, but that choosing a (FIFO)
queue—which inserts and removes from different ends—will give a balanced,
shallow circuit, whereas using a stack—which inserts and removes from the
same end—will give an unbalanced, deep circuit. It is not clear what is best for
a SAT-solver, but MINISAT+ uses a queue.

For the lexicographical comparison between the LHS sum and the RHS con-
stant, it is trivial to create a linear sized circuit. However, as we expect numbers
not to be exceedingly large, we synthesize a comparison circuit that is quadratic
in the number of bits needed to represent the sum (Figure 6.6). It has the ad-
vantage of not introducing any extra variables in the SAT-solver, as well as
producing fewer (although longer) clauses.

92

Analysis. Adder networks provide a compact, linear (both in time and space)
translation of PB-constraints. However, the generated CNF does not preserve
arc-consistency under unit propagation. Consider the cardinality constraint
x0 + x1... + x5 ≥ 4. The adder network synthesized for the LHS is shown in
Figure 6.4. The RHS corresponds to asserting y2. Now, assume x0 and x3 are
both False. In this situation, the remaining inputs must all be True, but no
assignment will be derived by unit propagation.

Another drawback of using adder networks is the carry propagation problem.
Assume that x0 and x3 are now True instead. The two lower full-adders and
the half-adder are summing 1-bits. Ideally, feeding two True-signals should
generate a carry-out to the top full-adder, which is summing 2-bits. But because
it cannot be determined which of the three outputs to the top full-adder is going
to generate the carry, no propagation takes place.

Related Work. The algorithm described in this section is very similar to what
is used for Dadda Multipliers to sum up the partial products [Dad64]. A more
recent treatment on multipliers and adder networks can be found in [BSS01].
Using adder networks to implement a linear translation of PB-constraint to
circuits has been done before in the papers [War96, ARMS02a, Sin05], but the
construction presented here uses fewer adders.

adderTree(vec〈queue〈signal〉〉 buckets, vec〈signal〉 result)
{

for (i = 0; i < buckets.size(); i++) {

while (buckets[i].size() ≥ 3) {
(x,y,z) = buckets[i].dequeue3 ()
buckets[i].insert(FA sum(x,y,z))
buckets[i+1].insert(FA carry(x,y,z)) }

if (buckets[i].size() == 2) {
(x,y) = buckets[i].dequeue2 ()
buckets[i].insert(HA sum(x,y))
buckets[i+1].insert(HA carry(x,y)) }

result[i] = buckets[i].dequeue()
}

}

Figure 6.5: Linear-sized addition tree for the coefficient bits. The bits of “buck-
ets[]” are summed up and stored in the output vector “result[]” (to be inter-
preted as a binary number). Each vector is dynamic and extends automatically
when addressed beyond its current last element. The “queue” could be any
container type supporting “insert()” and “dequeue()” methods. The particular
choice will influence the shape of the generated circuit. Abbreviations “FA” and
“HA” stand for full-adder and half-adder respectively.

6.5.5 Translation through Sorting Networks

Empirically it has been noted that SAT-solvers tend to perform poorly in the
presence of parity constraints. Because all but one variable must be bound be-
fore anything can propagate, parity constraints generate few implications during

93

// Generates clauses for “xs ≤ ys”, assuming one of them
// has only constant signals.

lessThanOrEqual(vec〈signal〉 xs, vec〈signal〉 ys, SatSolver S)
{

// Make equal-sized by padding
while (xs.size() < ys.size()) xs.push(False)
while (ys.size() < xs.size()) ys.push(False)

for (i = 0; i < xs.size(); i++) {
c = False

for (j = i+1; j < xs.size(); j++)
c |= (xs[j]ˆys[j]) // “c = OR(c, XOR(xs[j], ys[j]))”

c |= ¬xs[i] | ys[i] // Note, at this point “c 6= False”
S.addClause(c)

}
}

Figure 6.6: Compare a binary number “xs” to the RHS constant “ys”. One of
the input vectors must only contain the constant signals True and False. If
not, the function still works, except that “c” is not necessarily a clause when
reaching “addClause()”, so the call has to be replaced with something that can
handle general formulas. Notation: the method “push()” appends an element
to the end of the vector. In practice, as we put signals into the clause “c”, we
also apply the Tseitin transformation to convert the transitive fan-in (“all logic
below”) of those signals into clauses. Those parts of the adder network that are
not necessary to assert “xs ≤ ys” will not be put into the SAT-solver.

unit propagation. Furthermore, they tend to interact poorly with the resolu-
tion based conflict-clause generation of contemporary SAT-solvers. Because
full-adders contain Xor (a parity constraint) we might expect bad results from
using them extensively. In the previous section it was shown that translat-
ing cardinality constraints to adder networks does not preserve arc-consistency,
which gives some theoretical support for this claim. Furthermore, the interpre-
tation of a single bit in a binary number is very weak. If, for example, the third
bit of a binary number is set, it means the number must be ≥ 8. But if we want
to express ≤ 8, or ≥ 6 for that matter, a constraint over several bits must be
used. This slows down the learning process of the SAT-solver, as it does not
have the right information entities to express conflicts in.

To alleviate the problems inherent to full-adders we propose, as in [BB03], to
represent numbers in unary instead of in binary. In a unary representation, all
bits are counted equal, and the numerical interpretation of a bit-vector is simply
the number of bits set to True. A bit-vector of size 8, for example, can represent
the numbers n ∈ [0, 8]. Each such number will in the construction to follow be
connected to a sorting network,7 which allows the following predicates to be
expressed by asserting a single bit: n ≥ 0, n ≥ 1, . . ., n ≥ 8, and n ≤ 0, n ≤ 1,
. . ., n ≤ 8. Although the unary representation is more verbose than the binary,
we hypothesize that the Xor-free sorters increase the implicativity, and that
the SAT-solver benefits from having better information entities at its disposal

7MINISAT+ uses odd-even merge sorters [Bat68].

94

for conflict-clause generation. The hypothesis is to some extent supported by
our experiments, and we furthermore prove that the sorter-based translation of
this section is arc-consistent for the special case of cardinality constraints.

To demonstrate how sorters can be used to translate PB-constraints, consider
the following example:

x1 + x2 + x3 + x4 + x5 + x6 + 2y1 + 3y2 ≥ 4

The sum of the coefficients is 11. For this constraint one could synthesize a
sorting network of size 11, feeding y1 into two of the inputs, y2 into three of the
inputs, and all the signals xi into one input each. To assert the constraint, one
just asserts the fourth output bit of the sorter.

