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ABSTRACT

Community-Oriented Models and Applications for the Social Web. (May 2011)
Said Masoud Ali Kashoob, B.S., Iowa State University;
M.S., Royal Institute of Technology

Chair of Advisory Committee: Dr. James Caverlee

The past few years have seen the rapid rise of all things “social” on the web from
the growth of online social networks like Facebook, to user-contributed content sites
like Flickr and YouTube, to social bookmarking services like Delicious, among many
others. Whereas traditional approaches to organizing and accessing the web’s massive
amount of information have focused on content-based and link-based approaches,
these social systems offer rich opportunities for user-based and community-based
exploration and analysis of the web by building on the unprecedented access to the
interests and perspectives of millions of users.

We focus here on the challenge of modeling and mining social bookmarking sys-
tems, in which resources are enriched by large-scale socially generated metadata
(“tags”) and contextualized by the user communities that are associated with the
resources. Our hypothesis is that an underlying social collective intelligence is em-
bedded in the uncoordinated actions of users on social bookmarking services, and that
this social collective intelligence can be leveraged for enhanced web-based information
discovery and knowledge sharing. Concretely, we posit the existence of underlying
implicit communities in these social bookmarking systems that drive the social book-
marking process which can provide a foundation for community-based organization
of web resources.

To that end, we make three contributions:

e First, we propose a pair of novel probabilistic generative models for describing
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and modeling community-oriented social bookmarking. We show how these
models enable effective extraction of meaningful communities over large real-

world social bookmarking services.

e Second, we develop two frameworks for community-based web information brows-
ing and search that are based on these community-oriented social bookmarking
models. We show how both achieve improved discovery and exploration of the

social web.

e Third, we introduce a community evolution framework for studying and ana-
lyzing social bookmarking communities over time. We explore the temporal
dimension of social bookmarking and explore the dynamics of community for-

mation, evolution, and dissolution.

By uncovering implicit communities, putting them to use in an application sce-
nario (search and browsing), and analyzing them over time, this dissertation pro-
vides a foundation for the study of how social knowledge networks are self-organized,
a deeper understanding and appreciation of the factors impacting collective intelli-
gence, and the creation of new information access algorithms for leveraging these

communities.
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CHAPTER I

INTRODUCTION

1. Motivation

The past few years have seen the rapid rise of all things “social” on the web from
the growth of online social networks like Facebook, to user-contributed content sites
like Flickr and YouTube, to social bookmarking services like Delicious, among many
others. Unlike top-down hierarchical information architectures that are often brittle
and quickly out-dated, this social web promises a flexible bottom-up (“emergent”)
approach to organizing and managing information centered around people and their
social connections to other people and information resources. This people-centric
approach to information management can lead to large-scale user-driven growth in
the size and content in the system, bottom-up discovery of “citizen-experts” with
specialized knowledge, serendipitous discovery of new resources beyond the scope and
intent of the original system designers, and so on. Indeed, this promise is attracting
significant strategic investment and support by public health agencies, emergency
responders, federal, state and local governments, major companies, and universities,
among many others, and has already encouraged new advances in web-based social
information sharing [1], online commerce [2], governance [3], citizen journalism [4],
and education [5].

As an example, consider the social bookmarking site Delicious. Delicious is a

prominent web-based social system that allows users to store bookmarks of web con-

The journal model is IEEE Transactions on Automatic Control.
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Fig. 1. Social bookmarking example: the CNN webpage’s social annotation document

tent, often by associating a simple keyword or phrase with a web page, image, video, or
other web media. For example, a user could associate the web resource www.tamu.edu
with the keywords “university” and “research”, while associating www.cnn.com with
the keywords “news”, “weather”, and “breaking news”. These keyword-based book-
marks (or tags or annotations) allow each user to organize a personalized view over
web content, for example, by grouping together all “news” webpages of interest to
the user. Beyond the purely personalized approach, Delicious users may also share
their bookmarks with others, so that collectively the bookmarks of the Delicious com-
munity may affect and impact the web experience of other users. While seemingly a
simple mechanism without a clear incentive structure for inducing users to bookmark
web resources in the first place, much less share bookmarks with strangers, the Deli-
cious bookmarking site alone has grown to over 5 million users who have bookmarked
over 180 million unique URLs. In addition to Delicious, similar bookmarking sites

have sprung up, including Flickr with more than 5 million images, CiteuLike with



around 5 million scholarly articles, and StumbleUpon with over 9 million users.
Interestingly, while a user’s tags can be used in isolation as a form of book-
marking, most social bookmarking systems support the aggregation of keyword-based
bookmarks so that web resources themselves may be viewed through the perspective
of the millions of users who have collectively organized the web. For example, Fig-
ure (2) shows multiple users tagging decisions for the web resource www.tamu.edu
and Figure (1) shows the top tags applied to the web resource www.cnn.com. Along
these lines, a number of recent research efforts have studied how social bookmark-
ing can be used for smarter browsing of web content [6], improved search [7], and
other forms of information access (e.g., through tag-based clustering [8]).This type
of social-powered web organization stands in contrast to traditional approaches for
organizing and accessing the web’s massive amount of information that have typically
focused on content-based and link-based approaches (e.g., PageRank, HITS). Social
bookmarking systems like Delicious, as well as other emerging social systems, offer
rich opportunities for new user-based exploration and analysis of the web by building

on the unprecedented access to the interests and perspectives of millions of users.

2. Research Challenges

Making sense of these social bookmarking systems is challenging, however, and we
believe that this situation demands significant research advances to fully realize the
new opportunities for large-scale user-based exploration and analysis of the web. In
particular, we identify several obstacles to fulfilling the vision of large-scale user-driven

organization of the web:

e User Heterogeneity: In contrast to “controlled vocabularies” applied by do-

main experts to organize web resources (e.g., like the Open Directory Project
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Fig. 2. Social bookmarking example: users applying various tags to a single resource



or Yahoo's web directory), social bookmarking systems rely on a heterogenous
bookmarking population that may apply tags that vary greatly in purpose and

quality.

e Lack of Coordination: Coupled with the user heterogeneity is the lack of

coordination in social bookmarking systems. Since bookmarks are typically
made in isolation and without explicit coordination with other users (except
perhaps implicitly, by viewing the prior tags applied by users on a resource), it
is not obvious if the aggregate bookmarks applied by millions of different users

should provide any overarching “meaning” to web resources.

e Scalability: Social bookmarking systems are already very large and continue

to grow and expand. Approaches for leveraging these systems for enhanced

organization of the web must be designed with scalability in mind.

e Temporal Dynamics: Users may change interests over time and the book-

marks they apply may become stale as the underlying resources change over
time. These changes suggest that methods for studying social bookmark ori-

ented web organization should naturally incorporate temporal dynamics.

In this dissertation we are interested in exploring whether we can overcome these

challenges toward providing a foundation for user-based exploration and analysis of

the web.

3.

Overview of Dissertation

This dissertation is concerned with studying the social bookmarking process itself,

with designing models that can help us understand this process, and with develop-

ing applications that can benefit from the rich data inherent in social bookmarking



systems. The hypothesis of this dissertation research is that an underlying social
collective intelligence is embedded in the uncoordinated actions of users on social
bookmarking services, and that this social collective intelligence can be leveraged for
enhanced web-based information discovery and knowledge sharing. Concretely, we
posit the existence of underlying implicit communities in these social bookmarking
systems that drive the social bookmarking process and can provide a foundation for
community-based organization of web resources.

The notion of community is fundamental to the social web — be it friendships
on Facebook, groups of similarly-interested users who comment on YouTube videos,
collections of Wikipedia contributors who specialize in certain topics, and so on.
Social bookmarking systems, as we have seen, aggregate what would appear to be the
independent and uncoordinated tagging actions of a large and heterogeneous tagger
population, meaning that it is not obvious that communities of users exist or are even
detectable. In contrast to explicitly declared group memberships in social systems
(which are often stale and fail to reflect the vibrant activity of the system), these
implicit communities are necessarily hidden from us, but could provide a window into
the real-time and dynamic self-organization of these systems.

Toward uncovering and leveraging community on the social web, this dissertation

addresses the following research questions:

e How does community manifest itself in social bookmarking systems? And how
can we model and effectively extract implicit communities from the large, het-

erogenous, and uncoordinated actions of millions of users?

e How can we leverage these communities to enhance how users explore the web of
socially-tagged resources? And can we improve traditional methods of browsing

and retrieval to naturally incorporate the community structure inherent in social



bookmarking systems?

e How does community evolve in social bookmarking systems? Are there some
communities which are long-lived while others are short-lived? How do com-
munity dynamics over time impact the formation, evolution, and dissolution of

communities, their members, and the tags they use?

To address these research questions, this dissertation research makes three unique

contributions:

e The first contribution of this dissertation is a pair of probabilistic generative
models for describing and modeling community-oriented social bookmarking.
These models posit that the observed tagging information in a social book-
marking system is the product of an underlying community structure, in which
users belong to implicit groups of interest. We show how these models enable ef-
fective extraction of meaningful communities and how they are better suited to

modeling social bookmarking data compared to existing content-based models.

e Second, we develop two frameworks for community-based web information brows-
ing and search that are based on our community-oriented social bookmarking
models. The first relies on a novel view of web resources that combines tra-
ditional content-based modeling with community-oriented bookmarking; our
results show that this multi-dimensional view of documents enhances web dis-
covery and browsing. The second framework makes use of the community struc-
ture to augment traditional information retrieval ranking methods, and we show

how it achieves improved discovery and exploration of the social web.

e Finally, we introduce a community evolution framework for studying and ana-

lyzing social bookmarking communities over time by extending the community-



oriented social bookmarking models developed as part of this dissertation. We
explore the temporal dimension of social bookmarking and explore the dynam-
ics of community formation, evolution, and dissolution. We show how this ap-
proach captures evolution, dynamics, and relationships among the discovered
communities, which has important implications for designing future bookmark-

ing systems, anticipating user’s future information needs, and so on.

By uncovering these communities, putting them to use in an application scenario

(search and browsing), and analyzing them over time, we can enable new avenues of

transformative research, including the study of how social knowledge networks are self-

organized, a deeper understanding and appreciation of the factors impacting collective

intelligence, and the creation of new information access algorithms for leveraging these

communities (e.g., a Google for social systems).

The remainder of this dissertation is organized as follows:

e Chapter II: Background and Related Work. We begin with the back-
ground for this dissertation and survey related work. We provide an overview of
existing research and applications in the context of social bookmarking systems
pertaining to generating semantics and ontologies, modeling social bookmarking

data, and using social bookmarking data for information access and discovery.

Chapter III: Community-based Modeling of Social Bookmarking Sys-
tems. This chapter introduces two community-oriented models. The first is
the Community-based Categorical Annotation (CCA) Model — which uncovers
tag-based communities that represent user interests and interpretations. The
second model — the Probabilistic Social Annotation (PSA) Model — captures
user activity and the connections between users, tags, and documents leading

to an improvement in the categories discovered compared to the CCA model.



Our experimental results on datasets obtained from the Delicious and CiteUlike
social bookmarking services show that our models discover more coherent cate-
gories of tags and are better suited to handle social bookmarking data compared
to existing text-based topic modeling methods. Additionally these models pro-
vide a structure of user relationships to other users, to tags, and to resources

that can be used to improve information exploration and discovery.

Chapter IV: Community-Driven Browsing and Search. In this chapter
we introduce two frameworks that employ the results of our proposed mod-
els from the previous chapter to enhance traditional methods of information
discovery and retrieval of web resources. Our first framework is based on the
Community-based Categorical Annotation (CCA) model. It exploits the appar-
ent differences between the content of the web object and the tags assigned to it
(the taggers perspective of the object). We devise similarity measures and ex-
plore an approach that utilizes these differences to browse for similar/dissimilar

objects in a multi-dimensional space.

The second framework is based on the probabilistic social annotation model. We
develop a novel community-based ranking model for effective community-based
exploration of socially tagged web resources. We compare this community-based
ranking to three state-of-the-art retrieval models: (i) BM25; (ii) Cluster-based
retrieval using K-means clustering; and (iii) LDA-based retrieval. We show
that the proposed ranking model results in a significant improvement over these

alternatives in the quality of retrieved pages.

Chapter V: Temporal Dynamics of Communities in Social Bookmark-
ing Systems. This chapter considers a time-dependent analysis of social book-

marking services that aims at revealing important characteristics of social book-
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marking such as tag evolution, web resource popularity evolution, time-specific
interest, user evolution, and community evolution. We begin by observing the
social bookmarks on the Delicious social bookmarking service in action for a pe-
riod of 15 weeks. Our goal is to identify groups of taggers and their interests and
how they evolve. To that end we propose a modification to the probabilistic so-
cial annotation model that aims to capture community-wide interests over time
intervals through modeling user activity and tagging choices. Using the results
of this model, we devise community dynamic graph representation that tries to
capture users and tags dynamic movement between communities. We show how
this representation can enable a closer inspection of communities characteristics
as well as that of their constituent users and tags over time. We also show how

to use this representation to capture cross-community relationships over time.

Chapter VI: Conclusions and Future Work. We conclude with a sum-
mary of the contributions of this dissertation and provide a discussion of future

directions that could build on the results presented here.
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CHAPTER II

BACKGROUND AND RELATED WORK

1. Introduction

Social bookmarking systems are prime examples of the proliferating and increasingly
popular web-based social systems, in which user activity is recorded and traceable on
a massive scale. These systems provide new opportunities to explore user perspectives
and interests, and to examine the relationship between social interactions and tradi-
tional web content. As we have mentioned, social annotations (or tags) are typically
simple keywords or phrases that can be attached to an object as informal user-specific
metadata. For example, on the Delicious social bookmarking system, a user could tag
the web resource www.espn.com with tags like “sports”, “my-favorites”, and “scores”.
In isolation, a user’s annotations can help organize a single user’s bookmarks. Since
these tags are shared and since many users independently assign tags to the same
resource, there is a great opportunity to investigate the presence of latent structures,
hidden communities, and the potential impact of these communities on information
sharing and knowledge discovery. In the rest of this chapter we survey related work
on social bookmarking systems, on web information organization, on topic modeling,

and on community discovery.

2. Review of Existing Research on Social Bookmarking Systems

The investigation of social bookmarking and its role in modern computing and infor-

mation systems has been the topic of many research works over the past few years.
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Previous work has addressed various aspects of social bookmarking systems, see [9]
for a discussion of the prospects, limitations and value of social bookmarking data for
information and knowledge organization. In this section we review research efforts
that have dealt with exploiting tagged resources to create semantics and ontologies,

model the dynamics of bookmarking systems, and enhance search and retrieval.

2.1. Semantics and Ontologies

Structured data is created by professional curators that have formal education and
training. Some examples of structured data systems include the Dewey Decimal Sys-
tem, and the Library of Congress Classification System. These systems consist of
taxonomies, ontologies and controlled vocabularies that permit high quality cata-
loging, categorization and classification of information and resources. However, they
are considered to be costly, static, and not scalable.

On the other hand, social bookmarking systems have a very low barrier to en-
try, and minimal expertise and education requirements as can be seen in Delicious,
and Flickr among others. These systems employ free-style tagging with no vocabu-
lary restrictions, no coordination among taggers, and no experts. These systems are
inexpensive, dynamic, and scalable.

Now with the emergence of social bookmarking systems, some research works
have looked into the effectiveness of social bookmarking systems in producing useful
metadata [10], semantics [11, 12], and their usefulness in web classification [13] ver-
sus expert classification. Methods for augmenting structured data with free-style user
contributed data [14] aim to combine the advantages of both worlds [15] and allow
for the creation of emergent knowledge, “knowledge not contained in any one source”
[16]. However, social bookmarking systems introduce serious issues such as vocabu-

lary growth and reuse [17], quality selection [18], spam [19, 20, 21] and relevance to
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content and query [22].

2.2. Models of Social Bookmarking

In one of the earliest studies of social bookmarking, Golder and Huberman [23] found
a number of clear structural patterns in Delicious, including the stabilization of tags
over time, even in the presence of large and heterogeneous user communities. This
stabilization (which might be counter-intuitive, especially in contrast to the tightly
controlled metadata produced by domain experts) suggests a shared knowledge in
tagging communities. These results are echoed by Halpin et al. [24], who found a
power-law distribution for Delicious tags applied to web pages — meaning that in the
aggregate, distinct users independently described a page using a common tagging
vocabulary. Similar results can be found elsewhere, including [25], [26], [27], and [28].

