6 research outputs found

    Exploiting Social Annotation for Automatic Resource Discovery

    Full text link
    Information integration applications, such as mediators or mashups, that require access to information resources currently rely on users manually discovering and integrating them in the application. Manual resource discovery is a slow process, requiring the user to sift through results obtained via keyword-based search. Although search methods have advanced to include evidence from document contents, its metadata and the contents and link structure of the referring pages, they still do not adequately cover information sources -- often called ``the hidden Web''-- that dynamically generate documents in response to a query. The recently popular social bookmarking sites, which allow users to annotate and share metadata about various information sources, provide rich evidence for resource discovery. In this paper, we describe a probabilistic model of the user annotation process in a social bookmarking system del.icio.us. We then use the model to automatically find resources relevant to a particular information domain. Our experimental results on data obtained from \emph{del.icio.us} show this approach as a promising method for helping automate the resource discovery task.Comment: 6 pages, submitted to AAAI07 workshop on Information Integration on the We

    Community-based ranking of the social web

    Full text link

    Changing Higher Education Learning with Web 2.0 and Open Education Citation, Annotation, and Thematic Coding Appendices

    Get PDF
    Appendices of citations, annotations and themes for research conducted on four websites: Delicious, Wikipedia, YouTube, and Facebook

    Community-Oriented Models and Applications for the Social Web

    Get PDF
    The past few years have seen the rapid rise of all things "social" on the web from the growth of online social networks like Facebook, to user-contributed content sites like Flickr and YouTube, to social bookmarking services like Delicious, among many others. Whereas traditional approaches to organizing and accessing the web’s massive amount of information have focused on content-based and link-based approaches, these social systems offer rich opportunities for user-based and community-based exploration and analysis of the web by building on the unprecedented access to the interests and perspectives of millions of users. We focus here on the challenge of modeling and mining social bookmarking systems, in which resources are enriched by large-scale socially generated metadata (“tags”) and contextualized by the user communities that are associated with the resources. Our hypothesis is that an underlying social collective intelligence is embedded in the uncoordinated actions of users on social bookmarking services, and that this social collective intelligence can be leveraged for enhanced web-based information discovery and knowledge sharing. Concretely, we posit the existence of underlying implicit communities in these social bookmarking systems that drive the social bookmarking process which can provide a foundation for community-based organization of web resources. To that end, we make three contributions: • First, we propose a pair of novel probabilistic generative models for describing and modeling community-oriented social bookmarking. We show how these models enable effective extraction of meaningful communities over large real world social bookmarking services. • Second, we develop two frameworks for community-based web information browsing and search that are based on these community-oriented social bookmarking models. We show how both achieve improved discovery and exploration of the social web. • Third, we introduce a community evolution framework for studying and analyzing social bookmarking communities over time. We explore the temporal dimension of social bookmarking and explore the dynamics of community formation, evolution, and dissolution. By uncovering implicit communities, putting them to use in an application scenario (search and browsing), and analyzing them over time, this dissertation provides a foundation for the study of how social knowledge networks are self-organized, a deeper understanding and appreciation of the factors impacting collective intelligence, and the creation of new information access algorithms for leveraging these communities

    Using Data Mining for Facilitating User Contributions in the Social Semantic Web

    Get PDF
    This thesis utilizes recommender systems to aid the user in contributing to the Social Semantic Web. In this work, we propose a framework that maps domain properties to recommendation technologies. Next, we develop novel recommendation algorithms for improving personalized tag recommendation and for recommendation of semantic relations. Finally, we introduce a framework to analyze different types of potential attacks against social tagging systems and evaluate their impact on those systems
    corecore