Now, what if the coefficients of the constraint are bigger than in this ex-
ample? To generalize the above idea, we propose a method to decompose the
constraint into a number of interconnected sorting networks. The sorters will es-
sentially play the role of adders on unary numbers. Whereas the adder networks
of the previous section worked on binary numbers—restricting the computation
to buckets of 1-bits, 2-bits, 4-bits, and so on for each power of 2— the unary
representation permits us the use of any base for the coefficients, including a
mixed radix representation. The first part of our construction will be to find a
natural base in which the constraint should be expressed.

Definition. A base B is a sequence of positive integers Bi, either
finite 〈B0, . . . , Bn−1〉 or infinite.

Definition. A number d in a base B is a finite sequence 〈d0, . . . , dm−1〉
of digits di ∈ [0, Bi− 1]. If the base is finite, the sequence of digits
can be at most one element longer than the base. In that case, the
last digit has no upper bound.

Definition. Let tail(s) be the sequence s without its first element.
The value of a number d in base B is recursively defined through:

value(d, B) = d0 + B0 × value(tail(d), tail(B))

with the value of an empty sequence d defined as 0.

Example: The number 〈2, 4, 10〉 in base 〈3, 5〉 should be interpreted as 2 + 3×
(4 + 5 × 10) = 2 × 1 + 4 × 3 + 10 × 15 = 164 (bucket values in boldface).
Note that numbers may have one more digit than the size of the base due to
the ever-present bucket of 1-bits. Let us outline the decomposition into sorting
networks:

• Find a (finite) base B such that the sum of all the digits of the coefficients
written in that base, is as small as possible. The sum corresponds to the
number of inputs to the sorters we will synthesize, which in turn roughly
estimates their total size.8

8In MINISAT+, the base is an approximation of this: the best candidate found by a brute-
force search trying all prime numbers < 20. This is an ad-hoc solution that should be improved
in the future. Finding the optimal base is a challenging optimization problem in its own right.

95

Figure 6.7: Sorting networks for the constraint “a+ b+2c+2d+3e+3f +3g +
3h+7i ≥ 8” in base 〈3〉. Sorters will output 0:s at the top and 1:s at the bottom.
In the figure, “lhs” is the value of the left-hand side of the PB-constraint, and
“%” denotes the modulo operator. In base 〈3〉, 8 becomes 〈2, 2〉, which means
that the most significant digit has to be either > 2 (which corresponds to the
signal “lhs ≥ 9” in the figure), or it has to be = 2 (the “lhs ≥ 6” signal) and at
the same time the least significant digit ≥ 2 (the “(lhs % 3) ≥ 2” signal). For
clarity this logic is left out of the figure; adding it will produce the single-output
circuit representing the whole constraint.

• Construct one sorting network for each element Bi of the base B. The
inputs to the ith sorter will be those digits d (from the coefficients) where
di is non-zero, plus the potential carry bits from the i-1th sorter.

We will explain the details through an example. Consider the constraint:

a + b + 2c + 2d + 3e + 3f + 3g + 3h + 7i ≥ 8

Assume the chosen base B is the singleton sequence 〈3〉, meaning we are going
to compute with buckets of 1-bits and 3-bits. For the constraint to be satisfied,
we must either have at least three 3-bits (the LHS ≥ 9), or we must have two
3-bits and two 1-bits (the LHS = 8). Our construction does not allow the 1-bits
to be more than two; that would generate a carry bit to the 3-bits.

In general, let di be the number in base B representing the coefficient Ci,
and drhs the number for the RHS constant. In our example, we have:

d0, d1 = 〈1, 0〉 (digits for the a and b terms)
d2, d3 = 〈2, 0〉 (digits for the c and d terms)
d4.. d7 = 〈0, 1〉 (digits for the e, f, g, and h terms)
d8 = 〈1, 2〉 (digits for the i term)
drhs = 〈2, 2〉 (digits for the RHS constant)

The following procedure, initiated by “genSorters(0, ∅)”, recursively generates
the sorters implementing the PB-constraint:

genSorters(n, carries)
- Synthesize a sorter of size: (

∑

i di
n) + |carries |. Inputs are taken from the

elements of carries and the pi:s of the constraint: signal pi is fed to di
n

inputs of the sorter.9

9Implementation note: The sorter can be improved by using the fact that the carries are
already sorted.

96

// Does the sorter output “out[1..size]” represent
a number ≥ “lim” modulo “N”?

signal modGE(vec〈signal〉 out, int N, int lim)
if (lim == 0) return True

result = False

for (j = 0; j < out.size(); j += N)
result |= out[j + lim] & ¬out[j+N]
// let out[n] = False if n is out-of-bounds

return result

signal lexComp(int i)
if (i == 0)

return True

else
i−−
out = “output of sorters[i]”
gt = modGE(out, Bi, drhs

i + 1)
ge = modGE(out, Bi, drhs

i)
return gt | (ge & lexComp(i))

Figure 6.8: Adding lexicographical comparison. In the code, “sorters” is
the vector of sorters produced by “genSorters()”—at most one more than
|B|, the size of the base used. The procedure is initialized by calling “lex-
Comp(sorters.size())”. Let Bi = +∞ for i = |B| (in effect removing the mod-
ulus part of “modGE()” for the most significant digit). The drhs is the RHS
constant written in the base B. Operators “&” and “|” are used on signals to
denote construction of And and Or gates.

- Unless n = |B|: Pick out every Bn:th output bit and put in new carries
(the outputs: out [Bn], out [2Bn], out [3Bn] etc.). Continue the construc-
tion with genSorters(n + 1, new carries).

Figure 6.7 shows the result for our example. Ignore for the moment the extra
circuitry for modulo operation (the “lhs % 3 ≥ 2” signal). We count the output
pins from 1 instead of 0 to get the semantics out [n] = “at least n bits are set”.

On the constructed circuit, one still needs to add the logic that asserts
the actual inequality LHS ≥ RHS. Just like in the case of adder networks, a
lexicographical comparison is synthesized, but now on the mixed radix base.
The most significant digit can be read directly from the last sorter generated,
but to extract the remaining digits from the other sorters, bits contributing to
carry-outs have to be deducted. This is equivalent to computing the number of
True bits produced from each sorter modulo Bi. Figure 6.8 shows pseudo-code
for the complete lexicographical comparison synthesized onto the sorters. In
our running example, the output would be the signal “(lhs ≥ 9) ∨ ((lhs ≥ 6) ∧
(lhs % 3 ≥ 2))” (again, see Figure 6.7), completing the translation.

Analysis. In base 〈2∗〉 = 〈2, 2, . . .〉, the construction of this section becomes
congruent to the adder based construction described in the previous section.

97

Sorters now work as adders because of the unary number representation, and as
an effect of this, the carry propagation problem disappears. Any carry bit that
can be produced will be produced by unit propagation. Moreover, the unary rep-
resentation provides the freedom to pick any base to represent a PB-constraint,
which recovers some of the space lost due to the more verbose representation of
numbers.