The past few years have seen an increased interest in modeling social annota-
tions. Several works that adapt topic-modeling based approaches for modeling social
annotations include mapping tags, users, and content to a single underlying concep-
tual space [12], mapping combined content and tags to an underlying topic space
[29], mapping content, tags and additional link information to multiple underlying
topic spaces [30]. Additionally, in [31] and [32], the authors assume hidden structures
of interests and topics that generate tags for resources. They then are able to dis-
cover related resources based on their relevance (distributions) to interests and topics.
These results motivate our interest in uncovering hidden communities that could help

us understand social bookmarking systems better.

2.3. Social Bookmarking for Search and Recommendation

Tagging’s most basic function is to organize resources as a step towards improved

browsing and search [33, 7]. Once tagging activities are shared they result in an
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impressive source of knowledge that can be used in numerous ways. For example,
it can be used to complement link-based search methods [34, 35, 36], to measure
resource popularity [6], to build language models for retrieval [29], and to detect trends
[37]. Social bookmarking data has also shown potential for improved personalization

[38, 39, 40, 41], query expansion [42], and recommender systems [43, 44].

3. Web Information Organization

Information organization and access methods are constantly challenged by the tremen-
dous growth of the web!. These methods, which were developed over the past few
decades in response to the needs of the newly emerging information (revolution) age,
have undergone many reinventions. They went from keyword to text-free indexing,
from boolean to algebraic and statistical approaches, and from content to metadata
and link-based features. Recently, they have expanded to the social and human aspect
of information.

A variety of techniques and algorithms have been developed for information
retrieval. They aim to rank a set of document or web pages for a given user query
based on a number of features. The most intuitive feature is the document’s content
where a similarity or probability measure can be computed between the user query
and the content. Content based ranking employs similarity measures that take a
query and a document and generate a single score which represents the relevance of
the query to the document. A type of measure, based on the vector space model [45],
calculates cosine similarity between query and document. A second type, based on
probabilistic methods [46], calculates the probability of relevance based on query and

document. A third type, based on language models [47], calculates the probability

1119 million active domains in the web as of June, 2010 according to
http://www.domaintools.com/internet-statistics/
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of a document’s language model generating the query. The current state-of-the-art
content-based retrieval approaches include the BM25 retrieval model [48], the K-
means-based retrieval model [49], and the LDA-based retrieval model [50], among a
multitude of extensions/hybrids.

For the case of web pages, additional features like hyperlinks between pages,
anchor text and web page authority have been successfully used to improve ranking.
The web viewed as a graph structure of hyperlinked nodes allows the capture of ties
and influences among nodes for ranking and other purposes. This is evident in the
PageRank [51] and HITS [52] algorithms. Both algorithms employ citations as votes
of confidence for the cited node. The votes are propagated over the graph yielding a
global ranking of the nodes. Numerous approaches build on these link based ranking
algorithms by incorporating page content using a set of representative topics [53],
incorporating external metadata (anchor text, title, and so on) [54], or performing
query dependent ranking [55].

A newer source of information on the web is the social footprint of users’ inter-
actions with web content and among each others. This can be seen in the form of
clicks, query-logs, ratings, comments, tags, and friendships. And with the enormous

2 social information will potentially help in devising approaches

growth in web users
of information mining, organization and retrieval that can both cope with web growth
and suit end user needs.

Recent research work has investigated ways of harnessing social information on
the web, for example (using clicks [56], image retrieval [57], collaborative filtering
[58, 59], tagging [10] and so on). Since this dissertation focuses mainly on social
bookmarking and topic models, we next provide a brief overview of some related

21,802 million users as of December 2009 with a growth rate of 399.4% in 2000-2009
according to http://www.internetworldstats.com/stats.htm
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work on modeling and analyzing social annotations; and on text-based topic modeling,

which inspire the models introduced in this dissertation.

4. Topic Modeling

The annotation models presented in this work are inspired by related work in text-
based topic modeling. A topic model typically views the words in a text document
as belonging to hidden (or “latent”) conceptual topics. Prominent examples of la-
tent topic models include Latent Semantic Analysis (LSA) [60], Probabilistic Latent
Semantic Analysis (pLSA) [61], and Latent Dirichlet Allocation (LDA) [62]. Topic
models are an important component of many information retrieval and language mod-
eling applications. There have been a number of extensions to traditional topic models
including applications to hypertext [63] and email networks [64]. Next we present a

brief overview of the LDA Model which forms the basis for our models.

4.1. Latent Dirichlet Allocation

Latent Dirichlet Allocation (Blei et al., 2003) is a probabilistic generative model that
explains the properties of a data corpus by estimating distribution parameters that
best fit the observed data. In addition, LDA allows for prediction of a new observation
based on the estimated parameters. In LDA documents are seen as a mixture of
latent topics, where each topic is a multinomial over words in the vocabulary space.
Formally, let ® be a K x V matrix with rows representing topics, where each ¢y is a
distribution over words for topic k, K is the number of topics, and V is the size of
corpus vocabulary. Similarly, documents are represented by M x K matrix ©, where
each row, g, is a distribution over topics for document S. The LDA generative

process is as follows:
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1. for each topic z =1, ..., K
e select V' dimensional ¢, ~ Dirichlet(f)
2. for each document S;, i =1,..., M

e sclect K dimensional 6; ~ Dirichlet(a)
e For each word w;, j =1, ..., N;

— Select a topic z; ~ multinomial(6;)

— Select a word w; ~ multinomial(¢,)

K |
NN >

Fig. 3. Graphical representation of the LDA model

Figure (3) depicts the LDA generative process using plate notation. Plates indi-

cate repetition with the variable at the bottom right corner specifying the number of
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samples. Gray circles indicate observed variables, empty circles indicate hidden vari-
ables, and arrows indicate conditional dependency. The figure shows that parameters
«, B and the distributions ¢ are sampled once in the process of generating a corpus.
The distributions ¢; are sampled once per document. The variables z; ; and w; ; are
sampled once for each word position in each document.

Given the parameters v and [, the joint distribution of all variables is given by:

p(Si; 2i, 0, (I)’a7 5)

=(019) T g6, )pCess 0900l ).

The likelihood of a document .S; is obtained as follows:

p(Si|a, B // (6;|a)p(®|3) prw|6’l,c1>d<1>d0

The likelihood of the entire corpus U = {S;}, is the product of the likelihoods

of all documents:

p(Ula, B) = Hp(Si\a,m.

Based on this generative process, a number of standard procedures (e.g., [62],
expectation propagation [65], or Gibbs sampling [66]) can be used to infer the dis-
tribution over words ¢;, in each topic k and the distribution over topics #; for each
document. In our work, we use Gibbs sampling to approximate the underlying dis-
tributions because of its simplicity, speed, and accuracy. Next we present Gibbs
sampling in the context of the LDA topic modeling approach.

Gibbs sampling [66] is a special case of Markov-chain Monte Carlo methods that

estimates a posterior distribution of high dimensional probability distribution. The
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sampler draws from a joint distribution p(xy, s, ..., 2,) assuming the conditionals

p(z;|x_;) are known, where
T_; = (111, ey L1y i1y -oey ZL‘n)

Let S, and z be vectors of length Zf) N; representing word, and topic assign-
ments, respectively, for the entire corpus. Also let w be a word variable. The joint

probability distribution of the LDA model can be factored as:

p(S, Z‘O‘a ﬁ) = p(S|Z, ﬂ)p(z|a).

We derive the Gibbs sampler’s update equation as was done in [66] (see Appendix
A for details) for the hidden variable of a word token at position i from the joint

distribution, noting that S = {S; = w,S-;} and z = {z; = k,z_; }:

w k
N —i + By Ny — + g

X (2.1)
Z'L‘;zl ny - + Buw Zf:l ”Z,ﬁi + Qg

p(z; = k|z—;, S) x

where n&ﬁi is a count excluding the current position assignments of z; (e.g., ny_,
is the count of word w generated by the k-th topic excluding the current position).

Having estimated the topic assignments z, estimates of ® and © are computed

as follows:
b= ny + Bu
e+ >, Bu
and
0, = ng+ o,

’ _nd+zzaz
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Now for a new unseen web object d, the Gibbs sampler can predict its topic

distribution and word assignment as follows:

ng’+n”j+ﬁw

gbz,ﬁ; - n, + Zw Bw

and
gt
T g+ 0
With this ability to uncover the hidden components that participate in generating
the documents, we will see in the coming chapters how it can be extended to uncover
the communities of users that constitute the collective intelligence resulting from
large scale social bookmarking processes. Next we provide a short introduction to

community discovery.

5. Community Detection

Community detection is a rich topic with a number of approaches drawing from soci-
ology and network theory, including [67], [68], [69], [70], [71], and [72]. Communities
are groups of cohesive objects (people, documents, nodes, etc) that are closely related
based on interactions, similarity, or interests of objects within the group as opposed
to objects that lie outside the group. The task of finding these groups and devising
measures for their similarity is an open research topic in many areas like social, com-
munication, computer, and biological networks. Example similarity measures that
have been developed for community detection include spectral clustering [73] and
modularity maximization [74]. These methods among others have been applied to

social web data, including bookmarking systems, to detect communities.
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Some recent graph-based attempts at social bookmarking analysis include nor-
malized cut methods for finding clusters [75], recursive and k-way partitioning to
greedily optimize modularity [76] and recursive spectral bisection [33]. Alternative
efforts based on vector space representation include association rules [27], and iter-
ative methods [41]. All these approaches target mainly homogenous systems (e.g.
single node-type such as users, or documents). Some works that have adapted these
approaches to heterogenous systems (multiple node types) include [77], [78], and [79].
Adapting and integrating some of these approaches with our community-based models

is an area we will explore in future research works.
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CHAPTER III

COMMUNITY-BASED MODELING OF SOCIAL BOOKMARKING SYSTEMS

1. Introduction

In this chapter we begin our exploration of community in social bookmarking systems
by proposing and evaluating two community-oriented models of the social bookmark-
ing process. These models are designed to uncover meaningful community structures
implicit in large collections of socially bookmarked web resources. For example, an
individual web resource (like an image, video, or web page) in a social bookmarking
system is typically associated with a set of tags and a set of users that tagged the
resource, but without regard for the common community-driven motivations of the
users who applied the tags in the first place. Can we uncover these hidden commu-
nities (see Figure 4) purely through an analysis of the observed tags? Modeling the
fundamental bookmarking processes that ultimately lead to the observed tags in a
social bookmarking system is essential to better understand this new social media,
to improve the design of future bookmarking systems, and to drive our insights into
leveraging community for enhanced web organization.

Our approach for studying and modeling social web objects is inspired by related
work in text-based topic modeling. A topic model typically views the words in a text
document as belonging to hidden (or “latent”) conceptual topics. Prominent exam-
ples of latent topic models include Latent Semantic Analysis (LSA) [60], Probabilistic
Latent Semantic Analysis (pLSA) [61], and Latent Dirichlet Allocation (LDA) [62].
Topic models are an important component of many information retrieval and lan-

guage modeling applications. There have been a number of extensions to traditional
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topic models including applications to hypertext [63], email networks [64], and social
bookmarking data [12, 29, 31, 30].

To uncover the underlying structure of social bookmarking systems, we pro-
pose two models — the Community-based Categorical Annotation (CCA) [80] and
the Probabilistic Social Annotation(PSA) [81], that take into account the additional
features that come with social web objects (tags, and users). These models differ
from previous efforts on modeling social bookmarking data in the following ways: (i)
groups of users with a common understanding or similar interpretations of resources
are represented as a community; (ii) each community has a world view encoded by
a set of categories; and (iii) we recognize that the annotation process involves a user
choice to participate in annotating an object and a subsequent decision on the type
of tags to be used and we place that at the core of our models.

In the rest of this chapter, we present each model in turn and compare the pro-
posed models to two prominent probabilistic topic models (Latent Dirichlet Allocation
and Pachinko Allocation) via an experimental study of the popular Delicious, Flickr,
and CiteULike bookmarking services. We find that the proposed community-based
annotation models identify more coherent implicit structures than the alternatives

and are better suited to handle unseen social annotation data.

2.  Preliminaries and Reference Model

We consider a universe of discourse U consisting of D socially bookmarked resources:
U =1{01,0,,...,0p}. We view each resource O; by both its intrinsic content C; and
the social annotations (or tags) S; attached to it by the community of users. Hence,
each resource is a tuple O; = (C;, S;) where the content and the social annotations

are modeled separately. We call the social annotations S; applied to a resource its
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Fig. 4. Latent communities of users engaging in social bookmarking

social annotation document. For example, the resource corresponding to a web page
tagged on the Delicious bookmarking service would consist of the HTML contents of
the web page as well as the social annotation document generated by the members
of the Delicious service. A social annotation document can be modeled by the set of
tags and their frequencies:S; = {(tag;, freq(tag;))}. We will additionally model the
particular user applying the tag, as well as the time at which each tag was applied.
Note that the CCA model introduced in the following section implicitly models users
via tag co-occurrence.

[Definition] Social Annotation Document: For a resource O € U, we refer
to the collection of tags assigned to the resource as the resource’s social annotation
document S, where S is modeled by the set of users and the tags they assigned to the
resource: S = {(user;,tag;)}.

Our proposed models are derived from the LDA topic modeling approach pro-

posed by Blei et al. [62]. An LDA-based model can be easily adapted to social
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annotations by considering the document unit to be a social annotation document
and the underlying topics to be social annotation categories. Since LDA is typically
used in document-based modeling and not tag-based modeling, we shall refer to the
adapted version as TagLDA for clarity.

TagLDA: TagLDA views a tag document as a mixture of latent categories (or
topics), where each category is a multinomial over tags in the vocabulary space. For-
mally, let ® be a K XV matrix representing categories, where each ¢y, is a distribution
over tags for category k, K is the number of categories, and V is the size of tag vo-
cabulary. Similarly, object are represented by D x K matrix ©, where each g is a
distribution over categories for object S.

The TagLDA generative process is as follows:
1. for each category z =1,..., K
e select V' dimensional ¢, ~ Dirichlet(f)
2. for each object S;,i=1,..., D

e select K dimensional 6; ~ Dirichlet(«)
e Lor each tag t;, 7 =1,...., N;
— Select a category z; ~ multinomial(6;)

— Select a tag t; ~ multinomial(¢.,)

At this point, the estimation procedures introduced in Chapter I can be applied
to uncover the latent structure that underlies the described generative process. When
using the Gibbs sampling method, the update equation is the same as equation (2.1),
presented in the related work chapter, with tags substituted for words and categories

substituted for topics.
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TagLDA provides a foundation for discovering communities in social bookmark-
ing systems. Fundamentally, however, a social annotation document is a collaborative
effort among many taggers, whereas TaglLDA is a topic model with no notion of au-
thorship or community. In essence TagLLDA can be used to discover social annotation
categories over tags, but not social annotation communities over users, since users are
not explicitly modeled in the generation process. Recent work on author-topic models
[64] has added the concept of “author” to the LDA model, but fundamentally these
models are designed to model text documents that have a single (or a few) authors.
In contrast, a social annotation document is the product of (potentially) hundreds
of authors. These observations suggest a new approach. Our first model is an LDA
extension that can uncover communities based solely on tags. We further extend the

model to include users and time.

3. Community-based Categorical Annotation (CCA) Model

In this section we propose a probabilistic generative model that aims to model the
social annotation process. By modeling the communities of interest that engage in
social bookmarking and the implicit categories that each community considers, we de-
velop the Community-based Categorical Annotation (CCA) Model. The CCA model
views a category as a mixture of tags and a community as a mixture of categories.
Hence, a community of interest is inherently composed of the tags that it uses.
[Definition] Social Annotation Community: A social annotation commu-
nity ¢ is a composite of tag categories that are related through the underlying process
that generated social bookmarking data, and presumably represents the outlook of a
certain group of users and their interest when they participate in the tagging process.

[Definition] Social Annotation Category: A social annotation category z is
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a probability distribution over tags in the vocabulary V' such that ), . p(t|z) = 1,

where p(t|z) indicates membership strength for each tag t in category z.

3.1.  Generating Social Annotations with CCA

We begin with an example. Suppose we have an image of a Tyrannosaurus rex.
The collaborative tagging environment allows this object to be tagged by users with
various interests, expertise, and in various human languages. Hence, the social anno-
tation document associated with this image may include tags that were applied by a
scientist e.g., tags like cretaceous and theropod), by an elementary school student
(e.g., tags like meat-eater and t-rex) and by a French-speaking tagger (e.g., tags
like carnivore and lézard-tyran).

We view the underlying groups that form around these interests, expertise, and
languages as distinct communities. For each community, there may be some number
of underlying categories that inform how each community views the world. Contin-
uing our example, the scientist community may have underlying categories centered
around Astronomy, Biology, Paleontology, and so on. For each object, the community
selects tags from the appropriate underlying category or mixture of categories (e.g.,
for tagging the dinosaur, the tags may be drawn from both Biology and Paleontology).

