9 research outputs found

    Multiple Access for Massive Machine Type Communications

    Get PDF
    The internet we have known thus far has been an internet of people, as it has connected people with one another. However, these connections are forecasted to occupy only a minuscule of future communications. The internet of tomorrow is indeed: the internet of things. The Internet of Things (IoT) promises to improve all aspects of life by connecting everything to everything. An enormous amount of effort is being exerted to turn these visions into a reality. Sensors and actuators will communicate and operate in an automated fashion with no or minimal human intervention. In the current literature, these sensors and actuators are referred to as machines, and the communication amongst these machines is referred to as Machine to Machine (M2M) communication or Machine-Type Communication (MTC). As IoT requires a seamless mode of communication that is available anywhere and anytime, wireless communications will be one of the key enabling technologies for IoT. In existing wireless cellular networks, users with data to transmit first need to request channel access. All access requests are processed by a central unit that in return either grants or denies the access request. Once granted access, users' data transmissions are non-overlapping and interference free. However, as the number of IoT devices is forecasted to be in the order of hundreds of millions, if not billions, in the near future, the access channels of existing cellular networks are predicted to suffer from severe congestion and, thus, incur unpredictable latencies in the system. On the other hand, in random access, users with data to transmit will access the channel in an uncoordinated and probabilistic fashion, thus, requiring little or no signalling overhead. However, this reduction in overhead is at the expense of reliability and efficiency due to the interference caused by contending users. In most existing random access schemes, packets are lost when they experience interference from other packets transmitted over the same resources. Moreover, most existing random access schemes are best-effort schemes with almost no Quality of Service (QoS) guarantees. In this thesis, we investigate the performance of different random access schemes in different settings to resolve the problem of the massive access of IoT devices with diverse QoS guarantees. First, we take a step towards re-designing existing random access protocols such that they are more practical and more efficient. For many years, researchers have adopted the collision channel model in random access schemes: a collision is the event of two or more users transmitting over the same time-frequency resources. In the event of a collision, all the involved data is lost, and users need to retransmit their information. However, in practice, data can be recovered even in the presence of interference provided that the power of the signal is sufficiently larger than the power of the noise and the power of the interference. Based on this, we re-define the event of collision as the event of the interference power exceeding a pre-determined threshold. We propose a new analytical framework to compute the probability of packet recovery failure inspired by error control codes on graph. We optimize the random access parameters based on evolution strategies. Our results show a significant improvement in performance in terms of reliability and efficiency. Next, we focus on supporting the heterogeneous IoT applications and accommodating their diverse latency and reliability requirements in a unified access scheme. We propose a multi-stage approach where each group of applications transmits in different stages with different probabilities. We propose a new analytical framework to compute the probability of packet recovery failure for each group in each stage. We also optimize the random access parameters using evolution strategies. Our results show that our proposed scheme can outperform coordinated access schemes of existing cellular networks when the number of users is very large. Finally, we investigate random non-orthogonal multiple access schemes that are known to achieve a higher spectrum efficiency and are known to support higher loads. In our proposed scheme, user detection and channel estimation are carried out via pilot sequences that are transmitted simultaneously with the user's data. Here, a collision event is defined as the event of two or more users selecting the same pilot sequence. All collisions are regarded as interference to the remaining users. We first study the distribution of the interference power and derive its expression. Then, we use this expression to derive simple yet accurate analytical bounds on the throughput and outage probability of the proposed scheme. We consider both joint decoding as well as successive interference cancellation. We show that the proposed scheme is especially useful in the case of short packet transmission

    Achievable Rates, Optimal Signalling Schemes and Resource Allocation for Fading Wireless Channels

    Get PDF
    The proliferation of services involving the transmission of high rate data traffic over wireless channels makes it essential to overcome the detrimental effects of the wireless medium, such as fading and multiuser interference. This thesis is devoted to obtaining optimal resource allocation policies which exploit the transmitters' and receiver's knowledge about the fading to the network's advantage, to attain information theoretic capacity limits of fading wireless channels. The major focus of the thesis is on capacity results for fading code division multiple access (CDMA) channels, which have proved to be a robust way of combatting the multiuser interference in practical wireless networks. For these channels, we obtain the capacity region achievable with power control, as well as the power control policies that achieve the desired rate points on the capacity region. We provide practical one-user-at-a-time iterative algorithms to compute the optimal power distributions as functions of the fading. For the special case of sum capacity, some properties of the optimal policy, such as the number of simultaneously transmitting users, are obtained. We also investigate the effects of limited feedback on the capacity, and demonstrate that very coarse channel state information (CSI) is sufficient to benefit from power control as a means of increasing the capacity. The selection of the signature sequences also plays an important role in determining the capacity of CDMA systems. This thesis addresses the problem of jointly optimizing the signature sequences and power levels to maximize the sum capacity. The resulting policies are shown to be simple, consisting of orthogonal transmissions in time or signal space, and requiring only local CSI. We also provide an iterative way of updating the joint resource allocation policy, and extend our results to asynchronous, and multi-antenna CDMA systems. Rather than treating the received signal at the transmitters as interference, it is possible to treat it as free side information and use it for cooperation. The final part of the thesis provides power allocation policies for a fading Gaussian multiple access channel with user cooperation, which maximize the rates achievable by block Markov superposition coding, and also simplify the coding strategy