Let us study the size of the construction. An odd-even merge sorter contains
n · log n · (1 + log n) ∈ O(n log2n) comparators,10 where n is the number of
inputs. Dividing the inputs between two sorters cannot increase the total size ,
and hence we can get an upper bound by counting the total number of inputs
to all sorters and pretend they were all connected to the same sorter. Now, the
base used in our construction minimizes the number of inputs, including the ones
generated from carry-ins, so choosing the specific base 〈2∗〉 can only increase the
number of inputs. In this base, every bit set to 1 in the binary representation
of a coefficient will generate an input to a sorter. Call the total number of such
inputs N . On average, every input will generate 1/2 a carry-out, which in turn
will generate 1/4 a carry-out and so forth, bounding the total number of inputs,
including carries, to 2N . An upper limit on the size of our construction is thus
O(N log2N), where N can be further bound by ⌈log2(C0)⌉+ ⌈log2(C1)⌉+ . . . +
⌈log2(Cn−1)⌉, the number of digits of the coefficient in base 2. Counting digits
in another base does not affect the asymptotic bound.

By our construction, the cardinality constraint p1 + . . . + pn ≥ k translates
into a single sorter with n inputs, p1, . . . , pn, and n outputs, q1, . . . , qn (sorted
in descending order), where the kth output is forced to True. We claim that
unit propagation preserves arc-consistency. First we prove a simpler case:

Theorem: Assume exactly n−k of the inputs pi are set to 0, and that all of
the outputs q1, . . . , qk are set to 1 (not just qk), then the remaining unbound
inputs will be assigned to 1 by unit propagation.

Proof: First note that the clauses generated for a single comparator locally
preserve arc-consistency. It allows us to reason about propagation more easily.
Further note that unit propagation has a unique result, so we are free to consider
any propagation order. For brevity write 1, 0, and X for True, False and
unbound signals.

Start by considering the forward propagation of 0 s. A comparator receiving
two 0 s will output two 0 s. A comparator receiving a 0 and an X will output
a 0 on the min-output and an X on the max-output. Essentially, the X s are
behaving like 1 s. No 0 is lost, so they must all reach the outputs. Because the
comparators comprise a sorting network, the 0 s will appear contiguously at the
highest outputs (see Figure 6.9).

Now all outputs are assigned. Consider the comparators in a topologically
sorted order, from the outputs to the inputs. We show that if both outputs of
a comparator are assigned, then by propagation both inputs must be assigned.
From this follows by necessity that the 1 s will propagate backwards to fill the
X s of the inputs. For each comparator, there are two cases (i) both outputs
have the same value, in which case propagation will assign both inputs to that
value, and (ii) the min-output of the comparator is 0 and the max-output is 1.
In the latter case, the 0 must have been set during the forward propagation of

10A comparator is a two-input, two-output gate which sorts two elements. For boolean
inputs, the outputs, called “min” and “max”, corresponds to an And-gate and an Or-gate
respectively.

98

p7 → 0

p5 → 0

p3 → 0

p2 → 0

1← q4

0 q8

0 q7

0 q6

0 q5

p8 1

p6 1

p4 1

p1 1

q3

q2

q1

Figure 6.9: Propagation trough an 8-sorter. Forced values are denoted by an
arrow; four inputs are set to 0 and one output is set to 1. The thick solid lines
show how the 0 s propagate towards the outputs, the thin dashed lines show
how 1 propagate backwards to fill the unassigned inputs.

0 s, so one of the comparator’s inputs must be 0, and hence, by propagation,
the other input will be assigned to 1. 2

To show the more general case—that it is enough to set only the output qk

to 1—takes a bit more work, but we outline the proof (Figure 6.9 illustrates the
property):

− Consider the given sorter where some inputs are forced to 0. Propagate
the 0 s to the outputs. Now, remove any comparator (disconnecting the
wires) where both inputs and outputs are 0. For any comparator with
both 0 and X inputs (and outputs), connect the X signals by a wire and
remove the comparator. Do the same transformation if X is replaced by
1. Keep only the network reachable from the primary inputs not forced
to 0. In essence: remove the propagation paths of the 0 s.

− Properties of the construction: (a) propagations in the new network cor-
respond 1-to-1 with propagations in the original network, (b) the new
network is a sorter.

− The original problem is now reduced to show that for a sorter of size k,
forcing its top output11 will propagate 1 s to all of its inputs (and hence
all signals of the network).

− Assume the opposite, that there exists an assignment of the signals that
cannot propagate further, but which contains X. From the set of such
assignments, pick a maximal element, containing as many 1 s as possible.
An X can only appear in one of the following four configurations:

x x

1 1

1 x

x 1

x x

x 1

x x

x x

(1) (2) (3) (4)

Assume first that (3) and (4) do not exist. In such a network, X behaves
exactly as a 0 would do, which means that if we put 0 s on the X inputs,

11Assume the orientation of Figure 6.9 for “up” and “down”.

99

they would propagate to the outputs beneath the asserted 1 at the top,
which violates the assumption that the network is sorting.

− One of the situations (3) or (4) must exist. Pick a comparator with such a
configuration of X s and set the lower input to 1. A detailed analysis, con-
sidering the four ways X s can occur around a comparator, shows that unit
propagation can never assign a value to the X of the upper output of the
selected comparator, contradicting the assumption of the assignment being
maximal and containing X. To see this, divide the possible propagations
into forward propagations (from inputs to outputs) and non-forward prop-
agations (from outputs to inputs/outputs). A non-forward propagation
can only propagate 1 s leftwards or downwards. A forward-propagation
can never initiate a non-forward propagation. 2

Unfortunately, arc-consistency is broken by the duplication of inputs, both to
the same sorter and between sorters. Duplication within sorters can be avoided
by using base 〈2∗〉, but duplication between sorters will remain. Potentially
some improvement to our translation can re-establish arc-consistency in the
general case, but it remains future work.

Related Work. Sorting networks is a well-studied subject, treated thoroughly
by Knuth in [Knu73]. For a brief tutorial on odd-even merge sorters, the reader
is referred to [She03]. In [BB03] an arc-consistent translation of cardinality
constraints based on a O(n2) sized sorter (or “totalizer” by the authors ter-
minology) is presented. The proof above shows that any sorting network will
preserve arc-consistency when used to represent cardinality constraints. More
generally, the idea of using sorting networks to convert non-clausal constraints
into SAT has been applied in [KS03b]. The authors sort not just bits, but
words, to be able to more succinctly express uniqueness between them. With-
out sorting, a quadratic number of constraints must be added to force every
word to be distinct, whereas the bitonic sorter used in that work is O(n log2n).
In [Fio99] a construction similar to the one presented in this section is used to
produce a multiplier where the partial products are added by sorters computing
on unary numbers. Although the aim of the paper is to remove Xors, which
may have a slow implementation in silicon, the idea might be even better suited
for synthesis geared towards SAT-based verification. Finally, in [WSK04], the
carry propagation problem of addition networks is also recognized. The authors
solve the problem a bit differently, by preprocessing the netlist and extending
the underlying SAT-solver, but potentially sorters can be used in this context
too.