In practice, these communities and categories are hidden from us; all we may
observe is the social annotation document that is a result of these communities and
the categories they have selected.

Formally, CCA assumes a corpus of D social annotation documents drawn from a
vocabulary V' of tags, where each social annotation document S; is of variable length
N;. The model assumes that the tags in a social annotation document are generated
from a mixture of L distinct communities, where each community is a mixture of

hidden categories K;, and where each category is a mixture of tags. Therefore, the
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tagging process involves two steps: 1) the selection of a community from which to
draw tags and 2) the selection of the categories that influence the preference over
tags based on the object’s content, and the tagger’s perception/understanding of the
content. The CCA tag generation process is illustrated in Figure (5) and described

here:
1. for each community c=1,..., L

e for each category z =1,..., K.

— select V. dimensional ¢, ~ Dirichlet()
2. for each object S;,i=1,...,D

e Select L dimensional x ~ Dirichlet (o)

e for each community c =1, ..., L
— select K. dimensional 6, ~ Dirichlet(/3)

e For each tag position S;;, 7 =1,..., N;
— Select a community ¢; ; ~ multinomial(x;)
— Select a category z;; ~ multinomial(f,, ;)

— Select a tag t; ; ~ multinomial(¢%”)

A social annotation document’s community distribution x; = {x; ; }le is sampled
from a Dirichlet distribution with parameter a = {a;}-,. A community’s category
distribution 6; = {6;;}/<, is sampled from a Dirichlet distribution with parameter
B={Bi}E,. A category’s tag distribution ¢, = {gb“}LZ'l is sampled from a Dirichlet
distribution with parameter v = {%}L‘jl The generative process creates a social
annotation document by sampling for each tag position S;; a community c¢;; from

a multinomial distribution with parameter ;, a category z;; from a multinomial
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Fig. 5. Graphical representation of the CCA model.

distribution with parameter 6., . A tag is then sampled for that position from a

multinomial distribution with parameter gbZ?

Based on the model, we can write the likelihood that a tag position S;; in a

social annotation document is assigned a specific tag ¢ as:

p(Sij; =tlki,©,P) =
L K

Z ZP(Si,j = t|¢k (215 = klO)p(ciy = I|ks).

I=1 k=1
Furthermore, the likelihood of the complete social annotation document S; is the

joint distribution of all its variables (observed and hidden):

p(SZ7 Ziy Ciy Ry, @7 (I)’Oé, /67 7) =
N;

[T p(Sialoc2 )p(zislbe, Jp(eilrs).

J=1
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Integrating out the distributions «;, ©, and ® and summing over ¢; and z; gives

the marginal distribution of .S; given the priors:
p(Sia.) = [[ [ tnlap@lmpen)
N

x [ p(Sijlei ©, ®)dPdOdk;

j=1
Finally our universe of discourse U consisting of all D social annotation docu-

ments occurs with likelihood:
D

pUle, 8,7) = [ [ p(Sila, 8,7)

i=1

3.2. Parameter Estimation and Inference

The CCA model provides a generative approach for describing how social annotation
documents are constructed. But our challenge is to work in the reverse direction
— taking a set of social annotation documents and inferring the underlying model
(including the hidden community and category distributions). This entails learning
model parameters k, ©, and ® (the distributions over communities, categories, and
tags, respectively).

Previous work that aimed at recovering similar hidden structure from joint pos-
terior distributions has shown that exact computation of these parameters is in-
tractable. There exists, however, several approximation methods in the literature
for solving similar parameter estimation problems (like in LDA), including expecta-
tion maximization [62], expectation propagation [65], and Gibbs sampling. In this
dissertation, we adopt Gibbs Sampling (see [66] for a thorough treatment) which
is a special case of Markov-chain Monte Carlo methods that estimates a posterior
distribution of a high-dimensional probability distribution. The sampler draws from

a joint distribution p(xy,xs,...,x,) assuming the conditionals p(z;|x_;) are known,
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where x_; = (T1, ..., Ti_1, Tis1, oy Tpy).
For community assignment ¢, category assignment z, tag assignment ¢ of tag
positions in a corpus, and given the parameters o, § and <, the joint probability

function can be factored into:

p(S, z,cla, B,y) = p(Sle,z,7)p(zle, B)p(c|a).

We derive the Gibbs sampler’s update equation for the hidden variables (commu-
nity, and category) from the joint distribution (in a similar fashion to the approach

in Appendix A) and arrive at:

ng — 1+ a,
ng—14+>
X X —
n, —1+3,m ng—1+>, 85

p(ciy zilc—iy 24, t) X

where ¢; is the tag at position 7, z; is the category, ¢; is the community, S is the object,
ng is the count of positions in the object assigned to community ¢;, ng is the length
of the object, n’:;;z is the count of positions with category z; and tag ¢; in the corpus,
n,, is the count of positions with category z; in the corpus, and ng is the count of
positions with category z; in the object.

The first factor represents the weight of community ¢; in the object, the second
represents the contribution of the tag at position 7 to category z; in the entire corpus,
while the third factor represents the weight of category z; in the object.

Having estimated the community assignment ¢ and category assignment z, esti-
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mates of ,0 and k are computed as follows:

nl + v
Qo = ———=—
nz"‘zt’yt
g, — s t0
7 nCS+ZzBZ
o ong+a
Rie = — ~—
, nS+anc

Now for a new unseen social annotation document S, the Gibbs sampler can

predict its tag assignment as follows:

¢ o ni“‘”i‘i‘%
! nz—i’zt%t

where ni is the count of positions with category z and tag ¢ in the unseen object. Its

category distribution is:

, _ m3th
S7z n%'—i_Zz/BZ

is the count of positions with category z in the unseen object, and its

z

where n z

community distribution is:
n% + o
Rg.= —s
7C ~
ng + Zc Qe

is the count of positions with community ¢ in the unseen object.

C

where n G

3.3. Applying CCA to Flickr and Delicious

Given the categorical annotation model, we next apply the model to two prominent
social bookmarking services — Flickr (for images) and Delicious (for web pages).
Flickr dataset: For Flickr, we began a crawl from the tag cloud at http:

//flickr.com/photos/tags. We have identified 1,578,437 images that have been an-
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notated by 42,156 unique users who have used 156,127 unique tags. For the experi-
ments in this paper, we considered a sample of 92,000 images that have been tagged
by 44,980 unique tags. We normalize the data and train the categorical annotation
model with 90,000 objects and use the rest for testing.

Delicious dataset: Like Flickr, the Delicious crawler starts with a set of popular
tags. Our crawler has discovered 607,904 unique tags, 266,585 unique web pages
annotated by Delicious, and 1,068,198 unique users. Of the 266,585 total web pages,
we have retrieved the full HTML for a randomly chosen set of 47,852 pages. We filter
this set to keep only pages in English (We identify English pages using the TextCat
implementation based on [82]) with a minimum length of 20 words, leaving us with
27,572 web pages with 16,216 unique annotations. Since many of the pages annotated
by Delicious are primarily text documents, we also parsed the text of each document
for an analysis discussed later in the paper. We use 20, 000 of the objects to train our

model and the remaining 7,572 are used for testing.

3.4. Revealing Hidden Categories

One challenge to discovering latent structure in social annotations is to identify the
appropriate number of hidden categories and hidden communities of interest that
generated the observed data. Since the hidden categories and communities are not
directly observed, we must use some unsupervised method.

In this section, we begin by considering the simplified case of a single community,
but with an unknown number of hidden categories. We revisit this assumption in the
following section. To identify the number of categories, we rely on a standard measure
from information theory — perplexity. Perplexity measures how well a model (here
the categorical annotation model built over a training set) predicts a test sample, and

it is has been widely used in text-based topic modeling (e.g., [62, 29]). We measure
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perplexity on a held-out set D using the parameters of an estimated model M for a

given dimension (or category) K for the hidden variable:

D
Perp(D) = exp — D d=1 10§ P(S4|M)
2 d=1 NVa

1% K
log P(Sa| M) = Z nglt) log (Z ¢k,t9d,k>
t=1 k=1

and n((f) is the number of times terms ¢ was observed in document S; and Ny is the

where

length of S;. The variable ¢ is a model parameter while the variable 6 is computed
for the held-out set. Low perplexity values indicate a good selection of the number
of categories for the hidden variable given a corpus.

We experimented with different category dimensions for both Flickr and Deli-
cious. The perplexity as a function of the number of categories for Flickr is shown
in Figure (6). The horizontal axes show the number of categories and the vertical
axes show the perplexity values. Notice the decrease in perplexity as the number of
categories increase, as well as the different rates of decrease. For Delicious, we observe
a similar curve as shown in Figure (7) , but with a “knee” at 40 categories. Based on
these results, we selected 70 categories for Flickr and 40 categories for Delicious.

Given the choice of the number of categories for both Flickr and Delicious, what
are the discovered categories? And are they semantically coherent? In Tables (I) and
IT, we report the most significant annotations for a sample of 10 of the discovered
categories in each dataset ranked by probability of tag given a category ¢,,. We
find that overall the discovered categories appear to be semantically meaningful. As
future work, it will be interesting to evaluate these discovered categories in a concrete
application setting (e.g., tag-based information retrieval).

To further illustrate the revealed categories, we report in Table (III) the most

relevant documents per category for 10 of the Delicious categories. We rank the
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Table I. Flickr: 10 of the 70 discovered categories and the most likely tags per category
(in order of ¢, ;).

Cat 0:

boat, sport, itali, water, torino, athlet, ship,
turin, sundai, sail, oar, rower, competit, ...

Cat 1:

canada, veteran, vancouv, memori, war,
remembrancedai, dai, ontario, remembr, ...

Cat 2:

portrait, face, hand, woman, photoshop,

hair, girl, color, lip, photograph, self, retrato, ...

Cat 3:

build, citi, architectur, old, urban, tower,

histor, skyscrap, skylin, stone, center, librari, ...

Cat 4:

water, river, blue, reflect, bridg, fish, sky,
boat, canon, artist, washington, mountain, ...

Cat b5:

mountain, winter, snow, landscap, lake,
switzerland, cold, montagna, alp, trek, ...

Cat 6:

art, graffiti, paint, urban, streetart, street,
tag, draw, sticker, illustr, abstract, artist, ...

Cat 7:

cat, anim, love, kitten, cute, kitti, pet, gato,
felin, chat, gatto, bunni, rabbit, heart, ...

Cat 8:

train, railwai, tourist, tourism, station, laura,

railroad, unitedkingdom, ride, york, locomot,...

Cat 9:

food, cook, cake, restaur, chocol, dinner,
sweet, eat, minnesota, yummi, wine, bake, ...




Table II. Delicious: 10 of the 40 discovered categories and the most

category (in order of ¢, ;).

38

likely tags per

Cat 0:

webdesign, design, inspir, web, resource,
templat, galleri, award, web2.0, websit, ...

Cat 1:

secur, financ, monei, .net, storag, invest,
backup, asp.net, c#, busi, econom, bank, ...

Cat 2:

googl, mobil, calendar, phone, sync, api,
voip, cellphon, comparison, nokia, sm, ...

Cat 3:

mac, osx, appl, wiki, softwar, ipod, macosx,
app, applic, tool, ssh, wikipedia, quicksilv, ...

Cat 4:

educ, math, learn, resourc, teach, kid,
technolog, mathemat, school, interact, elearn, ...

Cat 5:

tutori, howto, photoshop, tip, refer, guid,
adob, articl, resourc, effect, trick, text, ...

Cat 6:

photographi, photo, imag, galleri, flickr,
camera, slideshow, mindmap, stock, space, ...

Cat 7:

rubi, rail, rubyonrail, host, nyc, amazon,
web, http, authent, s3, webhost, develop, ...

Cat 8:

fun, humor, funni, comic, cool, geek, interest,
entertain, humour, del.icio.us, cartoon, ...

Cat 9:

video, visual, anim, movi, tv, film, youtub,
motiongraph, motion, stream, media, ...
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documents using the probability of a category given a document 6; .. We find that

the quality of these results is consistent across categories.

3.5.  Discovering Communities

Given the results of uncovering hidden categories, we next turn to the nature of re-
sults when we estimate both the communities of interest (which recall are composed
of underlying categories) and the categories within each community (which recall are
composed of tags). Experimentally, we have run the CCA model with several com-
munity/category combinations, and in Table (IV) we report a representative result
for 5 communities and 5 categories for Delicious.

Note how the communities of interest are centered around categories that share
some thematic relationship. For example, Comm2 is a “Lifestyle” community of
interest with categories related to shopping, travel, food, and books. In the flat single
community analysis of the previous section, these types of categories would either
be combined into a single category of interest, blurring the distinct interests of each
category, or the categories may be separated but not linked by community. Here, we
see how the CCA model provides a hierarchical layer for grouping related categories
by their common community of interest. Further, note that the two more technically
minded communities are indeed quite distinct — Comma3 is centered around “web 2.0”
from a consumer point-of-view (with categories related to YouTube, blogs, and social
networking), whereas Comm4 is centered around “web 2.0” from a development point-
of-view (with categories related to different web development tools and languages).
These results are encouraging and in the following sections, we explore techniques to

further refine the quality of community formation.
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3.6. Summary

The collaborative tagging process is driven by the users’ various interests, expertise,
background, and language. We view the underlying groups that form around these
interests, expertise, and languages as distinct communities. For each community,
there may be some number of underlying categories that inform how each community
views the world, i.e., selects tags. The CCA generative model aims to model the
social annotation process by modeling the communities of interest that engage in
social bookmarking and the implicit categories that each community considers when
making tagging decisions. It assumes that a community is a mixture of categories
and a category is a mixture of tags.

Formally, CCA assumes a corpus of D social annotation documents drawn from a
vocabulary V' of tags, where each social annotation document S; is of variable length
N;. The model assumes that the tags in a social annotation document are generated
from a mixture of L distinct communities, where each community is a mixture of
hidden categories K;, and where each category is a mixture of tags. Therefore, the
tagging process involves the selection of a community from which to select categories
and the selection of the category that specifies the preference over tags based on the
object’s content, and the tagger’s perception/understanding of the content.

In practice, these communities and categories are hidden from us; all we may
observe is the social annotation document that is a result of these communities and the
categories they have selected. We use Markov-chain Monte Carlo (MCMC) methods
that simulate the posterior distribution to estimate the underlying structure of the
social bookmarking process. Given a collection of social annotation documents we are
able to infer this underlying structure, i.e., community and category distributions.

Experimentally, we have run the CCA model with several community /category
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combinations and our results show how the communities of interest are centered
around categories that share thematic relationships. We also experimented with dif-
ferent category dimensions for our Flickr and Delicious datasets and found that overall
the discovered categories are semantically meaningful.

The CCA model enables us to verify the presence of semantically meaningful
categories that are also grouped together to form communities or themes. In addition
it allows us to test our basic assumptions about the existence of differences between
the process generating text documents and of that generating tags for existing doc-
uments, as we will see in the next chapter. The model, however, does not explicitly
model the user which is an important component in the tag generation process. Next,

we expand this simple model to include user activity explicitly.

4. Probabilistic Social Annotation (PSA) Model

In this section we propose a probabilistic generative model that extends the CCA
model from the preceding section to include the individual users that participate
in tagging an object along with the tags they used. By including the users in the
modeling process, the resulting communities now have distributions over users that
explicitly specify a user membership probabilistically in each community. Hence, we
need to redefine the social annotation community from the previous section.
[Redefinition]| Social Annotation Community: A social annotation commu-
nity c is composed of a probability distribution over users in U such that )", .., p(ulc) =

1, where p(ulc) indicates membership strength for each user u in community c
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4.1. Generating Social Annotation with PSA

Rather than modeling the tag generation process as if tags are generated regardless
of user, the Probabilistic Social Annotation (PSA) model combines the (user,tag)
generation process; a natural consequence of such an approach is the discovery of
user communities in addition to tag categories.

Formally, the PSA model assumes a corpus of D social annotation documents
drawn from a vocabulary of V' tags and U users, where each social annotation docu-
ment S; is of variable length N;. The model assumes that the (user,tag) pairs in a
social annotation document are generated from a mixture of L distinct communities,
where each community is a mixture of users that view the world based on a set of
K, hidden categories, and where each category is a mixture of tags. Therefore, the
tagging process involves two steps: 1) the selection of a community from which to
draw users and 2) the selection of the categories that influence the user’s view or
preference over tags based on the object’s content, and the tagger’s perception of the
content.

Let S;,z, and ¢ be vectors of length N; representing (user,tag) pair, category,
and community assignments, respectively, in a social annotation document. The PSA

model generation process is illustrated in Figure (8) and described here:
1. for each community c=1,..., L

e Select U dimensional 7, ~ Dirichlet(d)
e for each category z =1,..., K.