    Brain signal analysis in space-time-frequency domain : an application to brain computer interfacing

    Get PDF
    In this dissertation, advanced methods for electroencephalogram (EEG) signal analysis in the space-time-frequency (STF) domain with applications to eye-blink (EB) artifact removal and brain computer interfacing (BCI) are developed. The two methods for EB artifact removal from EEGs are presented which respectively include the estimated spatial signatures of the EB artifacts into the signal extraction and the robust beamforming frameworks. In the developed signal extraction algorithm, the EB artifacts are extracted as uncorrelated signals from EEGs. The algorithm utilizes the spatial signatures of the EB artifacts as priori knowledge in the signal extraction stage. The spatial distributions are identified using the STF model of EEGs. In the robust beamforming approach, first a novel space-time-frequency/time-segment (STF-TS) model for EEGs is introduced. The estimated spatial signatures of the EBs are then taken into account in order to restore the artifact contaminated EEG measurements. Both algorithms are evaluated by using the simulated and real EEGs and shown to produce comparable results to that of conventional approaches. Finally, an effective paradigm for BCI is introduced. In this approach prior physiological knowledge of spectrally band limited steady-state movement related potentials is exploited. The results consolidate the method.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Efficient Passive Clustering and Gateways selection MANETs

    Get PDF
    Passive clustering does not employ control packets to collect topological information in ad hoc networks. In our proposal, we avoid making frequent changes in cluster architecture due to repeated election and re-election of cluster heads and gateways. Our primary objective has been to make Passive Clustering more practical by employing optimal number of gateways and reduce the number of rebroadcast packets

    Brain signal analysis in space-time-frequency domain: an application to brain computer interfacing

    Get PDF
    In this dissertation, advanced methods for electroencephalogram (EEG) signal analysis in the space-time-frequency (STF) domain with applications to eye-blink (EB) artifact removal and brain computer interfacing (BCI) are developed. The two methods for EB artifact removal from EEGs are presented which respectively include the estimated spatial signatures of the EB artifacts into the signal extraction and the robust beamforming frameworks. In the developed signal extraction algorithm, the EB artifacts are extracted as uncorrelated signals from EEGs. The algorithm utilizes the spatial signatures of the EB artifacts as priori knowledge in the signal extraction stage. The spatial distributions are identified using the STF model of EEGs. In the robust beamforming approach, first a novel space-time-frequency/time-segment (STF-TS) model for EEGs is introduced. The estimated spatial signatures of the EBs are then taken into account in order to restore the artifact contaminated EEG measurements. Both algorithms are evaluated by using the simulated and real EEGs and shown to produce comparable results to that of conventional approaches. Finally, an effective paradigm for BCI is introduced. In this approach prior physiological knowledge of spectrally band limited steady-state movement related potentials is exploited. The results consolidate the method

    Economic indicators used for EU projects, in other criteria of aggregation than national / regional

    Get PDF
    Economical and social indicators are created and published for national and regional dimensions. Nowadays, both local and territorial indicators are really able to define more adequate the stage of social and economical development and to illustrate the impact of European programs and projects in fields like: long lasting development, entrepreneurial development, scientific research development and strategies, education and learning resources, IT resources, dissemination of European culture etc. If in the first part, there is only quantitative information, offered by our National Institute of Statistics (NIS), in the following few examples of some useful economical and social indicators provide a dynamic vision in defining objectives, methods and implementation Thus the need for a quantitative framework of local and territorial indicators demands for an original statistical methodology.gross domestic product, indicators in macro, mezo and micro economics, weight of selected, factors, representative methodology

    Economic indicators used for EU projects, in other criteria of aggregation than national / regional

    Get PDF
    Economical and social indicators are created and published for national and regional dimensions. Nowadays, both local and territorial indicators are really able to define more adequate the stage of social and economical development and to illustrate the impact of European programs and projects in fields like: long lasting development, entrepreneurial development, scientific research development and strategies, education and learning resources, IT resources, dissemination of European culture etc. If in the first part, there is only quantitative information, offered by our National Institute of Statistics (NIS), in the following few examples of some useful economical and social indicators provide a dynamic vision in defining objectives, methods and implementation Thus the need for a quantitative framework of local and territorial indicators demands for an original statistical methodology
    corecore