6.6 Evaluation

This section will report on two things:

• The performance of MINISAT+ compared to other PB-solvers.
• The effect of the different translation techniques.

It is not in the scope of this paper to advocate that PB-solving is the best
possible solution for a particular domain specific problem, and no particular
application will be studied.

100

Small/medium ints. (577 benchmarks)

Solver #solved-to-opt.

bsolo 187
minisat+ 200
PBS4 166
Pueblo 194
sat4jpseudo 139
pb2sat+zchaff 150

Big integers (482 benchmarks)

Solver #solved-to-opt.

bsolo 9
minisat+ 26
PBS4 (buggy)
Pueblo N/A
sat4jpseudo 3
pb2sat+zchaff 11

Figure 6.10: PB-evaluation 2005. Problems with objective function, solved to
optimality.

6.6.1 Relative performance to other solvers

In conjunction with the SAT No optimization function (113 benchmarks)

Solver #solved (sat/unsat)

bsolo 44 (8/36)
minisat+ 78 (35/43)
PBS4 89 (28/61)
Pueblo 103 (42/61)
sat4jpseudo 69 (17/52)
pb2sat+zchaff 78 (36/42)

Figure 6.11: PB-evaluation 2005. No objective
function, just satisfiability (on small integers).

2005 Competition, a pseudo-
boolean evaluation track was
also arranged.12 MINISAT+

participated in this evalua-
tion together with 7 other
solvers. Because not all solvers
could handle arbitrary pre-
cision integers, the bench-
mark set was divided into
small, medium and big in-
tegers. From the results, it
seems that only the big cat-
egory was problematic (greater than 30-bit integers), so we have merged the
other two categories here. Not all problems had an objective function, so prob-
lems were also divided into optimization and pseudo-boolean satisfiability prob-
lems.

Out of the the 8 solvers, 3 was found to be unsound, reporting “UNSAT”
for problems where other solvers found verifiable models. However, one of these
solver, PBS4, seemed only to be incorrect for big integers, so we still consider this
solver. But the other two, GALENA and VALLST are excluded from our tables,
as they have multiple erroneous “UNSAT” answers, even in the small integer
category. The results of the remaining solvers can be found in Figure 6.10 and
Figure 6.11. In the evaluation, MINISAT+ selected translation method using the
following ad-hoc heuristic, applied to each constraint: If the BDD translation
is really compact, use that; otherwise, if the sorting network is not extremely
large, use that; otherwise, fall back on adder networks (which are compact).

From the results we conclude that MINISAT+ and PUEBLO were the two
strongest solvers participating in the evaluation. Although it would be inter-
esting to compare these solvers to commercial LP solvers such as CPLEX, for
practical reasons this has not been done—no LP solver was part of the evalua-
tion, and CPLEX requires a license.

101

Constraint Adders BDDs Sorters Adders BDDs Sorters Adders BDDs Sorters
(Obj. fct.) (Adder) (Adder) (Adder) (BDD) (BDD) (BDD) (Sorter) (Sorter) (Sorter)

afiro 293 (2.8) 299 (5.4) 190 (3.3) 936 (4.4) 447 (5.4) 975 (4.8) 470 (2.9) 765 (5.4) 373 (3.5)

sc205 166 (2.4) 3 (2.7) 86 (2.8) 166 (2.4) 3 (2.7) 86 (2.8) 166 (2.4) 3 (2.7) 86 (2.8)

bk4x3 7 (2.4) 4 (2.4) 10 (2.6) 21 (3.9) 32 (4.1) 15 (3.9) 9 (2.9) 6 (2.9) 3 (2.9)

neos1 – (1.2) – (1.2) – (0.8) – (1.4) – (1.5) 90 (1.3) 705 (1.2) 195 (1.2) 23 (0.9)

neos20 8 (1.3) 3 (1.3) 14 (1.5) 9 (1.3) 2 (1.3) 13 (1.5) 8 (1.3) 3 (1.3) 14 (1.5)

lseu – (2.6) – (3.0) – (2.9) – (4.2) – (4.2) – (4.2) 235 (3.1) 203 (3.3) 331 (3.4)

misc03 30 (2.2) – (4.8) 33 (2.8) 24 (2.1) – (4.8) 26 (2.8) 27 (2.1) – (4.8) 32 (2.8)

sample2 4 (2.6) 3 (2.7) 6 (2.9) 7 (3.9) 8 (4.1) 5 (3.8) 21 (3.6) 17 (3.5) 17 (3.5)

stein45 20 (0.5) 25 (0.9) 21 (0.7) 16 (0.8) 18 (1.0) 16 (0.9) 20 (0.7) 20 (0.9) 14 (0.7)

enigma 5 (2.3) 122 (4.8) 9 (2.9) 5 (2.3) 122 (4.8) 9 (2.9) 5 (2.3) 123 (4.8) 9 (2.9)

noswot – (3.4) 119 (2.7) – (−∞) – (3.4) 131 (2.7) – (−∞) – (3.4) 64 (2.7) – (−∞)

p0282 – (2.4) – (2.5) – (2.7) 360 (2.1) 355 (2.3) 368 (2.6) – (3.1) 732 (3.3) 281 (3.2)

vpm1 – (2.4) 830 (3.4) – (2.9) – (2.4) 375 (3.4) – (2.9) – (2.4) 176 (3.4) – (2.9)

sc50b – (2.6) 147 (2.7) 147 (2.8) – (2.6) 39 (2.7) 143 (2.8) – (2.6) 108 (2.7) 139 (3.0)

neos8 – (1.6) 359 (1.3) 20 (−∞) – (1.7) 263 (1.8) 20 (−∞) – (1.6) 266 (1.4) 20 (−∞)

maros 12 (3.0) 3 (3.2) 5 (3.2) 77 (4.5) 57 (4.5) 96 (4.6) 10 (3.1) 7 (3.3) 6 (3.4)

l152lav – (2.8) 429 (3.2) 704 (3.2) – (2.8) 110 (3.4) 43 (3.6) – (2.8) 139 (4.4) 324 (4.7)

mod008 570 (3.6) 378 (3.6) 355 (3.7) 30 (5.4) 47 (5.4) 356 (5.9) 28 (4.6) 20 (4.6) 67 (4.6)