— select V. dimensional ¢, ~ Dirichlet ()
2. for each object S;, i =1,..., D

e Select L dimensional x ~ Dirichlet(c)
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e for each community c=1,..., L
— select K, dimensional 6. ~ Dirichlet(/3)
e For each position S;;, 7 =1,...,N;
— Select a community c¢; ; ~ multinomial(;)
— Select a user Sj; ~ multinomial(7, )
— Select a category z; ; ~ multinomial(6; ")

— Select a tag S!; ~ multinomial(ge.?)

00 9
0 @,

©

e

(&

-

O
O
D

\ Y,
YL b)

kl_

Fig. 8. Probabilistic Social Annotation model (PSA)

A social annotation document’s community distribution x; = {#;;}i_, (repre-
senting the communities interest in the object) is sampled from a Dirichlet distribu-

tion with parameter o = {a;}%,. A per object community’s category distribution
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0f = {05, ][-(:1 (representing the community interpretation of the object) is sampled
from a Dirichlet distribution with parameter 3 = {8;}X,. A category’s tag distri-
bution ¢, = {d)zz}‘l‘;'l (representing a topic of interest) is sampled from a Dirichlet
distribution with parameter v = {%}‘lzll Finally, A community’s user distribution
T, = {TM}LZ‘I (representing a group of users with common interests) is sampled from
a Dirichlet distribution with parameter 6 = {(5,-}@1. The generative process creates
a social annotation document by sampling for each position S;; a community c; ;
from a multinomial distribution with parameter x;, a category z; ; from a multino-
mial distribution with parameter 6;*7. A user is then sampled for that position form
a multinomial distribution with parameter 7., ;. Similarly a tag is sampled for that
position from a multinomial distribution with parameter ¢e.”.

Based on the model we can write the likelihood that a position S; ; is assigned a

specific (user, tag) pair {u,t} as:

L
p(Sij = {u, t}|ki,©,®,7) = ZP(SZ]- = u|m)p(ci; = k)
=1
K
(ZP(S;j = t]o))p(zi; = k|95)>
k=1

As before, the likelihood of the complete social annotation document S; is the

joint distribution of all its variables (observed and hidden):

N;
p(S27 Zi, Cj, Ry, 67 (1)7 7'|Oé, B? 7, 5) - HP<SE,J‘¢Z§)
j=1

P(SY;|7e,, )0(2i 3105 )p(ci ki)

Integrating out the distributions x;, ©, 7 and ® and summing over c¢; and z;

gives the marginal distribution of S; given the priors:
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pSas.0.0 = [ [ [ [pesiam@lsm@nsr)

Hzp |7-cu (cijlki) Zp St,glqbc” Zz7j|9i0i’j)

7=1 ¢; Zi,j

d®dOdrdrk;

Finally the universe of discourse U consisting of all D social annotation docu-

ments occurs with likelihood:

D

p(U|a, Ba Y, 5) = Hp(sz|aa ﬁa s 5)

i=1

4.2. Parameter Estimation and Inference

Similar to CCA, the PSA model provides the generative approach for producing social
annotation documents. The goal is to recover the structures that produced these so-
cial annotation document — taking a set of social annotation documents and inferring
the underlying model (including the hidden community and category distributions).
This entails learning model parameters k, 7, ©, and ® (the distributions over com-
munities, users, categories, and tags, respectively).

To learn model parameters we follow the same approach used in LDA to approx-
imate the posterior distributions by Gibbs sampling. Let S,z, and ¢ be vectors of
length Zf) N; representing (user,tag) pair, category, and community assignments,
respectively, for the entire corpus. Also let v and ¢ be user and tag variables. Fol-
lowing the approach used in [66] the joint probability distribution of the PSA model

can be factored as:
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p(S*,S" z,cla, B,7,0) = p(S"|c,d)p(c|a)p(S|z, c,v)

p(z[c, B).

We derive the Gibbs sampler’s update equation (See Appendix B for details) for
the hidden variables (community, and category) from the joint distribution and arrive

at:

p(zi = ka C; = l|zﬁi7 C—i, St) Su) (8 (31)
n;f_‘i + 6’u, nfh_‘i _'_ fyt
U w X |4 t

Zu:l n;; + Ou Zt:l Mg~ TVt

Ik I
ng—; + O ng—; T

X X
(SE i+ o) —1 (Shynb+ar) —1

is a count excluding the current position assignments of z; and c;

)
where n.) _,
(e.g., nfkﬁi is the count of tag t generated by the k-th category of the [-th community
excluding the current position).

For the purpose of inference of new unseen web objects based on a model M,

the update equation for the Gibbs sampler is the following:

s L& s .5 Ot Cu
p(zi — ku C; = l|c—'i7 Z—;, S 75 7M) X (32)
1 +ou Ay, it T
5:1 i+ +0u ZY:I ﬁ?k,ﬁi+nfk+7t
nlk 4Bk nb 4o

S,—i X S,—1
K L
(Ek:ll ng“rﬁuc)*l <Zl:1 nlng)*l

where where ngg _, are counts from the given model M, ﬁg; _, are counts from the

new objects, and S is a new unseen object.
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4.3. PSA: Simplified Version

Alternatively, we can simplify the Probabilistic Social Annotation model by assuming
that each community of users agrees on a single category view of the world. We
can then combine the community variable ¢ and category variable z into a single
hidden variable. As a result, the model finds a distribution over tags as well as
a distribution over users, capturing both the users’ similarities/interests and their
world view simultaneously. The generation process is illustrated in Figure (9) and

works as follows:

1. for each community ¢ =1, ..., L

e Select U dimensional 7, ~ Dirichlet(«)

e sclect V' dimensional ¢, ~ Dirichlet()
2. for each object S;, 1 =1,....,D

e Select L dimensional 6; ~ Dirichlet(p)
e For each position S;;, j =1,..., N;
— Select a community c¢; ; ~ multinomial(6;)

— Select a user S}; ~ multinomial(r, ;)

— Select a tag S; ; ~ multinomial(¢c, ;)

An advantage of simplifying the model is a lower computational complexity. A
drawback, however, is you restrict members of a community to a single world view;

which slightly reduces model generalization to unseen data as seen in our results.
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Fig. 9. Simplified Probabilistic Social Annotation model (simplePSA)

The update equation for the Gibbs sampler (3.1) reduces to:

p(c; = klc—;, S", S") (3.3)
Wtee

25:1 A e Zz/:1 ”'l;m‘ + 7t

y "g,ﬂi + B
(Siink+ ) -1
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and the Gibbs sampler predictive update equation (5.1) becomes:

p(éz = k‘é_.i, gt, SU,M) X (34)

~U u ~t t
Mg TNy T Qy ny —; + 1+

X
U o) u Voo~ t
Zu:l Np i T N + Zt:l M~ T N Tt

4.4. Applying PSA to CiteULike and Delicious

In this section we evaluate the quality of the PSA models over two prominent so-
cial bookmarking services: Delicious and CiteULike. We use the Delicious dataset
previously described and the following CiteULike dataset:

CiteULike dataset: We collected from CiteULike a dataset of 80,833 resources,
with 50,491 unique tags and 12,496 unique users. We normalize the data and train
the different models with 79,000 objects and use the rest for testing.

Our goal is to evaluate how well the model predicts previously unseen data and
the quality of the discovered latent structures.

We compared PSA and the simplified version of PSA (simplePSA) against TagLDA
and a tag-based version of Pachinko Allocation (PAM) [83]. PAM is an LDA exten-
sion that aims to capture correlations among latent topics using a directed acyclic
graph. We focus here on the four level PAM where the internal nodes in the tree
represent supertopic/subtopic distributions and leaf nodes are distributions over the
vocabulary space. For our purposes, we refer to the super-topics as communities,
subtopics as categories, and our documents are collections of tags assigned by various
users.

We use the public implementations of LDA and PAM distributed in the Mal-

let toolkit [84]. Hyperparameters for both models are set to toolkit standard: for
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LDA (a = 50/K,5 = 0.01) and for PAM (a = 50/K, = 0.001) with optimization
enabled for both models. For the PSA models we experimented with several combi-
nations of hyperparameters. We also estimate hyperparameters using the fixed-point
iteration method in [85]. The results we compare with other models are run with
hyperparameters (o = 0.1,5 = 1,7 = 0.1,5 = 0.1) and optimization enabled.

For all models, a Gibbs sampler starts with randomly assigned communities/categories,
runs for 2000 iterations with optimization every 50 iterations and an initial burnin-
period of 250 iterations. For TagPAM we experiment with three communities sizes
(8,12,16) each with 20 to 100 categories. For PSA we experiment with community
category combinations that result in total number of categories from 20 to 100. sim-
plePSA and TagLDA — which have no community/category hierarchy — are run from
20 to 100 categories (although recall that simplePSA models user communities and

tag categories simultaneously)

4.5. Evaluation

We compare all the models using two metrics: 1) ability to predict previously unseen
data and 2) quality of discovered latent structures.

We evaluate each model’s generalization to unseen data using the empirical like-
lihood method [83]. To compute empirical likelihood we generate 1000 documents
based on the models generative process. We then build a multinomial over the vo-
cabulary space from these samples. Finally, we compute the empirical likelihood of a
held out testing set using the obtained multinomial over the vocabulary space.

For quality evaluation we solicit judgment on the coherence of discovered cate-
gories. Categories from each model were anonymized and put in random order. Each
evaluator is asked to judge the category coherence by trying to detect a theme from

the category’s top 10 terms. Coherence is graded on a 0 — 3 scale with 0 being poor
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coherence and 3 excellent coherence. The evaluators are also asked to report the
number of terms that deviate form the theme they thought the category represented.

We use testing sets of size 1%, and 10% of the size of the training set for testing
all models. The empirical likelihood results are consistent for the two sets, therefore
we report results from the smaller set.

We plot the empirical likelihood results in Figures (10,11, and 12). The y-axes
show the empirical log likelihood and the x-axes show the number of categories. Fo-
cusing on Figure (10), the PSA model performs the best, followed by simplePSA,
TagPAM and TagLDA respectively. PSA and simplePSA performance improves with
increasing number of categories, with PSA spiking at 35 categories then slowly contin-
uing to improve. simplePSA behaves similarly with its initial spike at 50 categories.
TagPAM’s performance improves initially, peaks around 40 — 50 categories, then de-
creases slightly and stabilizes. Likewise, the performance of TagLDA peaks around
40 categories, decreases slightly, then peaks again at 80 categories. Figures (11, and
12) show similar results with improved performance for TagPAM when number of
communities is increased. Still the PSA model performs better than TagPAM.

Based on the above results, 40 categories lead to good performance in all mod-
els. For our user study we present the discovered 40 categories from each model for
coherence evaluations. A sample of these categories is shown in Table (V).

A group of four evaluators judged the categories’ coherence and noted the deviat-
ing terms. The evaluation results are as shown in Table (VI). Evaluating coherence,
we can see from the table that on average, PSA and simplePSA perform the best
followed by TagPAM and TagLDA respectively. PSA shows on average a 6% im-
provement over TagLDA and a 7% improvement over TagPAM. We also look at the
number of deviating terms from the perceived theme and observe similar improve-

ments.
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In Figures (13, and 14) we report the detailed evaluation scores and deviating
terms, respectively, for all categories from all four models. Figure (13) shows the
number of categories from each model and the coherence scores they received. Notice
that PSA and simplePSA have higher number of categories receiving a score of 2 or

higher compared to TagPAM and TagLLDA . We can also see that PSA and simplePSA
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have lower number of categories receiving a score of 1 or lower compared to TagPAM

and TagLDA. Figure (14) shows the number of categories from each model versus

the number of deviating terms. Again PSA and simplePSA have a higher number

of categories containing small number of deviating terms compared to TagPAM and

TagL.DA and they have a lower number of categories containing large number of de-

viating terms compared to TagPAM and TagLDA. We present example communities,

their top tags, and their top users discovered by our PSA model for both Delicious

and CiteULike in Tables (VII) and (VIII), respectively.

Average LDA | PAM | PSA | simplePSA
score 1.51 | 1.49 | 1.60 | 1.59
number of deviating terms | 5.72 [ 5.7 5.34 | 5.35

Table VI. Coherence evaluation results

4.6. The Role of Users

The improvements achieved by or models are due primarily to the inclusion of the user

as a generated variable. Smaller improvement comes from the hierarchical structure of
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Fig. 13. User study results: shows the count of categories from each model and their
respective score (0 to 3 ), with 0 representing no coherence and 3 representing

excellent coherence

communities and categories that we introduce. This is clearly evident in Figure (10).
Notice the performance of PSA compared to that of simplePSA. In this section, we
show how the introduction of the user as a generated variable in the social annotation
process impacts the Gibbs sampler.

As an example, suppose we have a corpus with a tag vocabulary of length 3,

V = {wy, we, w3}, two users, U = {uy,us}, and two communities L = {C},Cy}. Also
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suppose the corpus contains a single document of length 6:
S =< uy, wi; ur, Wa; Uy, Wo; Uy, Wi Ug, Wa; U, W3 > .

Assume the priors to be uniform over tags, users, and communities. Table (IX) com-
pares the impact of excluding/including users on the Gibbs sampler. Suppose the
Gibbs sampler has completed n — 1 iterations and the resulting community assign-
ments are as shown in the 5;, row of the table. To illustrate this difference, we use

Equation (3.3) to compute the probability of community assignment for the word at
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position 1 of the corpus. Remember that our Gibbs sampler excludes the current po-
sition, so at the beginning of iteration n two words of the corpus belong to community
C and the other three words belong to community Cs.

When calculating the update probabilities in the case that excludes users we
ignore the first factor of Equation (3.3). Notice that w; which occurs at position 4
is assigned to community C';. The Gibbs sampler gives almost equal chance for this
word to belong to either community. This is because of two competing factors: (i)
the majority of the words in this document already belong to community C5, so one
factor favors Cs; (ii) at the same time the word w; has already been assigned once to
community C; which balances both outcomes.

Now let us consider the case in which users are included. Here the Gibbs sampler
clearly prefers community C; over (5 for this position. The reason being that the
user associated with the word at position 1 which also happen to be the user most
interested in this document had already been assigned twice to C;. We can point to
at least three advantages of including users in social annotation modeling 1) faster
convergence; users co-occurrences and associations with tags resolve ties leading to
faster consensus 2) better results in terms of quality of categories as shown in our user

study 3) additional clustering of users that can be useful in numerous application.

4.7.  Summary

Rather than modeling the tag generation process as if tags are generated regardless of
user, the Probabilistic Social Annotation (PSA) model treats both tags and users as
generated variables that are drawn in pairs; a natural consequence of such an approach
is the discovery of user communities in addition to tag categories. Similar to the CCA
model, the PSA model assumes a corpus of D social annotation documents drawn

from a vocabulary of V' tags with the addition of a vocabulary of U users. The model
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assumes that the (user,tag) pairs in a social annotation document are generated
from a mixture of L distinct communities, where a community now is a mixture of
users that view the world based on a set of K; hidden categories, and where each
category is still a mixture of tags. Thus, the tagging process involves the selection
of a community from which to draw users as well as their tagging categories and a
second selection step among these categories for the one that will influence the user’s
view or preference over tags based on the object’s content, and the tagger’s perception
of the content.

Alternatively, we can simplify the Probabilistic Social Annotation model by as-
suming that each community of users agrees on a single category view of the world.
We can then combine the community variable and category variable into a single
hidden variable. As a result, the model finds a distribution over tags as well as a dis-
tribution over users, capturing both the users’ similarities/interests and their world
view simultaneously.

Again, we employ MCMC methods to uncover the underlying structure (com-
munity and category distributions). We experiment with several community category
combinations on our CiteULike and Delicious datasets. We also compare the results
of our models to results obtained using existing traditional topic models that cannot
model the user role in social bookmarking (LDA and PAM [62, 83]).

Our experiments compare the above models using two metrics: (i) ability to
predict previously unseen data; and (ii) quality of discovered latent structures. Our
experimental results show that our models do generalize better to unseen social anno-
tation documents as well as improve the quality of latent structures discovered. The
improvements achieved by or models are due primarily to the inclusion of the user as

a generated variable.
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5. Computational Complexity

As we have seen above, learning model parameters via Gibbs sampling involves it-
erations over the entire corpus that sample conditional probabilities for communities
and categories at each position. let N be number of iterations, L be number of com-
munities, K be number of categories, D be number of documents, and S be average
document length. The computational complexity of CCA and PSA using Gibbs sam-
pling is O(NLKDS). That is a factor of L higher than LDA and simplePSA. The
complexity of PAM is O(N(L + K +1)DS).