clip-b 245 (0.9) 245 (0.9) 245 (0.9) 51 (1.4) 51 (1.4) 51 (1.4) 6 (1.4) 6 (1.4) 6 (1.4)

hanoi5 9 (0.5) 9 (0.5) 9 (0.5) 414 (2.6) 426 (2.6) 426 (2.6) 12 (1.2) 12 (1.2) 12 (1.2)

ii32b3 – (0.5) – (0.5) – (0.5) 720 (1.8) 720 (1.8) 721 (1.8) 25 (0.9) 25 (0.9) 25 (0.9)

ii32e4 – (0.7) – (0.7) – (0.7) – (1.8) – (1.8) – (1.8) 40 (0.8) 40 (0.8) 40 (0.8)

par16-3 1 (0.7) 1 (0.7) 1 (0.7) 44 (2.5) 44 (2.5) 43 (2.5) 1 (1.4) 1 (1.4) 1 (1.4)

ssa7552-159 – (1.0) – (1.0) – (1.0) – (3.0) – (3.0) – (3.0) 21 (1.6) 21 (1.6) 21 (1.6)

s4-4-3-2pb – (1.2) – (1.3) – (1.2) – (2.2) 942 (2.2) 393 (2.2) 131 (1.5) 320 (1.6) 8 (1.4)

s4-4-3-9pb 26 (1.2) 150 (1.2) 23 (1.2) 454 (2.3) 684 (2.2) 153 (2.1) 14 (1.6) 61 (1.7) 9 (1.8)

frb30-15-3 – (0.1) – (0.1) – (0.1) 761 (0.7) 761 (0.7) 761 (0.7) 164 (0.3) 164 (0.3) 164 (0.3)

frb35-17-5 – (0.1) – (0.1) – (0.1) – (0.5) – (0.5) – (0.5) 811 (0.1) 811 (0.1) 809 (0.1)

woodw 55 (−∞) 54 (−∞) 55 (−∞) 55 (−∞) 54 (−∞) 55 (−∞) 55 (−∞) 55 (−∞) 55 (−∞)

chnl10-11 60 (1.5) 20 (1.4) 32 (1.5) 60 (1.5) 20 (1.4) 32 (1.5) 60 (1.5) 20 (1.4) 32 (1.5)

chnl10-20 24 (1.8) 87 (1.5) 24 (1.6) 24 (1.8) 87 (1.5) 24 (1.6) 24 (1.8) 87 (1.5) 24 (1.6)

fpga35-35 – (1.0) 74 (0.9) 3 (1.3) – (1.0) 75 (0.9) 3 (1.3) – (1.0) 75 (0.9) 3 (1.3)

fpga40-40 – (1.0) 701 (0.9) 2 (1.1) – (1.0) 700 (0.9) 2 (1.1) – (1.0) 700 (0.9) 2 (1.1)

22s-smv 3 (1.0) 1 (0.7) 20 (1.2) 3 (1.0) 1 (0.7) 20 (1.2) 3 (1.0) 1 (0.7) 20 (1.2)

cache-inv12 36 (0.1) 14 (0.0) 19 (0.2) 36 (0.1) 14 (0.0) 19 (0.2) 36 (0.1) 14 (0.0) 19 (0.2)

burch-dill 16 (0.8) 3 (0.4) 16 (0.9) 16 (0.8) 3 (0.4) 16 (0.9) 16 (0.8) 3 (0.4) 16 (0.9)

ex-br-mem 101 (0.9) 117 (0.6) 407 (1.1) 101 (0.9) 116 (0.6) 407 (1.1) 101 (0.9) 117 (0.6) 407 (1.1)

rf10 28 (0.4) 15 (0.2) 18 (0.4) 28 (0.4) 15 (0.2) 18 (0.4) 28 (0.4) 15 (0.2) 18 (0.4)

tag10 96 (0.5) 5 (0.3) 16 (0.6) 96 (0.5) 5 (0.3) 16 (0.6) 96 (0.5) 5 (0.3) 16 (0.6)

100s: 18 17 22 18 19 23 23 24 29
1000s: 23 29 28 26 33 33 31 38 37

Figure 6.12: Runtime of MINISAT+ on a random selection of benchmarks. The
upper part contains optimization problems with an objective function; in the
lower part are pure satisfiability problems. The numbers state runtime in sec-
onds. A dash indicates timeout at 1000 seconds. The super-script numbers
give the translation blow-up, written as log10(clauses / pb-constraints). A value
of “3” means each constraint was translated to 1000 clauses on average. The
two top lines show what translation method was used for the constraints and
objective function respectively. The two bottom lines show the total number of
problems solved at a timeout of 100/1000 seconds.

102

6.6.2 Efficiency of different translation techniques

In this section, the three different translation techniques are evaluated on a ran-
dom sample of benchmarks, drawn from the PB-evaluation set. Each benchmark
is evaluated over 9 different parameters to MINISAT+:

• All constraints are translated using one and the same technique (3 choices).
• The objective function is translated using any of the techniques (3 choices).

The reason for treating the objective function separately, is that the optimiza-
tion constraints generated from it are often very different from the problem
constraints. The benchmarks were selected by the following procedure:

• Pick one of the 9 settings for MINISAT+.
• Pick one of the 1176 benchmarks from the evaluation set.
• If MINISAT+ could solve it within 10 minutes, keep it.
• Repeat until 40 benchmarks have been accumulated.

The procedure should give a reasonably unbiased benchmark set.13 Run-times
and translation sizes (relative to the PB-formulation) are presented in Fig-
ure 6.12. The experiments were carried out on a cluster of AMD Athlon XP
2800+ machines, each with 1 GB of RAM.

The results indicate that the translation through adders does not work well,
either for the constraints or the objective function. This is particularly inter-
esting as the adder-translation is the most compact one on average. For the
objective function, it seems best to use the sorter-translation. If it is best com-
bined with BDDs or sorters for the problem constraints cannot be concluded
from the table, but there are instances where the result of using BDDs differ
widely from the result of using sorters. In the table, the translation blow-up
includes the objective function which can be dominating, as seen by compar-
ing the results of optimization problems with the results of pure satisfiability
problems.

Some remarks about the table: (i) The lower part (below the line) contains
problems without objective function. As conversion of the non-existent objective
does not affect the result, the same figures occur in three places, modulo timing
fluctuation. (ii) The relative blow-up is given in logarithmic scale (the x of 10x),
and so −∞ means that the problem was solved by the parser and pre-processor,
producing zero clauses.

12http://www.cril.univ-artois.fr/PB05/ (see also [MR06, MMS06, BBR06, ARMS02b,
SS06, CK03])

13One benchmark was later detected as a duplicate, and therefore removed.

103

6.7 Conclusions and Future Work

Coding integer arithmetic into boolean operations in a manner well suited for
hardware implementation is a thoroughly studied topic. Contrary to this the
focus of this paper lies on coding arithmetic, in particular the constructs present
in PB-constraints, in ways that are suitable for a SAT-solver. One of the results
shown herein is that the compact implementation of adder networks operating
on binary numbers works poorly for SAT compared to the more verbose im-
plementation using unary numbers. By change of representation SAT solving
could be leveraged into PB solving with very reasonable results, which should
have implications on, for example, how SAT-based circuit verification is carried
out on designs containing arithmetic. Although making domain specific modi-
fication to a SAT-solver is an approach likely to outperform translation based
methods in many cases, our belief is that translation is particularly well suited
for the kind of problems where SAT-solvers are already successful. An example
of such a problem might be finding error-traces in circuits with as many X s on
the inputs as possible. The pragmatics of the approach is also appealing, as
encoding into SAT is often much easier than modifying the core solver.

A theoretical result of our study is a proven better bound on the smallest
arc-consistent translation of cardinality constraints. Furthermore, our studies
reinforce the common opinion that lack of carry propagation in adders are bad
for SAT solving, and that more generally high implicativity or arc-consistency
is desirable for the subcomponents of a SAT encoding. In the translation using
BDDs, arc-consistency was achieved by adding redundant clauses to strengthen
unit propagation, which further shows that “small” does not necessarily mean
“good” when it comes to CNF encodings. In fact, an interesting branch of future
research would be to study how a circuit can be partitioned into chunks that lend
themselves to clausification with high implicativity or arc-consistency, such that
(a) the encoding is still compact, and (b) the interaction of the components still
preserves high implicativity. A more direct future work is to explore the freedom
of base-selection in the translation using sorters, in particular by minimizing the
number of duplicated inputs rather than the total number of inputs, to increase
the implicativity.

6.8 Acknowledgments

The authors wish to express their gratitude to Alan Mishchenko, Armin Biere,
Reiner Hähnle, Mary Sheeran and the reviewers for their careful reading and
helpful suggestions for improvements of the manuscript. We would also like to
thank Christian Szegedy who came up with the generalized version of the proof
of arc-consistency of sorters, something we had hitherto only verified experi-
mentally.

104

Bibliography

[ABE00] P.A. Abdulla, P. Bjesse, and N. Een. Symbolic reachability analysis
based on SAT-solvers. In Proceedings of the 6th International Con-
ference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’2000), 2000.

[AH01] Gilles Audemard and Laurent Henocque. The eXtended Least
Number Heuristic. Lecture Notes in Computer Science, 2083, 2001.

[ARMS02a] F. Aloul, A. Ramani, I. Markov, and K. Sakallah. Generic ILP vs.
Specialized 0-1 ILP: an Update. In Proceedings of the International
Conference on Computer Aided Design (ICCAD), 2002.

[ARMS02b] F. Aloul, A. Ramani, I. Markov, and K. Sakallah. Pbs: A backtrack
search pseudo-boolean solver. In Symposium on the Theory and
Applications of Satisfiability Testing (SAT’2002), 2002.

[Bar95] Peter Barth. A davis-putnam based enumeration algorithm for
linear pseudo-Boolean optimization. Research Report MPI-I-95-2-
003, Max-Planck-Institut für Informatik, Im Stadtwald, D-66123
Saarbrücken, Germany, January 1995.

[Bat68] K.E. Batcher. Sorting networks and their applications. In Pro-
ceedings of AFIPS Spring Joint Computer Conference, volume 32,
pages 307–314, 1968.

[BB03] O. Bailleux and Y. Boufkhad. Efficient cnf encoding of boolean
cardinality constraints. In Proceedings of the 9th International
Conference on Principles and Practice of Constraint Programming,
CP 2003, volume 2833. LNCS, 2003.

[BB04a] O. Bailleux and Y. Boufkhad. Problem encoding into sat : the
counting constraints case. In Proceedings of The Seventh Inter-
national Conference on Theory and Applications of Satisfiability
Testing (SAT’2004), 2004.

[BB04b] P. Bjesse and A. Boralv. ”dag-aware circuit compression for formal
verification”. In Proc. ICCAD’04, 2004.

[BBC+05] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila,
P. v. Rossum, S. Schulz, and R. Sebastiani. The mathsat 3 sys-
tem. In Conference on Automated Deduction (CADE-20), Springer
Verlag, 2005.

105

[BBR06] O. Bailleux, Y. Boufkhad, and O. Roussel. A translation of pseudo
boolean constraints to sat. In Journal on Satisfiability, Boolean
Modeling and Computation (JSAT’06), issue 2, pages 183–192,
2006.

[BC00] Per Bjesse and Koen Claessen. SAT-based Verification without
State Space Traversal. In Formal Methods in Computer-Aided De-
sign, 2000.

[BCC+99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, M. Fujita,
and Y. Zhu. Symbolic Model Checking using SAT procedures in-
stead of BDDs. In Proceedings of Design Automation Conference
(DAC’99), 1999.

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan
Zhu. Symbolic Model Checking without BDDs. In Proceedings 8th
International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, 1999.

[BCRZ99] Armin Biere, Edmund Clarke, Richard Raimi, and Yunshan Zhu.
Verifying Safety Properties of a PowerPC Microprocessor Using
Symbolic Model Checking without BDDs. In Proceedings of the
11th International Conference on Computer Aided Verification,
1999.

[BDS02] C.W. Barret, D.L. Dill, and A. Stump. Checking satisfiability of
first-order formulas by incremental translation to sat. In Proc. of
the 14th Int. Conf. on Computer Aided Verification (CAV’02),
LNCS 2404, 2002.

[Ber] Daniel Le Berre. SAT4J. http://www.sat4j.org.

[Bie06] Armin Biere. AIGER (aiger is a format, library and set of utilities
for and-inverter graphs (aigs)). http://fmv.jku.at/aiger/, 2006.

[BKA02] Jason Baumgartner, Andreas Kuehlmann, and Jacob A. Abra-
ham. Property Checking via Structural Analysis. In Proceedings of
the 14th International Conference on Computer Aided Verification,
2002.

[Bry86] Randy E. Bryant. Graph-based algorithms for boolean function
manipulation. In IEEE Transactions on Computers, C-35(8):677-
691, 1986.

[BS] Roberto Bruttomesso and Natasha Sharygina. Opensmt. http:

//code.google.com/p/opensmt/.

[BSS01] K.C. Bickerstaff, E.E. Swartzlander, and M.J. Schulte. Analysis
of column compression multipliers. In Proceedings of 15th IEEE
Symposium on Computer Arithmetic (ARITH-15’01), 2001.