6. Summary

Understanding the social annotation process is essential to modeling the collective
semantics centered around large-scale social annotations; which is the first step to-
wards potential improvements in information discovery and knowledge sharing. In
this chapter, we have introduced two novel probabilistic generative models of the
social annotation process, emphasizing the user/community role as a major actor in
this domain. We have compared our models to two prominent topic models (PAM
and LDA). Our experimental results show improvements in models generalizing to
unseen social annotation documents as well as improvements in the quality of latent
structures they discovered. Next we consider applications based on the results of the

social annotation models we have introduced here.
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CHAPTER IV

COMMUNITY-DRIVEN BROWSING AND SEARCH

1. Introduction

With the proliferation of web based social systems has come a commensurate interest
in leveraging this wealth of collaborative community-based information for improving
information access and discovery. For example, there has been growing excitement
at augmenting traditional web search and browsing through the incorporation of tag
information from social bookmarking services, e.g., [6], [8], [86],[7], [12], [41],[87].

In this chapter we present two frameworks that employ the results of our proposed
models from the previous chapter to enhance traditional methods of information
discovery and retrieval of socially tagged web objects. The proposed models uncover
a structure underlying the social bookmarking process that probabilistically relates
objects, tags and users to a community and category hierarchy. In this structure we
can determine related objects based on their community and category distributions,
related users based on their community memberships, and related tags based on their
category or community memberships. We can also determine related communities and
categories based on their user and tag distributions as well as object memberships.

Our first framework is based on the Community-based Categorical Annotation
(CCA) model [80]. It exploits the apparent differences between the content of the
web object and the tags assigned to it (the taggers perspective of the object). We
devise similarity measures and explore an approach that utilizes these differences to
browse for similar/dissimilar objects in a multi-dimensional space. We term this the

Topics-Category Browsing Framework.
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The second framework is based on the Probabilistic Social Annotation (PSA)
model [81]. We develop a novel community-based ranking model for effective community-
based exploration of socially-tagged web resources. We compare this community-
based ranking to three state-of-the-art retrieval models: (i) BM25; (ii) Cluster-based
retrieval using K-means clustering; and (iii) LDA-based retrieval. We term this the

Community-based Exploration Framework [88].

2. Topics-Category Browsing Framework

One important aspect of social bookmarking is the relationship between an object’s
content and its social annotation. Previous efforts have unified these two views to
generate both the content and the annotations through a single process. Their intu-
ition is that the author of a document and the social annotators of a document are
driven by the same motivations. Indeed, there is evidence that many tags applied to a
web page can also be found in the text of the page [86]. This leads one to believe that
documents with similar content will have similar tags and vice versa. Our first task
is to examine this hypothesis, i.e., do web objects with similar content have similar
tags and vice versa?

Once we have shown that objects with similar content do not necessarily have
similar tags and vice versa, we explore how this disparity can be used to better browse
socially tagged web objects. When there are differences between a web document con-
tent and its tags, it is possible to improve information discovery by considering mul-
tidimensional similarity measures. That is instead of computing similarity between
web objects using content alone or a combined space of content and tags, two separate
spaces can be used. We illustrate this approach for integrating the annotation-based

model with content-based approach for web object browsing.
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The idea is to represent the objects content and annotations in reduced dimen-
sional spaces of topics and categories. We then explore objects based on both their
categorical and topical similarity (and dissimilarity) to a candidate query object.
Given this query object, We measure its similarity to all other objects which are then
classified into three views: (i) objects that are similar in topic space and similar in
category space; (ii) objects that are similar in topic space, but dissimilar in category
space and; (iii) objects that are dissimilar in topic space, but similar in category
space. The user is then presented with the top ranked documents in each view and
can select an object of interest to view or to further use it to browse for similar and

dissimilar objects.

2.1.  Categories vs. Content-based Topics

Now that we have seen in the preceding chapter how the CCA model can identify
hidden categories and communities of interest that are used to drive the social anno-
tation process, we revisit the relationship between an object’s content and its social
annotation document (recall O; = (C;, S;)). Previous efforts have unified these two
views to generate both the content and the annotations through a single process
(e.g., [12, 29]). Such a unified view, however, would seem to be meaningful for an-
notated objects that are primarily text (like web pages). It is less clear how to unify
the content and annotation generation process for non-textual objects like images
and videos. To examine whether this unified document content and social annotation
model is even reasonable for primarily text-based web pages, we assume the processes
generating both are separate.

We assume web object content to be generated from a latent structure of topics
and its annotations are assumed to be, separately, generated from a latent structure

of categories. Now we use our CCA model to uncover these underlying categories, and
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use the LDA model to uncover the underlying topics. We are interested to understand
if the underlying topic modeling approach for generating a document is the same as
the categorical modeling approach for generating a social annotation document.

To measure the similarity of the content and annotation generation processes,
we compare pairs of topics and categories. If the two processes are similar, we would
expect to see many similar topic/category pairs. The similarity of a category topic
pair can be measured using the Jensen-Shannon distance [89] for comparing two

probability distributions p and g over an event space X:

KL(p,m)+ KL(q,m)

JS(p,q) = 5 :

where m = ’#, and K L(p, q) is the Kullback-leibler divergence defined as:

KL(p,q) = Y _ p(x) - log (@> :

zeX q(a:)

Computing the JS-distance between a topic and category requires that we rep-
resent each topic or category z by a probability vector ¢, over the union of the tag

vocabulary space and the content vocabulary space.

2.2.  Categories and Topics on Delicious

We evaluate the content and annotation disparity on the Delicious dataset, (Flickr
could not be used since it annotates images). We considered the 40 categories discov-
ered using the CCA model and additionally ran LDA [62] on the document content
of the collected web pages and identified 40 latent topics (again using perplexity).
In Figure (15) we present JS-distance computed for all (topic,category) pairs. The
x-axis shows the categories, the y-axis shows the topics, and the z-axis shows (1—JS-

distance). We use (1—JS-distance) for visibility where similar pairs will show as large
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Fig. 15. Topic versus category similarity

spikes on the plot.

While there are some clear spikes, for the majority of topics there is no clear
mapping to related categories, and vice versa. Hence we believe that the categorical
annotation model identifies semantically coherent hidden categories that are not the
same as the topics discovered through the application of a traditional content-based
topic model — which further validates the need to separately model and study the
collective intelligence annotation process from the content-generation process.

To further understand this separation, we also examined the set of social anno-

tation document pairs that are categorically similar, where we considered pairs with
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tance in category space

JS-divergence less than 0.1 in the categorical space. How topically similar are these
documents? Do documents that share similar tags also share similar content? In Fig-
ure (16), we report the JS-distance between these categorically-similar objects over
their content-based topic similarity. Note how many of these categorically-similar web
pages are quite dissimilar in topic space. In other words, objects tagged with similar
tags do not necessarily have similar content.

Conversely, we also considered the set of web page pairs in our Delicious dataset
that had a JS-divergence less than 0.1, where we measured the JS-divergence over

the topics associated with each document. We find that many of these topically-
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similar web pages are quite dissimilar in categorical space as shown in Figure (17).
These results echo what we saw in Figure (16), that two documents may share many
keywords in common (i.e., are topically similar), but their view from the community

of social annotations is quite different.

2.3. Browsing in Topic and Category Spaces

We briefly illustrate one way to use both the annotation-based categorical model and
the content-based topic approach for discovery and exploration of web objects. The

main idea is to explore objects based both on their categorical and topical similarity
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Fig. 18. Browsing in category and topic spaces

(and dissimilarity) to a candidate query object.

Here, we consider an example web page in the Delicious dataset concerned with
the popular 1980s-era Rubik’s Cube and several methods for solving the puzzle. The
vocabulary for this page is overwhelmingly mathematical and based solely on the
content this document is classified under the mathematics topic with high probability.
However, the document also clearly belongs to the games and puzzles category (and
this is reflected in the tags assigned to it). Given this query document, in Figure(18),
we show the most relevant documents to our query document based on three views: (i)

similar in topic space and similar in category space — these documents are primarily
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mathematical approaches to Rubik’s cube and similar puzzles; (ii) similar in topic
space, but dissimilar in category space — these documents are primarily mathematical
documents; and (iii) dissimilar in topic space, but similar in category space — these

documents are primarily about games and puzzles.

2.4. Summary

Our browsing framework exploits the relationship between web objects content (text)
and their social annotations (tags applied by various users). We show that when
there are differences between a web document content and its tags, it is possible to
improve information discovery by considering multidimensional similarity measures:
computing similarity measures on separate content and annotation spaces instead of
content alone or a combined content and tags space.

A prerequisite to computing similarity is to represent objects in reduced dimen-
sionality spaces using CCA and LDA models. In this step, object content is assumed
to be generated from a latent structure of topics and its annotations are assumed to
be generated from a latent structure of categories. With these structures in hand,
we compute objects similarity in the topics and categories spaces using the Jensen-
Shannon distance defined above. We find that differences do exist between a web
object content and its annotations and illustrate how it can be used improve brows-
ing of socially tagged web objects.

The idea is to explore objects based on both their categorical and topical sim-
ilarity (and dissimilarity) to a candidate query object. Given this query object, we
measure its similarity to all other objects which are then classified into three views:
(i) objects that are similar in topic space and similar in category space; (ii) objects
that are similar in topic space, but dissimilar in category space and; (iii) objects that

are dissimilar in topic space, but similar in category space. The user is then presented
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with the top ranked documents in each view and can select an object of interest to
view or to further use it to browse for similar and dissimilar objects.

A question remains, why are social tags of a web object different from its content?
We attribute the cause to taggers having interpretations, perceptions, or interests on
the object content that is different from the content creator. We see it because the
social bookmarking medium allows for these differences to materialize and further
complement the object’s content. This however would be worth further detailed

investigations.

3.  Community-based Exploration Framework

Another important aspect of social bookmarking is the way in which users are han-
dled and how they are modeled as part of tag generation process. Recent work on
author-topic models [64] has added the concept of “author” to the topic models, but
fundamentally these models are designed to model text documents that have a single
(or a few) authors. In contrast, our probabilistic social annotation models in the pre-
ceding chapter account for the fact that many authors independently participate in
the creation of social bookmarking. This leads to the discovery of user communities
in addition to tag categories.

Here we leverage the underlying structure of the social bookmarking process un-
covered by our models towards improving community-based and user-based search
and exploration in the hopes of improving information access over socially tagged
documents. Our goal is to enhance a baseline ranking function based on the BM25
ranking framework by considering community information derived from the genera-
tive annotation models. Concretely, we consider two approaches for leveraging this

community information: (1) ranking by query-community relevance; and (2) ranking
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by user-community relevance.

In the first approach, we aim to boost each document ranking by two factors: (i)
the query term importance in each community; and (ii) the document importance in
each community. The first factor boosts the ranking of documents that contain query
terms considered important by the community regardless of document’s community
preference. The second factor boosts the ranking of documents that are preferred by
the community regardless of them containing the query term. The net effect boosts
the ranking of documents that are both preferred by the community and contain
query terms that are considered important by the community. These factors can
either be averages over all communities or maximum likelihood estimates obtained
from the most representative community for the given query.

In the second approach, we aim to leverage user community information to en-
hance search and exploration. To that end, we consider the community membership
for each user as determined by our model. Knowing a user’s community strength, we
can favor documents that are most preferred from the user’s community, even if the
user has never tagged the document. This approach constitutes to factors: one that
accounts for community preference for a document and the second accounts for user
membership in that community. Similarly, the factors can either be averages over all
communities or maximum likelihood estimates obtained from the most representative
community for the given user.

We use rank aggregation methods [90] to combine the results of the baseline
(BM25), the query-community, and the user-community ranking functions. Our ex-
perimental results show that the inclusion of query-community and user-community
rankings improves over the baseline retrieval method. In particular, We compare
community-based ranking to three state-of-the-art retrieval models: (i) BM25; (ii)

Cluster-based retrieval using K-means clustering; and (iii) LDA-based retrieval. We
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find that the proposed ranking model results in a significant improvement over these

alternatives (from 7% to 22%) in the quality of retrieved pages.

3.1.  Community-based Ranking

In the preceding chapter we presented the PSA models for discovering implicit social
bookmarking communities. We now turn our attention to leveraging this information
for community-based exploration of socially tagged documents. Since implicit user
communities can be extracted from large-scale social bookmarking services, it may be
advantageous to leverage this community structure to enhance user-based exploration
over the web of socially tagged resources. Instead of guiding users to resources that
a user already knows about (via his own tags) or that are globally well-known (e.g.,
a web page that many other users have already tagged), we seek to develop new
community-based exploration approaches that emphasize the community’s implicit
view (e.g., to identify resources that are relevant to the implicit sports community).

Our goal is to leverage the discovered community structure to implicitly connect
users, tags, and resources for more effective information exploration and discovery.
Concretely, we propose a novel community-based ranking model that is designed with
this intuition in mind. We illustrate our approach using results from the simplified
PSA (SimplePSA) model but the approach is general enough to apply to the PSA
and other models.

Applying the SimplePSA model to a collection of user, tag, and resource tuples

produces the following distributions:

e For each community, we have a probability distribution over all users 7, =
U
{reihia

e For each community, we have a probability distribution over all tags ¢. =
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|7
{ocitiz1
e For each resource, we have a probability distribution over communities 6; =

{0i}51,

Based on these discovered distributions, we can, for example, identify implicitly
related users and implicitly related tags based on their common community mem-
bership. These relationships can be used to automatically suggest related tags, to
recommend unknown users (and their collection of bookmarks) to interested users,
and so forth. Similarly, we can identify implicitly related resources based on their
community distribution (e.g., to identify similar resources based on the communities
that are interested in them), and support other forms of social exploration.

While the possibilities are quite large for applying the discovered community-
based information from the SimplePSA model, we examine in the rest of this section
two approaches for ranking resources based on the community’s perspective. Con-
cretely, we consider: (i) a query-community ranking approach that maps a user’s
topical interest (expressed as a query) to resources preferred by communities with a
similar topical interest; and (ii) a user-community ranking approach that re-ranks all
resources based on the user’s implicit community, regardless of the query. In both
cases, we are interested to examine if the discovered implicit community structure can

enable more effective ranking than traditional (non-community) based approaches.

3.1.1.  Query-Community Ranking

In the first approach, we aim to boost a baseline resource ranking by two factors: (i)
the query term importance in each community; and (ii) the resource importance in
each community. The first factor boosts the ranking of resources that contain query

terms considered important by the community regardless of document’s community



78

preference. The second factor boosts the ranking of resources that are preferred by
the community regardless of them containing the query term. The net effect boosts
the ranking of resources that are both preferred by the community and contain query
terms that are considered important by the community.

This query-community ranking is defined as product of likelihoods of query terms

relevance to resources as follows:

Score(S,Q) = Hp(S]t)
teqQ

Now, p(S|t), the resource relevance to a query is computed over all communities
using the two factors mentioned above, the community preference for the document

and the community preference for the tag as follows:

L

p(S[t) = p(S|e)p(c|t) (4.1)

c=1

Using Bayes’ rule we further expand each factor to be:

pisie) = MBI g pepy = PO
and by substituting into (4.1) we finally get:
- PlelS)p(tlo)p(S)

The quantities p(c|S) and p(t|c) are readily available from the SimplePSA model

results:



79

pelS) =05 and p(tlc) = ¢,

The document prior probability P(S) and the tag prior probability P(t) are

collection dependent and we compute them as follows:

5] tf(t)
ZiER |Sz| Zz‘eT tf(l)

where, |S], is the length of document S, and ¢f(¢) is the count of tag ¢.

P(S) = and P(t) =

3.1.2.  User-Community Ranking

In the second approach, we aim to boost resource ranking by user community in-
formation. To that end, we consider the community membership for each user as
determined by our model. Knowing a user’s community strength, we can favor re-
sources that are most preferred from the user’s community, even if the user has never
tagged the resource. This approach constitutes two factors: one that accounts for
community preference for a resource and the second accounts for user membership in

that community. This user-community ranking is defined as follows:

L

Score(S,u) = Zp(5|c)p(c|u)

c=1

Using Bayes’ rule again we expand p(S|c) and p(c|u) into:

p(c]S)p(S)
p(c)

p(ule)p(c)

(1) and p(S|c) =

p(clu) =

Then substituting into the previous equation we get:
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Score(S,u) = Z p(“|c)1;((j;9)p(s)

These quantities are, again, readily available from the SimplePSA model results:

pule) =72 and  p(c|S) = b

The document prior probability is computed is in the previous section and the

user prior probability is computed as:

uf(u)
2iev uf (1)

where uf(u) is the count of user u in the collection.

Plu) =

3.2. Rank Aggregation

In both cases: the query-community score and the user-community score, we can
combine each individual score with a baseline query-resource score to arrive at a
final score for each socially tagged document with respect to a query. In this work,
as a baseline ranking approach, we adapt the popular BM25 retrieval model to the
context of retrieval on social bookmarking systems [48]. For a user who is interested
in searching the web of socially tagged resources, we can adapt the BM25 ranking

over U for a query ) by scoring each social tagging document S:
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f(t,S)(k1+1)

Scoreppas(S, Q) = Z IDF(t)

1€Q F(t,S) + k(1= b+ b0
D —n(t) +0.5
1Dr() = os S

where, f(t,5) is the frequency of tag t in a social tagging document S, |S| is total
tags in S, avgL is the average length of documents in i/, D is the total number of
documents, n(t) is the number of documents containing tag t. k1 and b are free
parameters which we take to be their typical settings: k1 = 2, b = 0.75. BM25
provides a baseline for ranking resources by considering the presence of query terms
in the socially tagged document, but makes no attempt to incorporate community or
latent topic information.

To combine this baseline with the query-community score and the user-community
score, we rely on rank aggregation, which is the task of combining voters’ rankings
of a set of candidates to obtain a single ranking for the set. It is a well known prob-
lem encountered in many contexts; especially in social choice theory. In our case the
candidates are social web documents and the voters are the BM25 and the proposed
community-based ranking functions. To combine the rankings produced by the rank-
ing functions, we adopt a simple positional method known as Borda’s Rule [90]. In
Borda’s rule each candidate is awarded a point for each competitor candidate ranked

below it. Candidates are finally ranked by their accumulated points.

3.3. Ranking Over Socially Tagged Resources

Now we examine how community-based ranking models introduced above perform
over socially tagged web objects. In addition to basing them on the BM25 mode

results, we compare their results against two alternative state-of-the-art retrieval
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models: (i) Cluster-based retrieval using K-means clustering; and (ii) LDA-based re-
trieval. While these retrieval models have been developed in the context of text-based
retrieval, we adapt each to the context of retrieval on social bookmarking systems as

described in the following brief sections.

Cluster-based Retrieval (K-means): The first approach is a tag-based imple-
mentation of cluster-based retrieval introduced by Liu and Croft [49]. Cluster-based
retrieval hypothesizes that by grouping text documents (in our case, social tagging
documents), the quality of ranking can be improved by smoothing each document
with the rest of the documents in the cluster (in essence, asserting that similar docu-
ments will satisfy the same information need). In practice, we use K-means clustering
to cluster all social tagging documents; we set k = 40 based on the results of the pre-
vious experiment. Documents in each cluster are then combined to build a unigram
language model, i.e.,; a multinomial distribution over its vocabulary space. Ranking

in this case is based on clusters instead of documents.

Score(cluster, Q) = Hp(t|cluste7").
teQ

The quantity p(t|cluster) is computed from a cluster language model smoothed

by a background model as follows:

tf(t, cluster) tf(t, Coll)
> tf(t, cluster) > tf(t, Coll)

where tf(t, cluster) is the count of tag ¢ in the cluster and ¢ f(¢, Coll) is the count of

p(t|cluster) = A 1—-X)

tag t in the entire collection. The free parameter (A = 0.5) controls the smoothing

proportion. The cluster-based ranking can then be combined with the per-document



83

BM25 score using rank aggregation as in the case of community-based ranking.

LDA-based Retrieval: The second approach we consider follows Wei and Croft
[50] to incorporate the LDA based document representation for retrieval. Given the
inferred distributions from TagL.DA, we can define an LDA-based ranking function

as follows:

Score(S,Q) = Hp(t|S)

teq
Now, p(t|S), the query likelihood given the document is computed over all tag
topics using two factors: the document preference for the topic and the topic prefer-

ence for the tag as follows:

K

p(t[S) =Y p(=]S)p(t|2) (4.2)

z=1
The quantities p(z|S) and p(t|z) are available from the TagLDA model results,
p(z|S) =65 and p(t|z) = ¢.. The LDA-based scores can then be combined with

the per-document BM25 scores using rank aggregation.

3.3.1. Tag-based Retrieval

To evaluate the quality of community-based ranking and to be fair across all models,
we first consider retrieval using only tags (since BM25, LDA, and K-means do not
model the user as SimplePSA does). We select three sets of tags with the following

criteria:
Rare tags: Six rare tags, that is tags that occur on at most 5 resources.

Unambiguous tags: Eight pairs of unambiguous tags, where we pair the tag “tool”
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with a number of tags such as “finance”, “music”, “health”, “social”, “game”, making

the pair, “music tool”, very specific in what is expected to be retrieved.

Popular tags: Twelve popular tags, tags like “new”, “program?”, “resource”, “howto”,
“blog”.

For each of these tag sets we retrieve the top ten relevant documents per query us-
ing each ranking model - BM25, BM25+Kmeans, BM25+LDA, and BM254+SimplePSA.
The results for each query are presented to four judges to determine their relevance
to the query on a scale of 1 to 5 with 1 being least relevant and 5 most relevant.
The judgements scores are analyzed using Normalized Discounted Cumulative Gain
(NDCG)[91]. For a list of graded resources, NDCG computes the gain of each resource
in the list based on its grade and rank and accumulates the gains over the list up to a
specified position. Table (X) presents the NDCG@10 for each ranking model across
the three types of queries, as well as the percent change by the proposed community-
based ranking model BM25+SimplePSA versus the other three approaches.

First, consider the set of rare tags. Suppose our collection has 3 documents
that carry the tag x. When a user searches for this tag using a traditional retrieval
methods, e.g. BM25, those 3 documents will be returned as relevant and all other
documents are given a score of zero, or a corpus wide smoothing score. However, there
might be documents in the collection that do not carry the query tag but are relevant
to the query, e.g., documents tagged with synonyms of the query term, or misspellings,
or topically relevant tags. Community-based tag grouping (as in SimplePSA) could
help improve results for this kind of query and our results support this conjecture.
As Table (X) shows, the SimplePSA model results in the best ranking quality for rare
tag queries, improving on BM25 by 20%, improving on K-means by 4%, and on LDA

by 7%. We attribute this improvement to the ability of the SimplePSA model to
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Fig. 19. Ranking quality for rare tag queries

better fit social bookmarking data than LDA or K-means. See Figure (19) for more
detailed NDCG results for rank positions up to 10.

Second, for the set of unambiguous tags, the intuition is that a tag such as “tool”
is popular, general and belongs uniformly to many communities while the the other
tags are specific and could be prominent in small number of communities. For a
traditional retrieval model the results are dominated by documents relevant to the
general term due to high term frequency in document that might not be relevant
to the second term. At the same time, the scores of the more specific term are not

prevalent enough to make it to top positions in the retrieved list. Community-based



87

scores can help bring those documents that are considered valuable to the second
terms’s community up in the list. As Table (X) shows, the SimplePSA model results
in the best ranking quality for unambiguous tag queries, improving on BM25 by
22%, improving on K-means by 12%, and on LDA by 12%. See Figure (20) for more
detailed NDCG results for rank positions up to 10.

Finally, for the set of popular tags, their popularity makes them belong uniformly
to many communities making the community structure, in this case, of little benefit.
The community structure might actually degrade the retrieval performance by pro-
moting documents that are too general and perceived uniformly across communities,
which we suspect to be the case in our results. Another issue with this kind of queries,
is the difficulty to evaluate relevance when query terms are vague. This was evident
in the disagreements among judges scores for popular tag results.

To test judge biases in scoring the results for the different queries we use the
Wilcoxon signed rank test [92], which given two paired samples of measurements,
tests if the differences come from a symmetric distribution with zero median against
the alternative that differences do not have a zero median. In our case if the differences
have a zero median, we can conclude that the judges biases are not significant and
that there is significant agreement on how the results are ranked. The Wilcoxon
signed rank test results are shown in Table (XI). When the P-value < 0.05, we reject
the hypothesis of zero median and conclude that there is significant disagreement

among judges scores. This is seen only in the case of popular tags.

3.3.2. User-based Retrieval

Now that we have seen how community-based ranking can improve tag-based retrieval,
we next consider how user-based retrieval can be improved. The goal of this section

is to show the benefit of user modeling in social bookmarking as is done in the
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Table XI. Wilcoxon signed rank test of agreement between judges scores with 95%

confidence
Query group P-value(two-tailed)
Unambiguous tags 0.10
Rare tags 0.39
Popular tags < 0.0001
User-based retrieval tags 0.39
1 i -
—— BM25+SimplePSA
0.9¢ ——BM25+LDA
—— BM25+Kmeans
0.8 —e—BM25
0.7}
o 0.61
@)
o)
< 0.5+
oal ‘f‘
0.3
0.2
O. 1 L 1 1 1 1 )
2 4 6 8 10
Rank

Fig. 20. Ranking quality for unambiguous queries
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SimplePSA model.

To that end, we select five users that exhibit interest for some of the tags we used
in the previous experiment, i.e., top users from the most representative community
for the tag. For each user and tag combination, we retrieve the top ten relevant
documents. These results are judged for relevance as was previously done on a scale
of 1 to 5. The NDCG of judges results are as shown in Table (XII). The results
for SimplePSA model include both the query-community (SimplePSA) ranking and
the user-community (SimplePSA(U)) ranking. Notice that SimplePSA performs best
with 47%, 43% and 60% improvement over BM25, K-means, and LDA respectively.
These improvements show that user-based community structure uncovered by the

SimplePSA model helps improve ranking of tagged resources.

3.4.  Summary

Our second application framework utilizes the user-community and tag-community
structures uncovered by modeling the social bookmarking process. With these struc-
tures in hand, we are able to augment traditional ranking methods with new ap-
proaches that make use of relationships exhibited by social web documents. In par-
ticular, having users as in integral component of the social web allow for the grouping
of users based on interests, interpretation and background knowledge. These groups
can be used to bias document rankings based on the user and the query term rele-
vance to the group. We illustrate the benefits provided by results of our models in a
framework that augments traditional ranking methods with two new approaches that
are based on query-community relevance and user-community relevance.

We compare the results of these two approaches to three state-of-the-art re-
trieval models: (i) BM25; (ii) Cluster-based retrieval using K-means clustering; and

(iii) LDA-based retrieval. We find that the inclusion of query-community and user-
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community rankings improves over the baseline retrieval method (BM25) as well as

the other two clustering models in retrieving quality pages.

4. Conclusions

In this chapter we presented two frameworks that employ the results of our proposed
models from the previous chapter to enhance traditional methods of information
discovery and retrieval of socially tagged web objects. Our first framework is based
on the CCA model and exploits the disparity between web object content and its
social annotation to browse for similar /dissimilar objects in a multidimensional space.
The second framework based on the PSA model utilizes the user-community and tag-
community structures to improve ranking.

Although our approaches suggest an important role for socially contributed data
in advancing information discovery, there are a number of limitations to its applica-
tion and generalization to social bookmarking systems at large. First, LDA based
approaches, in general, including our SimplePSA model require global knowledge and
perform many iterations to uncover latent variables. Hence, applying thses models in
an on-line system is computationally expensive. Second, our SimplePSA model, as
does LDA, assumes a fixed number of latent variables and does not consider the tem-
poral aspect of tagging. Therefore, it cannot capture growth and evolution. Third,
our assumption of global user communities does not capture individual user behavior.
In addition, the lack of standard corpora for social bookmarking data makes evalu-
ating and comparing results of different research methods difficult. Furthermore,
results based on individually collected corpora need to be verified for generalization
to different social bookmarking systems.

However, some of these limitations can be overcome. A combination of a both
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on-line and off-line approach can solve the processing requirements of LDA-based
models. Also, there are methods for dynamically discovering the number of latent
variables (see for example [93]). Next we will incorporate time into the SimplePSA

model to capture community evolution over time.
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CHAPTER V

TEMPORAL DYNAMICS OF COMMUNITIES IN SOCIAL BOOKMARKING
SYSTEMS

1. Introduction

The preceding chapters of this dissertation have approached the social bookmarking
process from a time-independent perspective. But in practice, social bookmarks are
generated over time. Bookmarks for a certain web resource grow and evolve as the
resource is discovered by more users. Also, new resources are added to the social web
over time. User interests and bookmarking behavior possibly vary over time too. In
this chapter, we conduct time-dependent analysis of the social bookmarking services
that aims at revealing important characteristics of social bookmarking such as tag
evolution, web resource popularity evolution, time-specific interest, user evolution,
and community evolution.

Potential applications that can benefit from time-based analysis for social book-
marking services are: (i) social bookmarking systems: tagger behavior and its evo-
lution can help in the design of better bookmarking systems; (ii) marketing and
advertisement: tagger interests and evolution can serve as marketing indicators; (iii)
information availability: tagger interests and evolution can help anticipate user’s fu-
ture information needs; and (iv) information access and organization: user interests
evolution can be used enhance tag cloud design which in turn improves browsing of
the social web.

We begin by observing the social bookmarks on the Delicious social bookmarking

service in action for a period of 15 weeks. The data collected allows us to determine
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general social bookmarking behavioral statistics such as posts per day, unique tags
per day, taggers per resource and so on. We then present our approach to model
social bookmarking systems over time. Our goal is to identify groups of taggers
and their interests and how they evolve. To that end we propose a modification
to the probabilistic social annotation model (SimplePSA) in [81] that aims to cap-
ture community-wide interests over time intervals through modeling user activity and
tagging choices. Using the results of this temporal modeling approach to social book-
marking services, we devise community dynamic graph representation that tries to
capture users and tags dynamic movement between communities. We show how this
representation can enable a closer inspection of communities characteristics as well
as that of the constitute user and tags over time. We also show how to use this

representation to capture cross-community relationships over time.

2. Temporal Social Bookmarking Data and Features

Our dataset was collected from Delicious’ recent feed over a period of 15 weeks
(November 11th, 2009 to March 1st, 2010). It consists of 13,405,322 unique post-
ings over 3,778,338 unique URLs, performed by 641,021 users using 1,504,147 unique
tags.

Some interesting observations about the dataset are the number of tagged re-
sources over time, the number of taggers over time, and the number of tags used.
In Figure (21) we show resource activity over the observed period. The x-axes show
the time interval in hours and the y-axes show the number of resources. Figure (21)
(a) presents the number of unique resources tagged per hour. On average, there are
4,726 unique resources tagged every hour. Figure (21) (b) shows that on average

about 1,000 of these resources have not been observed in any previous time interval.
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Fig. 22. Tagger activity per hour over 15 week period: (a) shows the number of taggers

active per hour and (b) shows the number of new taggers never seen before

In Figure (22) we present the taggers activity over time. The x-axes show the

time interval in hours and the y-axes show the number of taggers. Figure (22) (a)

presents the number of unique active taggers per hour. On average, there are 3, 353
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unique taggers every hour. Figure (22) (b) shows that on average about 100 taggers
in each hour have not been observed in any previous time interval. Finally, in Figure
(23) we present tags’ usage over time. The x-axes show the time interval in hours and
the y-axes show the number of tags. Figure (23) (a) presents the number of unique
tags used per hour. On average, taggers use 5,644 unique tags every hour. Figure
(23) (b) shows that on average about 500 of these tags have not been observed in any

previous time interval.
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Fig. 23. Tags per hour over 15 week period: (a) shows the number of tags used per

hour and (b) shows the number of new tags never seen before

Generally, we observe that the overall Delicious social bookmarking community
gets around 110K resources, 80K taggers, and 130K tags on a daily basis. We also can
conclude that this community maintains growth in the number of resources, users and
tags; with resources having the highest growth rate followed by tags then by taggers.
The drop in activity around the 1,000 hour is due to Christmas time and the New
Year. Notice that a drop in the number of new taggers arriving into the system occurs
around the 700" hour. We take this as an indicator that most taggers are active at

least once a month. A similar drop but less pronounced occurs with new tags around
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the same time. A much slighter drop is seen in the case of resources. A one month

duration is sufficient to capture the majority of taggers and tags but not of resources.

# Resources

0 , | , | , -
10 10 10° 10 10
# Hours

Fig. 24. The number of resources and the corresponding number of hours in which

they were observed at least once

Next, we turn to examine the reoccurrence of resources, taggers and tags over
time during the observed period. For each resource, tagger, and tag, we want to
observe the corresponding number of hours in which they were active at least once.

In Figure (24), we plot the count of resources and the corresponding time intervals
in which they appeared at least once. It shows us that there are more than 1M

resources that were observed in only one time interval each (one hour), while there
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Fig. 25. The number of taggers and the corresponding number of hours in which they

were active

are 10 resources that were observed in at least 300 time intervals each. These features
can be of interest for identifying popular resources or spam.