[CAB+98] William Chan, Richard J. Anderson, Paul Beame, Steve Burns,
Francesmary Modugno, David Notkin, and Jon D. Reese. Model
Checking Large Software Specifications. IEEE Transactions on
Software Engineering, 24(7), 1998.

106

[CC04] D. Chen and J. Cong. Daomap: A depth-optimal area optimization
mapping algorithm for fpga designs. In ICCAD, pages 752–759,
2004.

[CFF+01] Fady Copty, Limor Fix, Ranan Fraer, Enrico Giunchiglia, Gila
Kamhi, Armando Tacchella, and Moshe Y. Vardi. Benefits of
bounded model checking at an industrial setting. In Proceedings of
the 13th International Conference on Computer Aided Verification,
2001.

[CK03] D. Chai and A. Kuehlmann. A fast pseudo-boolean constraint
solver. In Proceedings of Design Automation Conference (DAC’03),
pages 830–835, 2003.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures.
In STOC, pages 151–158. ACM, 1971.

[CS00] Koen Claessen and Mary Sheeran. A tutorial on Lava: A hardware
description and verification system, 2000.

[CS03] Koen Claessen and Niklas Sörensson. New Techniques that Im-
prove MACE-style Finite Model Finding. In CADE-19, Workshop
W4. Model Computation – Principles, Algorithms, Applications,
2003.

[Dad64] L. Dadda. Some schemes for parallel multipliers. In Alta Frequenza,
volume 34, pages 14–17, 1964.

[DLL62] M. Davis, G. Logemann, and D. Loveland. A machine program for
theorem-proving. Communications of the ACM, 5:394–397, 1962.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for
quantification theory. JACM, 7(3):201–215, 1960.

[EB05] N. Een and A. Biere. Effective preprocessing in SAT through vari-
able and clause elimination. In Proc. of Theory and Applications
of Satisfiability Testing, 8th International Conference (SAT’2005),
volume 3569 of LNCS, 2005.

[ES03a] Niklas Een and Niklas Sörensson. An extensible sat solver. In
Proceedings of the 6th Int. Conference on Theory and Applications
of Satisfiability Testing, 2003.

[ES03b] Niklas Eén and Niklas Sörensson. Temporal induction by incremen-
tal SAT solving. In Proceedings of the First International Work-
shop on Bounded Model Checking, 2003.

[ES06] N. Een and N. Sörensson. ”translating pseudo-boolean constraints
into sat”. In Journal on Satisfiability, Boolean Modelling and Com-
putation (JSAT), volume 2 of IOS Press, 2006.

[Fio99] P.D. Fiore. Parallel multiplication using fast sorting networks. In
IEEE Transactions on Computers, vol 48, no 6, 1999.

107

[Gen02] I.P. Gent. Arc consistency in sat. In Proceedings of the Fifteenth
European Conference on Artificial Intelligence (ECAI 2002), 2002.

[GN02] E. Goldberg and Y. Novikov. Berkmin: A fast and robust sat
solver, 2002.

[Gro] Berkeley Logic Synthesis Group. Abc: A system for sequen-
tial synthesis and verification. http://www.eecs.berkeley.edu/

~alanmi/abc/.

[Hoo93] John N. Hooker. Solving the incremental satisfiability problem.
Journal of Logic Programming, 15, 1993.

[HV95] John N. Hooker and V. Vinay. Branching rules for satisfiability. J.
Autom. Reasoning, 15(3):359–383, 1995.

[JS04] Paul Jackson and Daniel Sheridan. Clause form conversions for
boolean circuits. In Proc. of Theory and Applications of Satisfia-
bility Testing (SAT’04), volume 3542 of LNCS, 2004.

[JW90] Robert G. Jeroslow and Jinchang Wang. Solving propositional
satisfiability problems. Ann. Math. Artif. Intell., 1:167–187, 1990.

[JZ95] H. Zhang J. Zhang. SEM: a System for Enumerating Models. In
Proc. of International Joint Conference on Artificial Intelligence
(IJCAI’95), 1995.

[JZ96] H. Zhang J. Zhang. Generating Models by SEM. In Proc. of Inter-
national Conference on Automated Deduction (CADE’96), pages
308–312. Springer-Verlag, 1996.

[Knu73] D. E. Knuth. The Art of Computer Programming, volume 3: Sort-
ing and Searching. Addison Wesley, 1973.

[Kor08] Konstantin Korovin. iProver — an instantiation-based theorem
prover for first-order logic (system description). In Alessandro Ar-
mando, Peter Baumgartner, and Gilles Dowek, editors, Automated
Reasoning, 4th International Joint Conference, IJCAR 2008, Syd-
ney, Australia, volume 5195 of Lecture Notes in Computer Science,
pages 292–298. Springer, 2008.

[KS03a] Daniel Kroening and Ofer Strichman. Efficient computation of re-
currence diameters. In Proceedings of the 4th International Confer-
ence on Verification, Model Checking, and Abstract Interpretation,
2003.

[KS03b] Daniel Kroening and Ofer Strichman. Efficient computation of
recurrence diameters. In 4th International Conference on Verifi-
cation, Model Checking, and Abstract Interpretation, volume 2575
of LNCS, 2003.

[Lar92] Tracy Larrabee. Test Pattern Generation Using Boolean Satisfia-
bility. IEEE Transactions on Computer-Aided Design, 11(1), 1992.

108

[LKM03] Cong Liu, Andreas Kuehlmann, and Matthew W. Moskewicz.
Cama: A multi-valued satisfiability solver. In Int. Conf. on Com-
puter Aided Design, 2003.

[LS05] Inês Lynce and João P. Marques Silva. Efficient data structures for
backtrack search sat solvers. Ann. Math. Artif. Intell., 43(1):137–
152, 2005.

[MCB06] A. Mishchenko, S. Chatterjee, and R. Brayton. ”dag-aware aig
rewriting: A fresh look at combinational logic synthesis”. In
Proc. DAC’06, pages 532–536, 2006.

[MCB07] A. Mishchenko, S. Chatterjee, and R. Brayton. Improvements to
technology mapping for lut-based fpgas. IEEE Trans. on CAD of
Integrated Circuits and Systems, 26:240–253, February 2007.

[McC94] W. McCune. A Davis-Putnam Program and Its Application to
Finite First-Order Model Search: Quasigroup Existence Prob-
lems. Technical report, Argonne National Laboratory, 1994.
http://www-unix.mcs.anl.gov/AR/mace/.

[McC03] W. McCune. Mace4 Reference Manual and Guide. Mathemat-
ics and Computer Science Division, Argonne National Laboratory,
Argonne, IL, August 2003. Memo ANL/MCS-TM-264.