Similarly, for taggers we plot in Figure (25) the number of taggers and the cor-
responding number of hours in which they were active. We see that there are more
than 100K taggers that were active only in one time interval. On the other hand, 10
taggers were seen in between 200 to 300 time intervals each. These features can be
of interest for identifying prolific taggers, spammers, trend makers, as well as bots.

Finally, Figure (26) shows the number of tags and the count of hours in which
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Fig. 26. The number of tags and the corresponding number of hours in which they

were observed at least once

they were used at least once. The figure indicates that there are about 1M tags that
were seen in only one time interval each, while about 10 tags appeared in 1,000 time
intervals each. These features can be useful to determine trends, classification, and
spam terms.

We can see that resources, taggers, and tags reoccurrence follow the common
power law distribution where a few elements are very active and the majority have
very low reoccurrence. Notice that the resources and the tags reoccurrence form a

straight line on the log-log scale while the taggers reoccurrence forms a curved line
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(slower decline in the number of taggers for increasing time interval counts) which
indicates that a large number of taggers are active unlike the case for active tags and

active resources.
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Fig. 27. Resources interactions with: taggers (top) and tags (bottom)

To further illustrate the characteristics of social bookmarking systems, we exam-
ine the co-occurrences among resources, taggers, and tags. We start by looking at how
resources interact with taggers and tags. Figure (27) plots the number of resources
and the corresponding number of taggers and tags that they co-occurred with. Notice

in the top subfigure that there are more than 1M resources that are tagged by just
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one tagger each, while there are around 100 resources that are tagged by about 200
taggers each. In the bottom subfigure we see that there are about 1M resource with
only one tag each and about about 100 resources with about 150 tags each. Once
again we observe the phenomenon that a few resources are popular, attracting many

users and tags, while the majority get minimal exposure to users and very few tags.

# Users

. PR T SR . T S |
0 1 2

10 10 10

10

10
# Resources
N
Q
)
)
3
10° 10" 10° 10° 10*

# Tags
Fig. 28. Taggers interactions with: resources (top) and tags (bottom)
Now we look at how taggers interact with resources and tags. In Figure (28) we

show similar observation for taggers. In the top subfigure, we observe that there are

about 1M taggers that tag just one resource each, while there are 10 taggers that tag
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more than 1,000 resources each. In the bottom subfigure, we see that there are about
100K taggers that use just one tag each, and there are 10 taggers that use about
1,000 tags each.

Finally, we look at how tags interact with taggers and resources. Figure (29)
presents similar counts for tags. In the top subfigure we observe that there are more
than 100K tags that are used by just on tagger each, while there are 10 tags that are
used by about 1,000 taggers each. The bottom subfigure shows that there are about
1M tags that appear on only one resource each, while there are 100 tags that appear

on about 1,000 resources each.
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Fig. 29. Tags interactions with: taggers (top) and resources (bottom)
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Although the Delicious feed could be throttled, filtered or delayed internally the
Figures above suggest a minimum activity rate for all three types (resource, user, tag)

as well a minimum growth estimate.

3. The Segmented Community-based Tagging Model

In previous chapters, we have adapted a text-based topic modeling approach to handle
social bookmarking data, where we consider the document unit to be the collection
of all tags and users applied to a particular resource. We call this collection of tags
and users applied to a resource its social tagging document.

[Definition] Social Tagging Document: For a resource r € U, we refer to the
collection of tags assigned to the resource as the resource’s social tagging document
S, where S is modeled by the set of users and the tags they assigned to the resource:
S = {(user;,tag;)}.

In the simplified PSA (simplePSA) approach , we posit the existence of L com-
munities that are implicit in the universe of discourse U, where each community is
composed of users and tags that are representative of the community’s perspective.
Since community membership is not fixed, we model membership as a probability
distribution, where each user and tag has some probability of belonging to any com-
munity.

[Definition] Social Tagging Community: A social tagging community c is
composed of (i) a probability distribution over users in U such that ), .., p(ulc) =1,
where p(ulc) indicates membership strength for each user w in community ¢; and (i)
a probability distribution over tags in the vocabulary T such that ), .. p(tlc) = 1,
where p(t|c) indicates membership strength for each tag t in community c.

Extending the simplePSA modeling approach to capture the temporal nature of
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social bookmarking services can be accomplished in several ways. A straightforward
extension is to still view the basic unit to be the collection of tags and users applied
to a particular resource but limited to those occurring in a specific time period (e.g.,
by hour, day, week, etc.). Now all tagging activity that occurs in a given time
interval is assumed (as previously done) to be drawn from global latent structures of
communities of users and their associated tag vocabulary. In addition these global
structures can now change from one time interval to the next. We call this approach,
the Segmented Community-based Tagging (SCTAG) Model.

Our intuition is that reasonably long time intervals (for example a week) will
contain a mixture of tagged resources that can potentially reveal the current global
interests as well as a classification of the different taggers and the tags they use. Addi-
tionally observing the system over consecutive time intervals will reveal the evolution
of interests, user groups, as well as tag groups.

The SCTAG model partitions the annotations applied to a single resource into
K segments based on the time the annotation was applied. For example, Figure
(30) shows a sample resource (the CNN page, www.cnn.com) being split into June
and July 2010 segments. This processing step is performed for all resources. It
results in collections of social tagging documents ordered by time. Each collection
can be modeled separately using the simplePSA model presented in the previous
chapters. But to capture the changes from one time segment to the next we require
the simplePSA model to use latent structures learned from earlier time segments as

a prior for learning the structures of later time segments (see Figure (31)).

3.1. Generative Process

The generative process for the SCTAG model in Figure (31) works as follows:
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CNN.com
(felix,news,JUL 10) (dennis,news, JUL 10)
(amy,cnn,JUL 10) (tara,stocks,JUL 10)

(pablo,headline,JUN 10) (boone,business,JUN 10)
(damie,politics,JUN 10)  (doug,stocks, JUN 10)

CNN.com CNN.com
(pablo,headline,JUN 10) (boone,business,JUN 10) (felix,news,JUL 10) (dennis,news, JUL 10)
(damie,politics,JUN 10)  (doug,stocks, JUN 10) (amy,cnn,JUL 10) (tara,stocks,JUL 10)

Fig. 30. Splitting annotations to time segments (month)
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Fig. 31. Segmented Community-based Tagging model (SCTAG)
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e for time segment k =2,..., K

1. for each community ¢ =1, ..., L

— Select U dimensional 7% ~ Dirichlet(f(7*71, a))

— select V dimensional ¢¥ ~ Dirichlet(f(¢*1,7))
2. for each object S;, 1 =1,....,D

— Select L dimensional 6% ~ Dirichlet(f(65, 3))
— For each position S;;, j =1,..., N;
* Select a community c; ; ~ multinomial(6F)
* Select a user Sj; ~ multinomial(r} )

* Select a tag Sj ; ~ multinomial (¢, .)

The first time segment, k = 1, has no prior latent structure and therefor reduces
to SimplePSA model. Each consecutive time segment augments the prior structure
with current observation points allowing for evolutionary behaviors to be observed.
Next we use Gibbs sampling to estimate the latent structures of the SCTAG generative

process.

3.2. Parameters Estimation with Gibbs Sampling

The generative process shown above describes how temporal social tagging documents
are created. Our goal here is to take collections of social tagging documents that
we assume are the product of such a generative process and recover the underlying
hidden structures of communities, their users and their tags. More specifically, we
learn model parameters 7, 6, and ¢ (the distributions over communities, users, and

tags, respectively) for each time segment.
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Let S and c be vectors of length ZZR N; representing (user,tag) pair, and com-
munity assignments, respectively, for the collection in a single time segment, k. Also
let u and t be user and tag variables. Suppose the latent structures learned in the
previous time segment k — 1 is known, Mj_;. Following the approach used in [66]
we derive the following Gibbs sampler’s update equation for assigning communities

to user, tag pairs in time segment k:

p(Ci = l|Cﬁi, St, Su,Mk_l) 0.8 (51)

”ffﬁi"'ﬁ?""au "f,ﬁi"‘ﬁf"‘%
9] = 1% =
u=1 nﬁ—.z’"’"?"'au i1 nf,—.z’""nf"'%
l
X ( ns-i B

Zlel nfg‘i‘ﬁl)_l

_is a count excluding the current position assignments of ¢; (e.g., n! _,

-

where n'?

(')7
is the count of tag t generated by the I-th community excluding the current position).
ﬁg; _,; are prior counts from the preceding time segment. The prior counts are set to

zero for the first time segment as well as for new users and tags that appear for the

first time in later segments.

4.  Community Discovery

In our experiments, we segment the dataset into weekly time segments as was dis-
cussed in previous sections. This results in 15 sub-collections each with 90, 000 social
tagging documents on average. We run the SCTAG model on the first sub-collection
to determine the number of potential communities. We set the model hyperparame-
ters to (a« = 0.9, = 0.1,y = 0.01) and vary the number of communities from 20 to
160.

Our goal here is to first confirm that the model works and to also determine an
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Table XIII. A sample top tags in communities

top tags

Comm 0 | video movi film stream youtub media entertain cinema televis onlin
free documentari subtitl towatch anim multimedia clip download review
watch live show list filmmak recommend vimeo seri flv...

Comm 1 | learn educ elearn web2 train teach research technolog onlin
moodl resourc knowledg open pedagogi eportfolio opensourc virtual
blog commun ict instruct secondlif Im assess virtualworld dog theori...

Comm 2 | map api googl geographi googlemap gp gi mashup geo locat
data local geoloc visual googleearth geocod earth cartographi
world develop refer foursquar geologi geotag tool mapa webservic...

Comm 3 | socialmedia facebook market social media socialnetwork
trend brand web2 busi strategi advertis roi mashabl casestudi 2010
research measur socialmedia twitter digit internet polici...

Comm 4 | fashion shop blog cloth magazin design style inspir shirt
vintag cultur beauti trend tshirt shoe moda men accessori store
retro art bag hipster lifestyl jewelri cool...

appropriate number of communities. Since the focus is not on optimizing the number
of communities discovered we elect to fix the community parameter to 100 since it
resulted in the most cohesive top-20 tags with the least overlap across discovered
communities. A sample of the discovered communities top tags are shown in Table
(XIII).

To illustrate the benefit of using this model, we compare these discovered com-
munities to the top frequency tags observed during one hour intervals in our dataset.
Table (XIV) shows a sample of most frequently used tags per hour. Notice the over-
whelming presence of “web design” and “programming”. Contrary to the impression
one gets of a lack of community structure based on the most frequent tags, a topic
modeling based approach reveals some interesting communities.

After the initial step of determining the number of communities, the SCTAG
model is run on the remaining time segments where a preceding time segment result

serves as a prior for the following time segment.
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5. Community Evolution

Previously we have used user, tag, and resource interactions to capture communities
of users and their tag vocabulary. Now, we observe these communities over time
and try to capture how they change. We define change based on two aspects of the
community: i) the users forming the community and ii) the tags representing the

community perspective.

googl wave googl wave googl wave googl wave googl wave googl china googl china googl buzz
googlewav I tool googlewav| googlewav internet wave googlebuzz
tutori hqwto ——> tutgri howto [ > howto tutori | > ?ool tweeciou |_ > Meeciou f— —p| Wave in1§rne( —— googlevyav —— gmail privaci
refer guid guid refer internet refer internet internet censorship appengin gae wave
web2 tip collabor web2 guid collabor googleapp appengin appengin reader appengin
collabor gadget tip im tool gadget googledoc googleapp googledoc googledoc internet
health food health exercis health food health fit health fit health food health fit health fit
nutrit medic food fit medicin| fit exercis healthcar food diet fit nutrit food exercis exercis medic
fit die$ - medic nutrit [ > nutri_( qiet e medicin nu_trit —— num gxercis_ —— exerf:i_s diet e nutri_t medicin [ > fqod nutr_it_
exercis medicir| healthcar refer medicin medic food exercis medicin medic medicin medic medic diet diet medicin
refer healthcar diet parent healthcar parent medic diet healthcar train weight run train train healthcar
tip lifehack children scienc]| run train parent train weight refer healthcar acn healthcar refer sleep refer

1 3 5 7 9 1" 13 15

Week

Fig. 32. A community’s topic evolution over time

Let us now inspect how community interests change over time. An example
of community interest evolution over time segments is shown in Figure (32). We
present two sample communities about “Google tools” and “Health” along with their
top-10 tags over the 15 week period. Notice how the “Google tools community”
is initially concerned with “Google wave” applications and “collaboration” in weeks
1 — 9 (November to December 2009, during which Google Wave was released) then
switched to “Google china”, “Google buzz”, and “privacy” in weeks 11 — 15 (January
to February 2010, during which the Google China hack scandal and Google Buzz
privacy issues occurred). On the other hand the “health community” can be seen as
more stable with interests continually represented by tags such as “food”, “exercise”,

“health care”, and “medicine”.
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The SCTAG model gives us a per community distribution over users as well as
a distribution over tags. Focusing on just one community over a sequence of time
segments, we can measure changes on both distributions over users and over tags using

a measure like the Jensen-Shannon (JS) distance (defined in the preceding chapter).
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Fig. 33. JS-distance per community over time (sorted by users)

We present the results of the JS-distance per community over time in both user
and tag spaces in Figure (33). The results are sorted by the distance over the user
space. Notice that communities vary in their distance over the user space as shown
in the bottom subfigure. This indicates evolutionary dynamics of user membership

in the communities. This however can not be said about the tag space as is shown in
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the top subfigure. Notice that all communities have relatively similar distances in the
tag space despite their distances in the user space, meaning that communities with

high user churn and those with low user churn all have relatively stable interests.
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Fig. 34. JS-distance per community over time (sorted by tags)

The same trend can be observed when the results are sorted by the distance
in the tag space, as is shown in Figure (34). Based on this we can conclude that
communities tend to evolve more on their user space than on their tag space. That
is, users tend to change their community membership over time more often than do
tags. This is an expected result as user membership in communities represents the

user transient interest while tag membership in communities represents a thematic
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classification of the tags.

6. Community Dynamics

To determine inter-community relationships we can apply the same Jensen-Shannon
distance to measure the overlap over users and tags between two communities. This
overlap can also be measured as a Jaccard or cosine distance. However, these methods
are too expensive as they require pairwise comparisons over the community space.
Alternatively, we develop a simpler method for comparing communities focusing on

the user and the tag spaces and their community assignment.

Fig. 35. Example transitions across communities over time

Our method takes the results of the SCTAG model and tracks each user and tag,
and their top community assignment in each time segment. From this step, we can
determine the paths that users or tags take over time in relation to communities. For
example, in Figure (35), we have three communities spread over three time segments.
An example path is (20, x1,y2), representing users or tags assigned to community x
at times 0 and 1; and to community y at time 2. By simply counting the number

of users or tags transitions between communities over time segments, we can capture
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community evolution, similar communities, communities that evolve together and
others that deviate over time.

Formally, let there be a graph G = (V, E') where the set of nodes V' represents
the community space spanning all time segments, and the set of edges E represents
users’ community assignment transition from one time segment to the next. An edge
e = (xg,y1) indicates that a user with community assignment x at time 0 got assigned
to community y at time 1. The weight of edge e, w(e), represents the number of users
or proportion of users that had made the same community assignment transition. For
example, in Figure (35), 13 users assigned to community z at time 0 were assigned to
community z at time 1, while 3 of these users got assigned to community y at time 2.

Using this graph setup we ask questions of community relationships and stability.
Are there stable communities? Do stable communities have core members? And what
is the size of this stable core? We consider stability to be influenced by the following
factors: the community core, the community parters, and the community joiners.

[Definition] Community Core: A social tagging community ¢ has a core
consisting of users or tags that are successively assigned to community ¢ in two
consecutive time segments, CC(c) = {u € MU, s.t. ¢ = argmaz—. 1, o)
For tags, CC(c) = {t € """ T}, s.t. ¢ = argmazc_y,. 1, oF,}.

[Definition] Community Parters: A social tagging community ¢ parters are
a set of users or tags that are assigned to community ¢ at time segment £ — 1 but not
at time segment k:

PA(c) = {u € N, s.t. c = argmaze..p, Tt and ¢ # argmazey . L 7F,}.
And for tags:

PA(c)={t e ﬂ],zHTk S.t. c=argmax.—, L gb'(f;l and ¢ # argmaz.—;._f, ¢§,t}.

[Definition] Community Joiners: A social tagging community ¢ joiners are

a set of users or tags that are not assigned to community c at time segment k — 1 but
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are in time segment k:

JO(c) = {u € M{*U, s.t. c # argmaze—1. 1 Tt and ¢ = argmaxe—y,. 75, }.
And for tags:

JO(c) ={t € ﬂkHTk s.t. c#argmax.—1, L gzﬁff;l and ¢ = argmaze—i._1, qb’jt}

For example, consider the communities z,y, z shown in Figure (35) with 3 time
segments. The core for community x is at most 7, its parters are 13 and its joiners
are 10. Respectively for communities y and z, their cores are at most 2 and 11, their

parters are 19 and 6, and their joiners are 6 and 14.

6.1. Users and Tags in Communities

We start by showing how the user space is assigned to the discovered communities.
Figure (36) shows the average number of users assigned to each community over the
observed time period. The average number of users assigned to a community fall in
the range [12, 300].

Transforming the SCTAG discovered communities into the community dynamics
graph introduced earlier allows us to observe the community core, community parters,

and community joiners. We present the results for users and tags (core, parters,
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Fig. 37. Proportion of users per community

joiners) per community in Figures (37) and (38), respectively. For users , the figure
shows the mean proportion of users and its variance for all three types. Notice the
communities with small core user proportion less than 0.25 are the ones that have high
mean proportion of joiners and parters, as is expected. We call these communities
high user churn communities. These communities form about one fourth of the total
number of communities. Similarly communities with high core user proportion greater
than 0.6 are the ones that have low mean proportion of joiners and parters. We call
these low user churn communities. These communities form a smaller fraction of the
discovered communities, about one tenth. The majority of communities have a mean
core user proportion in the range [0.25,0.60], meaning the majority of communities
maintain between one quarter to one half of their user memberships over time. Next

we take a closer look at high and low user churn communities.

6.2. Low and High User Churn Communities

In Table (XV), we present 5 low churn communities and 5 high churn communities.
The first column shows the mean core user proportion for the community over the
observed time period, the second column shows the standard deviation, and the third

shows the average core user size. The fourth column, shows the top tags representing
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Fig. 38. Proportion of tags per community

the community interest. By our definition the low churn communities have high mean
core user proportion and high churn communities have low mean core user proportion.
Notice the low churn communities have lower variance around the mean compared to
high churn communities. Also low churn communities cores are much larger than high
churn communities. Now by inspecting the top tags for the low churn communities we
notice that they have specialized, and narrow interests. For example, the top one is
about “Fan Fiction Stories”, the following one is about “Cooking and Recipes”, and
the third is about “Web Programming”. On the other hand, high churn communities
have more generic interests like “Shopping”, “Search tools”, and “Videos”. Also in
Table (XV), we highlight core tags (in red) among the top tags for each community.
In general, low churn communities have higher counts of core tags compared to high
churn communities.

Next we look at how low and high churn communities top tags evolve over time.
We present in Table (XVI) a sample low churn community interested in “Politics” and
another high churn community interested in “Audio and Sound”. For each community
we list the top tags in time segments {1,5,9,13}. We also highlight the core tags in
red. Generally, we see no dramatic differences between how top tags of low and high

churn communities evolve over time. But we can see that over time more core tags are
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Fig. 39. Core tags behavior in low and high churn communities

represented in the communities top tags for both low and high churn communities.

6.3. Core Users and Tags in Communities

This leads us to the question of how core tags and core users behave in low and high
churn communities. To observe this behavior we compute the number of core tags
and core users and the corresponding number of time segments in which they occur
for both low and high churn communities.

In Figure (39) we show the results for core tags. Notice that in low churn
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Fig. 40. Core users behavior in low and high churn communities

10

15

communities about 20 core tags occur in all 15 time segments (the entire observed

period). On the other hand, for high churn communities, no single core tag occurred

in all 15 time segments. Generally, we observe, in low churn communities, that more

core tags occur over many time segments. In high churn communities we see that

core tags occur over fewer time segments.

We present the results for core users in Figure (40). For low churn communities,

more than 20 core users occur in 15 time segments while no single core user occurred

in more than 3 time segments in high churn communities. Again, we observe that core
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Fig. 41. Core users and core tags’ relation to community evolution

users occur over many time segments in low churn communities while majority of core

users occur in only one single time segment for the case of high churn communities.

Notice that the behavior of core users in high versus low churn communities is more

stark than that of core tags.

To illustrate how a community’s core tags and core users correlate, we view the

communities on the xy-coordinates, with the x-axis representing a community’s core

user proportion and the y-axis representing its core tag proportion. The results are

shown in Figure (41). Notice that all communities have core tag proportions greater

that 0.8 while the core user proportion vary widely.
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6.4. Community Relationships

In the above sections, we considered individual communities and how they change
over time based on their users and tags. Now we look at how communities relate
and interact with each other. For example, suppose we are given a community that
is interested in the topic “Health”. Here we ask, how does this community relate
to other communities, for example “Cooking”, or “Politics”? What are the closest
communities to it, and how does their relationship behave over time?

Our approach focuses on the Joiner and the Parters per community. In Figure
(42), we show the “Politics” community and how it relates to other communities over
time. For this purpose we consider the users that at some time segment have been
members of the “Politics” community. For these users we look at what transitions they
make over time, which communities do they transition to when leaving the “Politics”
community and which communities do they come from when joining it? The figure
shows us other communities that users with interests in “Politics” have shown interest
in. Some examples of these communities are “Jobs”, “Climate”, “Social Media”,
“Culture”, “Finance” and “Health”.

We show similar results for the “Health” community in Figure (43). The figure
shows examples of communities that users who were members of the “Health” com-
munity were also interested in, such as “Politics”, “Finance”, “Cooking”, “Science”,
“Travel”, and “Iphone-dev”. In both examples, we see that user transitions across

communities is an indicator of some implicit bond between the communities.

7. Summary

Observing the social bookmarking process over time offers many interesting insights.

A one month duration can capture the majority of taggers and tags but not resources.
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Resources, taggers, and tag re-occurrences follow the common power law distribution
where a few elements are very active and the majority have very low re-occurrences.
Co-occurrences among the three types show that a few resources, users and tags are
popular while the the majority have minimal exposure. The plots however suggest a
sustained daily tagging activity indicating growth in tags, users, and resources.

Extending the SimplePSA approach to model social bookmarking services over
time involves segmenting the social tagging document for each resource. The model
is then used to uncover structures in each time segment and uses a preceding time
segment structure’s as a prior to determining the structures of the following time
segment. This modeling process allows for the detection of communities and their
evolution. A further inspection shows that communities are more dynamic along their
user distributions than along their tag distributions.

We have introduced a community dynamics representation of communities and
their users and tags transitions that allows us to further inspect the behavior of users
and tags in relation to communities. Based on this representation we observe low
and high user churn communities. We see that low user churn communities have
specialized and narrow interests versus the more generic interests of high user churn
communities. We also observe that over time core tags gain more prominence in the
community’s top tags.

Our examination of how core users and tags behave over time in both low and
high user churn communities reveals that: i) core tags and core users in low user churn
communities are present in many time segments, ii) core tags and core users in high
churn communities are present in only a few time segments. We also examine the
correlation between core user proportions and core tag proportions over communities
and conclude that no correlation is present. Our illustration of how different commu-

nities are related based on user interest transitions over time using the community
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dynamics graphs shows that we can identify related communities that are meaningful.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

1. Conclusions

Understanding and modeling the collective semantics centered around large-scale so-
cial annotations is a promising research avenue with potential implications for infor-
mation discovery and knowledge sharing. As a step in this direction, in this disser-
tation, we study the social bookmarking process itself from a community-oriented
perspective, design models that help understand it, and propose applications that

can benefit from its rich data. Concretely, we make three unique contributions:

e The first contribution is a pair of probabilistic generative models for describing
and modeling the social annotation process. These models posit that the ob-
served tagging information in a social bookmarking system is the product of an
underlying community structure, in which users belong to implicit groups of in-
terest. The first model — the Community-based Categorical Annotation (CCA)
Model — uncovers this latent structure by identifying tag categories that repre-
sent user interests, interpretations, etc. The second model — the Probabilistic
Social Annotation (PSA) Model — captures user activity and the connections
between users, tags, and documents leading to an improvement in the cate-
gories discovered compared to the CCA model. Our experimental results on
datasets obtained from the Delicious and CiteUlike social tagging communities
show that our models discover more coherent categories of tags and are better

suited to handle social bookmarking data compared to existing text-based topic



129

modeling methods. Additionally these models provide a structure for describing
user relationships to other users, to tags, and to resources that can be used to

improve information exploration and discovery.

The second contribution includes two frameworks for web-based information ex-
ploration and discovery that are based on our models of the social bookmarking
process. In the first framework, we propose a document similarity measure that
utilizes the apparent differences between document content and document tags
and the underlying structures that produced them. This enables a novel view of
documents based on their distributions over their generative hidden structures
in the content space and the tag space. In this multi-dimensional view, doc-
uments can be classified as similar/dissimilar in both tag and content spaces.
Users are then able to find documents with similar content and similar tags,
documents with similar content and dissimilar tags, and so on. We illustrate
our proposed exploration framework on datasets obtained from the Delicious
community and our results show that this multi-dimensional view of documents

would enhance data discovery and browsing.

The second framework we propose makes use of the community structure
of users and the categories they use to augment traditional ranking methods for
achieving improved discovery and exploration of social web objects. Including
the user in the social bookmarking generation process results in groupings of
users based on interactions with tags and resources. This allows for the design
of similarity measures that make use of user associations within communities
and categories. With that in mind, we introduce two approaches for leveraging
this community information: (1) ranking by query-community relevance; and

(2) ranking by user-community relevance. We compare the results of these
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approaches with the state-of-the-art BM25 ranking model as a baseline, as well
as with results obtained from existing generative topics models. Our initial
experimental results show our models achieve improvement in ranking results
over existing topic models which in turn perform better than the standard BM25

model.

Finally, we turn to time-based analysis of social bookmarking data. By spread-
ing social bookmarking data over a time-line we can compute time-based statis-
tics of tags, resources, and users and their evolution. We can also apply our
models to this data and observe the evolution of the system’s collective intelli-

gence.

Observing the social bookmarking process over time offers many interesting
insights. A month long observation can capture the majority of taggers and
tags but not resources. Resources, taggers, and tag re-occurrences follow the
common power law distribution where a few elements are very active and the
majority have very low re-occurrences. Co-occurrences among resources, users
and tags show that a few resources, users and tags are popular while the the
majority have minimal exposure. The sustained daily tagging activity indicates

growth in tags, users, and resources.

Extending the SimplePSA approach to model social bookmarking over
time involves segmenting the social tagging document for each resource. The
model is able to uncover structure in each time segment and uses a preceding
time segment’s structure as prior to determining the structure of the following
time segment. This modeling process allows the detection of communities and
their evolution. A further inspection of the communities and their constituent

users and tags dynamics shows that communities are more dynamic along their
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user distributions than along their tag distributions.

We introduce a community dynamics representation of communities and
their users and tags transitions that allows us to further inspect the behavior
of users and tags in relation to communities. Based on this representation we
observe low and high user churn communities. We see that low user churn com-
munities have specialized and narrow interests versus the more generic interests
of high user churn communities. We also observe that over time core tags gain

more prominence in the community’s top tags.

Our examination of how core users and tags behave over time in both
low and high user churn communities reveals that i) core tags and core users
in low user churn communities are present in many time segments, ii) core tags
and core users in high churn communities are present in only a few time seg-
ments. We also examine the correlation between core user proportions and core
tag proportions over communities and conclude that no correlation is present.
Our illustration of how different communities are related based on user interest
transitions over time using the community dynamics graphs shows that we can

identify related communities that are meaningful.

2. Future Work

Although our approach suggest an important role for socially contributed data in ad-
vancing information discovery, there are a number of limitations to its application and
generalization to social bookmarking systems at large. First, LDA based approaches,
in general, including our models require global knowledge and perform many iter-
ations to uncover latent variables. Hence, using them on-line is difficult. Second,

our models, as does LDA, assume a fixed number of latent variables. Third, our
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assumption of global user communities does not capture individual user behavior. In
addition, the lack of standard corpora for social bookmarking data makes evaluating
and comparing results of different research methods difficult. And, results based on
human judges of individually collected corpora need to be verified for generalization
to different social bookmarking systems.

However, some of these limitations can be overcome. A combination of a both
on-line and off-line approach can solve the processing requirements of LDA-based
models. Also, there are methods for dynamically discovering the number of latent
variables (see for example [93]). Finally, these are some tasks that we would like to

further investigate in future research work:
e Consider more fine-grained hierarchical models of the social annotation process.
e Construct individual user models in addition to the global user communities.
e Expand the integrated browsing model and verify it over standard datasets.

e Extend the scope of experimental validation to other social bookmarking com-

munities.

e Investigate alternative temporal modeling approaches of social bookmarking
data with different granularity, segmenting approaches, localization and per-

sonalization.

e Infuse topic modeling approaches with graph-based and other approaches that

include metadata such as ratings, and anchor text.
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APPENDIX A
DERIVING THE GIBBS SAMPLING EQUATION FOR LDA MODEL

Using the LDA model we factor the joint probability distribution as follows:

p(S, z|a, B) = p(S|z, B)p(z|a).
We can now derive the terms on the right one at a time. The first term p(S|z, 3) can

be derived from a multinomial on the observed word counts given the topics:

N

p(Slz,®) = [] p(wilz) = chzlwz

i=1
Splitting the product into a product over word vocabulary and another over topics

we get:

p(S|z, ®) = HH Drw) ™)

k=1 w=1

Where (n})is a count of the times word w is seen in topic k. We then obtain the

p(S|z, 5) by integrating out ®

p(Slz. B) = / p(S|z, ®)p(®|5)dd

where
dimda
r
A(&) — k=1 (Oék)

dimd
I( k=1 )

is the Dirichlet delta function, I' is the Gamma function, and

Y
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is vector counting occurrences of words w with topic z.

Similarly, We derive p(z|a) from

p(z|©) = HP(Zi|di) = I ]2z = kldi = m)
= ITII6ms0

MoK
nk +ap—1
11 x5y LL@nsyreeao,
D
A(1im _
= H M. Where 7,,, = {n* } & .
The joint probability distribution is then:

K M
p(S. 2, B) = [[ 2= 15 ”Z” « T St

z=1 m=1

|>:1

Using the joint probability distribution above, we can derive the update equation

for the Gibbs sampler as follows:

pz8) _  pSlz)  pz)
p(S,z-i)  p(S-ilz-)p(Si)  p(z-)
A7, +B8) Al +a)
A7 —i + B) Al + )
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p(zz = k’|Z_\7;, S) =

where n&ﬂ. is a count excluding the current position assignments of z; (e.g., Ny, _; 18
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the count of word w generated by the k-th topic excluding the current position).



148

APPENDIX B
DERIVING THE GIBBS SAMPLING EQUATION FOR PSA MODEL

Using the PSA model we factor the joint probability distribution as follows:

p(S", 8", z,cla, B,7,6) = p(S"|c, O)p(c|la)p(S’|z, ¢, v)p(zle, B).

We can now derive the terms on the right one at a time. The first term p(S*|c, ) can

be derived from a multinomial on the observed user counts given the communities:

N

p(SY|e,T) = H (uile;) = HTCZ »

i=1
Splitting the product into a product over communities and another over users we get:
L U
p(S*le,7) = T[] (m)™®
=1 u=1
Where (nj')is a count of the times user u is seen in community /. We then obtain

the p(S“|c, ) by integrating out

p("led) = [ (S ke, Tp(rIo)ar
L U
S A1 B | CREE
Tiu T
/: A ’lL=1

where
dima
r
A(d) = Hdz—m;ak)
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is the Dirichlet delta function, I' is the Gamma function, and
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is vector counting occurrences of user u with community .

Similarly, We derive p(c|a) from

N D L
plelw) = [Ipteld) = 1] [1p(e = tldi=m)
=1 mzll:l

H(’fm,l)nl

11=1

I
o I

m

and by integrating over x we get:
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And the term p(S*|z, ¢,7) from
N
p(st|ca 2, (I)) = H (I)Ci,zi,ti

=1 k=1i:c;=l,z;=

and by integrating over ¢ we get:

p(Sile,2y) = / p(S" e, 2B)p(®])dd
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Finally, the term p(z|c, 5) from

p(zle,0) = []p(zile )

D
p(zyca/ﬁ) = /HH A— mlk lk+/8lk 1d6

D LA (i +
= HH A3 . Where 7, = {n*} .

Using the joint probability distributed derived above, we can derive the update
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equation for the Gibbs sampler as follows:

t
p(zi - k’ci = Z‘Z—\iuc—"ht;u) = p(Z,C, ’u)
p(z-i, ¢, t,u)
= p(ulc) p(t|z, c) p(zlc)  p(c)
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where ngzgﬁi is a count excluding the current position assignments of z; and ¢; (e.g.,

”fk,w’ is the count of tag ¢t generated by the k-th category of the [-th community

excluding the current position).
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