[Min92] S. Minato. Fast generation of irredundant sum-of-products forms
from binary decision diagrams. In Proc. SASIMI’92, 1992.

[Min96] S. Minato. Fast factorization method for implicit cube represen-
tation. In IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, volume 15, pages 377–384, 1996.

[MMS06] Vasco M. Manquinho and JoÃ£o Marques-Silva. On using cutting
planes in pseudo-boolean optimization. In Journal on Satisfiabil-
ity, Boolean Modeling and Computation (JSAT’06), issue 2, pages
191–210, 2006.

[MMZ+01a] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Ma-
lik. Chaff: Engineering an efficient sat solver. In Proceedings of 12th

International Conference on Computer Aided Verification, volume
1855 of LNCS, 2001.

[MMZ+01b] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao
Zhang, and Sharad Malik. Chaff: Engineering an Efficient SAT
Solver. In Proceedings of the 38th Design Automation Conference
(DAC’01), 2001.

[Mos07] Michal Moskal. Fx7 or in software, it is all about quantifiers, 2007.
http://nemerle.org/~malekith/smt/en.html.

[MR06] Vasco M. Manquinho and Olivier Roussel. The first evaluation of
pseudo-boolean solvers. In Journal on Satisfiability, Boolean Mod-
eling and Computation (JSAT’06), issue 2, pages 97–136, 2006.

109

[NB04] Y. Novikov and R. Brinkmann. Foundations of hierarchical sat-
solving. In 6th Intl. Workshop on Boolean Problems, (extended
ver.: ZIB-Report 05-38, 2005), 2004.

[PG86] D. Plaisted and S. Greenbaum. A structure-preserving clause form
translation. In Journal on Symbolic Computation 2, 1986.

[Pug91] William Pugh. The omega test: a fast and practical integer pro-
gramming algorithm for dependence analysis. In Supercomputing,
pages 4–13, 1991.

[RV00] A. Riazanov and A. Voronkov. Splitting Without Backtracking.
Technical Report Preprint CSPP-10, University of Manchester,
2000.

[RV01] Alan Robinson and Andrei Voronkov, editors. Handbook of Auto-
mated Reasoning. Elsevier Science B.V., 2001.

[Sch01] S. Schulz. A Comparison of Different Techniques for Grounding
Near-Propositional CNF Formulae. In Proc. 15th International
FLAIRS Conference, pages 72–76, 2001.

[SG] Berkeley Logic Synthesis and Verification Group. ABC: A Sys-
tem for Sequential Synthesis and Verification. http://www.eecs.
berkeley.edu/~alanmi/abc.

[She03] Mary Sheeran. Describing and reasoning about sorting networks.
In slides from invited talk at the Nordic Workshop on Programming
Theory (http://www.cs.chalmers.se/~ms/Turku.ppt), 2003.

[Sht01] Ofer Shtrichman. Pruning Techniques for the SAT-Based Bounded
Model Checking Problem. In Proceedings of the 11th Advanced
Research Working Conference on Correct Hardware Design and
Verification Methods, 2001.

[Sil99] João P. Marques Silva. The impact of branching heuristics in
propositional satisfiability algorithms. In EPIA, pages 62–74, 1999.

[Sin] Carsten Sinz. Sat-race 2006 benchmark set. http://fmv.jku.at/
sat-race-2006/.

[Sin05] Carsten Sinz. Towards an optimal cnf encoding of boolean cardi-
nality constraints. In 11th Int. Conf. on Principles and Practice
of Constraint Prog., 2005.

[Sla94] John K. Slaney. Finder: Finite domain enumerator - system
description. In Alan Bundy, editor, Automated Deduction -
CADE-12, 12th International Conference on Automated Deduc-
tion, Nancy, France, volume 814 of Lecture Notes in Computer
Science, pages 798–801. Springer, 1994.

[SS96] J. Silva and K. Sakallah. GRASP – A New Search Algorithm
for Satisfiability. Technical Report CSE-TR-292-96, University of
Michigan, 1996.

110

[SS05] Hossein M. Sheini and Karem A. Sakallah. A sat-based deci-
sion procedure for mixed logical/integer linear problems. In In-
ternational Conference on Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization Prob-
lems (CP-AI-OR’05), volume 3524 of LNCS, 2005.

[SS06] Hossein M. Sheini and Karem A. Sakallah. Pueblo: A hybrid
pseudo-boolean sat solver. In Journal on Satisfiability, Boolean
Modeling and Computation (JSAT’06), issue 2, pages 157–181,
2006.

[SS07] Geoff Sutcliffe and Christian Suttner. TPTP v. 3.3.0, 2007. http:
//www.tptp.org.

[SSS00] Mary Sheeran, Satnam Singh, and Gunnar Stȧlmarck. Checking
safety properties using induction and a SAT-solver. In Formal
Methods in Computer Aided Design, 2000.

[Str00] Ofer Strichman. Tuning SAT Checkers for Bounded Model Check-
ing. In Proceedings of the 12th International Conference on Com-
puter Aided Verification, 2000.

[Tam97] Tanel Tammet. Gandalf. J. Autom. Reasoning, 18(2):199–204,
1997.

[Tse68] G. Tseitin. On the complexity of derivation in propositional cal-
culus. Studies in Constr. Math. and Math. Logic, 1968.

[vE98] C.A.J van Eijk. Sequential Equivalence Checking without State
Space Traversal. In Proceedings of the Conference on Design, Au-
tomation and Test in Europe, 1998.

[War96] J.P. Warners. A linear-time transformation of linear inequalities
into conjunctive normal form. In Inf. Proc. Letters, 68, ISSN 0169-
118X, 1996.

[WKS01] Jesse Whittemore, Joonyoung Kim, and Karem A. Sakallah.
SATIRE: A New Incremental Satisfiability Engine. In Proceedings
of the 38th Design Automation Conference (DAC’01), 2001.

[WSK04] M. Wedler, D. Stoffel, and W. Kunz. Arithmetic reasoning in
dpll-based sat solving. In Design, Automation and Test in Europe
Conference, 2004.

[Zar05] E. Zarpas. Benchmarking sat solvers for bounded model checking.
In Proc. SAT’05, number 3569 in LNCS. Springer-Verlag, 2005.

[ZMMM01] Lintao Zhang, Conor F. Madigan, Matthew W. Moskewicz, and
Sharad Malik. Efficient Conflict Driven Learning in Boolean Satis-
fiability Solver. In Proceedings of the International Conference on
Computer Aided Design (ICCAD), 2001.

[ZS00] Hantao Zhang and Mark E. Stickel. Implementing the davis-
putnam method. J. Autom. Reasoning, 24(1/2):277–296, 2000.

111

